Mise en Scene: Converting Scenarios to CSP Traces
in Support of Requirements-Based Programming

J. Carter, W.B. Gardner
Department of Computing and Information Science, University of Guelph, ON, Canada
ljcarter,gardnerw}(@uoguelph.ca

Abstract

The “Requirements to Design to Code” (R2D2C)
project of NASA's Software Engineering Laboratory is
based on inferring a formal specification, currently using
Communicating Sequential Processes (CSP), from sys-
tem requirements supplied in the form of scenarios, a
user-friendly medium often used to describe the behavior
of computer systems under development. The scenarios
are first converted into an intermediate form, CSP
traces, from which are derived CSP specifications. This
work, called Mise en Scene, defines a new scenario
medium (Scenario Notation Language, SNL) suitable for
control-dominated systems, coupled with a two-stage
process for automatic translation of scenarios to a new
trace medium (Trace Notation Language, TNL) which
encompasses CSP traces. A survey of the “scenario”
concept and a small case study are also presented.

1. Introduction

An approach to requirements-based programming
called R2D2C, that utilizes a formal method internally,
has been described in previous literature [1, 2]. The
approach takes as its primary input “requirements as sce-
narios,” as shown in the first phase of its development
(“D”) flow, D1 Scenarios Capture, illustrated in Figure
1. The subsequent phases, D2 Traces Generation and D3
Model Inference, convert the requirements into a formal
model in algebraic CSP notation (Communicating

Sequential Processes) [3, 4], which, in turn, is subjected
to various kinds of analysis and verification in phase D4
Model Analysis, and used by D5 Code Generation to
synthesize an implementation.

While the R2D2C approach is targeted at systems
whose requirements can be expressed as “scenarios,”
that term was not defined. The term is common in soft-
ware engineering, but somewhat ambiguous. In this con-
text, whatever definition of scenario is intended or
chosen must also be amenable to conversion into CSP
traces, which have their own special properties.

This work provides a way to fill in the D2 block by
answering two questions: (1) What shall be the working
definition of “scenario” for R2D2C? and (2) How shall
scenarios be converted to CSP traces? The paper pro-
ceeds by giving a more detailed problem statement that
highlights specific challenges, and then surveys the liter-
ature on “scenarios” and “scenario-based approaches”
for guidance before settling on a working definition.
Next, our D2 candidate tool called Mise en Scene is
described, which supports authoring of scenarios and
automatic conversion to CSP traces. This is illustrated
with a case study. Finally, future work in the context of
R2D2C is proposed.

2. Problem statement

First, we give preliminary definitions of the D2
phase’s input and output, respectively:
* A scenario is a sequence of steps that a system is
required to carry out. (References and discussion are
given below.)

Design H Scenarios ; Traces ; Model Model H Code : System
Documentation ; Capture i Generation i Inference Analysis i Ceneration |
Requirements : : : : : H Synthesized
Documentation - D1 > D2 - D3 - D4 - Ds e System

3 Mise en Scene | |
Scenarios
(SNL)

Natural
Language
| FAeguirements 1 |

System
Source
Code

CsP
System
Specification

CSsP
System
Specification

Figure 1. Phases of R2D2C development process

* A trace is a sequence of events that a CSP system
specification executes.

In CSP, traces are represented as a list of events
separated by commas, enclosed within a set of angle
brackets (<>). A single trace, say <a, b, ¢>, which
means the sequence of three named events, defines one
permitted execution of the specification; all permitted
executions are given as a set of traces. The set is repre-
sented as one or more comma-separated traces,
enclosed within braces, e.g., {<>, <a>, <ab>,
<a,b,c>}. If a specification is viewed as a state
machine, its set of traces embodies all possible state
transitions. Depending on the specification, an individ-
ual trace can be an infinite sequence, and the full set of
traces may be infinite in size.

Trace events provide a kind of “black box” view
of system execution. For example, while CSP process
specifications may include channel I/O events such as
sensor?degrees (meaning, read the sensor chan-
nel into a degrees variable) and sensor!32 (mean-
ing, output 32 on the sensor channel), the trace event
that records the sensor communication event where 32
is stored into degrees would be simply channel.data:
sensor.32. That is, the direction of communication
is not recorded. This is natural, because, while abstract
processes (which engage in communication and syn-
chronization amongst themselves) are an essential
ingredient of CSP specifications, process identity dis-
appears at the level of traces; all one sees is the record
of executed events. Stated another way, process speci-
fications may provide clues about a possible imple-
mentation’s architecture, but traces contain no such
clues. For R2D2C’s “D” flow, this means that any
architectural clues inherent in the scenarios are, in prin-
ciple, discarded in the phase of converting to traces.
Furthermore, the process architecture inferred by phase
D3, and in turn synthesized into an implementation by
D5, may bear no relation to an architecture suggested
by the input scenarios. On the one hand, this may be of
no consequence to the R2D2C user, since the entire
formal model—CSP traces and equivalent specifica-
tions—is intentionally kept “under the hood.” On the
other hand, throwing away useful data may serve to
make the job of inferring specifications that much
harder, and may incline the model inference phase to
create process architectures that lead to unintuitive
implementations.

