
Third-Year Parallel Programming
for CS Undergraduates

William B. Gardner
School of Computer Science, University of Guelph, Guelph, ON, Canada

Abstract - This paper describes a successful new course
aimed at helping soon-to-graduate students move into
jobs using current tools for parallel programming, by
acquiring the theoretical background needed to keep
abreast with rapid industry developments and to evolve
with them. It intentionally spans the range of multicore to
cluster computing, based on the same underlying princi-
ples. All aspects of the course are described, including
textbook, schedule, lab content, assignments, projects,
and outcomes after two offerings.

Keywords: Parallel programming, Undergraduate CS
curriculum, Multicore, High-performance computing

“I help search for water on Mars.” At the first meet-
ing of our new Parallel Programming course, rolled out
experimentally as a Special Topic offering in Fall of
2009, we were going around the room, each student
invited to say why he or she had registered and what they
hoped to learn. Among the expected third- and fourth-
year CS undergraduates was this one graduate student
from the Physics Department. Her research group ana-
lyzed spectrographic data radioed back from the Mars
Rover for telltale signs that water molecules could be
present. In order to interpret the spectrograms, they
would compare them to those of simulated bombard-
ments by 50 billion photons onto various artificial com-
positions of Martian “soil” spiked with specific amounts
of water. Each run for a single soil/water composition
would take 24 hours to complete on a high-end desktop
computer, and she was the only person in the lab who
considered this state of affairs decidedly subpar for the
new millennium of computing!

For CS students who were used to coding assign-
ments that instantly compiled upon pressing Enter, and
executed in tens of seconds at most, this was a revela-
tion. In the event, she lacked the programming back-
ground to stay with us, but her case study provided
invaluable motivation for launching the course.

1 Background and introduction

Our School offers a Bachelor of Computing degree
with two majors, classical computer science and soft-
ware engineering. For the last several years, it was obvi-
ous that we would have to come to grips with teaching
parallel programming beyond the basic introduction to
concurrency that has long formed a topic in Operating
Systems (OS). As the faculty member whose research
has centered on formal methods for specifying concur-
rent systems [1], with background in digital hardware as
well as software engineering, I was relatively suited to
the task of examining our options and creating a suitable
course.

Specifying the OS course as a prerequisite, the 2009
Special Topic attracted 17 students. It was repeated,
again as a Special Topic, in Fall 2010, with modifications
based on the first experience. This time 26 students
signed up, including another graduate student in Physics
(this one stayed and did an impressive project). Based on
student surveys, the course can clearly be called a suc-
cess. By Fall of 2011, it will enter the regular curriculum
as CIS*3090 Parallel Programming, an annually offered
elective.

This paper covers every important aspect of the
course, for the benefit of those who may wish to copy or
adapt it, including the following:

• Approach: why we chose to mount a single spe-
cial course, as opposed to incorporating parallel
programming topics into existing core courses

• Characteristics: breadth over depth, wide-spec-
trum (multicore to high-performance clusters),
theory-based with programming practice, tools-
oriented (for profiling and error detection), pro-
gramming techniques selected for prospects of
longevity, special-hardware focus avoided,
assumed prerequisites, target audience

• Organization: lecture topics, 12-week schedule,
programming platforms, software tools

• Textbook: strengths and weaknesses

• Assignments: rationale, coordinated hands-on
lab sessions, contests

• Project component: categories, sample of topics,
approach to evaluation

• Human resources: instructor workload, use of
teaching assistants

2 Approach

From the standpoint of impact on curriculum, the
first question to settle is whether a CS department will
attempt to integrate parallel programming concepts
into several existing core courses, or will mount a stan-
dalone course, or even do both. With an eye to the bur-
geoning multicore future, it seems wise to start
“parallel consciousness raising” early, and we do not
oppose that approach. Nonetheless, pursuing some
degree of integration does not detract from the benefits
of mounting a full course—in particular, training stu-
dents to have job-ready skills—and indeed could allow
that course to have a more advanced starting point.
Furthermore, in a department such as ours, there are
enough drawbacks and stumbling blocks so as to make
it a choice between mounting a standalone course right
away, versus doing nothing helpful for possibly a long
time. In the end, we took the standalone approach for
several reasons:

First, it was less disruptive to the faculty and cur-
riculum as a whole. The core courses in our 12-week
semesters are already “full,” so that adding topics nec-
essarily means displacing something else, which, if
shifted around, can widen the impact to other courses.

