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ABSTRACT

One of the useful formalisms for designing concurrent systems is the process algebra
called CSP, or Communicating Sequential Processes. CSP statements can be used to
model a system’s control and data flow in an intuitive way, constituting a kind of hierar-
chical behavioral specification. Furthermore, when coupled with simulation and model -
checking tools, these statements can be executed and debugged until the desired behavior
has been accurately captured. Certain properties (such as absence of deadlocks) can be

proved, to help verify the correctness of the design.

To make the verified specifications executable in a practical sense, refinement to a
programming language is required. In this work, an new object-oriented application
framework is described which realizes the basic elements of CSP—processes, synchro-
nizing events, and communication channels—in natural terms as C++ objects. In addition,
a new software tool is provided to customize the framework by translating CSP state-
ments into invocations of the framework elements. CSP specifications, thus reexpressed
in C++ and compiled, form the control portion of a system, able to be linked with other

software written in C++ that completes the functionality.
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CHAPTER 1

| ntroduction

Concurrent systems are well-known as a fertile source of design challenges [Rosc98].
The work in this dissertation concerns the devel opment of new techniques and associated
automated tools to support design and implementation in the realm of concurrent systems
by way of formal methods and software synthesis. In this introductory chapter, the

research will first be motivated, followed by an overview of the results.

1.1 Problems of concurrent system design

Concurrent systems often exhibit a high degree of complex interactions, both with their
environment, as in the case of reactive real-time systems, and internally in terms of syn-
chronization and communication among their constituent processes. One serious conse-
guence is that designers have trouble guaranteeing system properties, whether this means
the presence of good properties such as liveness, or the absence of bad properties such as

deadlock.

The typical practices of traditional, as well as object-oriented (OO), software engi-
neering, regardless which notations are employed for analysis and design, rely heavily on
methodical testing to provide some assurances concerning system properties. However,
for complex concurrent systems, it is difficult to rule out the possibility that some
untested sequence of stimuli occurring in the field will expose, for example, a lurking

deadlock situation. This provides a strong motivation to consider designing concurrent



systems using formal methods.

In contrast with informal design notations, design formalisms have strict semantics,

whether, following Alagar’s and Periyasamy’s classification [Alag98], they are based on
algebra, logic, set theory, relations, or some combination of these. Their underlying math-
ematical basis means that it is possible to ask questions about a formally-specified sys-
tem, and answer the questions by carrying out a mathematical procedure. Because these
procedures may be both onerous and error-prone when carried out manually, researchers
have developed automated tools to facilitate the checking of formally-modeled designs.
Their use enables software engineers to provide rigorous assurance about the properties
of such systems that go beyond a warm feeling that “adequate testing” has been per-

formed.

Leaving aside for the moment (until Chapter 2) the question of industry acceptance
of formal methods, another important question arises: While it may be worthwhile to
prove that a formally-specified design has the desired properties, who can say whether the
properties carry over into thenplementation created from the model-checked design?
Since the specification notation cannot “run” on a target platform, since the notation is
not itself a full-featured programming language, and since it is written at a relatively high
level of abstraction, transformation (also called “refinement” [Hinc95]) into a detailed

conventional program is required.

We know from experience that in the usual course of transforming a specification
into an implementation, each step of manual refinement presents a fresh opportunity to
introduce undocumented design decisions, and to cause the end product to diverge from

its specified behavior. If we started with a formal model, the verified properties may well



become lost in the transformation. Another unhappy, but common, result is that the speci-
fication may become an isolated early design artifact. The more transformation steps are
required, the less likely the specifications will ever be updated to reflect “as built” status,

and the less value they will have to future maintainers.

If, on the other hand, the specification can somebeswme the system, many pit-
falls can potentially be avoided, including the abandonment of formal properties. We call
a specificatiorexecutable when there are tools to simulate it, reason about it, and, ide-
ally, synthesize a realization using a chosen technology. It is fair to say that executable

specifications are something of a Holy Grail for system designers.

We propose a two-part conceptual solution for concurrent system design that facili-
tates the use of a formal design notation, while at the same time avoiding the traditional
problems of hand-transformation. This solution is based on the foundation of executable

specifications, and it will now be described.

1.2 Conceptual solution via executable specifications

In the first subsection below, the strategy of using executable specifications is supple-
mented with another important element, thagdénsible specifications. Together these
elements make up a conceptual solution. This is followed by a statement of the research

goals and the application domains to which we expect the results can be applied.

1.2.1 Two-pronged approach

The first thrust is to replace manual transformation with automatic translation from for-

mal specifications to executable code. In doing so we can preserve formal properties. We



can also keep the specification in sync with the implementation by modifying the former
and regenerating the latter, which is a sounder practice than what is usually done: modify-

ing the latter and (possibly never) updating the former.

But automatic translation by itself is problematic because of some characteristics of
formal notations, alluded to above:
« The specification, being at arelatively high level of abstraction, lacks the
details needed for a full implementation.

e Moreover, the specification notation likely lacks even the semantical notions

or syntactical constructs to denote those details.
These observations are approximately the same as saying that formal notations are not

full-featured programming languages.

From here we can take either of two routes to close the abstraction-level gap in the

pursuit of software synthesis:

1. We can extend the formalism’s native notation by mixing in programming
language-like constructs. This results in a hybrid notation or even a unique

new language.

2. We can allow the formalism to play its major role in expressing high-level
abstractions—such as hierarchical decomposition, control flow, synchroni-
zation, and communication—and provide, in addition, a “trap door” for
stepping out of the formalism into a notation where the detailed, low-level
operations can be expressed in a more conducive manner. This, in essence,

means putting “hooks” into the formalism to accommodate extensions.
The big drawback to the first route is that tampering with the formal notation may,
at best, make it incompatible with the model-checking tools we want to employ, and at

worst, may “break” the formalism by introducing constructs that lack a consistent mathe-



matical basis. Thus, the second route is the one we will take. It neither tampers with the

formal notation nor breaks the mathematical basis, provided that the “hooks” are suitably
circumscribed in their effects. This constitutes the second thrust of our two-prong solu-
tion, that of making specifications extensible as well as executable. It is a necessary

ingredient in our synthesis solution for concurrent systems.

We can now set forth our goals for constructing the solution outlined above.

1.2.2 Research goals

First, we want to start with a formal specification notation that is tfwtkable andsyn-
thesizeable. Checkable, here, means that there exists a well-developed suite of software
tools that allow a designer to reason about a specification and verify its properties. With-
out this kind of model-checking support, the benefits of using a formalism are much more
difficult to obtain, and our whole strategy loses its appeal. Synthesizeable means that the
formal notation lends itself to conversion into an executable program, i.e., that it is a kind
of executable specification. Formalisms that are largely systems of constraints, for exam-
ple, may not be synthesizeable. If a model-checking tool supports simulation, i.e., “run-

ning” a specification, this is a likely indicator that its input formalism is synthesizeable.

Second, we want to develop a technique for synthesizing software from the formal-
ism that can be executed on a target platform (characterized by some combination of pro-
cessor and operating system) as “production code,” apart from resource-hungry
simulation tools. Achieving this goal is the main thrust of this work and takes up the bulk

of this dissertation.

Finally, having made the observation above that for practical programming use a



formalism needs to be extended in some fashion, we want to provide a means of hooking
procedural extensions into a formal control specification. The extension language should
be a popular programming language, and must be compatible with the programs which

are output by our synthesis tool.

1.2.3 Application domain

The goalsjust described, in principle lay out a general-purpose solution for concurrent

systems design, not targeted to any particular domain of software applications. However,

the choice of a particular formal specification methodology and the choice of alanguage

for software synthesis and specification extensions—that is to say, the actual inputs and
outputs of the automated tools—will bring some practical limitations that will be more or

less suitable for diverse application domains.

Since the purpose of this research is not to produce a finished, marketable product,
but rather to explore and demonstrate a proof-of-concept, it is acceptable to consider,
within theoretical constraints implied by the goals above, choices based on prudential cri-
teria such as technical familiarity, development cost, and personal interest. The selection
of CSP, Communicating Sequential Processes [Hoar85], for input, and C++ for output is

explained and justified in Chapter 2.

Given those choices, the application domain for this research in its initial form will
be systems that are natural to model using CSP, including those with inherent parallel-
ism, and targeted on hardware/OS platforms that support C++. As to the former, the pri-
mary commercial user of CSP so far seems to be the telecommunications industry, where,

according to Formal Systems of Oxford [FSE], it has been effective in modeling commu-



nications protocols. Other application areas cited by Formal Systems include VLS
design, networking and data distribution, control, signaling, fault-tolerant systems, and
human-computer interface. As for C++, its compilers and run-time libraries are ubiqui-

tous.

Taking CSP and C++ together, the main targets that would probably be ruled out by
this combination are hard real-time systems (because CSP, in its original form, lacks any
notion of timing) and highly resource-constrained systems. The latter includes the subset
of embedded systems with strictly-limited CPU ability, idiosyncratic processors for which
no C++ compiler exists or compiled code is too uncompetitive with hand-coded assem-
bly language, and/or small memory that cannot afford much heap space, or stack space
for multiple threads. More will be said about our limitations in Chapter 2. It should be
noted that some of these limitations can be reduced or eliminated by carrying out the pro-

spective Future Work (see Section 7.2).

Having ruled out that group of candidates, we are still left with a wide range of
computing platforms, from large-scale general-purpose systems down to embedded sys-
tems that are not too constrained. With the availability of our technique, it is possible that
using CSP will become more popular with designers of systems of all sizesfor which ver-
ification is a priority—for example, safety-critical systems—who had previously turned

away from formal methods due to a lack of assistance with software synthesis.

1.3 Overview of results

This section provides a road map to the rest of the dissertation, as well as a broad sum-

mary of the results obtained.



In Chapter 2, we present the background on and rationale for our choice of the for-

malism CSP, and related work in the area of software synthesis.

The main novel approach that results from this research is the use of object-ori-
ented application framework (OOAF) technology as a target for software synthesis. Back-
ground on OOAFs is also included in Chapter 2. In short, we automatically trandate a
CSP specification into source code for customizing the framework we call CSP++. A
customized framework instance is then converted to an executable program by a conven-
tional C++ compiler, and linked with user-coded extensions known as external routines,
also written in C++. This design flow is depicted in Figure 1, with the heavy borders
denoting the software components created by this research. When the customized frame-
work code is run, the effect is of executing the original CSP specification, coupled with

the C++ user extensions.

[ CSP usel external
user source H
input specs : | code routines

synthesis ification | SimMulate
steps > verification _
tool &r

CSP++
translator

CSP++

source
code

CSP++
run-time
library

C++ compiler

synthesized i

output
SOFTWARE for TARGET SYSTEM

Figure 1: Use of CSP++ framework
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In practice, we envision the CSP specification as forming a “control layer” in the

layered system model illustrated in Figure 2. One can think of the CSP control portion as
the “brain,” with the user code forming the system’s “limbs and organs.” This figure also

shows the capability of the user-coded external routines to provide an interface layer to
packaged software modules—supplied perhaps in the form of other C++ class libraries—

such as a database subsystem or OS facilities.