Next, we state our assumptions about the D2
phase’s context: The D1 phase, Scenarios Capture, is
likely to be application specific. We only assume that it
will be capable of outputting “scenarios” using the syn-
tax we specify. For prototyping work, it may be suffi-
cient to represent D1 as a simple text editor.

As for D3 Model Inference, this is the heart of the
theoretical work, which may face challenges of compu-
tational complexity due to (a) the potentially enormous
volume of traces needed to record a non-trivial sys-
tem’s behavioral requirements, and (b) the extensive
processing required by D3’s prospective theorem
prover, ACL2 [5]. We assume that D3 will accept input
in the form of conventional CSP trace notation, but we
also anticipate that there will be room for negotiation
with an eventual D3 implementation so as to reduce the
volume of trace input (i.e., notational shortcuts), and
help D3 to infer features of the target system’s require-
ments that would normally be thrown away during
their conversion to traces. Therefore, we are not too
concerned to produce a definitive and final form of D2
output at this time, since we expect that adjustments
will be necessary as the requirements of D3 processing
are firmed up.

The essential problem of designing the D2
phase— converting scenarios to traces—is comparable
to digging a tunnel from both ends and arranging to
meet in the middle. On the “left” input end, the output
of the D1 phase wants to be in a form that software
practitioners can recognize as ‘“‘scenarios.” On the
“right” output end are CSP traces, a highly constrained
medium. As it is useless to prescribe scenario con-
structs that cannot be converted to traces, we have
focused solely on constructs that have a conceptual
analog in trace notation. We have adopted a subset of
those constructs commonly appearing in scenario-
based approaches, described next.

3. Related work on scenarios

In software and requirements engineering disci-
plines, as well as human-computer interaction (HCI),
the term “scenario” is used frequently, in a variety of
contexts. Its exact meaning has been the focus of many
debates [6, 7, 8, 9, 10] and usage surveys [11, 12, 13,
14, 15, 16]. Most authors do not claim that their mean-
ing is “the one true meaning,” but rather an individual
interpretation that suits their task. Yet, despite being a
possible source of confusion, the term scenario is com-
monly employed without any preamble specifying its
meaning. It is fair to call the term “vague in definition
and scope” [15].

Allenby and Kelly [17], for example, define sce-
narios as a “sequence of actions used to illustrate sys-
tem behavior.” The CREWS [18] survey of fifteen
“current practices” of European companies using sce-
narios for system engineering found that many
approaches to scenarios were based on UML use cases,

with added custom extensions to satisfy their needs.
That survey identifies four criteria for characterizing
the usage of scenarios:

* Purpose—Describes how the scenario is being
used, and in what context.

* Contents—The knowledge of the problem domain
as contained in the scenario.

* Form—The method or medium by which the sce-
nario is expressed.

* Lifecycle—How scenarios change and evolve
through the development process.

The CREWS project resulted in the creation of a sce-
nario authoring tool “L’ECRITOIRE” [19].

Aside from their role in requirements gathering,
scenarios are useful in producing test cases [20]. Simi-
larly, anti-scenarios (and misuse cases) can be created
to describe ways in which malicious actors strive to
undermine the system, and demonstrate that the system
is resilient to such attacks [21].

Notable drawbacks of scenarios have been cited.
Scenarios are episodic in nature [22], and rely on the
existence of well-defined start and end points, with
their associated conditions. Many systems, particularly
real-time systems, once started, ideally never termi-
nate. This makes scenarios impractical for describing
such systems, or requires careful thought by scenario
authors. In the context of CSP traces, this lack of termi-
nation gives rise to infinite traces. In his work, Harel
[23, 24] asserts that scenarios are more applicable to
reactive systems (often referred to as “control domi-
nated systems”), than to systems designed to handle
complex calculations and data processing (“data domi-
nated systems”). Scenarios are seen as more appropri-
ate for describing interactions than for calculations.
Scenarios may also be impractical for expressing non-
functional requirements, and can become unwieldy as
system size grows.

Scenarios (as variously defined) have been incor-
porated in software engineering approaches, such as
Harel’s “Play” [23], where scenarios are recorded as
Live Sequence Charts (similar to Message Sequence
Charts such as used by MESA, Message Sequence
Charts Editor, Simulator, Analyzer [25]). The CREWS
project created the SAVRE tool, Scenarios for Acquir-
ing and Validating Requirements [12, 26], for generat-
ing scenarios from previously authored use cases.
SAVRE represents a software-based approach that
bridges automated system analysis techniques and
human-based activities like stakeholder meeting/con-
sultation sessions, with the purpose of identifying defi-
ciencies or omissions in the proposed system.

