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Abstract 

CSP++ is an object-oriented application framework 
for execution of CSP specifications that have been 
automatically synthesized into C++ source code by the 
cspt translator. We describe the tool's new capability of 
accepting input in CSPm syntax, the same dialect 
processed by the commercial verification tool, FDR2. 
Using a new ATM case study in CSPm, we give samples 
of generated code, and illustrate the use of “selective 
formalism” to code and verify some system functionality 
in CSP, and supply other functionality via user-coded 
C++ functions linked to events in the CSP specifications.  

1.  Introduction 

Formal methods have yet to have any great impact on 
typical software engineering practices. Although they are 
effective in the verification of software specifications and 
contribute towards more reliable software, they are not 
often taken seriously in industry. This is particularly 
regrettable in the case of computer based systems that 
feature concurrent processes in their architecture, because 
formal models of interprocess synchronization and 
communication could, if properly applied, eliminate 
typical pitfalls such as lurking deadlock states. 

Personnel trained in formal methods are relatively few, 
at present, compared to those trained in conventional 
programming styles, and, in any case, formal methods are 
outside the comfort zone of most project managers. 
Therefore, it may be possible to make inroads for formal 
methods by taking a hybrid approach that does not 
demand wholesale adoption of arcane notations and 
mathematical proofs, but instead allows a place for 
conventional programming. We are advocating such a 
technique, called selective formalism. It is intended to 
capitalize on both formal methods and traditional 
software engineering practices by making formal 
specifications both executable and extensible. This 
concept is introduced in the next section, followed by an 
overview of other attempts to somehow combine formal 
methods with programming languages.  

1.1.  Selective formalism 

In brief, the notion of selective formalism is to 
selectively choose to formally specify, at minimum, the 
critical control portions of a system, and then utilize 
software synthesis tools to translate the formal 
specification into executable code. The rest of the 
system’s functionality is provided, as usual, by 
programming in a popular language, and activating the 
latter code via the former synthesized control backbone. 
Thus, selective formalism requires three main ingredients: 
(i) a suitable formal notation which preferably has 
verification tool support, and which can be made 
executable; (ii) a popular programming language; and 
(iii) some type of framework to tie them together. The 
synthesis of executable code from formal specifications 
should be done automatically because of the errors that 
can be introduced and the time consumed by hand 
translation. 

We chose the process algebra CSP, Communicating 
Sequential Processes [11][16], as the formally verifiable 
notation, because of its semantics of interprocess 
communication and synchronization. CSP is supported by 
sophisticated commercial tools from Formal Systems 
(www.fsel.com) such as FDR2, for formal verification, 
and ProBE, for exploration and simulation of 
specifications. We chose C++ as the programming 
language, because it offered an object-oriented approach 
and is often the programming language of choice for 
software engineers. The integrating framework for the 
two is dubbed CSP++. 

CSP is a textual notation, so some practitioners may 
feel it lacks in human readability. On the other hand, 
inputting large system descriptions in graphical form can 
be slow and tedious, and the readability of diagrams can 
deteriorate as their complexity rises. So, for example, in 
the world of hardware design, textual notations such as 
VHDL and Verilog have largely superceded schematic 
capture. Furthermore, textual notations are readily 
compatible with source control systems, and it is easy to 
track changes on a line-by-line basis. 



CSP++ development has been underway for several 
years [5][6][7][8], and performance measurements on the 
synthesized C++ code have shown timing on par with a 
commercial tool that synthesizes C++ from StateCharts 
(ObjecTime, taken into Rational Rose RealTime, now 
called Technical Developer) [5][6]. Until now, we faced 
the significant limitation of translating a local dialect of 
CSP called csp12, which was not compatible with FDR2. 
In this paper, we present a new front-end to the CSP++ 
translator that supports CSPm syntax, and demonstrate 
our framework with a new ATM case study. The 
upgraded translator allows CSP specifications, verified by 
FDR2, to be directly translated to C++ without hand 
massaging. 

1.2.  Related work 

In the quest to stimulate software practitioners to 
utilize formal methods, there are a number of approaches. 
A key conflict, which researchers are finding different 
ways to tackle, is that formal notations are not full-
featured programming languages, but the latter are too 
semantically rich to be amenable to formal verification. 
Some categories of solutions are listed below, with 
examples. 

