
Synthesis of C++ Software from Verifiable CSPm Specifications

Stephen Doxsee and W. B. Gardner
Modeling & Design Automation Group, Dept. of Computing & Information Science

University of Guelph, Guelph, Ontario, Canada
sdoxsee@uoguelph.ca, wgardner@cis.uoguelph.ca

Abstract

CSP++ is an object-oriented application framework
for execution of CSP specifications that have been
automatically synthesized into C++ source code by the
cspt translator. We describe the tool's new capability of
accepting input in CSPm syntax, the same dialect
processed by the commercial verification tool, FDR2.
Using a new ATM case study in CSPm, we give samples
of generated code, and illustrate the use of “selective
formalism” to code and verify some system functionality
in CSP, and supply other functionality via user-coded
C++ functions linked to events in the CSP specifications.

1. Introduction

Formal methods have yet to have any great impact on
typical software engineering practices. Although they are
effective in the verification of software specifications and
contribute towards more reliable software, they are not
often taken seriously in industry. This is particularly
regrettable in the case of computer based systems that
feature concurrent processes in their architecture, because
formal models of interprocess synchronization and
communication could, if properly applied, eliminate
typical pitfalls such as lurking deadlock states.

Personnel trained in formal methods are relatively few,
at present, compared to those trained in conventional
programming styles, and, in any case, formal methods are
outside the comfort zone of most project managers.
Therefore, it may be possible to make inroads for formal
methods by taking a hybrid approach that does not
demand wholesale adoption of arcane notations and
mathematical proofs, but instead allows a place for
conventional programming. We are advocating such a
technique, called selective formalism. It is intended to
capitalize on both formal methods and traditional
software engineering practices by making formal
specifications both executable and extensible. This
concept is introduced in the next section, followed by an
overview of other attempts to somehow combine formal
methods with programming languages.

1.1. Selective formalism

In brief, the notion of selective formalism is to
selectively choose to formally specify, at minimum, the
critical control portions of a system, and then utilize
software synthesis tools to translate the formal
specification into executable code. The rest of the
system’s functionality is provided, as usual, by
programming in a popular language, and activating the
latter code via the former synthesized control backbone.
Thus, selective formalism requires three main ingredients:
(i) a suitable formal notation which preferably has
verification tool support, and which can be made
executable; (ii) a popular programming language; and
(iii) some type of framework to tie them together. The
synthesis of executable code from formal specifications
should be done automatically because of the errors that
can be introduced and the time consumed by hand
translation.

We chose the process algebra CSP, Communicating
Sequential Processes [11][16], as the formally verifiable
notation, because of its semantics of interprocess
communication and synchronization. CSP is supported by
sophisticated commercial tools from Formal Systems
(www.fsel.com) such as FDR2, for formal verification,
and ProBE, for exploration and simulation of
specifications. We chose C++ as the programming
language, because it offered an object-oriented approach
and is often the programming language of choice for
software engineers. The integrating framework for the
two is dubbed CSP++.

CSP is a textual notation, so some practitioners may
feel it lacks in human readability. On the other hand,
inputting large system descriptions in graphical form can
be slow and tedious, and the readability of diagrams can
deteriorate as their complexity rises. So, for example, in
the world of hardware design, textual notations such as
VHDL and Verilog have largely superceded schematic
capture. Furthermore, textual notations are readily
compatible with source control systems, and it is easy to
track changes on a line-by-line basis.

CSP++ development has been underway for several
years [5][6][7][8], and performance measurements on the
synthesized C++ code have shown timing on par with a
commercial tool that synthesizes C++ from StateCharts
(ObjecTime, taken into Rational Rose RealTime, now
called Technical Developer) [5][6]. Until now, we faced
the significant limitation of translating a local dialect of
CSP called csp12, which was not compatible with FDR2.
In this paper, we present a new front-end to the CSP++
translator that supports CSPm syntax, and demonstrate
our framework with a new ATM case study. The
upgraded translator allows CSP specifications, verified by
FDR2, to be directly translated to C++ without hand
massaging.

1.2. Related work

In the quest to stimulate software practitioners to
utilize formal methods, there are a number of approaches.
A key conflict, which researchers are finding different
ways to tackle, is that formal notations are not full-
featured programming languages, but the latter are too
semantically rich to be amenable to formal verification.
Some categories of solutions are listed below, with
examples.

The first broad category starts with a programming
language that is not immediately formally verifiable, but
which can be converted automatically to a verifiable
model. This could be called “verification on the side.”
For example, LOTOS [12] is inspired by CSP and CCS
[13] and has a toolset, CADP [4], supporting verification
by translating first to a labeled transition system. occam is
also inspired by CSP, and [10] gives steps for converting
CSP to an occam program. There are variations on this
theme.