Other scenario-based approaches include SCE-

Nario Environment (SCENE) [27], a software develop-
ment tool for creating scenario diagrams from object-
oriented source code, and Scenario Plus [28], a
loosely-defined methodology providing a set of forms
for eliciting scenarios from stakeholders, and guide-
lines for using such forms. The Scenario Plus use case
is built upon the foundation laid by Cockburn [29].
Cockburn’s use case comprises two types of scenarios,
success and failure scenarios (occasionally referred to
as “positive” or “negative” scenarios). A success sce-
nario is a sequence that results in satisfactory behavior,
while a failure scenario is used to demonstrate that the
system does not fail in a risky or hazardous manner. It
is important to note that Cockburn’s success scenarios
do not describe “required” behavior; they describe an
instance where the desired (or safe) behavior was
achieved. This is different from their proposed use in
R2D2C, where scenarios do describe the required sys-
tem behavior.

After studying the above definitions and uses of
“scenarios,” a set of attributes common to the majority
of the approaches surveyed was identified. The result,
listed in Table 1, is not dissimilar from Cockburn’s
description of scenario [29]. Attributes that are present
in our approach (defined below) are marked with *,
while attributes that are not explicitly used but partially
present in our approach are marked with **.

Table 1. Common scenario attributes

Common Name Description
of Attribute P

Name* Title used to identify the sce-
nario.

Description* A textual description of the
actions contained in, and the
actors involved in, the scenario.

Author* Who created the scenario.

Revision A method of tracking changes

History** between scenario edits.

Stakeholders** | A description or list of persons
affected by the design of or
changes to the scenario.

Precondition* A description of the state the sys-
tem must be in for a scenario to
be eligible for execution.

Triggers* The event or events that cause a
scenario to be invoked.

Table 1. Common scenario attributes (Cont.)

Table 1. Common scenario attributes (Cont.)

Common Name Description Common Name Description
of Attribute of Attribute
Priority A classification attribute used to Success Conditions that are true upon suc-
resolve non-determinism or Guarantee cessful termination of a scenario.
scheduling when multiple scenar-
ios can be invoked. Utilizing the selection of attributes above qualifies
)) our approach as recognizably “scenario based.” Still
Constraints Aset (?f requlren.lents. for data or required was to customize our scenarios to suit transla-
ope.ratlons contained in the see- tion to CSP traces, and provide a mechanical way of
nario; may be expressed in a for- doing the translation. The full approach is described in
mal syntax or natural language. the next section.
Actors* Persons or systems involved in
carrying out the scenario. Actors 4. Mise en Scene
can be “Primary”—the actor who
carries out the actions of the sce- The name comes from the field of film studies,
nario—or “Secondary”—actors where it is regarded as a frequently overused term that
who aid the primary actor. is infrequently defined. Literally translating mise-en-
Goals** A scenario has one or more goals, scene from French. gives “pu‘Fting 1n the scene.” It is
which are carried out through a of.ter? used to descrl‘pe everything visible to the camera
set of actions. Wlthln a shot, espem.ally elements relevant to the narra-
tive of the work. Mise en Scene was chosen as a title
Subgoals** Goals may be further decom- partly as a nod to ambiguity in terminology, noting that
posed into subgoals, which con- the term “scenario” is equally ambiguous and prone to
tain their own sets of actions. many interpretations.
Mise en Scene has four components: (1) the sce-
Flow / Path* The sequence of actions that con- nario medium, Scenario Notation Language (SNL); (2)
stitutes successful execution. a means for connecting scenarios, Scenario Glossary
Alternate Flows/ | Flows of executions invoked by (SSCI\II\]LZC,}IIE‘G?ZQS)_;I_II?E,,I;I e:fllgrac)agzagjgg??i: Eg::fi:;
Paths* conditional statements within a ;

scenario.

Extensions /

Flows of execution used to han-

Exceptions* dle failures or other exceptional
circumstances.

Safety A description or list of things that

Properties cannot happen within the sce-
nario. In performing any of this
list, the scenario violates its
safety properties, and is consid-
ered unsafe.

Non- Textual documentation contain-

Functional ing requirements information that

Requirements** | cannot be readily expressed in a
functional form.

Minimal Conditions that are guaranteed to

Guarantee be true, in even the most disas-

trous failure.

(TNL). Each is described in the following subsections.
4.1. Representing scenarios

The medium created for Mise en Scene is a tex-
tual, form-based notation loosely based on Cockburn’s
guidelines for effective use cases [29]. Whereas Cock-
burn states that a use case collects a number of scenar-
ios describing related behavior, Mise en Scene does not
follow his conceptual grouping. An SNL scenario is
used to describe a single pattern of required execution
in the proposed system from the standpoint of an actor.