The first broad category starts with a programming 
language that is not immediately formally verifiable, but 
which can be converted automatically to a verifiable 
model. This could be called  “verification on the side.” 
For example, LOTOS [12] is inspired by CSP and CCS 
[13] and has a toolset, CADP [4], supporting verification 
by translating first to a labeled transition system. occam is 
also inspired by CSP, and [10] gives steps for converting 
CSP to an occam program. There are variations on this 
theme. 

A second category starts with a conventional informal 
programming language, but provides a library of classes 
or functions that obey some formal semantics. Rather 
than promoting direct verification of specifications, this is 
more an attempt to give software practitioners reliable, 
well-understood components to build with. Examples of 
libraries inspired by CSP communication semantics 
include, for Java, CTJ (formerly called CJT) [9] and 
JCSP [18], for C, CCSP [14], and for C++, C++CSP [3]. 

The third category features a “straight line” route to 
verification, starting with a formal notation that can be 
directly verified, and carries out automatic translation to 
an executable program. An older tool called CCSP [1] 
translated a small subset of CSP to C. Recently, the 
emergence of second-category libraries has facilitated this 
approach, and there is now direct translation of CSPm 
into Java (based on CTJ and JCSP) and C (based on the 
newer CCSP) [15]. 

In this spectrum of approaches, CSP++ falls into 

category three: we start with a formal notation, CSP, 
which can be verified and automatically translated to C++ 
(this is “executable specifications”), but we also allow 
selective user-coded extensions in C++ to be integrated 
with the formal notation (this is “extensible 
specifications”). 

Since many software engineers have never been 
exposed to CSP, in the next two sections we will take a 
brief look at CSP and at how CSP specifications can be 
verified using FDR2. Then we will outline the CSP++ 
design flow for practicing “selective formalism,” briefly 
describe the workings of the cspt translator and CSP++ 
execution framework—including a sample of generated 
source code—and show how to integrate user-coded C++ 
functions into a CSP control backbone. Finally, a new 
automated teller (ATM) case study will be used to 
illustrate the design flow. A Future Work section 
completes the paper. 

2.  Overview of CSP 

CSP’s formal notation contains a small number of 
fundamental elements: Each statement in a CSP 
specification is the description of a process. The process 
engages in a sequence of named events, which may 
include point-to-point communication with another 
process via a nonbuffered, unidirectional channel. The set 
of all events that a process may ever engage in is called 
its alphabet. These may correspond to real-world 
occurrences such as sensor input, device actuation, and so 
on. Processes can define themselves in terms of other 
processes, including several processes running in parallel. 
Then, the formalism provides for interprocess 
synchronization each time an event occurs that is in their 
common alphabet. This also implies that processes 
synchronize around channel communication. 

CSP statements can thus be used to model a system’s 
control and data flow in an intuitive way, constituting a 
kind of hierarchical behavioral specification. A process 
definition may terminate with SKIP (normal termination) 
or STOP (representing a deadlocked system that cannot 
proceed), or may continue as another process. Here are 
three simple processes: 

P = a -> b -> c -> SKIP 
Q = r -> a -> s -> T 
T = d -> SKIP 

P carries out the three named events, a, b, and c, then 
terminates. Q also carries out three events, but then 
continues as T, performing a fourth event, d, before 
terminating. The important operators used to create a 
hierarchical specification allow three flavors of process 
composition: 

(1) Sequential: P;Q 



(2) Independent concurrent: P ||| Q 

(3) Synchronized concurrent: P [|{a}|] Q 

Independent concurrency is also known as process 
interleaving. In the third expression, the set {a} explicitly 
declares which events of P’s and Q’s alphabets they use 
to synchronize. This means that when P is ready to 
perform event a, it will be delayed until Q is also ready to 
perform it, then event a will occur one time (not twice), 
after which P and Q will each proceed. 

A trace records the sequence of events that occur from 
a process execution. Due to the loose execution semantics 
of CSP, both of these traces would be possible for P||Q 
synchronizing on a (shown underlined): <r,a,b,c,s,d> 
<r,a,s,b,c,d>. This usefully matches the way operating 
systems dynamically schedule tasks on a CPU. 