Second, while it has been suggested that we
should cease teaching sequential programming and just
carry on with parallel programming [2], this is not con-
vincing. Parallel programs are made of sequential por-
tions, and applications that don’t require special
performance will continue to be written adequately as
sequential codes. Similarly, going back to the early
prediction that object-oriented programming (OOP)
would displace procedural programming, this has not
occurred, and we see that OO methods are made up of
procedural code. Like many departments, we continue
to teach both styles of programming with full courses,
and there is no good reason to think that sequential pro-
gramming courses can simply be converted to parallel
courses. For a number of years to come, it will be nec-
essary to take up the latter as additional subject matter.

Third, there is the problem of personnel. Given
that most present faculty members were educated in

the sequential programming era, how are they going to
readily teach parallel topics? It is more straightforward
to concentrate the responsibility for that new knowl-
edge and skills in some volunteers who already have
suitable background, and let them create a course.

Finally, model curricula with integrated parallel
topics are only now being proposed (for example, see
[3]), and being an early adopter is risky. Many depart-
ments will prefer to learn from others’ experiences
before tampering with their own core courses, which
may be based on textbooks that do not have parallel
topics. In contrast, the investment in a standalone
course can pay benefits right away in terms of student
satisfaction. And if the department eventually moves to
introduce parallel topics early, the programming course
can adapt by starting from a more advanced level,
which is a win-win outcome.

3 Characteristics

What is the target audience of students, and which
prerequisites should be demanded? We decided to aim
for third- and fourth-year students, for whom program-
ming per se is no longer a big challenge, thus they are
free to concentrate on grasping new concepts and
applying them with the programming skills they
already possess. Two essential elements of background
knowledge are concurrency—which in many OS
courses is taught along with POSIX threads, and
exposes students to critical sections, deadlocks,
resource contention, mutexes, and condition vari-
ables—and basic computer architecture. For decades,
computer and OS designers have dedicated themselves
to making the hardware largely invisible to software,
and may have succeeded too well. By now, we find that
many students will only take an architecture course
grudgingly, and feel there is no purpose in it. And yet,
in learning how to get maximum speedups out of paral-
lel programs, it is necessary to draw in issues like
memory bandwidth limitations, cache coherency, and
false sharing. If students are going to understand why a
program’s speed may depend on the arrangement of a
data structure in memory, they have to know something
about hardware. We find that our second-year Structure
and Application of Microcomputers course gives
enough exposure that they can follow the hardware
issues related to parallel performance.

When parallel programming courses started to be
mounted in universities, a typical approach was to
focus on a certain architecture, e.g., IBM Cell BE or
GPU. But, emphasizing special hardware carries risks
of rapid platform evolution or obsolescence. We prefer

to give students a broad introduction ranging from the
now-ubiquitous multicore desktop to the previously
established world of high-performance computing
(HPC) clusters. These disparate platforms have both
similarities and differences that help students under-
stand the underlying hardware issues, and the advan-
tages and limitations of various programming
techniques. We chose to teach POSIX threads,
OpenMP, and message-passing programming because
they leverage, to some extent, concurrency background
taught in the OS course, are widely practiced in indus-
try and academia, and show no sign of going away.

4 Organization

Organizing any CS course is a major undertaking
that necessitates consideration of textbooks or other
learning resources, programming languages and com-
puting platforms, often supplied via in-house computer
labs, additional software packages and training in their
use, plus plans for assignments, exams, and possibly
term projects.

The various components of the course were
weighted into the grade as follows:

• Assignments 30%

• Term project 35%

• Final exam 25%

• Participation 10%

The exam was based on the textbook and the three pro-
gramming methodologies. Participation marks were
given to encourage attendance at, and peer evaluation
of, the project presentations.

Since the textbook is a kind of linchpin, the sub-
sections below start with that, and then the schedule of
lecture topics is presented, coordinated with textbook
chapters. Next, the programming platforms and soft-
ware packages are described. The plan for the pro-
gramming assignments is given, and then for the
projects. Finally, utilization of human resources is
described.