The description below uses three special terms:
Component is currently synonymous with actor, but is
reserved for potential generalization to the notion that
other entities in addition to actors might be involved in
the scenario. The smallest unit of execution that com-
ponents carry out is called a task, which is intended to
correspond to a CSP event. The channel is imported
directly from its CSP sense for unidirectional, nonbuf-
fered communication between a “producer” compo-

nent and a “consumer” component. SNL has
statements for defining the schemas of components and
tasks by unique ID and textual description. A task
schema may optionally list the components that are
allowed to perform it. A channel schema lists the data
types that it communicates, and its related producer
and consumer components; its ID is derived from those
three attributes. Since it is possible to define multiple
channels between a pair of components, each channel
can be augmented with a unique alias.

Required fields in a scenario schema are in bold,
the others being optional:

* ID—A name that uniquely identifies the scenario.

* Description—A free-form textual description of
the scenario and what it does. This serves as a
comment for readers in addition to providing text
that can be used for searching purposes.

» Author—The names of the author(s), and any
other details.

* Primary Actor—The identifier of the component
that carries out all actions in this scenario. A sce-
nario may only have a single component as its pri-
mary actor, which is considered to be the initiator
of the scenario.

* Secondary Actors—Identifiers of components ref-
erenced within the scenario, with which the pri-
mary actor communicates and synchronizes.

* Scenario Flow—Cockburn refers to this as the
“main success scenario,” or the case in which
“nothing goes wrong” [29]. The flow of a scenario
is an ordered set of steps expressed in a restricted
syntax that specifies the behavior of the scenario
as actions undertaken by the primary actor, and as
communication and synchronization with the sec-
ondary actors. As with use case authoring, the sce-
nario flow should provide behavior for the
nominal flow of execution, and exceptional cir-
cumstances are to be handled by scenario exten-
sions. The syntax of the scenario flow medium,
SFT, is described in Section 4.2.

* Precondition—A partial description of the sys-
tem state required before the scenario can be exe-
cuted, represented as a set of task identifiers.
These tasks must have occurred before the sce-
nario can be triggered. The preconditions of the
system can be empty, making the scenario always
ready to be triggered (see next).

* Trigger—The trigger of a scenario is the task ID
of the system event that causes the scenario flow

text to be “executed.” The trigger, which is manda-
tory, in combination with the scenario’s precondi-
tions (if present) provide a guard. The most
permissive trigger is the task ID System::start,
which enables a scenario to be executed upon sys-
tem startup. Once a scenario completes, it must be
retriggered in order to execute again.

* Extensions—Extensions of a scenario are analo-
gous to subroutines or functions in a conventional
programming language. Scenario extensions are
written using SFT syntax, and do not contain pre-
conditions or triggers. Extensions are executed by
the SFT invokes directive. Upon completion of
an extension, control returns to the calling flow,
allowing for extensions to call other extensions. A
scenario may invoke only its own extensions, not
extensions contained in other scenarios. A sce-
nario extension is identified by the ScenariolD fol-
lowed by the scope resolution operator (::) and the
extension identifier.

4.2. Scenario Flow Text (SFT)

Scenario Flow Text, or SFT, is a number of lines,
each containing syntax known as a step. A step con-
tains a task to perform and/or other measures such as
conditionals or communication directives

The SFT syntax is based upon simple natural lan-
guage sentences. The SVDPI (Subject Verb Direct-
object Prepositional-phrase Indirect-object) pattern, as
used in much of the use-case literature [29, 30, 31], is
employed with minor additions. SVDPI was chosen as
a compromise between overly formal syntax and unre-
stricted natural language. An example is shown in Fig-
ure 2.

Variables are used for channel operations sending
or receiving data, and are necessary for arithmetic and
conditional syntax. SFT provides two levels of scope,
system and scenario levels, where variables are defined
in Preamble fields. Some can be set to constant val-
ues to provide system-wide configuration information.
SFT supports the following built-in variable types:

1. Probe performs collect_sample.

b

Subject Verb Direct-Object { Prepositional-phrase Indirect-Object }

Ll
2. Probe receives new_ph from Sensor.

Figure 2. SFT syntax with SVDPI pattern

integer, character, float, string, bit, boolean. Addition-
ally, SFT provides the ability to add custom variable
types to a specification. Type information is contained
in the outgoing trace representation, discussed next.

4.3. Representing traces

The common form of traces as used with the For-
mal Systems CSP tools [32] is also utilized in Mise en
Scene, with the addition of an XML wrapper that asso-
ciates a set of traces with the scenarios from which
they were derived and enables additional information
to be passed to the next stage of R2D2C alongside the
trace set. This is called Trace Notation Language
(TNL). Additional information included in this wrap-
per are:

» Scenario Identifier—The ID of the scenarios
from which the set of traces was derived.

* Actor Identifier—The identifiers of the system
components to which this set of traces belongs.

* Trace Set—The set of traces for the system com-
ponent, represented using the aforementioned
trace notation.

» Types—Definition of types and ranges of vari-
ables used within this set of traces.