The key purpose of this work was to create a means of synthesizing software from
CSP specifications. These results are presented in Chapter 3, which describes the OO
architecture of the CSP++ framework, and in Chapter 4, which exhaustively lists the
translations for the various CSP constructs into analogous C++ code based on the frame-
work’s components. These translations are carried out automaticalptyyhe tool that
was created to customize a CSP++ framework instance according to a given CSP specifi-
cation. This translator, fully documented in Appendix D, is vital for making any practical

use of the software synthesis design flow.

Chapter 5 further illumines the CSP++ framework infrastructure by detailing its

run-time operation as it implements the basic semantical features of CSP. Our solution is

CSP control layer

external routines
SW packages

OS facilities

hardware components

Figure 2: Layered system model



10
given for the critical problem of implementing multiprocess synchronization in the pres-

ence of the CSP deterministic-choice operator.

The CSP++ framework and cspt trandator have been implemented, and currently
run on two platforms. Chapter 6 gives the results of timing and memory measurements
that were made on severa test cases, and a comparison with a commercia synthesis tool
based on StateCharts. Discussion of research results, conclusions, and possibilities for

future work form the final chapter.

A case study based on asimplified disk server isintroduced in Chapter 2 and picked
up again in Chapter 6, where its trandation and execution are explained. Source code for

the case study and a user’s manual for the tools are supplied in appendices.

In summary, this dissertation presents pioneering work in the areas of CSP synthesis
and OO application frameworks. It is hopeful that with some additional development and
optimization, this work could form the nucleus of commercial CASE tools and help pop-

ularize CSP as a design methodology.
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CHAPTER 2

Background and Rationale

The purpose of this chapter isto introduce and explain the two key design choicesin this
research: first, the selection of CSP as the input formalism, and second, the use of a syn-
thesis approach based on OO application frameworks, and the associated use of C++ as
the implementation medium. In the course of this explanation we refer to related work

and discuss the advantages and disadvantages of these two choices.

21 CSP

The usefulness of formal methods for system design is often disputed. In modern general-

purpose software engineering texts, treatment varies from lightly touching on the Z for-

malism under “Advanced Topics” [Pres97], to devoting a few chapters to an overview of
so-called “algebraic” and “model-based” methods, with a fuller look at Z as representa-
tive of the latter category [Somm96]. Both these texts highlight the controversial nature
of formal specifications, viz “Formal specification on trial,” a section heading in
[Somm96]. Textbooks aimed at teaching formal methods to computer science students,
e.g., Alagar and Periyasam\Bpecification of Software Systems [Alag98], are still fairly

rare.

On the one hand, proponents point to the superiority of formal notation over natural
language specifications for reducing ambiguity and the typical proliferation of alternate

interpretations amongst software developers, test engineers, and other participants. Math-
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ematical analysis of formal specifications can result in provably correct software behav-

iour, which is undeniably important for safety-critical applications such as nuclear power
plant control systems, medical devices, and avionics. The prospect of significant savings
in design, implementation, and validation stages is held out, at the expense of additional

investment at the specification stage.

On the other hand, opponents object to what they maintain is a confusing use of
abstruse mathematical notation, which practitioners are reluctant to master, and addi-
tional engineering process steps that commercial developers are reluctant to budget for.
Sommerville helpfully points out that proponents tend to argue about claimed technical
improvements, while opponents often respond on the basis of unjustified costs
[Somm96]. A balanced perspective is given in the article “Formal Methods: Promises and

Problems” [Luqi97].

It is not the purpose of this research to take sides in this debate. We take it for
granted that some people will be enthusiastic over incorporating algebraic notation into a
system’s specifications, while others will demur. Rather, our interest is in providing a new
tool that can make the adoption of one formal design notation, CSP, more practical and
attractive. By building an avenue from model checking and simulation to software syn-

thesis, we broaden the usefulness of CSP.

2.1.1 Background on CSP

The classic work on CSEommunicating Sequential Processes, was written by its inven-
tor Tony Hoare [Hoar85]. It methodically covers the fundamental principles of processes,

concurrency, and communication, and introduces formal techniques by which models
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expressed in CSP may be logically verified. We note that, over the years, CSP notation

has not been standardized, and that new operators can be invented, thus dialects of CSP

have evolved.

The abundance of algebraic and set notation in Hoare’s original book may seem
overwhelming. In that case the following new book by A.W. Roscoe will be a better
choice: The Theory and Practice of Concurrency [Rosc98]. As well as being designed as
an undergraduate textbook, with a gentler ramping up of the math, it has been fleshed out
with more case studies. It also has the advantages of incorporating recent research, and
of using a dialect of CSP compatible with the commercial FDR model-checking tool from

Formal Systems (more about FDR below).

Recently, Michael Hinchey and Stephen Jarvis have contributed a book [Hinc95]
that features updated notation conventions. It should be noted that this book has come
under heavy fire from one CSP expert, Bryan Scattergood of Formal Systems, for having
“far too many technical errors” [Scat95], and should therefore by used with caution. Nev-
ertheless, the authors have been associated with the seminal Programming Research
Group at Oxford University, whose CSP archive [CSP] is a good starting point for explor-

ing CSP on the Internet.

One more worthwhile source is Gajski etQdecification and Design of Embedded
Systems [Gajs94], which surveys CSP in the context of many other alternative methodol-
ogies. It also gives an overview of StateCharts, which we use in the next section to intro-

duce a case study in a graphical manner.

Simply put, each statement in a CSP specification is the descriptioprotess.
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The process engages in a sequence of named events, which may include point-to-point

communication with another process via a nonbuffered, unidirectional channel. The set of
al events that a process may ever engage in is called its alphabet. These may correspond

to real-world occurrences such as sensor input, device actuation, and so on.

Things get interesting when processes define themselves in terms of other pro-
cesses, including several processes running in parallel. Then, the formalism provides for
Interprocess synchronization each time an event occurs that is in their common alphabet.
This also implies that processes synchronize around channel communication. CSP state-
ments can thus be used to model a system’s control and data flow in an intuitive way,

constituting a kind of hierarchical behavioral specification.

An example will make this easier to follow. The simplified disk server is one to

which we will return later.

2.1.2 Disk server case study

The CSP notation we use here is that which is accepted by an in-house verification tool,
cspl2. It is mostly identical with the notation found in [Hinc95]. Cspl12 was written in
Prolog by Dr. M.H.M. Cheng, Department of Computer Science, University of Victoria,
BC. To rigorously follow csp12 input conventions, we should use=" in place of ‘="

and “->" in lieu of “~.” in the sample statements, and terminate each statement with a

period. The source code in Appendix A is true cspl2 code.

First consider Figure 3 which uses StateCharts [Gajs94] to visually portray DSS, the
Disk Server Subsystem, interacting withclpstanding for multiple clients. We write the

CSP for a two-client system starting from the complete system view:



SYs = ( BSS || (1) [l <2)) )"{ds, ack(1),ack(2)}

This states that the system SYS is defined as the parallel composition of the disk

server DSS and two client processes, C( 1) and C( 2) . Here, the parenthetical notation

should be thought of as machine-readable subscripting: C; and C,. Parallel composition

~

dslreg(cl,blk) cl client no.
C(cl) DSS blk block no.
Client Disk Server Subsystem
channel
———pp event
DSS
DQueue
Disk Request Queue
) nextlitem | empty
englitem deq
/ ~ DSched \
Disk Scheduler dsreq/eng
ds?reg/dci! start
|
asireq(cl,blk) next/dci! start
= ack(d) empty dooini/ack,deg
dci!start(cl,blk)
dcolfini(cl,blk)
dio!blk
~ DCitrl
Disk Controller . Disk
int -

J

Figure 3: Disk Server StateCharts
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of concurrent processes is expressed with the symbol “||” plus an outer caret “*’ that

explicitly denotes the set of events on which the processes will synchronize. The synchro-
nization set includes channdk, over which a client communicates a request, and
ack( cl), the acknowledge event to clieshit The clients are composed using the symbol
“|II” which stands for interleaving; that is, they run concurrently but they do not synchro-

nize with each other.

Strictly speaking, it should not be necessary to list the synchronization set, since
CSP defines that any events in the common alphabet will implicitly cause synchroniza-
tion. However, in practice it is difficult for simulators to derive the intersection of alpha-
bets, and easy enough for the specifier to write it out. From the software engineering
standpoint, an added benefit of this explicit notation is that these events change from

being invisibly implied elements of the specification to being visibly documented.

The disk server is also defined as a nhumber of subprocesses, corresponding to the

four inner components of the DSS StateChart in Figure 3:

DSS = ( (DSched || DQueue)~{enq, deq, next, enpty}
|| (DCtrl || Disk)~{dio,dint} )~{dci,dco}

The disk request scheduleSched is composed with the queuaQueue. Their syn-
chronizing events concern the enqueuing and dequeuing of requests. The disk controller
DCtr | is shown in this simplified model composed with a dummy process standing for

the actual disk drive.

The scheduleDSched in Figure 3 is drawn as a state machine, and these next

statements will show how CSP can accommodate this:

DSched = DS idle
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DS idle ds?req(_cl, _blk) -dci!start(_cl, _blk) - DS _busy

DS busy

dco?fini(_cl, _blk) —ack(_cl) -deq-DS _check
| ds?req(_cl, _blk) -enq!'req(_cl, bl k) -DS_busy

DS check = enpty-DS_idle
| next?req(_cl, blk) -dci!start(_cl, bl k) -DS_busy

The specification for DS i dl e illustrates two constructs. First, ds?req( _cl,
_bl k) means that the process waits for input on the channel named ds. Input is denoted
by the symbol “?” followed by a variable. Similarly, output is shown with “I” followed by
a value. Here, channdk receives the complex datuneq which is made up of the cli-
ent number and block number. These names and bl k function as local variables
for the process. The right arrow is a transition to the next event in the process, the output
of thest art datum on the channdki . After this, theDS i dl e process continues as
the proces®S_busy, in effect performing a state transition to IDLE.

DS busy illustrates deterministic choice, which works like this example:

P=2a-Q| b-R

P has a choice. If eveatoccursP will continue as proces3 but ifb occurs, it will con-
tinue ask. (If neither occursP will not proceed at all). Looking back o5 _busy, we
see that if the scheduler hears from the controller that the disk has finished a request (the
inputdco?f i ni ), it will acknowledge the appropriate client and enter the CHECK state.
Otherwise, if it gets a fresh request from a cliel#qr eq) in this BUSY state, it will

enqueue the request and remain BUSY.
The CSP for the controller and disk are simple sequences of events:

DCtrl = dci?start(_cl, _blk) -dio! _blk-
di nt -dco!fini(_cl,_blk) -DCtrl
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Di sk = di 0?_bl k -di nt -Di sk

DCt r | waitsfor astart request on itsdci channel. The st art datum contains the
client number and disk block. The controller sends the block request on its output chan-
nel di o and then waits for an interrupt event di nt . On the line below, the Di sk pro-
cess simulates inputting the request and outputting di nt . Thereupon, DCt r | signals
completion by sending the f i ni datum on channel dco. The process continues as itself

(DCtrl=... -DCtrl ), which specifiesaloop (not recursion, as one might imagine).