A second category starts with a conventional informal
programming language, but provides a library of classes
or functions that obey some formal semantics. Rather
than promoting direct verification of specifications, this is
more an attempt to give software practitioners reliable,
well-understood components to build with. Examples of
libraries inspired by CSP communication semantics
include, for Java, CTJ (formerly called CJT) [9] and
JCSP [18], for C, CCSP [14], and for C++, C++CSP [3].

The third category features a “straight line” route to
verification, starting with a formal notation that can be
directly verified, and carries out automatic translation to
an executable program. An older tool called CCSP [1]
translated a small subset of CSP to C. Recently, the
emergence of second-category libraries has facilitated this
approach, and there is now direct translation of CSPm
into Java (based on CTJ and JCSP) and C (based on the
newer CCSP) [15].

In this spectrum of approaches, CSP++ falls into

category three: we start with a formal notation, CSP,
which can be verified and automatically translated to C++
(this is “executable specifications”), but we also allow
selective user-coded extensions in C++ to be integrated
with the formal notation (this is “extensible
specifications”).

Since many software engineers have never been
exposed to CSP, in the next two sections we will take a
brief look at CSP and at how CSP specifications can be
verified using FDR2. Then we will outline the CSP++
design flow for practicing “selective formalism,” briefly
describe the workings of the cspt translator and CSP++
execution framework—including a sample of generated
source code—and show how to integrate user-coded C++
functions into a CSP control backbone. Finally, a new
automated teller (ATM) case study will be used to
illustrate the design flow. A Future Work section
completes the paper.

2. Overview of CSP

CSP’s formal notation contains a small number of
fundamental elements: Each statement in a CSP
specification is the description of a process. The process
engages in a sequence of named events, which may
include point-to-point communication with another
process via a nonbuffered, unidirectional channel. The set
of all events that a process may ever engage in is called
its alphabet. These may correspond to real-world
occurrences such as sensor input, device actuation, and so
on. Processes can define themselves in terms of other
processes, including several processes running in parallel.
Then, the formalism provides for interprocess
synchronization each time an event occurs that is in their
common alphabet. This also implies that processes
synchronize around channel communication.

CSP statements can thus be used to model a system’s
control and data flow in an intuitive way, constituting a
kind of hierarchical behavioral specification. A process
definition may terminate with SKIP (normal termination)
or STOP (representing a deadlocked system that cannot
proceed), or may continue as another process. Here are
three simple processes:

P = a -> b -> c -> SKIP
Q = r -> a -> s -> T
T = d -> SKIP

P carries out the three named events, a, b, and c, then
terminates. Q also carries out three events, but then
continues as T, performing a fourth event, d, before
terminating. The important operators used to create a
hierarchical specification allow three flavors of process
composition:

(1) Sequential: P;Q

(2) Independent concurrent: P ||| Q

(3) Synchronized concurrent: P [|{a}|] Q

Independent concurrency is also known as process
interleaving. In the third expression, the set {a} explicitly
declares which events of P’s and Q’s alphabets they use
to synchronize. This means that when P is ready to
perform event a, it will be delayed until Q is also ready to
perform it, then event a will occur one time (not twice),
after which P and Q will each proceed.

A trace records the sequence of events that occur from
a process execution. Due to the loose execution semantics
of CSP, both of these traces would be possible for P||Q
synchronizing on a (shown underlined): <r,a,b,c,s,d>
<r,a,s,b,c,d>. This usefully matches the way operating
systems dynamically schedule tasks on a CPU.

Strictly speaking, channel communication in CSP is
just a special case of process synchronization, but it has
its own operators to highlight the sense that I/O is being
conducted between processes, as in this example:

P = ... -> c!5 -> ...
Q = ... -> c?x -> ...
P [|{|c|}|] Q

When P and Q synchronize on c, the data 5 is output by P
on the channel and input by Q, where it is bound to local
variable x. In turn, x can be accessed farther on in Q’s
definition, and possibly passed to another process as a

parameter (a parameterized process is illustrated in
Section 6.2.). This channel synchronization is recorded
in the trace as <c.5>, and the additional vertical bars in
the set expansion notation {|c|} allow for P and Q to
synchronize on such compound events that start with the
channel name c.

There are a number of other capabilities in CSP,
including if/else selection and arithmetic expressions. A
key operator is external (or deterministic) choice, which
allows a process to interact with its environment and
make decisions based on which events the environment is
offering to do. In this example, process E stands for the
environment:

R = a -> P [] b -> Q
E [|{a,b}|] R

If E offers to do a, then R will continue as P. If E offers b,
R will continue as Q.