In order to reduce the volume of trace output, we
distinguish terminal traces, those that contain a “full
thread” of events recording a system execution from
start to finish, from non-terminal traces, those prefixes
of a terminal trace that record any execution short of
the end. (Infinite traces are the subject of future work.)
From the CSP standpoint, a system’s traces must
include all possible terminal and non-terminal traces,
as well as the empty trace <> which represents the sys-
tem before it does anything. But from the computing
standpoint, the non-terminal traces are purely redun-
dant and would needlessly bulk up the output of D2.
Therefore, the SCN2T conversion process generates
only the terminal traces from a system represented as a
collection of scenarios. Non-terminal traces can be eas-
ily derived by the D3 phase, should it require them.

TNL diverges from traditional CSP traces in one
other manner: variables. Channel events in traces
would normally contain literal data values, not vari-
ables. But this can result in a state space explosion, as
all combinations of valid data for variables must be
generated in a process’s traces. To simplify the TNL
medium, variable placeholders have been introduced,
thus deferring the complete variable expansion to the
D3 phase, if required at all. These placeholders have

types and value ranges associated with them.

Since conditional expressions and arithmetic oper-
ations cannot be directly expressed in CSP trace nota-
tion, our approach introduces a method for encoding
this information as trace events. Without the ability to
pass this information to D3 and later stages, calcula-
tions contained in the scenario would be lost and not
able to be synthesized into an executable implementa-
tion.

4.4. Process level and system traces

A system represented as a collection of scenarios
has the potential to be disjointed, so, as a means of con-
necting common elements in scenarios, a system-wide
glossary is proposed, allowing a Mise en Scene user to
view and navigate scenarios interactively, showing
their interconnections with other scenarios. SNLGlue
is similar to the “data dictionary” concept employed in
relational database management systems and other sys-
tem engineering approaches.

In the scenario-based approaches surveyed, a
major difficulty was connecting, collecting, and cate-
gorizing scenarios. To assist a scenario’s authors, we
envision a scenario editor with automated actor and
task highlighting, and the ability to query the system
and obtain a clear view of interaction between compo-
nents. This is the fourth ingredient of Mise en Scene,
the component that unites the other three (SNL, TNL,
SCN2T). SNLGlue is a software tool, rather than
another language, likely to be added during integration
with R2D2C.

4.5. Conversion algorithm

The cornerstone of Mise en Scene is the process
by which scenarios represented in SNL are converted
to TNL. This section starts by describing the rules that
are used to convert from a single scenario’s SFT to
TNL, and then explains how to generate traces from
scenarios in combination.

Table 2 lists the main elements of SFT syntax by
step type, with examples, and describes the corre-
sponding trace output.

After the conversion of individual scenarios, and
appending sequentially composed scenarios (i.e.,
where one scenario’s termination triggers another sce-
nario), comes the task of combining scenarios in paral-
lel. Concurrency is inferred from rendezvous and
communication steps. The trigger attribute also deter-
mines how scenarios combine: If two scenarios share a
trigger, they are eligible to be placed in parallel.

Table 2. Translating steps of SFT

Step Type Step Example and Trace Output

Executional | Robot performs systemCheck.

States that a system component per-
forms an action, thus a single event is
appended to the trace output.

Communi- | Robot receives loc from
cation PositioningSat.

Generates a channel.data event
appended to the trace output. The
channel event contains the sender and
receiver of the channel as well as the
data type.

Conditional | if (ph > 4) then Robot performs
report_sample.
else Robot performs discard_sample.

Creates a set of events equal to the
number of branches in the conditional
statement. Each set of events resulting
from the conditional syntax is
appended to every trace preceding the
conditional statement. The branch can
be of any step type.

Robot invokes
Init::Extension::HandleFailedStartup.

Extensions

The traces for an extension are calcu-
lated according to the steps they con-
tain, and are appended to the outputted
set of traces.

Arithmetic | Robot performs { x=x+2}.

Creates an event that denotes the arith-
metic operation, and the values (vari-
ables or constants) contained in the
operation.

Rendezvous | Robot performs synchronizeClocks
with PositioningSat.

At the scenario level, rendezvous syn-
tax has no additional effect on the trace
output.

Preconditions play an important role in the cre-
ation of system traces. Preconditions filter the set of
terminal traces to remove all those that do not contain
the events specified by the precondition.

The generation of system traces is carried out
using an eight-step algorithm for determining when
scenarios are eligible to execute, and calculating all the

possible ways that events can interleave in the set of
system traces. This algorithm is repeated until the set
of system traces becomes stable, i.e., all terminal traces
have been calculated. See [33] for details.