The disk request queue (internal details not shown in Figure 3) is more interesting

and shows the last of the CSP notation to be introduced here:

DQueue=( (D 0) || BUFF) Ml eft,right,shift} )\{left,right,shift}

DQ i) = engq? x-left! x-oshift -DQ _i+1)
| deq-( ( if _i=0 then enpty-DQY0) )
+ fix X ( right? y-next! y-DQ _i-1)
| shift -X)
)

BUFF = CELL |> CELL |> CELL

CELL = left? x—shift -right! x-CELL

The queue process is described as a buffer (here only 3 cells) composed with a sub-
scripted process DQ, where i denotes the number of items currently in the queue. Each
CELL process receives a datum on its left  channel and, after being told to “shift”,

delivers it on itg i ght channel, and then continues beinQed L. The symbol [ >*is a

special kind of parallel composition, which can be defined in terms of other CSP opera-

tors, used just for pipelineB. | > Qhas the effect of making's ri ght channel syn-
chronize withQs | ef t channel, so that data is passed fierto Q The entireBUFF

pipeline had ef t andri ght channels to communicate will), and can be told bpQ
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when to shi f t. The set of events prefixed by backslash “\” will be made local to this

procesdDQueue, and not visible to any process with which it may have been composed

at a higher level (this is called hiding or concealment).

As for DQ, when it gets input oanq it enqueues x onBUFF's | ef t channel and
does ashi ft. When it gets @eq event, then it faces a choice (“+” is the general choice
operator): if there are no items in the queue (shown by a zero subscriptypthg event
occurs and the process continue®@g Otherwise, a subproceXds declared (“fix” is a
way of putting a process in-line): BUFF's ri ght channel yields up an iteny, it is
passed out through channeéxt and the process continues B§_;. Otherwise, a

shi ft is ordered and the subprocess is repeated.

We can make two observations about this buffer specification: (1) The shift action
in CELL is actually superfluous and is given to illustrate more CSP++ constructs. (2) It is
evident that CSP is hardly an optimal way of implementing a simple FIFO buffer. Here,
the strength of CSP in specifying control flow gives way to its weakness in manipulating
data. An improvement would be to implement the buffer with a user-coded external

action.

There are a few other CSP constructs that we have not encountered in this example.
These include event renaming (which is how pipelines are implemented) and nondeter-
ministic choice, which is useful for keeping specifications at a high level of abstraction,
though not for actual implementation. As noted above, it is permissible in CSP to invent
new operators. For example, the “fix” operator is a convenience notation supported by the
in-house tookspl2. Variants of CSP also exist, one of the most useful for real-time sys-

tems being Timed CSP [Davi92], which adds timing constraints to the arrows between
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events.

Now that we have the specification, what's next? Since CSP specs are executable,
we can turn to a simulation tool to run it. At the University of Victoria, cspl2 will accept
the above syntax. A more sophisticated “industrial strength” simulation tool, called FDR
[Rosc94], is available commercially through Formal Systems of Oxford [FDR]. These
tools can also perforrmodel-checking, which is a major virtue of formal methods hav-
ing precise algebraic rules. In general, three properties can be checked, requiring various
amounts of run time depending on the complexity of the specification: deadlock, livelock
(infinite loop), and equivalence. The last property means that if we have two specifica-
tions for a process or system (perhaps oheisintended to be a “better” version of P),

we can prove whether they are indeed equivalent. See Chapter 3 of [Hinc95] for details.

The difference between simulation and model-checking is this: When a CSP sys-
tem is simulated, one of many possible paths through the specification will be followed,
and the path will be logged in the form ofrace, that is, a sequence of executed events.

A number of successful simulation runs no doubt builds confidence in the correctness of
the specification, especially for simple systems, but does not by itself guarantee that pit-
falls are not lying down paths that have not been exercised. Model-checking, on the other
hand, conducts an exhaustive analysis (which is why it tends to be expensive in computa-
tion time) of all possible traces, in order to verify that certain desirable states can be
reached under specified conditions, and that no harmful states can occur. This is an

advantage that formal methods can afford compared to conventional programming.
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2.1.3 Why CSP?

In terms of an input formalism for this research, our stated goals (Section 1.2.2) require
that the formalism be checkable and synthesizeable. A few algebraic specification lan-
guages meet these criteria, including CCS, Calculus of Communicating Systems
[Miln95], and ACP, Algebra of Communicating Processes [Berg85]. The special appeal
of CSP came from the availability of the free in-house tool (cspl2, described above), and
the factor of greater familiarity. The existence of the sophisticated commercial tool, FDR,
meant that a path for applying this research in industry could potentially be followed up.
Generally speaking, this same work could have been done with an alternate formalism;
however, we are not aware that anyone has done so. Furthermore, it would be possible to
adapt our framework for code generation—in particular, the translation front end—to uti-

lize an alternate input language, as noted under Future Work (Section 7.2.5).

The main disadvantage that arises from using CSP is its lack of the notion of time.
We have already indicated (in Section 1.2.3) that this limits the application domain of our
technigue. On the other hand, Roscoe argues that CSP’s handshaken style of communica-
tion is a good means of abstracting away the timing element, and that protocols that do
not rely on timing for correct behaviour can be more robust [Rosc98]. This is not by any
means to deny that timing is a requirement in some systems, and it would indeed be pos-
sible to extend this work to implement a timed variant of CSP, as described under Future
Work (Section 7.2.3). However, we have intentionally left that more complex issue for

later.
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2.2 Object-oriented application frameworks

The second key underpinning of this work is the decision to involve OO application
frameworks. This is not just an unthinking reflection of the “O0O craze,” but actually rep-
resents a fresh approach to software synthesis. We employ an OOAF as a high-level syn-
thesis target, as opposed to the customary approach targeting assembly language or high-
level language source code. The choice was intended to pose the research question of
whether this approach would be worthwhile, and to probe its strengths and weaknesses.
As with the choice of CSP above, a rationale will be presented following a brief back-

ground section.

2.2.1 Background on OO application frameworks

Object-oriented application frameworks are a fairly new development in the world of OO
software engineering, and not a lot has been written about them yet. Budd defines an
OOAF as “a set of classes that cooperate closely with each other and together embody a
reusable design for a general category of problems” [Budd97]. The first book on this
emerging technology)bject-Oriented Application Frameworks, writes in similar terms

of classes “with a built-in model of interaction,” constituting “a programming environ-

ment for vertical applications” [Lewi95].

This version of the recurring OO themecotie reuse represents, in a way, an exten-
sion of class libraries, a venerable OO practice, and design patterns [Gamm95], the enthu-

siasm that just preceded frameworks. The contrast is instructive:

« Classlibraries package up sets of utility functionsin precoded OO format,
for use in any kind of system that happens to need those functions.
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Utilization is viainstantiating the classes and/or subclassing (inheriting)

them for refinement purposes.

« Design patterns, on the other hand, do not come precoded. They are generic
solutions to common design problems, laid out in terms of cooperating
classes, and are utilized by copying the models and filling in the details

according to one’s own application.

Like class libraries, frameworks are comprised of a set of precoded classes, but
unlike class libraries—and like design patterns—the classes were all designed to cooper-
ate to implement a particular kind of application. Frameworks are specific enough that
they are not amenable for use in arbitrary applications, yet they are general enough that a
degree of customization is possible. Another useful way to view a framework is as “a
semicomplete application that contains certain fixed aspects common to all applications
in the problem domain, along with certain variable aspects unique to each application
generated from it” [Srin99]. These variable, or customizable, aspects have come to be

known ashot spots.

Examples in [Lewi95] are mostly from the world of systems programming, and
concern areas such as operating system 1/0O and graphical user interfaces, including the
well-known Microsoft Foundation Classes. In contrast, wherCtmamunications of the
ACM special issue on frameworks was published two years later [Faya97], it featured
frameworks drawn from diverse industries, from multimedia to semiconductor manufac-
turing. In another two years, growth of the technology has been sufficiently explosive that

Wiley and Sons is issuing a three-volume set with these titles:

« Building Application Frameworks: Object-Oriented Foundations of

Framework Design
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« Implementing Application Frameworks. Object-Oriented Frameworks at

Work

«  Domain-Specific Application Frameworks. Frameworks Experience by

Industry
To our knowledge, CSP++ is the first application of this technology to software
synthesis, so it is interesting for that reason alone. CSP++ is featured in chapter 9, co-
authored with Dr. M. Serra [Gard99b], in the book Implementing Application Frame-

works: Object-Oriented Frameworks at Work [Faya99], part of the new Wiley OOAF set.

2.2.2 Why a C++ OOAF?

The problem of software synthesis requires generating code that will run on atarget plat-

form consisting of a designated CPU and OS combination. Unless the platform is
extremely limited, there will normally be arange of possibilities as to the level of source

code that can be generated for it. These levels are portrayed, albeit ssimplistically, in Fig-

ure 4. Generaly speaking, the difficulty of code generation is directly related to the logi-

cal “distance” between the input abstraction (in our case, CSP) and the level of the code
generation target. A greater distance results from a semantic mismatch between the
abstraction’s model of computation and that of the target language. For example, if the
abstraction is a dataflow model, then assembly language for a typical von Neumann CPU
represents a relatively large distance. If the semantic mismatch is not great, then syntac-

tic differences would carry more weight.

Therefore, assuming the input abstraction is not very primitive, generating assembly
code for a bare processor with no executive is by far the hardest job. Such a code genera-

tor must concern itself with low-level issues such as register allocation and memory lay-
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Figure 4: Levels of targets for code generation

out. In contrast, moving up one level (in Figure 4) and outputting high-level language
(HLL) source code, say C, would be much easier, because it leverages the existing well-
developed technology resident in the C compiler, and the services of the compiler’s run-

time library and underlying OS.

In recent years, Java has presented another option. It is portrayed in Figure 4 as a

higher-level target because it relies on a virtual machine (VM) and extensive class librar-
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We show “OOAF” as a still-higher level target. This is because the most primitive
components that the code generator must be concerned with can be intentionally designed
to be very close to those in the design abstraction itself. Thus, the translation distance is
shortened, such as the distance between the German and Dutch languages, for example,

as compared to, say, English and Chinese.

We also picture OOAF as smaller than the Java VM. This is meant to show that
while the JVM has to be general-purpose, with a resource footprint to match, an OOAF
contains only what is necessary for its specific mission, in this case, emulating communi-

cating sequential processes.

To utilize an OOAF approach, we create a set of classes representing the basic com-
ponents of the CSP paradigm, and make them cooperate to perform CSP’s basic func-
tions: process creation, event execution, choice, interprocess communication,
synchronization, and so on. Indeed, it was pointed out by a reviewer of [Gard99b] that a
CSP specification is itself already a kind of “framework,” at least in the way we are using
it, in that the abstract events are the “hot spots” which are customized when associated

with user code.

Commercial frameworks are typically large and complex, and customization is to a
large degree manual. In contrast, the CSP++ framework is small and relatively simple,
and its customization—which occurs every time a CSP specification is translated—is

largely automatic.