Strictly speaking, channel communication in CSP is 
just a special case of process synchronization, but it has 
its own operators to highlight the sense that I/O is being 
conducted between processes, as in this example:  

P = ... -> c!5 -> ... 
Q = ... -> c?x -> ... 
P [|{|c|}|] Q 
 

When P and Q synchronize on c, the data 5 is output by P 
on the channel and input by Q, where it is bound to local 
variable x. In turn, x can be accessed farther on in Q’s 
definition, and possibly passed to another process as a 

parameter (a parameterized process is illustrated in 
Section 6.2. ). This channel synchronization is recorded 
in the trace as <c.5>, and the additional vertical bars in 
the set expansion notation {|c|} allow for P and Q to 
synchronize on such compound events that start with the 
channel name c. 

There are a number of other capabilities in CSP, 
including if/else selection and arithmetic expressions. A 
key operator is external (or deterministic) choice, which 
allows a process to interact with its environment and 
make decisions based on which events the environment is 
offering to do. In this example, process E stands for the 
environment: 

R = a -> P [] b -> Q 
E [|{a,b}|] R 

If E offers to do a, then R will continue as P. If E offers b, 
R will continue as Q. 

3.  CSPm and FDR2  

The original CSP notation proposed by Hoare [11] 
was not particularly intended for computer processing, 
hence, machine-readable dialects have arisen. The dialect 
used for the examples above is CSPm, which is accepted 
by FDR2 and ProBE. Previously, cspt, the translator for 
CSP++, only accepted a syntactically different local 
dialect, called csp12, but now, specifications that are 
processed by FDR2 can be input directly into cspt for 
C++ synthesis. 

CSP++ currently supports a subset of FDR2’s CSPm 
for software synthesis, but this includes the primary 
essential operators: process definition (with integer-
valued parameters), three styles of process composition 
(sequential, interleaving, and synchronized), event 
synchronization, channel data passing, compound events 
(i.e., having one or more “dotted” components, like 
foo.18.5.6), event hiding and renaming, and deterministic 
choice. These are enough for writing even complex 
specifications and synthesizing C++ software from them. 
The complete breakdown, with supported features 
marked by “X”, is shown in Table 1, with a comparison 
to features reported by Raju et al [15] in their translation 
from CSPm to three libraries (two of Java and one of C). 
There are no plans for CSP++ to support nondeterministic 
constructs (chiefly internal choice |~|) for synthesis. 

Typically, a CSPm specification can be divided into 
three sections of definitions:  

1) A specification will usually begin with channel 
declarations and datatype/nametype definitions, for 
example:  

channel date: Month.Day 
nametype Month = {1..12} 
nametype Day = {1..31} 

Table 1. Translation support for FDR2’s CSPm 

[15] CSP-to- FDR2’s CSPm Features 
CTJ JCSP CCSP

CSP++

Comments: -- X X X X 
Comments: {- ... -}  X X X 
Integer data X X X X 
Declarations X X X (1) 

Process definitions X X X X 
Recursive processes X X X X 
Parameterized processes: P(2,i)    X 
Prefix: -> X X X X 
Chan?data, chan!data X X X X 
Chan?d1.d2. .., chan!d1.d2. ... X X X X 
If ... then ... else ... X X X X 
External choice (alternative): [] X X X X 
Interface (sharing) parallel: [|{|...|}|] X X X X 
Interleaving parallel: P|||Q    X 
Sequential composition: P;Q    X 
Event renaming: [[e<-f]]    X 
Event hiding: \{e}    X 
Note (1): not needed for synthesis (treated as one-line comments) 

Not supported 
Boolean guard: & Linked and alphabetized parallel
Replicated operators: @ Interrupt: /\ 
Untimed timeout: [> Sequences and sets 
  



The preceding definitions would allow the specification 
to engage in an output event such as date!12.25. 

2) The bulk of the specification is composed of a number 
of process definitions as already shown above. 

3) Finally, assertion definitions specify propositions that 
will be formally verified. Given P = a -> b -> STOP, we 
could write: 

assert P [T= a -> STOP 

if we wish to verify that the trace <a> is a subset of the 
traces of P. (This is true since the traces of P are 
{<>,<a>,<a,b>}). As well as checking for traces 
refinement as above, FDR2 can also check for failures 
refinement and failures-divergences refinement to prove 
properties such as safety and liveness. 

With the background in CSP and FDR2 established, 
we can now proceed to describe the CSP++ design flow. 

4.  The CSP++ Design Flow 

The steps of the design flow are shown in Figure 1. 
The designer starts by creating the CSP specification for 
the system, and carries out refinement, with the aid of 
ProBE and FDR2, until satisfied with its behaviour and 
properties. 