3. CSPm and FDR2

The original CSP notation proposed by Hoare [11]
was not particularly intended for computer processing,
hence, machine-readable dialects have arisen. The dialect
used for the examples above is CSPm, which is accepted
by FDR2 and ProBE. Previously, cspt, the translator for
CSP++, only accepted a syntactically different local
dialect, called csp12, but now, specifications that are
processed by FDR2 can be input directly into cspt for
C++ synthesis.

CSP++ currently supports a subset of FDR2’s CSPm
for software synthesis, but this includes the primary
essential operators: process definition (with integer-
valued parameters), three styles of process composition
(sequential, interleaving, and synchronized), event
synchronization, channel data passing, compound events
(i.e., having one or more “dotted” components, like
foo.18.5.6), event hiding and renaming, and deterministic
choice. These are enough for writing even complex
specifications and synthesizing C++ software from them.
The complete breakdown, with supported features
marked by “X”, is shown in Table 1, with a comparison
to features reported by Raju et al [15] in their translation
from CSPm to three libraries (two of Java and one of C).
There are no plans for CSP++ to support nondeterministic
constructs (chiefly internal choice |~|) for synthesis.

Typically, a CSPm specification can be divided into
three sections of definitions:

1) A specification will usually begin with channel
declarations and datatype/nametype definitions, for
example:

channel date: Month.Day
nametype Month = {1..12}
nametype Day = {1..31}

Table 1. Translation support for FDR2’s CSPm

[15] CSP-to- FDR2’s CSPm Features
CTJ JCSP CCSP

CSP++

Comments: -- X X X X
Comments: {- ... -} X X X
Integer data X X X X
Declarations X X X (1)

Process definitions X X X X
Recursive processes X X X X
Parameterized processes: P(2,i) X
Prefix: -> X X X X
Chan?data, chan!data X X X X
Chan?d1.d2. .., chan!d1.d2. ... X X X X
If ... then ... else ... X X X X
External choice (alternative): [] X X X X
Interface (sharing) parallel: [|{|...|}|] X X X X
Interleaving parallel: P|||Q X
Sequential composition: P;Q X
Event renaming: [[e<-f]] X
Event hiding: \{e} X
Note (1): not needed for synthesis (treated as one-line comments)

Not supported
Boolean guard: & Linked and alphabetized parallel
Replicated operators: @ Interrupt: /\
Untimed timeout: [> Sequences and sets

The preceding definitions would allow the specification
to engage in an output event such as date!12.25.

2) The bulk of the specification is composed of a number
of process definitions as already shown above.

3) Finally, assertion definitions specify propositions that
will be formally verified. Given P = a -> b -> STOP, we
could write:

assert P [T= a -> STOP

if we wish to verify that the trace <a> is a subset of the
traces of P. (This is true since the traces of P are
{<>,<a>,<a,b>}). As well as checking for traces
refinement as above, FDR2 can also check for failures
refinement and failures-divergences refinement to prove
properties such as safety and liveness.

With the background in CSP and FDR2 established,
we can now proceed to describe the CSP++ design flow.

4. The CSP++ Design Flow

The steps of the design flow are shown in Figure 1.
The designer starts by creating the CSP specification for
the system, and carries out refinement, with the aid of
ProBE and FDR2, until satisfied with its behaviour and
properties.

To implement the specification in software, the cspt
translator is invoked to generate C++ source code. The
output file contains CSPm statements interspersed as
comments within the generated C++, so it is easy to
identify the code resulting from any particular CSP
statement. When the C++ is compiled and linked with the
CSP++ framework library, the binary can be executed
with a command line argument that will cause it to print
traces. Examining the execution trace is a means of
informally demonstrating that the synthesized software is
behaving as expected.

The above steps do not take into account the

incorporation of user-coded C++ functions, but this
capability is an essential ingredient in “selective
formalism.” At first glance, it might seem that invoking
user-coded functions could break the formalism, but as
long as the functions obey certain constraints—chiefly,
not to synchronize or communicate “behind the back” of
the framework—then in principle the model is
maintained.

In practice, the system designer would write CSP
specifications for the top level of system functionality—
which naturally requires some CSP expertise—and
continue writing CSP down to a level where the rest of
the coding can be relegated to C++ programmers. How is
that level determined, the place where formalism gives
way to conventional programming? It is the level below
which—
• formal verification is no longer a particular concern

because, for example, that part of the system is not
safety-critical;

• CSP (which does not pretend to be a full-featured
programming language) becomes too awkward for
expressing computations and data manipulations
which are conveniently coded in C++;

• the abstract named events of the CSP specification
logically correspond to events in the system’s real
environment, and need to be connected to the latter
via system calls; or,

• an interface is needed to an external package, such as
a database management system.