5. Case studies

As a means of confirming the expressive capabili-
ties of Mise en Scene’s scenario medium, we set out to
rewrite existing R2D2C examples in SNL. Below is the
“Page Analyst” scenario from the LOGOS/ANTS sys-
tem [34], reworked here using SNL:

Scenario ID: RequestPagerInfo
Scenario Description: Requests the pager
information for an analyst and sends the
request to the DatabaseAgent. Presented on
pg. 11 of NASA/TM-2005-212774.
Author ID: GSFC
Primary Actor: PagerAgent
Secondary Actors: UIAgent,DatabaseAgent
Preconditions: None
Trigger:
UIAgent_PagerAgent_PAGERINFOTYPE_request.
requestinfo
Preamble: {

PAGERINFOTYPE requestinfo;

ANALYSTINFOTYPE analystinfo;
}
Scenario Flow:
1. PagerAgent sends requestinfo to
DatabaseAgent via QUERY.
2. PagerAgent receives analystinfo from
DatabaseAgent via RESULT.
3. PagerAgent performs
createandStoreMessage.
Scenario Extensions: None

The RequestPagerInfo scenario specifies the tasks
carried out by the PagerAgent to retrieve an analyst’s
contact information and page the analyst. The scenario
is triggered by a request from the UlAgent.

The three-event terminal trace generated from this
scenario by SCN2T matches the scenario’s three steps:

<PagerAgent_DatabaseAgent_PAGERINFOTYPE_QU
ERY.requestinfo,

DatabaseAgent_PagerAgent_ ANALYSTINFOTYPE_R
ESULT.analystinfo, createandStoreMessage>

Since the examples contained in existing R2D2C
publications were brief and did not exercise the rich-
ness of SNL’s syntactic constructs, we constructed a
somewhat larger control-dominated system. Below is
an excerpt from a remotely-controlled robot probe sys-
tem, given in full in [33]. The following scenario out-
lines the flow of execution for receiving and

processing a command from Station:

Scenario ID: RobotCommand
Description: The probe receives a command
to turn, move, or collect a sample from
Station and executes it.
Author: John Carter
Primary Actor: Probe
Secondary Actors: Station, MotorControl,
Sensor
Precondition: Probe::robot_ready
Trigger: Station::robot_command
Preamble: {

COMMANDTYPE cmd;

PHSAMPLE new_ph;

WATERSAMPLE new_water;
}

Scenario Flow:

1. Probe receives cmd from Station via
command.
2. if (cmd == 0) Probe invokes Forward.

else if (cmd == 1) Probe invokes
TurnRight.

else if (cmd == 2) Probe invokes
Backward.

else if (cmd == 3) Probe invokes
TurnLeft.

else Probe invokes CollectData.
3. Probe performs acknowledged.

Extension ID:
RobotCommand: : Extension: :Forward
Description: Commands MotorControl to move
robot forward.

1. Probe performs ready_move.

2. Probe sends 0 to MotorControl.

3. Probe performs move_complete with
MotorControl.

Extension ID:
RobotCommand: : Extension: :TurnRight
Description: Commands MotorControl to turn
robot CWw.

1. Probe performs ready_move.

2. Probe sends 1 to MotorControl.
3. Probe performs move_complete with
MotorControl.

Extension ID:
RobotCommand: : Extension: : Backward
Description: Commands MotorControl to move
robot backward.

1. Probe performs ready_move.

2. Probe sends 2 to MotorControl.

3. Probe performs move_complete with
MotorControl.

Extension ID:
RobotCommand: : Extension: : TurnLeft
Description: Commands MotorControl to turn
robot CCW.

1. Probe performs ready_move.

2. Probe sends 3 to MotorControl.

3. Probe performs move_complete with
MotorControl.

Extension ID:
RobotCommand: : Extension: :CollectData
Description: Collects a set of samples (pH
and water) from the sensor.

Probe performs collect_sample.

Probe receives new_ph from Sensor.
Probe receives new_water from Sensor.
Probe sends new_ph to Station.

Probe sends new_water to Station.

Probe performs sample_done with Sensor.

o Ul W N

The five traces generated from this scenario by
SCN2T are listed in Figure 3. The complete robot
probe contains an additional five scenarios: RobotStart,
Sensor_Collect, Move Probe, LeftTread Movement,
and RightTread Movement [33].

6. Future work

The largest open problem with respect to SCN2T

<Station_Probe_COMMANDTYPE.cmd, op_equal.cmd.0.1, ready_move,

Probe_MotorControl DIRECTIONCOMMAND.O, move_complete, acknowledged>,

<Station_Probe_COMMANDTYPE.cmd, op_equal.cmd.1l.1, ready_move,
Probe_MotorControl DIRECTIONCOMMAND.1l, move_complete, acknowledged>,

<Station_Probe_COMMANDTYPE.cmd, op_equal.cmd.2.1, ready_move,
Probe_MotorControl_ DIRECTIONCOMMAND.2, move_complete, acknowledged>,

<Station_Probe_COMMANDTYPE.cmd, op_equal.cmd.3.1, ready_move,
Probe_MotorControl_ DIRECTIONCOMMAND.3, move_complete, acknowledged>,

<Station_Probe_COMMANDTYPE.cmd, op_equal.cmd.4.1l, collect_sample,
Sensor_Probe_PHSAMPLE.new_ph, Sensor_Probe WATERSAMPLE.new_water,
Probe_Station_PHSAMPLE.new_ph, Probe_Station_ WATERSAMPLE.new_water, sample_done,
acknowledged>

Figure 3. Traces of RobotCommand scenario

is the area of infinite traces. There may be a need for
“while”-style looping within the scenario medium,
though the priority of this need has yet to be investi-
gated, but infinite traces are a by-product of a looping
construct. A number of case studies by trial users of
Mise en Scene would likely highlight constructs miss-
ing from and required in the SNL medium.