To implement the specification in software, the cspt 
translator is invoked to generate C++ source code. The 
output file contains CSPm statements interspersed as 
comments within the generated C++, so it is easy to 
identify the code resulting from any particular CSP 
statement. When the C++ is compiled and linked with the 
CSP++ framework library, the binary can be executed 
with a command line argument that will cause it to print 
traces. Examining the execution trace is a means of 
informally demonstrating that the synthesized software is 
behaving as expected. 

The above steps do not take into account the 

incorporation of user-coded C++ functions, but this 
capability is an essential ingredient in “selective 
formalism.” At first glance, it might seem that invoking 
user-coded functions could break the formalism, but as 
long as the functions obey certain constraints—chiefly, 
not to synchronize or communicate “behind the back” of 
the framework—then in principle the model is 
maintained. 

In practice, the system designer would write CSP 
specifications for the top level of system functionality—
which naturally requires some CSP expertise—and 
continue writing CSP down to a level where the rest of 
the coding can be relegated to C++ programmers. How is 
that level determined, the place where formalism gives 
way to conventional programming? It is the level below 
which— 
• formal verification is no longer a particular concern 

because, for example, that part of the system is not 
safety-critical; 

• CSP (which does not pretend to be a full-featured 
programming language) becomes too awkward for 
expressing computations and data manipulations 
which are conveniently coded in C++; 

• the abstract named events of the CSP specification 
logically correspond to events in the system’s real 
environment, and need to be connected to the latter 
via system calls; or, 

• an interface is needed to an external package, such as 
a database management system. 

For any or all of the above reasons, the designer can 
choose to incorporate user-coded functions, linked to and 
activated by named CSP events. More will be said about 
this in Section 5.3. and in the ATM case study below. 

5.  CSP++ Software Synthesis Framework  

The architecture of CSP++ is an object-oriented 
application framework (OOAF) that incorporates the 
infrastructure needed to support CSP execution 
semantics: concurrent threads, event synchronization 
(including event hiding and renaming), and channel data 
passing. It takes the form of a C++ class library. The job 
of the cspt translator is to convert CSPm statements into a 
system of collaborating objects, whose instantiations and 
method invocations mirror the original CSP specification. 
The resulting system can be considered as a 
customization of the framework. This explanation is 
expanded in [8]. 

This translator-plus-OOAF layered approach was 
adopted, instead of attempting to create a translator that 
compiles assembly code directly from CSP, for two 
reasons. First, the OOAF, with its objects designed to 
mirror CSP entities (processes, channels, events, etc.), 
was a much easier code generation target than any 
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processor’s assembly language would be. (This is 
analogous to saying that the Java virtual machine, with its 
specially designed bytecodes, is an easier target for code 
generation from Java than assembly language.) Second, 
the translator and OOAF can be independently modified 
for porting purposes. In point of fact, the translator has 
been recently adapted to read CSPm, which required only 
trivial changes to the OOAF, and similarly the OOAF has 
been ported to three different threads models, without 
triggering any changes to the translator. 

In the next section, samples are given of the C++ code 
emitted by the cspt translator for some simple CSPm 
statements. This is followed by an overview of the 
structure and operation of the CSP++ OOAF, and the 
incorporation of user-coded functions. 

5.1.  Translating CSPm to C++ 

To illustrate the cspt translator, consider the following 
simple CSPm specification: 

channel p,q,r,s,z 
A = p->q->z->p->SKIP 
B = r->s->z->r->SKIP 
SYS = (A [|{z}|] B) 

This C++ code will be generated for the SYS process: 
static ActionRef z_r( z ); 
AGENTPROC( SYS_ )  
   z_r.sync(); 
   { 
      Agent::compose( 2 ); 
      Agent* a1 = START0( A_, 0 ); 
      Agent* a2 = START0( B_, 1 ); 
      WAIT( a1 ); 
      WAIT( a2 ); 
   } 
   Agent::popEnv( 1 ); 
   END_AGENT; 
} 

The code begins by registering z for synchronization, 
and anticipating a two-process composition. Then it starts 
the processes, waits for them to finish, and finally pops 
the z registration off the environment stack. A and B will 
run their initial events in no particular order until they 
reach their respective z events. In CSP’s “barrier” style of 
synchronization, once one process arrives at z, it waits for 
the other one. Then they perform z together and continue 
separately to their conclusions (SKIP). 