Using an OOAF approach naturally implies using an OO programming language.
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We use C++ because it has compilers known to generate efficient code, and because fea-

tures such as polymorphism, operator overloading, templates, and preprocessor macros
can al be pressed into service in order to create a framework customization methodol-
ogy, i.e., CSP++ statements, largely similar to CSP syntax. The effect is that the C++
compiler is enlisted to do the heavy work of assembly code generation, after the CSP++

trandator has done the comparatively light work of producing compiler-ready C++.

Another benefit of packaging CSP++ as an OOAF is that the multitasking model is
not too difficult to change, which may be necessary for porting to a different OS. Ideally,
one should need only to alter the task base classes, and leave the rest of the framework
intact. Our experience in porting to a new platform showed that this was largely the case

(see Section 3.5 “Platforms” and Section 3.5.3 “Lessons from Linux port”).

To be sure, using C++ brings drawbacks for some potential application areas. From
the viewpoint of more resource-limited embedded systems, C++ seems to make lavish
use of resources, particularly memory. Multithreaded C++ is even worse, because each

thread requires its own stack, as well as the heap for dynamically allocated variables.

Nonetheless, we believe the benefits of an OOAF approach outweigh the draw-
backs. One considerable benefit was that by erecting a high-level code generation target,
and thereby shortening the translation distance, the entire project became tractable for one
person over a reasonable time frame. Furthermore, the relative ease with which the essen-
tial features of CSP were implemented using this approach eclipses the meagre results
obtained by some earlier work (CCSP) that attempted to translate CSP to a lower-level

target (the C language). That and other related work will be presented in the next section.
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2.3 Related work

In relation to our goal of software synthesis from CSP, there have been some efforts at

making CSP specifications run as programs. Historically, the programming language
occamhas been derived from CSP, and Chapter 9 of [Hinc95] shows how to convert

from CSP to occam but they also acknowledge that it is a “very specialized language
intended for implementation on transputers.” Our goal is quite different: We wish to
translate CSP into a popular language that will make it easy to combine with other code

that fills out the functionality of the system.

Code generation has been done to some extent for the C language. The CCSP tool
[Arro94] provides a limited facility for translating a subset of CSP into C, but it does not
directly support the key parallel composition operator (||). Instead, each CSP process
becomes a heavyweight UNIX process, and channels are implemented as UNIX sockets.
In contrast, our approach supports the full functionality of concurrent composition, and is

implemented using threads, thus making it practical for a larger range of applications.

For Java enthusiasts it is worth noting that the JavaPP (Java Plug & Play) Project
has created a set of classes called CJT, Communicating Java Threads [Hild97], which are
designed to bring CSP-style synchronization and communication to Java programs.
Again, this represents a different goal from ours, but does open up an avenue for convert-
ing CSP to Java. We have declined to take this route, partly because of the considerable
overhead entailed in running a Java Virtual Machine. More pragmatically, when this
research commenced in 1995, Java was still at too early a stage to be seriously consid-
ered. Nonetheless, the Java option may be worth exploring under future work, especially

in light of the recent development of native bytecode processors, e.g., Sun’s PicoJava pro-
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cessor core [McGh9g].

There is another well-developed derivative of CSP and CCS called LOTOS
[Logr92]. It issimilar to occamin being a full-featured programming language. In addi-
tion to the process-algebraic aspect, LOTOS aso incorporates a data-algebraic subset
based on abstract data types, and it compiles to executable code. The language has been
standardized (1SO 8807), and is in use, particularly in Europe, for design of distributed
systems and protocols. In conjunction with using LOTOS as a specification language for
hardware/software codesign [Carr96], synthesis tools for translation of LOTOS to C and
VHDL have been created. As with occam LOTOS represents a different direction than

our work—that of utilizing an entirely new language, albeit based on a design formalism.

2.4 Objectionsand regoinders

In light of the background and related work above, this section further discusses the ratio-
nale for our approach by means of raising and responding to objections.

1. Sincethere are already compilable programming languages based on a

formal model, why not just write software in one of those?

That approach is valid, and has been taken in the casesamand LOTOS, where one
or more formalisms was expanded into a full-featured programming language. Our
approach starts with two assumptions: (a) at the high level there are going to be “specifi-
cations” in any case; and (b) at the implementation level, people prefer to code in famil-

lar, popular languages.

Our suggestion is: First, learn to write those specs in CSP, at least for those parts of

the target system for which CSP is a natural expression. Use model-checking tools to
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evaluate them, and our tool to trandate them into C++. Then use C++ to fill in the CSP

events as user-coded procedures, which will form the bulk of the total code. Asking some
upper level designers to write CSP is very different, organizationally, from asking every
programmer to become proficient in occamor LOTOS. After al, CSP is not one of the
very obscure or abstruse formalisms, so even the programmers who do not master it can
understand specifications written init.
2. Why attempt to implement a concurrent systemin C++, a language that
lacks a built-in model of concurrency?
The overhead of Java, which does possess built-in concurrency has been cited as a draw-
back above. We could, alternatively, have turned to a concurrent programming language,
but this would have defeated the purpose of involving a common, popular language. In
fact, it is not difficult to provide concurrency for C++ programs by utilizing a POSIX
threads package [Lewi98], or other suitable class library, as we have done.
3. What is the advantage of mixing two languages, CSP and C++, into a sin-
gle system implementation?
The point of using CSP at all is as a powerful specification tool, not a programming lan-
guage per se. However, by applying our research, we can directly make it executable.
Therefore we can maintain that portion of the system’s code arising from the CSP by
directly maintaining the spec, and regenerating the code whenever the spec is changed.
Note that this is the opposite of the usual software engineering practice (i.e., change the

code, and then hopefully update the spec).

Another advantage that falls out of this approach is that the design can be modular-

ized in two places:
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First, and most obviously, we can modularize in terms of abstract CSP events. That

is, aprogrammer could be assigned to implement a particular event in C++. The CSP pro-
cess context in which the event is invoked represents the spec, and if the programmer
wants to change that, it can be handled as a spec change. This point isimportant, since the
change may affect other modules or even the system behaviour. In that case, if the CSP
specification is under configuration control, it should be modified by a higher-level

designer, reverified, and resimulated.

Second, since CSP processes can be expressed in terms of other processes, not
solely in terms of events, a process can become a “module” as well, with a specified
interface of channels and events. Such a process can be initially coded as a “stub,” that
simply goes through its communication handshake and exitsDiTélke process in the
DSS example is just such a stub. Implementation could proceed by refining the process
into subprocesses, until finally the level is reached of individual events having the desired
degree of complexity.
4. Ifthereisaproblemin the transdated CSP, how will a programmer trace it
back to a particular CSP source statement?
This is the same problem that arises with a compiled language such as C++. There, the
practice is to add numerous print statements, or else run the program in a debugger, set-

ting breakpoints, etc.

We have provided two debugging features in CSP++: First, one may run the com-
piled system with the command line trace (-t) flag (see Appendix B.4). This will cause
the run-time framework to log all the events as they are executed, annotated with the

name of the process in control at that moment. Second, the translated CSP++ code is
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itself standard C++ source code, not assembly language. The target system can easily be

run in a thread-aware symbolic debugger such as gdb, breakpoints can be set, the code
can be stepped through, variables inspected, and so on. Moving back and forth between
the trandated CSP statements and the user-coded C++ procedures is completely seam-
less. If the trandlator isinvoked with the source (-s) option (Appendix B.2), the CSP input
source code will be interleaved with the C++ output as comment lines, making it easy to
associate them with the corresponding C++ statements during debugging.
5. By adding user-coded procedures to the semantically-limited primitive
communication events of CSP, doesnt this “break” the formalism? Does

this render our analysis, simulation, and tool-based model-checking inef-

fective?
To put the question another way, are we achieving a mere veneer of formalism? The
answer hinges on what the user-coded procedures are allowed to do. Aslong as the proce-
dures never communicate or synchronize with one another “behind CSP’s back,” so to
speak, the encompassing formal model is maintained. As far as the model is concerned,
its abstract named events are strictly atomic and of indefinite duration, and what an

event's semantics are in the context of the computer system is irrelevant.

While it would probably be legitimate to allow any or all events in a CSP specifica-
tion to be associated with user-coded procedures, in order to prevent confusion and make
the implementation of synchronization straightforward, we imposed the following rules:

1. Events used for interprocess synchronization must be dedicated to that pur-
pose, and are not allowed to have associated user code.

2. Consequently, interprocess communication must be performed strictly via
CSP channels.
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Note that these rules do not prevent user procedures from participating in choices, nor

from implementing channel semantics by performing their own 1/0O operations, e.g., to
communicate with the system’s environment. That would be the case with, say, the
DCtr| process in the DSS example, if the dumibnysk process is removed. Further-
more, user procedures can even safely communicate with one another (e.g., through static

variables) as long as they are only ever invoked by the same process.

The above arrangement, embodied in CSP++, offers the “best of both worlds”: a
formal method for specifying high-level system behaviour, and a popular programming
language, C++, for implementing detailed low-level behaviour. This is made possible by

the ability to automatically translate the former portion into C++ to link with the latter.



CHAPTER 3

The CSP++ Framework

This chapter describes the architecture of the OOAF, which forms the run-time system of
CSP++ and is customizable, viathe translator, to execute any given CSP specification. It
is the code generation target for the cspt translator and forms the heart of our novel soft-

ware synthesis solution.

First, we present a lengthy discussion of architectural issues that arise in building a
software system to emulate the semantics of CSP. This ranges over the choice of objects
that will serve as code generation targets, and the dynamic aspects of CSP, including pro-
cess scheduling, interprocess communication, and the binding of symbols in the process

environment.

Next, the framework’s design goals are presented, which influenced certain imple-
mentation choices. Following this, the detailed design description proceeds, in the usual
way for OO designs, by walking through the class hierarchy. Then, the means of integrat-
ing user code with the framework is outlined. Finally, a description is given of the two

platforms on which the framework has been implemented to date.

A detailed walk-through of run-time operation is deferred until Chapter 5. This will
be more meaningful after the representation of CSP statements in terms of the OOAF has

been presented in Chapter 4.



3.1 Architectural issues

These issues have to do with the challenge of replicating the CSP computation model in a
C++ framework which is capable of being customized to act in afashion specified by a
set of CSP statements. The sections below, for the most part do not describe the details of
our implementation, but instead highlight the theoretical issues that any form of imple-

mentation has to grapple with.

3.1.1 Process scheduling

The first critical issue concerns the run-time flow of execution in a customized frame-
work instance. To start with, the model of computation inherent in CSP maps directly into
multitasking or multithreading, where each CSP sequential process becomes an individ-
ual task or thread, having the appearance of sequential execution. There is no reason why
we cannot use conventional multithreading as the basis for our implementation, and it
will be convenient to do so. Just as the execution of CSP statements results in the cre-
ation and termination of processes, we can mirror this by dynamically creating and termi-

nating threads at run time.