For any or all of the above reasons, the designer can
choose to incorporate user-coded functions, linked to and
activated by named CSP events. More will be said about
this in Section 5.3. and in the ATM case study below.

5. CSP++ Software Synthesis Framework

The architecture of CSP++ is an object-oriented
application framework (OOAF) that incorporates the
infrastructure needed to support CSP execution
semantics: concurrent threads, event synchronization
(including event hiding and renaming), and channel data
passing. It takes the form of a C++ class library. The job
of the cspt translator is to convert CSPm statements into a
system of collaborating objects, whose instantiations and
method invocations mirror the original CSP specification.
The resulting system can be considered as a
customization of the framework. This explanation is
expanded in [8].

This translator-plus-OOAF layered approach was
adopted, instead of attempting to create a translator that
compiles assembly code directly from CSP, for two
reasons. First, the OOAF, with its objects designed to
mirror CSP entities (processes, channels, events, etc.),
was a much easier code generation target than any

Figure 1. CSP++ design flow

CSP Specs

Verification
Tools

cspt
Translator

CSP++ Control Layer

User-coded
Functions
 Utilities

User-coded
C++ Functions

Target System

RTOS

processor’s assembly language would be. (This is
analogous to saying that the Java virtual machine, with its
specially designed bytecodes, is an easier target for code
generation from Java than assembly language.) Second,
the translator and OOAF can be independently modified
for porting purposes. In point of fact, the translator has
been recently adapted to read CSPm, which required only
trivial changes to the OOAF, and similarly the OOAF has
been ported to three different threads models, without
triggering any changes to the translator.

In the next section, samples are given of the C++ code
emitted by the cspt translator for some simple CSPm
statements. This is followed by an overview of the
structure and operation of the CSP++ OOAF, and the
incorporation of user-coded functions.

5.1. Translating CSPm to C++

To illustrate the cspt translator, consider the following
simple CSPm specification:

channel p,q,r,s,z
A = p->q->z->p->SKIP
B = r->s->z->r->SKIP
SYS = (A [|{z}|] B)

This C++ code will be generated for the SYS process:
static ActionRef z_r(z);
AGENTPROC(SYS_)
 z_r.sync();
 {
 Agent::compose(2);
 Agent* a1 = START0(A_, 0);
 Agent* a2 = START0(B_, 1);
 WAIT(a1);
 WAIT(a2);
 }
 Agent::popEnv(1);
 END_AGENT;
}

The code begins by registering z for synchronization,
and anticipating a two-process composition. Then it starts
the processes, waits for them to finish, and finally pops
the z registration off the environment stack. A and B will
run their initial events in no particular order until they
reach their respective z events. In CSP’s “barrier” style of
synchronization, once one process arrives at z, it waits for
the other one. Then they perform z together and continue
separately to their conclusions (SKIP).

Over the history of CSP++ development, we have
implemented concurrent processes using a variety of
thread models. Most recently, we have adopted the use of
the GNU Pth (www.gnu.org/software/pth). Pth is a
portable POSIX/ANSI-C library that provides non-
preemptive scheduling.

5.2. The CSP++ framework

As mentioned above, the CSP++ OOAF is essentially
a collection of classes whose methods support CSP-style
execution semantics. They are designed using memory
management techniques that avoid memory leaks. CSP
processes are represented by objects of the Agent class,
and events are instances of either the Channel or
Atomic classes. Each process runs in an environment
where certain events have been renamed, hidden, or
specified as causing synchronization. Since processes can
spawn other processes (via composition) and can, in
effect, change their identities (if, for example, the process
definition ends in -> process), the environment of the
starting process (by default, SYS) grows like a tree.
CSP++ maintains a branching environment stack at
runtime, onto which EnvRename, EnvHide, and
EnvSync objects are pushed when their respective
CSPm operators are encountered. When a process
terminates with SKIP, its branch of the stack is unwound
and any environment objects are popped off. The code
generated by cspt (some with the aid of preprocessor
macros, like AGENTPROC and START0 above) defines
temporary objects in local block scope (e.g., Agent
objects a1 and a2) so that their destructors will be
automatically invoked when their corresponding
processes terminate. This is one of the memory
management strategies referred to above.

One of CSP’s powerful features is that of recursive
process definitions. In the general case, such
specifications could lead to thread and storage explosion
at runtime. Fortunately, practical specifications frequently
employ a form of tail recursion, for example, P = a -> b -
> P, and cspt translates such cases as looping. Similarly,
P = x -> y -> Q does not require keeping P’s identity alive
when execution passes to Q’s definition; there is no need
to start another thread for Q. But Q must inherit P’s
environment—the applicable set of synchronizing events,
renamings, and event hidings—and the environment stack
described above enables that.