4.1 Textbook

In 2008 and 2009, there were as yet few solid
entries into the market for parallel programming text-
books. Fortunately, I have been very content to dis-
cover Principles of Parallel Programming, by Calvin
Lin and Larry Snyder, Addison-Wesley, 2009. It strikes
the right balance for a university setting, between mas-

tering techniques and tools, on the one hand, and pre-
senting a theoretical basis, on the other. The authors
introduce their parallel pseudocode, called Peril-L,
which is suitable for implementing as pthreads,
OpenMP, or message-passing. Similarly, the theory
component is equally applicable across the spectrum of
parallel platforms. Sufficient hardware description is
supplied to explain phenomena that must be grasped in
order to produce scalable programs.

The first chapter is captivating: It commences
straightaway with a simple case study that points out
several common pitfalls in parallel programming, e.g.,
the parallel version runs slower than the serial version,
race conditions produce incorrect results, it is not very
scalable with more cores, and so on. From a student’s
standpoint, this immediately raises the stakes from
“here we are, learning yet another programming lan-
guage (which I could have taught myself)” to “maybe
there is something I don’t know after all!” This has the
effect of strongly motivating the course, and it plays
into an important theme: the computer professional
knows how to obtain good results (here, parallel per-
formance) by applying knowledge and skills; the
hacker gets good results, if at all, mainly by luck.

The main weakness of the first edition—possibly a
symptom of being rushed into a hot market—is a large
number of errata, most of which are noted on the
authors’ website [4]. One can only hope that a second
edition will be printed to solve these problems.

Two other books were put on the course syllabus
as recommended reading: Patterns for Parallel Pro-
gramming, by Mattson, Sanders, and Massingill, Addi-
son-Wesley, 2005; and The Art of Multiprocessor
Programming, by Herlihy and Shavit, Morgan Kauf-
mann, 2008.

The Lin and Snyder textbook is organized into
sections. We studied the entire first section’s five chap-
ters, which provide the necessary conceptual basis for
program development. Specific programming method-
ologies are covered in chapters 6 to 8, classified as
threads, “local view” languages, and “global view”
languages, respectively. One is free to pick and choose
among them. Chapter 9 gives an assessment of existing
approaches, and becomes rather abstract for our pur-
poses. Chapter 10 surveys “future directions” and goes
well alongside overviews of selected platforms I chose
to introduce: NVDIA GPU with the CUDA language,
OO threading libraries from .NET and Intel, and the
IBM Cell BE. Anticipating use in a project context, the
book ends with a practical “capstone project” chapter
(11).

The overall timing strategy for the 12-week course
involved three stages:

1. Laying the conceptual groundwork for parallel pro-
gramming, based on chapters 1-5.

2. Learning three specific programming methodolo-
gies applicable to non-shared memory (cluster) and
shared memory (multicore) platforms, with one
assignment each.

3. Surveying a variety of topics while students were
carrying out projects utilizing the above methodolo-
gies. If experts on specialized topics are available,
this is an ideal time to bring in guest lecturers.

The schedule of topics, coordinated with textbook
chapters and labs, is shown in Table 1. There was a

definite purpose in the order of teaching the program-
ming methodologies:

The first one, message-passing programming for
high-performance clusters, utilizes an in-house library,
Pilot [5], which is a simple process/channel abstraction
layered on top of conventional MPI, and targeted at
novice scientific programmers. Pilot’s process defini-

tions are similar to pthread_create (which students
know from the OS course), and its distinctive C API is
modeled on stdio’s well-known fprintf/fscanf, so it is
simple to teach and more difficult to abuse than MPI.
Pilot also includes an integrated deadlock checker that
is capable of diagnosing right to the line number in
program code that misused of the API or caused a cir-
cular wait, for example, thus preventing the phenome-
non of silent, hung programs commonly experienced
by beginning MPI users.

The above features make Pilot very suitable to
teach while the course content is just starting to build,
and students can use it for the first assignment. Those
who wish to do a cluster-based project on hundreds of
processors can still use Pilot (which also has a Fortran
API), or they can branch out and learn the more com-
plex, low-level MPI, for which Pilot will have given
them good preparation. Pilot is available for free down-
loading from its website [6], and installs with any MPI.