Multithreading brings with it the issue of thread scheduling. We observe that in
regard to concurrent processes, CSP has an interleaving model of concurrency [Hinc95]

with aloose execution order. For example, consider the following statements:

A=p-q-z-SKIP
B=r-s-z-SKIP
C=(A|B"z}

35
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When process C causes A and B to run concurrently, there is no constraint on the order of

As events relative tB's, except that they must both finish by synchronizing oihat
Is, any of these traces would satisfy the specifications: (p,q,r,s,z), (r,s,p,qd,2), (p,r,s,q,2),

and so on.

This kind of concurrent execution is readily provided by conventional multitasking
or multithreading operating systems, regardless of their policies on preemption or prior-
ity. In other words, one can use nonpreemptible, equal-priority threads to emulate CSP
trace semantics. Or one can use preemptible threads with adjustable priorities, and the
required CSP trace semantics will still be maintained. This means that we have a great

deal of latitude in our framework’s scheduling policy.

The kind of dynamic scheduling needed to accommodate on-the-fly process cre-
ation naturally requires more run-time overhead than static scheduling schemes some-
times utilized for hard real-time systems. However, dynamic scheduling is compatible
with the requirement for run-time binding of process names (see Section 3.1.4 below),
with our method of integrating user code (Section 3.4), and with the general absence of

timing constraints in CSP, so there is little motivation to look for alternatives.

3.1.2 Code generation targets

Our purpose is to synthesize code from CSP specifications. In an OO implementation,
that means creating objects. Following a typical OO design methodology, we can chose
classes directly corresponding to objects in the problem domain, in this case, processes,
events (including communication channels), and data items. Processes will need to be so-

calledactive objects, i.e., possessing a thread of control.
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Armed with these classes, we can map out a strategy for software synthesis. We

begin by statically analyzing a set of CSP specifications to identify all object occurrences.

A customization file—actually a C++ source program—can then be generated in two sec-
tions: (1) compile-time definitions for all passive objects, that is, events and non-trivial
data items; and (2) sequential code segments for all processes, packaged as one C++
function per process. Creation of active objects is deferred until run time in order to
implement the dynamic occurrence of parallel composition operators (| | and | | |) which,
in effect, cause process spawning. These processes, as their execution flows through the
function bodies that represent CSP statements, will invoke methods on event objects that
cause interprocess synchronization, channel communication, and user code invocation to

take place.

3.1.3 Interprocess communication

All interprocess synchronization is required to be carried out via event rendezvous, with
channel communication being a special case of event handshaking. This means that con-
current programs specified in CSP do not have a “critical section problem,” because there
IS no concept of shared memory that needs to be protected. Thus, at the level of frame-
work customization, our implementation need not provide any explicit synchronization
devices such as semaphores or monitors. All we have to do is replicateb@aBrs
[Lewi98] style of multiprocess synchronization via the behaviour of the framework’s

event objects.

Unfortunately, the straightforward picture of concurrent processes heading toward a

synchronization barrier will be complicated by participation in deterministic choice. Our
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solution to this problem is too involved to present here—see Section 5.5 on page 94 for

details.

If we wish to take advantage of shared memory internally in order to reduce the
involvement of the OS in interprocess message passing, we can do so by providing the
framework’s internal data structures with mutual exclusion locks, utilizing whatever
primitives the OS may provide for this purpose. This will be transparent at the level of

framework customization, i.e., the level at which software synthesis is taking place.

3.1.4 Binding of symbols

Symbols in CSP are of three categories: (1) process names, (2) event (channel) names,
and (3) variable names. Both process names and event names can be subscripted. (In the
case of process definitions this is considered as taking arguments.) The binding of the

first two categories to compile-time objects is a troublesome area.

Because a process reference can be subscripted by a run-time value,. 86rin,
and several “S” variants could be defined, a dynamic mechanism is required in order to
instantiate the correct version of the process. Note that this represents preparing for a
worst-case scenario. Even a subscripted process reference may well be unambiguous in

its context and capable of resolution by the translator.

The subscripting of event names similarly requires a runtime mechanism to match
up subscript values. That is, if two processes are to synchronize onag¢&ntthen
when, saya( n) occurs, the framework must dynamically evaluate the subscript in order

to determine whether to invoke synchronization.

Much more problematic than subscripting is the binding of event names in a pro-
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cess’s environment. Consider again this simple code sample:

A=p-q-z-SKIP
B=r-s-z-SKIP
C = (AB)"{z}
When code is being generated for evaim proces® or B, in the case above the transla-

tor could actually analyze all three statements and conclude that it needs to generate code

to invoke synchronization an.

However, in the general case, this kind of static analysis is impractical for CSP. In

the sample above, if we add the following statement:
START = A; B
and execution arrives a&tandB via processSTART, then evenz must not attempt to

synchronize the processes. Insteadiill be executed twice.

The difference in these two cases is found in the environments of A and B at run
time. A translator cannot deal with this through static analysis alone, unless we are pre-
pared either to restrict the specifications that can be synthesized (the example above,
including bothC andSTART, would be rejected), or else perform a complete control flow
analysis and generate code for every possible case (i.e., generate a “C” vehsionl @t

“START” version, and the same f&).

CSP’s capability of event renaming Operator) further muddies the water. This is
because the translator does not know that the process definition will still be “z” at

run time; it could be renamed in the process’s environment to some other event.

To preserve as far as possible the full flexibility of CSP, even though it means much



more work, we have elected to implement a run-time environment mechanism that alows
proper dynamic binding of event names. This elaborate mechanism, called the environ-

ment stack, is detailed in Section 5.2 on page 87.

3.2 Design goals

In the architectural issues just discussed, solutions have been proposed for all the prob-
lemsinvolved in synthesizing C++ software from CSP. It should be noted that some solu-
tions could be redesigned with a view to reducing run-time overhead, most notably the
symbol binding mechanism. However, it was judged that at this stage in the research it
was more important to preserve flexibility, and that optimization based on different trade-
offs could be performed in the future, perhaps in conjunction with transforming CSP++

into acommercial tool.

Now we turn to design goals to be applied in the context of these architectural
choices. These are: (1) run-time efficiency, (2) understandable code, and (3) portability.
The rationale for these goals and the specific design choices that they engendered will

now be discussed.

3.2.1 Run-time efficiency

Having acknowledged earlier that multithreaded C++ may be unattractive altogether for
certain highly resource-constrained systems, thisis no excuse for eschewing the resource
savings that can result from some simple optimizations. With thisin mind, a number of

design principles were laid down for CSP++:

1. Favour looping over recursion.

40
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CSP notation naturally lends itself to arecursive interpretation, as in self-referential pro-

cesses (e.9., A(1)::= c-A(i +1) ) orfixed point (fi x X. ...expression with X...).
While elegant in concept, a conventional stack implementation of recursion can result in
an explosion of storage. Both these constructs can just as well be implemented with loop-
ing.

2. Only create processes when control truly forks.
Similarly, it istempting to ssimply create a new process (in the OS sense of thread or task)
whenever a process isinvoked, but this can result in a rapidly mushrooming environ-
ment. Even if 95% of the active processes are only waiting for their descendants to fin-
ish, they are till consuming memory, and, depending on process management al gorithms,
may have to be constantly stepped over in scheduling queues. But much extraneous pro-
cess creation can be avoided by observing, as in the example above, that when A(i +1)
starts, thereis no need to keep A( i) alive; thetask running A(i ) can instead be trans-
formed into A(i +1) . Thistemptation appears again for deterministic choice: Given
a-P| b-Q c-R, onemight wish to fork three processes to concurrently try events a,
b, and c, but this can also be avoided.

3. Limit storage growth by utilizing automatic (stack) variables and putting

heap variables under their control.

This strategy enlists the C++ compiler to do the storage management and thus avoid the

“leakage” to which user-managed schemes are often susceptible.

4. Avoid dynamic binding features whenever static binding is possible.
This is a strategy for reducing run-time computation. For example, a dynamic binding

solution for identifying agents and actions might be to assign them ID numbers, and then



42
look them up in a table when they are invoked. However, by giving each a unique exter-

nal symbol, the loader can be enlisted to bind them to their invocations at load time. In

the same spirit, gratuitous use of C++ virtual functions is avoided.

3.2.2 Understandable code

We tried to design the CSP++ translation to be human-readable and similar to CSP. This

Is not an obvious goal, given that compilers typically produce opaque output (for
instance, the C output of AT&T’s cfront compiler is extremely cryptic). The purposes are
(a) to ease the work of translation (remembering that it had to be done by hand in the ini-
tial stages of this work), and (b) to make the generated code readily accessible for check-

ing and debugging. This has been accomplished as follows:

1. relying on C++ operator overloading to create a syntax similar to CSP

2. translating each CSP action as a fresh C++ statement, thus allowing sym-

bolic debuggers (e.qgdb) to set breakpoints, single step execution, etc.
Even when automatic translation is utilized, having understandable high-level out-
put—compared, for example, with assembly statements—makes it convenient to verify
that the translator is generating the C++ that one expects, and to debug any associated

user-coded procedures.

3.2.3 Portability

Here we speak of the ability to transfer the OOAF to another processor/OS combination
different from what it was originally built for. Framework portability has been enhanced

by these features:



1. CSP++ iswritten throughout in ANSI C++; no assembly language has been
used.

2. A task library was selected for theinitial implementation that was compati-
ble with avariety of architectures, and capable of being layered on top of
an OS multithreading scheme.

We succeeded in changing from the AT&T task model under SunOS to POSIX
threads under Linux. Details on this port and lessons learned are discussed in Section 3.5

and Section 3.5.3, respectively.

3.3 Classhierarchy

Since this implementation was created for the cspl12 dialect in order to conform with the
in-house tool mentioned in Chapter 2 above, a dlight shift to cspl12 terminology needs to

be made at this point: CSP processes are known as agents, and CSP events are called

actions. We further distinguish between channel actions, which communicate data, and

atomic actions, which do not. This terminology is reflected in the framework’s nomencla-
ture. The most noticeable idiosyncrasy in cspl2 statement syntax, relative to that of, say,

Hinchey and Jarvis [Hinc95], is that agents are defined by a™operator rather than

the plain equals sign.

The hierarchy of classes used to implement the above strategy is shown in Figure 5,
and Figure 6 on page 50, drawn using UML notation [Pool99]. Details of data members
and methods are omitted where not necessary for the explanations below. The principal

base classes are as follows:

« Agent—embodies a process definition, subclassed from AT&T Task Library

t ask class, representing a schedulable thread of control
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« Action—encompasses the two flavors of CSP events, channel actions which

pass data, and atomic actions which do not

« Env—declarative objects used to introducefar i on reference

(Act i onRef) into the environment of a process in one of three roles: for

synchronization’{a,b,...} ), hiding (\{a,b,...} ), or renaming
(#{a=b,c=d,...} )

Each of the above is described in a subsequent section, finishing with the classes

devoted to data manipulation.

object

— mlock: pthread_mutex
— waiters: List<task*>

+ mutexLock()

+ mutexUnlock()

+ remember( tp: task* )
+ forget( tp: task* )

# run()

+

+ alert()
+ this_task(): task*
/N
|
task Action —<> ActionRef
{abstract}
— cv: pthread_cond_t | ZF |
+ sleep( op: object*) Atomic Channel
+ wait( tp: task*)
Zﬁ Env D —
Agent 4
— ap: AgentProc* | | | ¢
run() EnvSync EnvHide EnvRename

Figure 5: CSP++ non-data class hierarchy
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3.3.1 Agent class

Since C++ does not contain the notion of concurrency, we have to provide it ourselves.