Over the history of CSP++ development, we have 
implemented concurrent processes using a variety of 
thread models. Most recently, we have adopted the use of 
the GNU Pth (www.gnu.org/software/pth). Pth is a 
portable POSIX/ANSI-C library that provides non-
preemptive scheduling. 

5.2.  The CSP++ framework 

As mentioned above, the CSP++ OOAF is essentially 
a collection of classes whose methods support CSP-style 
execution semantics. They are designed using memory 
management techniques that avoid memory leaks. CSP 
processes are represented by objects of the Agent class, 
and events are instances of either the Channel or 
Atomic classes. Each process runs in an environment 
where certain events have been renamed, hidden, or 
specified as causing synchronization. Since processes can 
spawn other processes (via composition) and can, in 
effect, change their identities (if, for example, the process 
definition ends in -> process), the environment of the 
starting process (by default, SYS) grows like a tree. 
CSP++ maintains a branching environment stack at 
runtime, onto which EnvRename, EnvHide, and 
EnvSync objects are pushed when their respective 
CSPm operators are encountered. When a process 
terminates with SKIP, its branch of the stack is unwound 
and any environment objects are popped off. The code 
generated by cspt (some with the aid of preprocessor 
macros, like AGENTPROC and START0 above) defines 
temporary objects in local block scope (e.g., Agent 
objects a1 and a2) so that their destructors will be 
automatically invoked when their corresponding 
processes terminate. This is one of the memory 
management strategies referred to above. 

One of CSP’s powerful features is that of recursive 
process definitions. In the general case, such 
specifications could lead to thread and storage explosion 
at runtime. Fortunately, practical specifications frequently 
employ a form of tail recursion, for example, P = a -> b -
> P, and cspt translates such cases as looping. Similarly, 
P = x -> y -> Q does not require keeping P’s identity alive 
when execution passes to Q’s definition; there is no need 
to start another thread for Q. But Q must inherit P’s 
environment—the applicable set of synchronizing events, 
renamings, and event hidings—and the environment stack 
described above enables that. 

In terms of data items, another class hierarchy based 
on the Literal class supports instances of integer-value 
Num objects and list-of-integer Datum objects. Support 
for other CSPm datatypes, such as sequences and sets, 
can be added in the future by subclassing Literal. A 
container class Lit manages dynamically-allocated 
Literal instances throughout their lifetimes—being 
passed through channels, passed as parameters to 
processes, bound to local variables—finally deallocating 
them when no longer referenced. This is another memory 
management strategy. 

Details of the framework’s runtime operation, in 
particular, the means of implementing external choice in 
the presence of concurrent synchronization, are described 
in [6] and [7]. 



5.3.  Incorporating user-coded functions 

In CSP specifications, it is natural to name events after 
real-world phenomena: an “ns_sensor” event corresponds 
to a car standing at a north/south intersection; “red,” 
“yellow,” and “green” events represent illuminating 
traffic signal lamps; and so on. In the specification itself, 
these are nothing more than abstract symbols, and fodder 
for verification tools. What selective formalism does, in 
the context of software synthesis, is provide a way to 
concretize those symbols by linking them to external 
devices and/or data processing code. The linkage between 
a particular event name, say “red,” and its C++ function, 
signalRed, is established when compiling the translated 
source code, by defining a preprocessor symbol (with 
suffix _p) like so:    g++ … -Dred_p=signalRed. 

The designer may use any given event or channel 
name either for internal synchronization purposes, or for 
linking with a user-coded function. In practice, early 
development of the specification will see event names 
used to synchronize the CSP functional model (see 
below) with its simulated environment. Later, as the 
developer proceeds to software synthesis, the 
environment model is removed, and the event name is 
then free to be linked with a user-coded function that 
actually carries out the input, output, or other processing. 

As far as the formal model is concerned, abstract event 
names are atomic and of indefinite duration, so an event’s 
semantics in the implementation context of the computer 
based system should be irrelevant. But in order to avoid 
“breaking” the formalism, it is important that user-coded 
functions do not perform interprocess communication 
behind the back, so to speak, of the CSP model. Such 
violations could possibly reintroduce the concurrency 
bugs that the use of CSP is meant to avoid, and render the 
formal verification ineffective. 

Next, we turn to a case study that illustrates all the 
above features. 