Next comes pthreads with Intel Parallel Studio
tool support; and OpenMP, also with Parallel Studio.
Pthreads is taught before OpenMP, both to connect
back to students’ OS course experience, and because
OpenMP is deceptively easy to use, to the point of
making them feel that Pthreads programming is too
onerous. Assignments #2 and #3 involve implementing
the same program in pthreads and OpenMP, which
helps them to closely compare these technologies. The
purpose of using Intel Parallel Studio (available under
free academic license) is to employ its tools Parallel
Inspector, for detecting shared memory conflicts and
potential race conditions, and Parallel Amplifier, for
profiling program performance down to the core level.
These tools strongly support the common use case of
parallelizing existing sequential programs. Students
find it very illuminating to see just how much of the
time their program spends utilizing n cores (where
n=1-16 on our system).

4.2 Parallel programming platforms

In order to offer an exciting suite of high-end
parallel hardware for assignments and projects, we
were able to procure a “pre-owned” 32-node Itanium
cluster from SHARCNET—our university's associated
high-performance computing consortium—running
Linux, and a 16-thread Mac Pro Core i7 running
Windows Server under Apple’s Bootcamp.
(SHARCNET accounts were available for projects
wanting hundreds of processors.) This enabled students
to obtain hands-on experience typical of both the HPC

Table 1. Course schedule

Unit Reading Lab

1. Introduction chs. 1 & 11
Getting Started

2. Understanding
Parallel Computers

ch. 2

3. Reasoning about
Performance

ch. 3 to
Trade-Offs

Pilot
library

4. First Steps Toward
Parallel Programming

ch. 4

5. Scalable Algorithmic
Techniques

ch. 5 Intel
Parallel
Studio

6. Programming with
Threads

• POSIX Threads

• OpenMP

ch. 6 (parts)

7. Preparing for Project ch. 11
Capstone

8. Assessing the State of
the Art

chs. 9, 3 & 11
(finish)

9. Future Directions in
Parallel Programming

ch. 10

world and systems used in industry. The same Intel C/
C++ compiler was installed on both systems.

Intel offers a free Summer School with training on
Parallel Studio. It is that training material that we use
successfully for the course labs. The Pilot hands-on
labs are the same half-day tutorial that we run at inter-
national conferences. Those labs are also available for
downloading from the Pilot website.

4.3 Assignments

The students carry out one assignment using each
of the three programming techniques, starting with
Pilot. As stated above, the pthreads assignment gets
rewritten using OpenMP for the purpose of comparing
and contrasting.

A key requirement for all assignments is short
written reports describing the rationale for the student’s
parallel design, and featuring timing, speedup, and effi-
ciency graphs against an X axis of number of proces-
sors, all with the student’s interpretations. Timing is
done both with and without compiler optimization.
Students are often shocked to see that the compiler can
cut execution time by as much as one-third. They must
provide proof of program correctness, and explanations
for what they learned from refining their programs to
improve performance. These write-ups showed that
they were able to understand and apply the theory we
had learned.

The three graphs basically show the same data in
different ways, yet they are not redundant and one can
learn something more from each of them. The timing
graph (wall clock time) gets right to the obvious objec-
tive: how fast is my program? The speedup graph,
showing the ratio of serial time vs. parallel time, serves
to factor out compiler optimization effects, and yields a
frank assessment of scalability or lack thereof. The
efficiency graph, speedup divided by number of pro-
cessors, shows how far their parallel performance falls
short of the perfect “1.0” efficiency line.

Bonus points were awarded for the fastest solu-
tions, in keeping with the parallel performance empha-
sis. Those finishing in second and third place were
allowed to challenge the winner to a rematch, which
gave them the experience of consciously trying to tune
their programs, and often the ranking—and the bonus
points—changed hands.

4.4 Projects

As important as programming assignments are,
they have to be tightly specified and of limited scope.

To really apply what they are learning, doing an inde-
pendent project is invaluable. Students were allowed to
work as individuals or form teams of two.