The AT&T task library is based on a coroutine type of thread model. That is, the user’s
application runs as a single (heavyweight) Unix process under SunOS, but is free to
spawn as many tasks as needed—in our case, cspl2 agents. Under this model, any object
desiring to have a schedulable thread of control is derived fromtcdads The thread

body to be executed is none other than the object’s constructor. Normally in C++ the con-
structor is briefly given control when an object is created. But what being a “task” means
Is that (a) execution of the constructor will be delayed until the task is dispatched for the
first time, and (b) it will thereafter be suspended and resumed according to the operation
of scheduling primitivest(@ask methods). This is arguably an abuse of the philosophy of
C++ constructors, but without concurrency in the language, such contrivances are

expected.

This model might suggest that a unique subclass must be created for each agent so
that it can have its own constructor. We avoid this class proliferation by making the
Agent class, which is derived fromask, a simple function-caller. As was mentioned
above, each CSP process definition is translated into an individual function (of type
Agent Proc). An argument to thégent constructor designates whi&gent Pr oc
the task is to run. When that finishes, its return code may designate akgpdimerPr oc
to succeed it. This allows execution to chain frdgent Pr oc to Agent Pr oc until one
ends with the special CSKI P process, which will terminate thagent task and wake
up its waiting parent (also afygent task). The source code in Appendix A provides

numerous examples.
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Combining inheritance with concurrent synchronization raises the spectre of poten-

tial “inheritance anomalies” [Mats93]. However, since our design utilizes a simple form
of inheritance in which theask base class’s synchronization methods are used “as is”
(i.e., without being overridden in thgent class, anddgent has no subclasses), then
according to [Reit97] this pattern of so-called “sequential inheritance” should not engen-

der anomalies.

The above model had to be changed slightly for the LinuxThreads implementation,
which is what is depicted in Figure 5 above. The original AT&T task library inserts
another classched betweerobj ect andt ask. Only the features of these classes that
were actually being used were reimplemented with LinuxThreads, and in the process
sched was collapsed intb ask. The AT&T t ask constructor appropriated the sub-
class constructor by “hacking” the caller’s stack and, in effect, hijacking the subclass con-
structor—which in C++ is normally executed after the parent’s constructor—for later
dispatch as an independent schedulable thread. Without our writing assembly code, this
behaviour could not be replicated using LinuxThreads. Instead, the task body (formerly
the Agent constructor) was moved into a new virtédglent : : r un() method. This is

similar to the technique that Java uses for thread creation [Lea96].

To summarize, whenever the thread of control must fork (as when composing paral-
lel or interleaved agents), one or more gyent objects will be created. Arguments are
passed to the genergent : . Agent constructor indicating whicAgent Pr oc to run
and providing its arguments. The parent task would then wait for the newly created sub-

tasks to finish before carrying on.
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3.3.2 Action class

The two subclasses, At om ¢ and Channel , correspond to the two types of actions
available in CSP. Operators are defined to allow function-call syntax to invoke At om ¢
actions (e.g., f oo( 2) ), and C++-style I/O syntax to invoke Channel actions (e.g.,
chan<<1 for chan! 1 output, and chan>>x for chan?x input). Thisis similar, though

not identical, to CSP syntax, and contributes to CSP++ source code readability.

The above classes are derived from the Act i on base class, which provides com-
mon methods needed for executing either kind of action. These lead to searching the
agent environment for hiding, renaming, and synchronization orders, performing multi-
agent synchronization, handling deterministic choice situations, and printing traces.

These operations are explained in Chapter 5.

As was mentioned in Section 2.4 under point 5 on page 32, actions are either
intended for internal synchronization use or for linkage to external routines. In the case
where no synchronization is ordered, nor has a corresponding external routine been sup-
plied, the At om ¢ and Channel classes each exhibit some primitive default behaviour:

An At om c action will ssmply print its name and subscripts, Channel output will print
its name and value, and Channel input will prompt the user to type an integer (or more
than one, if a Dat univar is the receptacle). These default actions are useful as “stubs”

for external routines until they can be written and linked in.

3.3.3 Environment classes

The three subclasséavSync, EnvH de, andEnvRenane correspond to the three kinds

of conditions that can be placed in an agent’s execution environment. For example,



48
(Al1B)*{c,d}\{c}#{e=f}

means.

« Aand B will synchronize on actionsc and d.
« Hidec (theinvoker of this statement will not be aware when ¢ occurs).
« Renameetof.

Thiswould result in four environment objects being pushed into the environment of
paralel composition (A| | B): EnvSync(c), EnvSync(d), EnvHi de(c), and
EnvRenane(d, e). The action names themselves would be instances of the
Act i onRef class. Since each environment object contains at least one Act i onRef | it

isstored in the base class Env. EnvRenane contains asecond Act i onRef (here, e).

EnvSync is the most complex class because it is used to implement synchroniza-
tion. Since it is subclassed from the obj ect class of the task library, it incorporates a list
of tasks that are currently waiting on it. That is, an agent needing to wait for synchroniza-
tion with another agent adds itself to the appropriate EnvSync object’'s wait list by
invoking thet ask methods| eep( & heEnvSync), which also causes the task to be
suspended. In the LinuxThreads versisheep() blocks the task on its owgondition

variable, cv [Lewi98].

Later, when the other agent arrives at the synchronizing action, it invokes the
methodt heEnvSync. al ert (), which wakes up any waiting agents (signals their
condition variables). Note that in the AT&T task model, tlesk class inherits from
obj ect . This is so that a task can be waited for (“joined”) by using the same mecha-

nism just described.

Naturally, the manipulation of ambj ect instance’snai t er s list must be done
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in a critical section. This is ensured by making the rule that callers of r enenber (),

forget(), alert(), sleep(), and wai t () must bracket their use by calling

mut exLock() and nut exUnl ock() .

The mutex obj ect : : m ock isactually astatic class variable; that is, thereisonly
one mutex for the system. This may seem unduly heavy-handed, in terms of limiting
opportunities for concurrent execution and maximizing contention for the lock, but there
iIsareason for it. Since deterministic choice in CSP may make an agent party to multiple
concurrent synchronization attempts, it is possible for an Agent object to put itself on
more than one EnvSync’s wai t er s list. If eachobj ect instance had its own mutex,
these would all have to be acquired serially, which would open the door to circular wait-
ing and hence to deadlock. By having only a single mutex, deadlock is prevented by

denying it a necessary condition [Silb98].

Note that in the AT&T coroutine task library, where preemption was not an issue,
no mutexes were required. That apparatus had to be retrofitted for the Pthreads reimple-

mentation.

3.3.4 Data classes

This area presented a challenge in view of the design goals related to storage efficiency
(Section 3.2.1), the desire to allow for easy addition of data types in the future, and the
determination to make CSP++ data items participate in C++ arithmetic expressions with-
out piling up much special-purpose code. Fortunately, OO technology is very helpful in

these areas.

The hierarchy of data classes is shown in Figure 6. These are used to create



Li t eral instances which are passed between agents.The base class for data items is
Li t eral . The storagefor Li t er al sis carefully managed by the container classLi t .
Literals have no public constructors; rather, when aLi t iscreated, it (privately) allocates
anew Lit eral of the appropriate subclass on the heap and stores a pointer to it. Each
Literal keegpsacountinl i nks of theLi t spointingto it. WhenoneLi t isassigned
to another Li t, it is simply a matter of copying Li t er al * pointers and updating link
counts. When a link count is reduced to 0, this signifies that no more containers point to
theLi teral ,sothe~Li t er al destructor isinvoked, which releasesits storage. Thisis

essentially a garbage collection scheme.

Li ts, in turn, are fully managed by the C++ compiler as automatic (stack) vari-
ables, the principle being that if the compiler manages the Li t s (as blocks of code go in
and out of scope), and the Li t s manage the Literals (asthe Li t s are created, assigned,
and destroyed), no storage leaks should be possible. Furthermore, since Li t er al s are
heap based, their addresses are valid in any Agent task, so there is no difficulty with

interchannel datatransfers.

Li t er al s currently come in two flavours, Num (integer value) and Dat um The

Literal
{abstract} [ <] Lit Var
— links: int 0.* {abstract}
| & | Oi £ | 4 |
Num Datum FreeVar % DatumVar
—val: int — did: DatumID* 0.5 _ did: DatumID*

Figure 6: CSP++ data class hierarchy
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latter complex data type is the CSP++ equivalent of cspal2é, written as a symbolic

Dat uni D (char *) optionally followed by a series of subscripts in parentheses. Each
subscript is a.i t, which means it points to any type loft er al , possibly another

Dat um Thus,

request( client(10), block(5), flags(buff,eof, 10) )
would be a validdat umliteral. OtherDat un Ds mentioned here within threequest
Dat umarecl i ent, bl ock, fl ags, buf f, andeof (the last two having no sub-

scripts).

A Dat um will be created in a context demandingLat when the pattern
“Dat um D( subscripts) ” is encountered. For this to work properly, a function with the
same name as thaat unl D is defined to take a certain number of arguments. One such

function would be the following:

Lit request( Lit al, Lit a2, Lit a3 ) {...}
This function would package up the three subscripts ihtost <Li t >, and return a
Li t pointing to the nevbat um Part of the CSP++ translator’s work is to generate the
appropriateDat umconstructing function for each label appearing in the CSP specifica-
tion. One consequence of this approach is that a given label must always be used with the
same number of subscripts. This is not felt to be an unreasonable restriction. Other

restrictions are listed in Appendix C.

Turning from literals to variables, it is evident thatt containers already function
as variables, since they can point to &ny er al . However, it is desirable to have a spe-
cial data type corresponding to the concept of “free variables” in CSP notation. These can

be required in contexts that demand receptacles, particularly channel input. To this end,
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the Fr eeVar class was defined as containing a Li t * pointer, and Dat unvar —by

analogy toDat unms—a labelled list ofFr eeVar * pointers. Both are derived from the

abstract base cla$ar , so that either will do in a context requiring a variable.

TheDat unVar is troublesome to implement but highly useful. The desired behav-
iour is as follows (in csp12 notation):
P ::

Q::

chan! foo(1, 2, 3)

chan?foo(i,j, k)

When P and Q synchronize on chanmiedn, we wish to assign 1 to, 2 toj , and 3 to

k. (TheDat um Ds must match: It would be an error for P here to odsput( 1) .) Thus
another function named “foo” is needed for this context, one that will package, not the
valuesin Fr eeVar s i, j, and k (as the equest function would above, since we can
supply a standard conversion frdfneeVar toLi t), but rather theiFr eeVar *

addresses. Here is that function:

Dat unVar foo(FreeVar& al, FreeVar& a2, FreeVar& a3) {...}

Now we can let polymorphism determine whicbo datum-builder to invoke—the

Dat umversion or thdat univar version—depending on the context.