6.  ATM case study 

To demonstrate the use of CSP++ with translation of 
CSPm input, we have implemented a small system, an 
Automated Teller Machine (ATM). This case study was 
based on a design by R. Bjork [2], who followed all the 
steps of OO methodology leading up to a final Java 
implementation. Of his many UML models—all of which 
could be considered aids in the implementation of the 
ATM in CSP++—we have found from our experience 
that statechart or state machine models can be valuable 
starting points for coding CSP. One can also write CSP 
specifications from a series of prose requirements.  

State machine representations lend themselves to 
being modeled in CSP. States become processes and 

transitions become events. In the case of hierarchical 
concurrent finite state machines (HCFSMs), as are the 
state machines of the ATM example, then each state 
machine can be its own process that synchronizes on 
common events with other processes. A single large, 
complex state machine can often be better expressed as 
HCFSMs [17]. Breaking the design into parts keeps the 
design understandable.  

6.1.  CSP in the design phase 

CSP notation can be utilized in four roles in the system 
design phase, constituting four complementary models: 

(1) Functional Model: The functional model captures the 
desired system behavior in terms of CSP processes 
engaging in named events. For the ATM, UML 
statecharts were translated to high level CSP to describe 
the overall behavior of the system. 

(2) Environment Model: The environment model 
simulates the behavior of entities in the system's target 
environment, in terms of processes engaging in events. 
The functional model can be simulated by synchronizing 
it with the environment model. In the CSP++ design flow, 
after implementation the environment model is removed, 
leaving the system to interact directly with its real 
environment by means of user-coded functions. 

In the case of the ATM, we modeled three other 
entities that appear in its environment: the CLIENT, the 
BANK, and the OPERATOR. All of these are simulated, 
and represent interfaces for the purpose of 
communication with the ATM. The client process inserts 
a card, enters a PIN, chooses a transaction, etc., to 
demonstrate the use cases of the ATM. The bank will 
process requests made to it (say, for cash withdrawals) 
and send back responses (e.g., approved or invalid PIN) 
based on the results of the processing performed. The 
operator sets the amount of cash in the machine and turns 
the machine on and off. 

(3) Constraint Model: Other processes may optionally 
be added alongside the functional model to limit or 
constrain the event sequences that can occur. A constraint 
model is used to focus on critical event sequences in the 
functional model that must—or must not—occur in order 
for the system to be “safe.” In the example of the two 
traces given in Section 2, <r,a,b,c,s,d> and <r,a,s,b,t,d>, if 
only a trace where b occurs before s is acceptable, then a 
constraint process could specify that explicitly. If 
verification shows that the constraint is violated, the 
functional model must be improved. The simple ATM 
system did not require constraints. 

(4) Implementation Model: Since the functional model 
will likely be fairly high-level, it will normally need to be 



refined to an implementation model, still in CSP, but with 
more detailed processes and events added. Verification 
will confirm whether the implementation is a legitimate 
refinement of the original functional model. 

For example, specifying the way to handle invalid 
PINs was not included in the statecharts, nor in the 
derived functional model. Such details needed to be 
specified in CSP so that they could be formally verified. 

In the ATM case study, there are four main processes, 
the BANK, the CLIENT, the OPERATOR, and the ATM 
itself. The ATM process in turn is composed of several 
communicating subprocesses. These four are composed 
in parallel to make up the entire system (SYS). To 
synthesize the ATM alone, which is the target 
application, the client, bank, and operator processes 
would be removed and the channel inputs and outputs of 
the ATM could then link up with user-coded C++ 
functions that accept button pushes, provide network 
connections, etc. 

6.2.  Code samples 

The following provides a sample of some of the CSPm 
code for the ATM. The entire case study is available on 
the Web; see Section 8. The first item of interest is a 
method of providing, in effect, a global variable for the 
PIN. It uses get and set channels to access the PIN value. 
PINi is its initial state, and PIN(val) is a parameterized 
process. 

PINi = pinset?x -> PIN(x) 
PIN(val) = pinset?x -> PIN(x)  
 [] pinget!val -> PIN(val) 

 

Here is the specification for a single session, which was derived 
from a statecharts model. 