Each student or team has to propose (and get
approved), program, and present to the class a project
chosen from five categories, some of which come from
the textbook. A written project report is handed in
along with their source code. The categories, with sam-
ples from the two years, are as follows:

1. (Re)implement existing parallel algorithms: checker
playing, cryptology, Quine-McCluskey method

2. Compete with standard benchmarks (no one chose
this)

3. Develop new parallel computations: force histo-
grams for 3D vector images, traffic simulator, gaus-
sian blur

4. Pilot-related development: porting Pilot to Lua
(LuaPilot) and Python (Pylot)

5. Exploring beyond the course, which could involve
parallel languages that we did not study as a class:
F# (solving Minesweeper), C# TPL (tree search)
Cilk++, CUDA (particle simulation), OpenCL
(image processing)

The approval step is advisable for ensuring that
students do not recklessly launch into unsuitable top-
ics, and that the scope is compatible with the few
weeks left in the course, or that they at least have a fall-
back strategy in case things go more slowly than they
expect. There was no formal deadline for the proposal,
which was intended to facilitate rapid turn-around by
avoiding having them all submitted at once. Counter-
balancing that flexibility, students were required to
provide weekly progress logs of their project activi-
ties—they could read each other’s logs—and points
were deducted if the instructor’s weekly spot check
found no update. This served to keep them moving
along.

This “exploring” feature is an excellent way to
keep the course up to date, by encouraging students to
try out the very latest technologies and report to the
class, which in turn enables the instructor to freshen the
course without having to continually revise the instruc-
tional components.

Because of the knowledge they have gained, it is
typically straightforward for the students to relate most
tools or techniques to concepts they have learned, com-
paring and contrasting with methodologies they all
(now) understand and have experience with. This gives
the students a lot of confidence when they see they are

capable of understanding and trying out some new par-
allel programming technology on their own.

4.5 Human resources

In terms of instructor workload, the projects
require the greatest time commitment, depending on
how thorough one wishes to make the evaluation. I
found the projects to be so interesting, that I wanted to
build and run each one. This is probably the least scal-
able component of the course as it is currently con-
structed.

If teaching assistants are available, one good place
to use them is for “hand-holding” in the lab sessions,
that is, walking around and assisting anyone who is
having problems doing the exercises. Another worth-
while use is for compiling and running all the submit-
ted assignments, checking for correct output, and
making timings for the contests. This leaves the
instructor to read and evaluate the paper reports. Some-
one who took the course before makes an ideal TA,
otherwise it would be difficult to find anyone qualified
who has only come through standard CS training.

5 Conclusion

Today's computer science students are entering a
new era in parallel computing, featuring cheap multi-
cores and high-performance clusters, but have received
traditional largely-sequential training. Based on our
experience with this course, we found that resources
are presently available to mount a standalone course
relatively cheaply. It meets CS students’ practical edu-
cational needs, and it can be extremely gratifying to
teach.

One measure of success is how the students view
themselves as parallel programmers. After each course,
they were asked to fill in an anonymous survey includ-
ing the statement “I think I can handle parallel pro-
gramming” (0-10 scale), comparing before vs. after the
course. Their confidence rose impressively, on aver-

age, from 2.8 to 9.2. That confidence, plus all the lan-
guages and tools to write on their resumes, should give
them a significant employment advantage.

If, in the future, our department decides to begin
integrating parallel programming topics into the exist-
ing core courses, that will simply strengthen students’
preparation for this dedicated course.

6 References

[1] William B. Gardner. Converging CSP specifications and
C++ programming via selective formalism. ACM Trans.
on Embedded Computing Sys., 4(2):302–330, 2005.

[2] Wen-Mei Hwu, David Kirk, Christoph Lameter, Charlie
Peck, and Michael Wrinn. There is no more sequential
programming. Why are we still teaching it? In Super
Computing (SC08), Education Program, Panel
Discussion, Austin, TX, Nov. 17 2008.

[3] NSF/IEEE-TCPP curriculum initiative on parallel and
distributed computing: Core topics for undergraduates
[online]. Available from: http://www.cs.gsu.edu/ tcpp/
curriculum/index.php.

[4] Errata for Principles of Parallel Programming [online].
Available from: http://www.cs.utexas.edu/ lin/
errata.html.

[5] John Carter, W.B. Gardner, and G. Grewal. The Pilot
approach to cluster programming in C. In Proc. of the
24th IEEE International Parallel & Distributed
Processing Symposium, Workshops and Phd Forum,
Workshop on Parallel and Distributed Scientific and
Engineering Computing (PDSEC-10), pages 1–8,
Atlanta, Apr. 23 2010.

[6] Pilot home [online]. Available from: http://
carmel.socs.uoguelph.ca/pilot.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