A final note on data classes is that the er al hierarchy is easily extensible: One
need only create additional subclassekidfer al —say,St ri ng or Set —and appro-
priate operators to go with them. All the rest of the data handling mechanisms should take

them in stride without any modification.



53
3.4 Integration of user code

The framework provides “hooks” for linking user code to CSP actions. In the sections fol-
lowing, we first describe how this feature is used in practice, and then give a deeper
explanation of the underlying concepts, including participation of user procedures in the

CSP choice construct.

3.4.1 Practical overview

EachChannel or At om c action careither be used for internal synchronization (i.e.,
with another CSP procesg) it can be linked to an external routine. Trying to do both
with the same action is not permitted and results in a run-time error. In the latter case,
when the action is performed, the associated external routine is invoked with arguments
corresponding to that om ¢ subscriptsChannel input variables, o€hannel output

values.

This technique of integration is portrayed in Figure 7, which shows how a synthe-

sized CSP program interacts with its external routines. Part (a) shows how the two soft-

(@) (b)
csp user
specs Sgcl)lécee synthesized CSP program external routines
7/
/ ‘ SW components 4 \/ @
synthesized > external //@
CSP program | routines .@
™~
~

HW components Pj concurrent agent process ~ X; external action routine

\ / F----- { @&y atomic sync

TARGET SYSTEM [ ¢ channel /O

Figure 7: CSP and user code integration
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ware components are prepared from the CSP specification and user source code,

respectively, and how the latter interacts with the system’s hardware components. Part (b)
shows processes communicating and synchronizing via internal actions (c1, a2, and a3).

Other actions (al, c2, and c3) are used to invoke the external routines.

In the disk server case study (Section 2.1.2 on page 14), all actions shown in the
CSP code are used for internal synchronization. To embed this CSP in a hardware envi-
ronment, the dummydi sk process can simply be removed from the statement that

definesDSS,

DSS = ( (DSched || DQueue)~{enq, deq, next, enpty}
|| (DCtrl || Disk)~{dio,dint} )~{dci,dco}

leaving the following:

DSS = ( (DSched || DQueue)~{enq, deq, next, enpty}
|| D&rl )~{dci, dco}

Now the di o and di nt actions are available for external use. WDk r |

reachesli o! bl k,

DCtrl = dci?start(_cl, _blk) -dio!' _blk-
di nt —dco!fini(_cl, _blk) -DCrl

the external routine associated wdiho will be called, which presumably starts the hard-
ware I/O (non-blocking). Similarly, the routine associated @itiht will block awaiting
a completion interrupt (details, of course, being hardware and/or OS dependent). The

source code for this example is actually given in Appendix A.4ff.
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3.4.2 Conceptual model

In the CSP++ system model, the CSP specification describes the control flow of the sys-
tem in terms of concurrent processes. The user source code can be regarded as fleshing
out the semantics of those actions which interact with other hardware and software com-
ponents of the system. This model sounds fine from a superficial standpoint, but we need

to probe its semantics.

In the disk server example of the preceding section, some indication is given of the
steps used in system integration: Initially, the entire system, including agent “stubs” simu-
lating its environment, is described in high-level terms purely through CSP specifications
executing actions. Each action is either used for interprocess synchronization and com-
munication, or else it is completely abstract: just a name with no effect except that of

printing a trace.

Subsequently, external procedures are introduced and linked with a subset of the
actions. This may occur in the context of stripping out the agents that simulated the sys-
tem environment (e.qg., th& sk agent above). When that occurs, some actionsdlike
anddi nt) that were initially used for interprocess synchronization become abstract in
the specification. Any abstract action is a candidate for linking with an external action

procedure.

Now, the key point to observe is that any action thatahaays been abstract (i.e.,
never used for synchronization) can be linked with impunity to an external procedure that
does anything at all (save, of course, for communicating with another CSP-specified pro-

cess). Such a procedure can engage in 1/0O and even block its thread without affecting the
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semantics of the model-checked specification. In contrast, an action that has been used

for synchronization (both di o and di nt fall into this category), must continue to obey
the semantics of synchronization. This should not be surprising, because such actions are
in reality being used to synchronize a CSP process with the external system environment.
That isto say, di o and di nt were originally synchronizing agent DCt r | with dummy
agent Di sk; now they are synchronizing DCt r | with the physical disk hardware (or pos-
sibly with system calls that perform the I/O instructions). Naturally, the synchronization

semantics cannot change.

The place where this model has tricky implications, is in the special demands put on
an external procedure when its associated CSP action is participating in a deterministic

choice construct. Aswill be shown in detail in Section 5.5, a choice statement such as,

a-E | boF
means that action a has to be tried first, and if it doesn’t succeed, théntried. If neither
succeeds, the run-time mechanism lies in wait for a future, delayed success from either
action. This implies that an external procedure which is going to participate in choice
must be capable of being “tried,” of setting up an asynchronous call-back that informs the
run-time mechanism of a delayed success, and of being cancelled when another choice

succeeds first.

The above description hints that the interface between CSP++ and the external
action procedures is not trivial. On the other hand, neither are such requirements unprece-
dented: After all, the OS uses just such a regime whenever it sets up asynchronous 1/O,

gets a call-back from an interrupt handler, and cancels an 1/O request due to a timeout.



In the current version of CSP++, only the most fundamental part of this interface
has been implemented. For actions that do not take part in choice, this limitation is of no
practical consequence. For actions that do take part in choice, the effect of the current
limited implementation is that an action is deemed to succeed as soon as its external pro-

cedure returns to the framework.

Nonetheless, one can still set up a choice situation with external procedures by
embedding their actions in concurrent agents. For example, suppose one wants to write
the following agent:

P::=xa-Q| xb-R
where xa and xb are linked with external procedures. In the current version of CSP++,
control will stall on xa until it returns, then pass to agent Q, and xb will never be tried.

But this variation should have the desired effect:

Pa ::= xa-dida-SKIP

Pb ::= xb-didb-SKIP

Pc ::=dida-Q| didb->R

P::=( Pc || ( Pal||Pb) )~{dida,didb}

Additional internal actions, di da and di db, have been created to report the occurrence

of external actions xa and xb, and agent Pc has been set up to synchronize the choice.

Completion of the external procedure interface, with full attention to deterministic

choice, islisted for future work (see Section 7.2.2).

57
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3.5 Platforms

Thefirst version of CSP++ was created on the SunOS platform that was readily available
at the time. In preparing this research for publication [Gard99b], which entailed distribut-
ing the source code, it was felt that readers would better appreciate code they had area-
sonable chance of running, so to that end a more common platform was targeted.
Furthermore, the exercise of porting would offer an excellent opportunity to find out
whether the OOAF approach would prove portable or not. These two platforms are

described bel ow.

3.5.1 AT&T cfront on SunOSwith USL coroutines

Working on a Sun 4 (SunOS Version 4 Unix), we wanted a C++ compiler that came with
the following features: (1) some implementation of multithreading or multitasking; and
(2) aclass library with template support for basic data structures (linked list, bit vector,
and so on). These needs were filled by AT& T C++ Version 3.02 (cfront, an early C++
compiler that emitted C code) and its associated USL Standard Components Library (SC-

3.0). Thislibrary includes an OO multitasking model.

Things were not quite this simple though, because it turned out that the USL task
library ironically did not support the Sun 4 architecture that we were compiling on. Fortu-
nately, the necessary object files were found in the Sun C++ distribution (SC1.0, in reality
an older version of cfront, V2.1), athough that compiler had to be rejected due to its

inability to handle templates.

Thus, V1.0 of CSP++ was built using the task.h header (slightly modified to fix an

external symbol problem) and libtask.a from Sun’s SC1.0 library, the rest of the USL SC-
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3.0 library (apart from task.h), and the AT& T C++ compiler. This version includes the

full OOAF, but not the CSP-to-C++ trandlator, since at that time translation was still

being carried out by hand.

3.5.2 GNU g++ on Red Hat Linux with Pthreads

By 1999, AT&T cfront was essentially obsolete and its Standard Components library had
been superseded by the C++ Standard Template Library or STL [Aust99]. We decided to
attempt a port of the V1.0 C++ code to GNU g++ (ecgs version 2.90.29) on Red Hat
Linux 5.2, a popular x86 version of Linux. g++ includes the STL, which we used in the

trandator, cspt (see Chapter 6).

But what were we to do with V1.0's dependency on the USL Standard Components
and task libraries? Mindful of the programmer’s maxim, “Never change code that works,”
it was considered that substituting STL templates into the existing framework code was
risky. Therefore, we simply copied the few SC-3.0 files that we needed and recompiled
them with g++. This proved entirely effective, if not wholly satisfactory from a “house-

keeping” standpoint.

However, this simple approach—recompiling with g++ for Linux—could not work
for the task library since it would have meant porting assembly language from the Sun to
the PC. The AT&T task model uses assembly language to modify the stack whenever a
subclass constructor inheriting from cldsassk is invoked (see Section 3.3.1 on page
45). Assembly language is used again for swapping stacks during task rescheduling. We

were determined not to use assembly code due to its adverse impact on portability.

Instead, we opted to switch to the POSIX threads (Pthreads) model, LinuxThreads
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[LXT], that came with Red Hat Linux. The t ask base class was reimplemented using

calls to Pthreads routines, and the framework code which inherits from t ask was very

largely unchanged.

AT&T tasks are actually coroutines. That is, they have no concept of priorities or
preemption—a task runs until it voluntarily yields control to another task. This is known
as the “many-to-one” model, meaning that many threads are swapped on and off of one
kernel-scheduled entity (this could be a single heavyweight Unix process in SunOS, for
example). That is to say, preemption of a coroutine by another kernel-scheduled entity
can occur, and in Unix does so constantly (e.g., servicing interrupts), but this is of no con-

sequence to the set of coroutines (aside from timing consequences, naturally).

POSIX threads can be implemented as coroutines, but need not be [Lewi98]. The
LinuxThreads version of Pthreads is built on lightweight kernel-scheduled threads, which

includes the possibility of thread preemption. This is known as the “one-to-one” model.

Changing from coroutines to preemptible threads could not be totally transparent
with respect to the framework code’s inherited classes; though, interestingly, the reverse
would have been so. This is because preemptible threads represents the more general
case, in regards to requirements for locking resources that are shared among multiple

threads.

The Pthreads version of CSP++ is publicly available as noted in Section 7.3
(Table 4 on page 116). This version can also be compiled and run on Solaris for the Sun

SPARC architecture without modification.
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3.5.3 Lessonsfrom Linux port

To fairly evaluate the framework’s degree of portability in the rather extreme circum-
stance of changing the task model, we should first clarify expectations. In order of most

portable to least portable, the following conditions would obtain:

1. Totally portability: no source code changes required whatsoever.

2. Code changes in the task library (clagsask andobj ect ), but notin

the framework classes.