SESSION = insertcomplete -> READINGCARD 
 
READINGCARD = readcard?c ->  

(cardset!c -> READINGPIN) 
[] badcard -> EJECT 
 
READINGPIN = readpin?p ->  

(pinset!p -> CHOOSING) 
[] cancel -> EJECT 
 
CHOOSING = chosen?menu ->  

(choose!menu -> TRANS) 
[] cancel -> EJECT 
 
TRANS = endtrans -> EJECT 
[] anothertrans -> CHOOSING 
[] holdingcard -> DONE 
 
EJECT = ejectcard -> DONE 
 
DONE = sessiondone -> SESSION 

Also in the ATM is the TRANSACTION processor, shown with 
one parameterized subprocess, SPECIFICS(1), that handles a 
withdrawal: 

TRANSACTION = chosen?menu -> SPECIFICS(menu) 

SPECIFICS(1) = 
(getacct?account ->  
    (getamnt?amount -> (amntset!amount -> 

SEND(1,account,1,1,amount) ) 
        [] cancel -> ANOTHER) 

[] cancel -> ANOTHER) 
 

SEND and RECEIVE are responsible for communication with 
the BANK process: 

SEND(m,account,from,to,amount) = 
cardget?c -> pinget?p ->  
banksend!m.c.p.account.from.to.amount -> 
RECEIVE(m) 
 

RECEIVE(menu) = bankstatus?stat.pin.val -> 
        (if (stat == 1) then invalidPIN ->  

HANDLEPIN(menu,pin,val,1) 
     else if (stat == 2) then approved -> 

COMPLETING(menu,val) 
     else rollback -> ANOTHER) 

Finally, the ATM process is composed of SESSION, 
TRANSACTION, VARIABLES (including PINi), and 
OVERALL (not shown above): 
ATM = 
( (OVERALL [|{|insertcomplete, sessiondone|}|] 
   SESSION) 
[|{|choose,endtrans,anothertrans,holdingcard|}|] 
  TRANSACTION) 
[|{|cardset,cardget,pinset,pinget,machset, 
  machget,balset,balget|}|] VARIABLES 

6.3.  Verification and functional test cases 

There are some system properties that FDR2 can 
check on its own with no special instructions, as indicated 
by these assertions: 
  assert ATM :[deadlock free [F]] 
  assert ATM :[livelock free [F]] 
  assert ATM :[deterministic [F]] 
 

Realistically, most useful verification involves learning 
how to “ask the right questions” of the tool. 

The ATM design documents provided functional test 
cases that proved useful for coding assertions. By using 
the trace refinement method in our case study, we are able 
to prove one of the functional test cases and show that a 
client's card will indeed be held after entering the wrong 
PIN three times in a row: 

If there are three invalidPIN events in the same 
transaction, the card will be held and no receipt 
(indicating a completed transaction) will be issued. Using 
trace refinement, mentioned in Section 3, we can analyze 
the following two assertions that prove the 
aforementioned test cases. (The ‘\’ operator is used to 
hide events that are not germane to the assertion.) 
assert ATM \ diff(Events,{|invalidPIN, finished, 
   again, receipt, holdingcard|})  
[T= invalidPIN -> invalidPIN -> invalidPIN ->  
   holdingcard -> STOP 

The assertion should succeed since the card must 



indeed be held after three invalidPIN events. Now if we 
change the trace portion of the assertion to this: 
[T= invalidPIN -> invalidPIN -> invalidPIN ->  
   receipt -> STOP 

it should fail, since there is no trace that can have three 
invalidPIN events followed by the issuing of a receipt. 

An example of a liveness specification comes from the 
System Startup use case: we want to prove that the ATM 
must continue to allow activation of the “on” switch, a 
request for the initial cash amount, followed by activation 
of the “off” switch. That is, the failures of the ATM 
process should be a subset of failures of a specification 
that repeatedly performs the sequence of on, machcash.x, 
and off. In a liveness specification “P [F= Q”, P puts a 
limit on what Q can do and requires Q to accept at least a 
certain range of behaviours. We write this as follows: 
  P = on -> machcash?x -> off -> P 
  Q = ATM \ diff(Events,{|on, off,machcash|}) 
  assert P [F= Q 
 

FDR2 confirms that this liveness specification is 
satisfied. Other properties can be proved in a similar 
fashion. For example, we can verify how the ATM will 
respond if the bank sends back a message stating that the 
amount requested exceeds the account balance. 

A potential problem using FDR2 for verification is 
state space explosion. When we verified the ATM 
specification, values such as account balances were 
limited to a few possible values in order to prevent state 
explosion. But since cspt does not need to analyze the 
state space to produce its translation, this is not a problem 
for the CSP++ implementation. It should be noted, 
though, that specifications can be synthesized that result 
in resource exhaustion at runtime, just as conventional 
programs can cause stack overflow through careless use 
of recursion. 