In terms of data items, another class hierarchy based
on the Literal class supports instances of integer-value
Num objects and list-of-integer Datum objects. Support
for other CSPm datatypes, such as sequences and sets,
can be added in the future by subclassing Literal. A
container class Lit manages dynamically-allocated
Literal instances throughout their lifetimes—being
passed through channels, passed as parameters to
processes, bound to local variables—finally deallocating
them when no longer referenced. This is another memory
management strategy.

Details of the framework’s runtime operation, in
particular, the means of implementing external choice in
the presence of concurrent synchronization, are described
in [6] and [7].

5.3. Incorporating user-coded functions

In CSP specifications, it is natural to name events after
real-world phenomena: an “ns_sensor” event corresponds
to a car standing at a north/south intersection; “red,”
“yellow,” and “green” events represent illuminating
traffic signal lamps; and so on. In the specification itself,
these are nothing more than abstract symbols, and fodder
for verification tools. What selective formalism does, in
the context of software synthesis, is provide a way to
concretize those symbols by linking them to external
devices and/or data processing code. The linkage between
a particular event name, say “red,” and its C++ function,
signalRed, is established when compiling the translated
source code, by defining a preprocessor symbol (with
suffix _p) like so: g++ … -Dred_p=signalRed.

The designer may use any given event or channel
name either for internal synchronization purposes, or for
linking with a user-coded function. In practice, early
development of the specification will see event names
used to synchronize the CSP functional model (see
below) with its simulated environment. Later, as the
developer proceeds to software synthesis, the
environment model is removed, and the event name is
then free to be linked with a user-coded function that
actually carries out the input, output, or other processing.

As far as the formal model is concerned, abstract event
names are atomic and of indefinite duration, so an event’s
semantics in the implementation context of the computer
based system should be irrelevant. But in order to avoid
“breaking” the formalism, it is important that user-coded
functions do not perform interprocess communication
behind the back, so to speak, of the CSP model. Such
violations could possibly reintroduce the concurrency
bugs that the use of CSP is meant to avoid, and render the
formal verification ineffective.

Next, we turn to a case study that illustrates all the
above features.

6. ATM case study

To demonstrate the use of CSP++ with translation of
CSPm input, we have implemented a small system, an
Automated Teller Machine (ATM). This case study was
based on a design by R. Bjork [2], who followed all the
steps of OO methodology leading up to a final Java
implementation. Of his many UML models—all of which
could be considered aids in the implementation of the
ATM in CSP++—we have found from our experience
that statechart or state machine models can be valuable
starting points for coding CSP. One can also write CSP
specifications from a series of prose requirements.

State machine representations lend themselves to
being modeled in CSP. States become processes and

transitions become events. In the case of hierarchical
concurrent finite state machines (HCFSMs), as are the
state machines of the ATM example, then each state
machine can be its own process that synchronizes on
common events with other processes. A single large,
complex state machine can often be better expressed as
HCFSMs [17]. Breaking the design into parts keeps the
design understandable.

6.1. CSP in the design phase

CSP notation can be utilized in four roles in the system
design phase, constituting four complementary models:

(1) Functional Model: The functional model captures the
desired system behavior in terms of CSP processes
engaging in named events. For the ATM, UML
statecharts were translated to high level CSP to describe
the overall behavior of the system.

(2) Environment Model: The environment model
simulates the behavior of entities in the system's target
environment, in terms of processes engaging in events.
The functional model can be simulated by synchronizing
it with the environment model. In the CSP++ design flow,
after implementation the environment model is removed,
leaving the system to interact directly with its real
environment by means of user-coded functions.

In the case of the ATM, we modeled three other
entities that appear in its environment: the CLIENT, the
BANK, and the OPERATOR. All of these are simulated,
and represent interfaces for the purpose of
communication with the ATM. The client process inserts
a card, enters a PIN, chooses a transaction, etc., to
demonstrate the use cases of the ATM. The bank will
process requests made to it (say, for cash withdrawals)
and send back responses (e.g., approved or invalid PIN)
based on the results of the processing performed. The
operator sets the amount of cash in the machine and turns
the machine on and off.

(3) Constraint Model: Other processes may optionally
be added alongside the functional model to limit or
constrain the event sequences that can occur. A constraint
model is used to focus on critical event sequences in the
functional model that must—or must not—occur in order
for the system to be “safe.” In the example of the two
traces given in Section 2, <r,a,b,c,s,d> and <r,a,s,b,t,d>, if
only a trace where b occurs before s is acceptable, then a
constraint process could specify that explicitly. If
verification shows that the constraint is violated, the
functional model must be improved. The simple ATM
system did not require constraints.