Another area for further development is the imple-
mentation of a software prototype of SCN2T. This
depends largely on R2D2C integration. During the
course of this work, a number of C++ classes and utili-
ties were written to automate calculations involving
traces. These classes were developed with an eventual
prototype in mind, and should serve as a starting point
for developing such a system.

Another possible area of application for Mise en
Scene is the generation of traces for use in formal veri-
fication. To check trace refinement, a “safety specifica-
tion” in the form of a process or set of traces that
defines all of the permitted system behavior, must be
created. A tool such as Formal System’s FDR2 is able
to prove that a candidate CSP implementation falls
within the set of behavior prescribed in the safety spec-
ification. Traces generated from natural language sce-
narios may represent a user-friendly route to creating
the needed safety specifications.

R2D2C also includes a shortcut “S” flow whereby
scenarios are converted directly to a subset of CSP,
bypassing the traces generation and model inference
phases. SNL to CSP conversion has been attempted,
and success has been achieved in the area of single sce-
narios, however, more work is needed toward compos-
ing CSP processes derived from scenarios to form the
top-level system.

7. Conclusion

The process of scenario-to-trace conversion is
composed of two sub-problems. The first is converting
individual scenarios into sets of equivalent traces. This
was handled by a process of mapping each line in a
scenario to one or more events in the generated traces.
The second, and larger, problem is combining the set of
individual component traces into a set of system traces.
This is more difficult than single scenario conversion
due to the need to satisfy constraints of multiple sce-
narios, the resulting large data sets, and the likelihood
of combinatorial explosion of traces.

A challenge of all scenario-based approaches is
managing ambiguity introduced by scenario-based
techniques. In specifying a system as a set of loosely
connected scenarios, it is difficult to compose them

into a larger whole, and with Mise en Scene we have
achieved this through the communication and synchro-
nization paradigm of CSP, and by limiting the specifi-
cation medium from natural language to a structured
text representation.

Scenario-based approaches are not the best fit for
every kind of possible system. However, within the
planned scope of R2D2C, Mise en Scene provides a
working definition of scenarios and a path to go for-
ward into the phase of formal model extraction from
CSP traces.

Acknowledgements

This work is supported by grants from Canada’s
Natural Science and Engineering Research Council.

References

[1] Michael G. Hinchey, James L. Rash, and Christopher A.
Rouff. A formal approach to requirements-based
programming. In Proceedings of 12th Annual IEEE
International Conference and Workshop on the Engineering
of Computer Based Systems (ECBS 2005), pages 339-345,
Los Alamitos, CA, USA, 2005. IEEE Computer Society.

[2] James L. Rash, Michael G Hinchey, Christopher A.
Rouff, Denis Gracanin, and John Erickson. Experiences with
a requirements-based programming approach to the
development of a NASA autonomous ground control system.
In Proceedings of Engineering of Computer Based Systems
(ECBS '05), pages 490—497, Los Alamitos, CA, USA, 2005.
IEEE Computer Society.

[3] C.A.R. Hoare. Communicating Sequential Processes.
Prentice Hall International, revised edition, July 2004.

[4] Steve Schneider. Concurrent and Real-time Systems:
The CSP Approach. John Wiley & Sons, Baffins Lane,
Chichester, West Sussex England, 2000.

[5] Matt Kaufmann and J Strother Moore. ACL2 homepage
[online]. November 2006 [cited December 8, 2006].
Available from: http://www.cs.utexas.edu/users/moore/acl2/.

[6] Robert L. Campbell. Categorizing scenarios: a quixotic
quest? SIGCHI Bull., 24(4):16-17, 1992.

[71 Robert L. Campbell. Will the real scenario please stand
up? SIGCHI Bull., 24(2):6-8, 1992.

[8] Clare-Marie Karat and John Karat. Some dialog on
scenarios. SIGCHI Bull., 24(4):7, 1992.

[9] Peter Wright. What’s in a scenario? SIGCHI Bull.,
24(4):11-12, 1992.

[10] Richard M. Young and Philip J. Barnard. Multiple uses
of scenarios: A reply to Campbell. SIGCHI Bull., 24(4):10,
1992.

[11] Kentaro Go and John M. Carroll. The blind men and the
elephant: Views of scenario-based system design.
Interactions, 11(6):44-53, November-December 2004.

[12] N. A.M. Maiden. CREWS-SAVRE: Scenarios for
acquiring and validating requirements. Automated Software
Engg., 5(4):419-446, 1998.

[13] C. Rolland, C.Ben Achour, C. Cauvet, J. Ralyté,
A. Sutcliffe, N. Maiden, M. Jarke, P. Haumer, K. Pohl,
E. Dubois, and P. Heymans. A proposal for a scenario
classification framework. Requirements Engineering,
3(1):23-47, 1998.