6.4.  User-coded functions for the ATM 

The following is a representative case of linking the 
channel event ‘readpin?p’ of the READINGPIN process 
with a user-coded function that obtains the input PIN and 
returns it to the CSP specification via the status argument. 
void readpin_chanInput( ActionType t, 
 ActionRef* a, Var* status, Lit* l )  
{  

int pinnumber;  
cout << "Welcome to the CSP++ ATM" << endl;  
cout << Please enter your PIN -> ";  
cin >> pinnumber;  
*status = Lit(pinnumber); // store input } 

In the generated C++ code below, assume that it was 
compiled with “-Dreadpin_p=readpin_chanInput”: 
Channel readpin("readpin", readpin_p); 
AGENTPROC( READINGPIN_ ) 

FreeVar p; 
   Agent::startDChoice( 2 ); 
      readpin >> p; 
      cancel(); 
   switch ( Agent::whichDChoice() ) { 
      case 0: { 
         pinset << p; 
         CHAIN0( CHOOSING_ ); } 
      default: { 
         CHAIN0( EJECT_ ); } 
   } 
} 

Now when the Channel object readpin has its 
extraction (>>) operator invoked, the external linkage to 
the function readpin_chanInput will be used, instead of 
attempting to synchronize with a channel output 
operation in another process. 

Other events in the ATM specification are candidates 
for linking to user-coded functions. For example, the 
banksend and bankstatus channels of the SEND and 
RECEIVE processes (Section 6.2.  above) were linked to 
functions that make network socket connections with a 
bank system that processes transactions and maintains an 
SQL database of client account information. 

6.5.  Debugging 

Finding and eliminating defects takes place in different 
phases of system development. At the CSP specification 
stage, Formal Systems’ Checker tool can help diagnose 
erroneous use of datatypes, and ProBE can be used to 
check the syntax and explore the state space of the 
specification. After cspt synthesizes C++, the compiled 
code can be executed with trace printing turned on. When 
execution ceases—either because there are no unblocked 
processes to run, or because a process executed STOP—a 
process status dump is printed, showing what events each 
process is waiting on. The dump also records the “high 
water marks” of the numbers of concurrent threads 
created and literals allocated. For low level checking, the 
OOAF can be recompiled with the ACTWATCH 
preprocessor symbol that causes it to print a running log 
of all choice-making and synchronization activities. 
Another symbol, MEMWATCH, activates logging of all 
literal allocations and deallocations. The compiled code 
can be executed under control of GNU gdb, allowing for 
breakpoints, single-stepping, and storage inspection in 
both the synthesized code and in the user-coded 
functions. 

7.  Future work 

The key objective of enhancing CSP++’s usability has 
been recently accomplished by realigning the translator’s 
front end with FDR2’s CSPm syntax. Work that is 
underway or planned include the following areas: 
1. Two remaining restrictions result from the former 



csp12 dialect’s semantics. (1) An event name used to 
synchronize two processes cannot be reused to 
synchronize those two with another process at a 
higher level of composition. The desired behaviour is 
for all three processes to synchronize on the same 
event, which in csp12 was obtained by writing 
(P||Q||R)^{sync set}. CSPm specifications that need 
this behavior must work around the restriction for 
now. (2) When the external choice operator [] is 
used, the first event of each process must be 
explicitly exposed. Thus, a->P[]b->Q is 
synthesizable, but P[]Q is not. In csp12, choice was 
written as a->P|b->Q. 

2. Support for more CSPm datatypes will be added. 
3. CSP++ implements the original definition of CSP 

that does not include timing and interrupts. Until 
support is added, specifications written in terms of 
event-based “tock” timing [16] can be synthesized 
(though with awkwardness due to restriction (1)). 

In the future, it is intended to extend synthesis 
capabilities to hardware description language for 
application to hardware/software codesign. 

8.  Conclusion 

In this paper, we presented a new front-end to the 
CSP++ translator that supports CSPm syntax and 
demonstrated by means of an ATM case study that 
selective formalism can be a worthwhile software process 
model for the design and development of computer based 
concurrent systems. We believe that selective formalism 
is an attractive approach to concurrent system design and 
development because of its flexible combination of 
formal verification and conventional programming, all 
based on executable and extensible specifications. The 
latest version of CSP++ can be downloaded from the 
author’s website http://www.cis.uoguelph.ca/~wgardner. 
The code for the ATM case study is included. 
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