(4) Implementation Model: Since the functional model
will likely be fairly high-level, it will normally need to be

refined to an implementation model, still in CSP, but with
more detailed processes and events added. Verification
will confirm whether the implementation is a legitimate
refinement of the original functional model.

For example, specifying the way to handle invalid
PINs was not included in the statecharts, nor in the
derived functional model. Such details needed to be
specified in CSP so that they could be formally verified.

In the ATM case study, there are four main processes,
the BANK, the CLIENT, the OPERATOR, and the ATM
itself. The ATM process in turn is composed of several
communicating subprocesses. These four are composed
in parallel to make up the entire system (SYS). To
synthesize the ATM alone, which is the target
application, the client, bank, and operator processes
would be removed and the channel inputs and outputs of
the ATM could then link up with user-coded C++
functions that accept button pushes, provide network
connections, etc.

6.2. Code samples

The following provides a sample of some of the CSPm
code for the ATM. The entire case study is available on
the Web; see Section 8. The first item of interest is a
method of providing, in effect, a global variable for the
PIN. It uses get and set channels to access the PIN value.
PINi is its initial state, and PIN(val) is a parameterized
process.

PINi = pinset?x -> PIN(x)
PIN(val) = pinset?x -> PIN(x)
 [] pinget!val -> PIN(val)

Here is the specification for a single session, which was derived
from a statecharts model.

SESSION = insertcomplete -> READINGCARD

READINGCARD = readcard?c ->

(cardset!c -> READINGPIN)
[] badcard -> EJECT

READINGPIN = readpin?p ->

(pinset!p -> CHOOSING)
[] cancel -> EJECT

CHOOSING = chosen?menu ->

(choose!menu -> TRANS)
[] cancel -> EJECT

TRANS = endtrans -> EJECT
[] anothertrans -> CHOOSING
[] holdingcard -> DONE

EJECT = ejectcard -> DONE

DONE = sessiondone -> SESSION

Also in the ATM is the TRANSACTION processor, shown with
one parameterized subprocess, SPECIFICS(1), that handles a
withdrawal:

TRANSACTION = chosen?menu -> SPECIFICS(menu)

SPECIFICS(1) =
(getacct?account ->
 (getamnt?amount -> (amntset!amount ->

SEND(1,account,1,1,amount))
 [] cancel -> ANOTHER)

[] cancel -> ANOTHER)

SEND and RECEIVE are responsible for communication with
the BANK process:

SEND(m,account,from,to,amount) =
cardget?c -> pinget?p ->
banksend!m.c.p.account.from.to.amount ->
RECEIVE(m)

RECEIVE(menu) = bankstatus?stat.pin.val ->
 (if (stat == 1) then invalidPIN ->

HANDLEPIN(menu,pin,val,1)
 else if (stat == 2) then approved ->

COMPLETING(menu,val)
 else rollback -> ANOTHER)

Finally, the ATM process is composed of SESSION,
TRANSACTION, VARIABLES (including PINi), and
OVERALL (not shown above):
ATM =
((OVERALL [|{|insertcomplete, sessiondone|}|]
 SESSION)
[|{|choose,endtrans,anothertrans,holdingcard|}|]
 TRANSACTION)
[|{|cardset,cardget,pinset,pinget,machset,
 machget,balset,balget|}|] VARIABLES

6.3. Verification and functional test cases

There are some system properties that FDR2 can
check on its own with no special instructions, as indicated
by these assertions:
 assert ATM :[deadlock free [F]]
 assert ATM :[livelock free [F]]
 assert ATM :[deterministic [F]]

Realistically, most useful verification involves learning
how to “ask the right questions” of the tool.

The ATM design documents provided functional test
cases that proved useful for coding assertions. By using
the trace refinement method in our case study, we are able
to prove one of the functional test cases and show that a
client's card will indeed be held after entering the wrong
PIN three times in a row:

If there are three invalidPIN events in the same
transaction, the card will be held and no receipt
(indicating a completed transaction) will be issued. Using
trace refinement, mentioned in Section 3, we can analyze
the following two assertions that prove the
aforementioned test cases. (The ‘\’ operator is used to
hide events that are not germane to the assertion.)
assert ATM \ diff(Events,{|invalidPIN, finished,
 again, receipt, holdingcard|})
[T= invalidPIN -> invalidPIN -> invalidPIN ->
 holdingcard -> STOP

The assertion should succeed since the card must

indeed be held after three invalidPIN events. Now if we
change the trace portion of the assertion to this:
[T= invalidPIN -> invalidPIN -> invalidPIN ->
 receipt -> STOP

it should fail, since there is no trace that can have three
invalidPIN events followed by the issuing of a receipt.