[14] Bonnie A. Nardi. The use of scenarios in design.
SIGCHI Bull., 24(4):13-14, 1992.

[15] Klaus Weidenhaupt, Klaus Pohl, Matthias Jarke, and
Peter Haumer. Scenarios in system development: Current
practice. IEEE Softw., 15(2):34-45, 1998.

[16] Richard M. Young and Phil Barnard. The use of
scenarios in human-computer interaction research:
Turbocharging the tortoise of cumulative science. In
Proceedings of the SIGCHI/GI conference on Human factors
in computing systems and graphics interface (CHI '87),
pages 291-296, New York, NY, USA, 1987. ACM Press.

[17] Karen Allenby and Tim Kelly. Deriving safety
requirements using scenarios. In Proceedings of the Fifth
IEEE International Symposium on Requirements Engineering
(RE 01), page 228, Washington, DC, USA, 2001. IEEE
Computer Society.

[18] Camille Ben Achour. CREWS webpage [online].
February 2000 [cited June 1, 2006]. Available from: http://
crinfo.univ-paris1.fi/CREWS/.

[19] M. Tawbi, C. Souveyet, and C. Rolland. ’ECRITOIRE:
A tool to support a goal-scenario based approach to
requirements engineering. Internal Report CREWS No.
21.903, ESPRIT project, 1998. Available from: ftp://
sunsite.informatik.rwth-aachen.de/pub/CREWS/CREWS-98-
23.pdf.

[20] TIan Alexander. Scenarios, Stories, Use Cases, chapter
14. Use Cases, Test Cases, pages 281-298. John Wiley &
Sons, Ltd, The Atrium, Southern Gate, Chichester, West
Sussex, England, 1st edition, 2004.

[21] Tan Alexander. Scenarios, Stories, Use Cases, chapter 7.
Negative Scenarios and Misuse Cases, pages 119—139. John
Wiley & Sons, Ltd, The Atrium, Southern Gate, Chichester,
West Sussex, England, 1st edition, 2004.

[22] Matthias Jarke.

Scenarios for modeling.

Communications of the ACM, 42(1):47-48, 1999.

[23] David Harel and Rami Marelly. Come, Let’s Play:
Scenario-Based Programming Using LSCs and the Play-
Engine. Springer-Verlag New York, Inc., Secaucus, NJ, 2003.

[24] David Harel. From play-in scenarios to code: An
achievable dream. Computer, 34(1):53-60, 2001.

[25] Hanene Ben-Abdallah and Stefan Leue. MESA: Support
for scenario-based design of concurrent systems. In Tools and
Algorithms for Construction and Analysis of Systems, pages
118-135, 1998. Available from: http://citeseer.ist.psu.edu/
article/ben-abdallah97mesa.html.

[26] Perminder Sahota. Scenarios, Stories, Use Cases,
chapter 18. Scenarios in Air Traffic Control (ATC), pages
363-377. John Wiley & Sons, Ltd, The Atrium, Southern
Gate, Chichester, West Sussex, England, 1st edition, 2004.

[27] Kai Koskimies and Hanspeter Mossenbock. Scene:
Using scenario diagrams and active text for illustrating
object-oriented programs. In Proceedings of the 18th
international conference on Sofiware engineering (ICSE
'96), pages 366375, Washington, DC, USA, 1996. IEEE
Computer Society.

[28] Ian Alexander. Scenario plus website [online, cited June
21, 2006]. Available from: http://www.scenarioplus.org.uk/.

[29] Alistair Cockburn. Writing Effective Use Cases. The
Agile Software Development Series. Addison Wesley,
Indianapolis, IN, USA, 2001.

[30] Jason Kealey and Daniel Amyot. Towards the
automated conversion of natural-language use cases to
graphical use case maps. In Proceedings of CCECE/CCGEI
2006, pages 2342-2345. IEEE Canada, 2006.

[31] Jason Kealey, Yongdae Kim, Daniel Amyot, and Gunter
Mussbacher. Integrating an Eclipse-based scenario modeling
environment with a requirements management system. In
Proceedings of CCECE/CCGEI 2006, pages 2397-2400.
IEEE Canada, 2006.

[32] Formal Systems (Europe) Ltd. Formal Systems website
[online, cited Oct. 1, 2006]. Available from: http:/
www.fsel.com.

[33] J. Carter, W.B. Gardner, J.L. Rash, and M.G. Hinchey.
Mise en Scene: Scenario to CSP trace conversion for the
Requirements to Design to Code project. Technical Report
(no. TBD), National Aeronautics and Space Administration,
2007.

[34] Michael G. Hinchey, James L. Rash, and Christopher A.
Rouff. Requirements to design to code: Towards a fully
formal approach to automatic code generation. Technical
Report 2005-212774, National Aeronautics and Space
Administration, July 2005.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