An example of a liveness specification comes from the
System Startup use case: we want to prove that the ATM
must continue to allow activation of the “on” switch, a
request for the initial cash amount, followed by activation
of the “off” switch. That is, the failures of the ATM
process should be a subset of failures of a specification
that repeatedly performs the sequence of on, machcash.x,
and off. In a liveness specification “P [F= Q”, P puts a
limit on what Q can do and requires Q to accept at least a
certain range of behaviours. We write this as follows:
 P = on -> machcash?x -> off -> P
 Q = ATM \ diff(Events,{|on, off,machcash|})
 assert P [F= Q

FDR2 confirms that this liveness specification is
satisfied. Other properties can be proved in a similar
fashion. For example, we can verify how the ATM will
respond if the bank sends back a message stating that the
amount requested exceeds the account balance.

A potential problem using FDR2 for verification is
state space explosion. When we verified the ATM
specification, values such as account balances were
limited to a few possible values in order to prevent state
explosion. But since cspt does not need to analyze the
state space to produce its translation, this is not a problem
for the CSP++ implementation. It should be noted,
though, that specifications can be synthesized that result
in resource exhaustion at runtime, just as conventional
programs can cause stack overflow through careless use
of recursion.

6.4. User-coded functions for the ATM

The following is a representative case of linking the
channel event ‘readpin?p’ of the READINGPIN process
with a user-coded function that obtains the input PIN and
returns it to the CSP specification via the status argument.
void readpin_chanInput(ActionType t,
 ActionRef* a, Var* status, Lit* l)
{

int pinnumber;
cout << "Welcome to the CSP++ ATM" << endl;
cout << Please enter your PIN -> ";
cin >> pinnumber;
*status = Lit(pinnumber); // store input }

In the generated C++ code below, assume that it was
compiled with “-Dreadpin_p=readpin_chanInput”:
Channel readpin("readpin", readpin_p);
AGENTPROC(READINGPIN_)

FreeVar p;
 Agent::startDChoice(2);
 readpin >> p;
 cancel();
 switch (Agent::whichDChoice()) {
 case 0: {
 pinset << p;
 CHAIN0(CHOOSING_); }
 default: {
 CHAIN0(EJECT_); }
 }
}

Now when the Channel object readpin has its
extraction (>>) operator invoked, the external linkage to
the function readpin_chanInput will be used, instead of
attempting to synchronize with a channel output
operation in another process.

Other events in the ATM specification are candidates
for linking to user-coded functions. For example, the
banksend and bankstatus channels of the SEND and
RECEIVE processes (Section 6.2. above) were linked to
functions that make network socket connections with a
bank system that processes transactions and maintains an
SQL database of client account information.

6.5. Debugging

Finding and eliminating defects takes place in different
phases of system development. At the CSP specification
stage, Formal Systems’ Checker tool can help diagnose
erroneous use of datatypes, and ProBE can be used to
check the syntax and explore the state space of the
specification. After cspt synthesizes C++, the compiled
code can be executed with trace printing turned on. When
execution ceases—either because there are no unblocked
processes to run, or because a process executed STOP—a
process status dump is printed, showing what events each
process is waiting on. The dump also records the “high
water marks” of the numbers of concurrent threads
created and literals allocated. For low level checking, the
OOAF can be recompiled with the ACTWATCH
preprocessor symbol that causes it to print a running log
of all choice-making and synchronization activities.
Another symbol, MEMWATCH, activates logging of all
literal allocations and deallocations. The compiled code
can be executed under control of GNU gdb, allowing for
breakpoints, single-stepping, and storage inspection in
both the synthesized code and in the user-coded
functions.

7. Future work

The key objective of enhancing CSP++’s usability has
been recently accomplished by realigning the translator’s
front end with FDR2’s CSPm syntax. Work that is
underway or planned include the following areas:
1. Two remaining restrictions result from the former

csp12 dialect’s semantics. (1) An event name used to
synchronize two processes cannot be reused to
synchronize those two with another process at a
higher level of composition. The desired behaviour is
for all three processes to synchronize on the same
event, which in csp12 was obtained by writing
(P||Q||R)^{sync set}. CSPm specifications that need
this behavior must work around the restriction for
now. (2) When the external choice operator [] is
used, the first event of each process must be
explicitly exposed. Thus, a->P[]b->Q is
synthesizable, but P[]Q is not. In csp12, choice was
written as a->P|b->Q.

2. Support for more CSPm datatypes will be added.
3. CSP++ implements the original definition of CSP

that does not include timing and interrupts. Until
support is added, specifications written in terms of
event-based “tock” timing [16] can be synthesized
(though with awkwardness due to restriction (1)).

In the future, it is intended to extend synthesis
capabilities to hardware description language for
application to hardware/software codesign.

8. Conclusion

In this paper, we presented a new front-end to the
CSP++ translator that supports CSPm syntax and
demonstrated by means of an ATM case study that
selective formalism can be a worthwhile software process
model for the design and development of computer based
concurrent systems. We believe that selective formalism
is an attractive approach to concurrent system design and
development because of its flexible combination of
formal verification and conventional programming, all
based on executable and extensible specifications. The
latest version of CSP++ can be downloaded from the
author’s website http://www.cis.uoguelph.ca/~wgardner.
The code for the ATM case study is included.

9. References

[1] B. Arrowsmith, and B. McMillin, “How to program in
CCSP,” Technical Report CSC 94-20, Department of Computer
Science, University of Missouri-Rolla, August 1994.
[2] R.C. Bjork, An Example of Object-Oriented Design: An
ATM Simulation. http://www.math-
cs.gordon.edu/local/courses/cs211/ATMExample/.
[3] N.C.C. Brown, and P.H. Welch, “An Introduction to the
Kent C++CSP Library,” in J.F. Broenink and G.H. Hilderink,
eds., Communicating Process Architectures 2003, volume 61 of
Concurrent Systems Engineering Series, IOS Press, Amsterdam,
The Netherlands, September 2003, pp. 139-156.
[4] J. Fernandez, H. Garavel, L. Mounier, A. Rasse, C.
Rodriguez, and J. Sifakis, “A Toolbox for the Verification of

LOTOS Programs,” Proc. of the 14th International Conference
on Software Engineering (ICSE'14), Melbourne, May 1992, pp.
246-259.
[5] W.B. Gardner, “Bridging CSP and C++ with Selective
Formalism and Executable Specifications,” First ACM & IEEE
International Conference on Formal Methods and Models for
Co-design (MEMOCODE '03), Mont St-Michel, France, June
2003, pp. 237-245.
[6] W.B. Gardner, “CSP++: An Object-Oriented Application
Framework for Software Synthesis from CSP Specifications,”
Ph. D. dissertation, Department of Computer Science,
University of Victoria, Canada. 2000.
http://www.cis.uoguelph.ca/~wgardner/, Research link.
[7] W.B. Gardner, “Converging CSP Specifications and C++
Programming via Selective Formalism,” to appear in ACM
Transactions on Embedded Computing Systems (TECS), Special
Issue on Models & Methodologies for Co-Design of Embedded
Systems.
[8] W.B. Gardner, and Micaela Serra, “CSP++: A Framework
for Executable Specifications,” chapter 9, in M. Fayad, D.
Schmidt, and R. Johnson, editors, Implementing Application
Frameworks: Object-Oriented Frameworks at Work, John
Wiley & Sons, 1999.
[9] G. Hilderink, J. Broenink, W. Vervoort, and A. Bakkers,
“Communicating Java Threads,” Proc. of the 20th World Occam
and Transputer User Group Technical Meeting, Enschede, The
Netherlands, 1997, pp. 48–76.
[10] M.G. Hinchey, and S.A. Jarvis, Concurrent Systems:
Formal Development in CSP, McGraw-Hill Book Company.
1995.
[11] C.A.R. Hoare, Communicating Sequential Processes,
Prentice Hall, 1985.
[12] L. Logrippo, M. Faci, and M. Haj-Hussein, “An
introduction to LOTOS: Learning by examples,” Computer
Networks and ISDN Systems, vol. 23, 1992, pp.325–342.
[13] R. Milner, Communication and Concurrency, Prentice
Hall, 1995.
[14] J. Moores, “CCSP—A Portable CSP-based Run-time
System Supporting C and occam,” in B.M. Cook, editor,
Architectures, Languages and Techniques for Concurrent
Systems, WoTUG, IOS Press, Amsterdam, the Netherlands, vol.
57 of Concurrent Systems Engineering series, April 1999, pp.
147-168.
[15] V. Raju, L. Rong, and G.S. Stiles, “Automatic Conversion
of CSP to CTJ, JCSP, and CCSP,” Communicating Process
Architectures 2003, IOS Press, 2003.
[16] Steve Schneider, Concurrent and Real Time Systems: The
CSP Approach, John Wiley & Sons, Inc., New York, NY, 2000.
[17] Frank Vahid and Tony Givargis, Embedded System
Design: A Unified Hardware/Software Introduction, John Wiley
& Sons, 2002.
[18] P.H. Welch, and J.M.R. Martin, “A CSP model for Java
multithreading,” International Symposium on Software
Engineering for Parallel and Distributed Systems (PDSE 2000),
Limerick, Ireland, 2000, pp. 114-122.