3. Code changes in the framework classes, but not in customization

(expressed as the translation algorithms of Chapter 4).
4. Code changes throughout.
It should go without saying that “changes” here does not refer to the dubious practice of
peppering the source code with OS-dependehtdef statements. That sort of illusory

“portability” is not what we had in mind.

Level 1 was never expected, so level 2 would have been ideal. The task library was
“fair game” for any kind of changes as it originated in the USL library as a self-contained
scheduler for a threadless OS, and was being reengineered as a thin interface to POSIX

threads.

An outline of the steps taken in porting CSP++ from AT&T coroutines to
LinuxThreads has already been presented in Sections 3.3.1, 3.3.3, and 3.5.2. In short, the
introduction of thread preemption made it necessary to institute a locking discipline for
shared data structures. As far as possible, these changes were absorbed within the task
and object classes (level 2), but some slight changes to the Agent and Action classes were

unavoidable. In any event, no changes were necessitated to the translation algorithms,
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which isthe main thing if affording a significant degree of portability.

It could be argued that the locking of shared data structuresis de rigueur for concur-
rent programming and should have been part of the original version. If we accepted this
argument, then the changes above could be considered a remediation of original deficien-

cies, and portability could then be assessed at or near level 2.

However, the argument is simplistic: First, coroutines provide a sort of security
blanket, or as Lewis calls it, a “superior programming paradigm” [Lewi98:62], because
one does not have to worry about the consequences of something that cannot occur,
namely preemption. Second, the point is moot in any case, because the AT&T task model
provided no locking mechanisms (no mutexes, no semaphores, no monitors), nor any
primitives from which they could be constructed. There was never any way to incorporate

these features in the original design of CSP++, working within the AT&T task model.

The above comments might produce the impression that switching from the corou-
tines model to kernel-scheduled threads should be regarded a necessary evil. That is not
at all the case. Quite to the contrary, the latter model gives external procedures the free-
dom to block with impunity, say for 1/O, without causing scheduling of the entire CSP++

system to freeze. This is a major advantage over the many-to-one scheduling model.

Having achieved success with the Linux port, we tried to recompile the new ver-
sion, still using g++, on a Sun workstation under Solaris, which also supports Pthreads.
This turned out to be a true “level 1” port, and worked immediately. Ironically, that ready
victory reveals less about CSP++’'s portability than the more hard-won struggle to change

the task model. Maybe the Solaris port was “too easy” and would have worked whether



OOAF technology was used or not. In contrast, the LinuxThreads port revealed the
boundary between OS-dependent and OS-independent code, and as hoped, the boundary
fell, to an overwhelming extent, at the border between the framework classes and the task

library.

This chapter has described the basic ingredients of the CSP++ framework, which
are sufficient to build executable and extensible specifications. The next chapter details
how each construct in CSP can be transated into C++ code that creates or invokes these

framework e ements.
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CHAPTER 4

Representation of CSP Statementsin CSP++

Given the CSP++ framework described in the previous chapter, customizing it for a par-
ticular CSP specification is a matter of systematically translating each csp12 construct
into C++ code that invokes the elements of the OOAF. The method of doing thisis one of

the chief results of this research.

Chapter 4 states the rules for this trandation, which can be manually or automati-
cally carried out. Naturally, manual tranglation is tedious and error-prone, so an auto-
matic trandation tool forms an indispensable part of the CSP++ design flow. This
trandator, called cspt, is sketched in this chapter, with the full design details appearing in

Appendix D.

Some cspl2 constructs have not been implemented yet, due to some ambiguities of
interpretation that will be explained, and some only partially implemented. These are

listed at the end.

4.1 Naming conventions

Most names—variables, actions, and datums—can be copied directly from their csp12
form; however, agents need more elaborate conventions because of multiple definitions.
The issue of run-time binding also arises for agents having variable arguments. Finally,
generated names are needed as handles on actions that will be pushed on the environ-

ment stack to implement synchronization, hiding, and renaming.
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A comprehensive chart of all translator-generated namesis given in Table 1.

Section

Pattern Usage References
Where n= agent name:

TL_Sig Agent Pr oc name; sig = argument signature 411

T Sig_V Globalized Fr eeVar instance; v = variablename | 4.3.5

AG Tt sig Agent | Dinstance 422

T Sn Agent Pr oc name of nth extracted subagent 411,435

T X Array of ints: [arg index, value] descriptor pairs 4.1.2

Ty Array of Agent Proc* 412

T b Agent Bi nder instance 412
Wherek = action name:

K_r Act i onRef instancefor Acti on k 4.1.3

K_r_subs Act i onRef for subscripted At omi ¢ K( subs) 413

K_p Preprocessor symbol, name of Act i onPr oc 4.2.2
Where 5 = DatumVar name:

o_dv ‘ Dat umvar temporary for Channel input ‘ 4.3.9

Table 1: Translator-generated names

4.1.1 AgentProc signatures
Consider, a CSP specification containing the following agent definitions:

P(O, i)

P(1,i)
These two must be translated into separate C++ procedures, called Agent Pr ocs, so they

need different names.

Agent Pr ocswill be named according to their argument signature. The two above
would be P_cOv and P_c1lv, where “c” indicates a constant argument (with its value
following) and “v” a variable argument. This allows the translator to set up the right invo-

cation depending on the arguments used. The empty string stands for a nil argument list.

A special signature ad1, s2, etc., is affixed for subagents that are created from
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extracted subexpressions (see Section 4.2.3 below). Subagents are never subject to run-

time binding.

4.1.2 Agent binders

Static binding is the preferred way to match arguments with the appropriate signature.
However, in the case of agents with constant argument definitions being invoked with
variable arguments, run-time binding is required. That is, which signature above matches
the invocation of P below?

Q ::= chan?n-P(n, 0)
This depends on the value of n, which can only be determined at run time.

Agents requiring run-time binding must supply atable of instructions for the binder
to consult. A detailed explanation of binding tablesis given in Section 5.1 on page 85, but
in general the contents are pairs of numbers [i, v], where i is the index of a constant argu-
ment, and v isitsinteger value. The two P definitions above would be described by [0, 0],
meaning “arg = 0", and [0, 1], “arg = 1”. In addition to a table of argument descriptors,
another table oAgent Pr oc* pointers is supplied. Then if a descriptor in jtieset of

pairs matches the given arguments,jthégent Pr oc will be called.
The pair of tables described above are declared as follows:

static int agent _x[] = { descriptor pairs };
static AgentProc* agent y[] = { AgentProcs };

Next anAgent Bi nder object is declared in order to associate the tables with an agent

name:

static Agent Bi nder



67
agent _b( agent x, agent_y, "agent", num args ),

In the example above, these itemswould be named P_x, P_y, and P_b.

4.1.3 Action references

Act i onRef (Action.h) objects are used to prepare Act i on names for pushing on the
environment stack. An Act i onRef for an Atomic must give the number of subscripts
followed by their (integer) values. The names of these objects are generated in global
scope since action names are themselves global. There can be more Act i onRef sthan
Act i ons, because differently subscripted references to the same At onmi ¢ name are

treated as referring to different actions.

4.2 Trandated source code

The cspt trandator (see Appendix D) operatesin two phases. first, a combined lexical and
syntax phase which scans the csp12 input file and produces a syntax tree; second, a code
generation phase that walks the tree and produces a C++ output file. In addition to the

syntax tree, the other data structures that persist between phases are the symbol tables.

The C++ source file resulting from translation has four sections: header file inclu-
sions, global declarations, translated agent bodies, and finally the main program. These

are described next.

4.2.1 Header files

This section calls up the C++ “.h” files for the CSP++ class definitions. They are Lit.h,
Agent.h, Action.h, and main.h. In the LinuxThreads version, we also include Listio.c and

List.c from the USL Standard Component Library, as explained in Note 1 on Page 138.
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4.2.2 Declarations

In order to accommodate forward references within agent bodies, all non-local symbols

must be collected by the tranglator and emitted here. Another purposeis to associate com-

pile-time names with ASCI|I strings, so that run-time diagnostics can print the names of

the offending agents, actions, and datums. These declarations fall into three categories:

1.

Agent definitions: The AGENTDEF macro (Agent.h) isused to declare each
AgentProc signature. Returning to the example in Section 4.1.1 above, the
two definitions of P would be generated as follows:

AGENTDEF(P_cOv, "P", 1);

AGENTDEF(P_clv, "P", 1);
where 1 here specifies the number of arguments. AGENTDEF generates a
declaration of the Agent Pr oc, for forward referencing purposes. The
macro also secretly defines a symbol of the form AG_signature, of type

Agent | D, to point to the agent’s ASCII name.

Action definitions: The class name& om ¢ andChannel (Action.h) are

used as in these examples:

At omi ¢ nak("nak");
Atom c ack("ack", 1);
Channel next("next");

where 1 specifies that t#& onm ¢ has that number of subscripts (e.qg.,
ack(5) ). If an external routine is being linked with a CSP action, it needs
to be declared as an external of tyyo¢ i onPr oc, and inserted in the

action definition:

extern ActionProc buttonProc;
Atom ¢ button("button", 0, buttonProc);

To avoid having to hardcode routine names ik t onPr oc into CSP
specifications, the translator substitutes a preprocessor symbol of the form
action_p. If the symbol is defined at compile time, its value is used for the

Act i onPr oc name; otherwise, no routine is linked in.
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3. Datumdefinitions: The DATUNVDEF macros (Lit.h) are used to declare each

Dat um D:

DATUVDEF(f oo, 0);
DATUMDEF( bar, 1);

where, again, the number specifies the subscripts. Then one could later
write in an agent body, f oo (no subscripts) or bar ( 0) , bar (f 00) ,
bar ( bar (10) ), and so on.

4.2.3 Agent bodies

Each CSP agent body must be translated into one or more Agent Pr ocs, depending on
whether or not complex subexpressions are present. For convenience, the AGENTPROC
macro (Agent.h) is provided, so we have:

AGENTPROC( P_cOv )

transl at ed body goes here ...

}

This macro includes code to establish the agent’s identity as “P” (by referencing its

Agent | D) for the sake of any diagnostics that may print out while it is executing.

4.2.4 Main program
The last section is the standard C++ main program:

mai n( int argc, char* argv[] )

{
MAI N( argc, argv, top );

}

The MAI N macro processes any command line options (see Appendix B.4) and creates an

Agent task to run the top-levélgent Pr oc top.



70
One reason that “main” is coded here within the translated source is because when

the program is executed in a graphical debugger ¢xgdb or ddd), main’s source file
Is automatically displayed. The agent body code will thus appear in front of the program-

mer, which is convenient for setting breakpoints in the translated code.

4.3 Agent body trangations

In the following code samples, the shaded column is CSP notation (csp12) and the right

column is the corresponding CSP++.

4.3.1 Agent argumentsand freevariables

Variable names in cspl2 start with an underscore. C++ can accept this, so the names may
be copied directly.
P(_x) ::= chan?_y-foo(_x+y) ... #defi ne _x ARE 0)
FreeVar _y;

/Irest of body
#undef _x

In this example, x is the Oth argument of agedtThe#def i ne allows the agent
body to refer to it by its namex. The macrdARG (Agent.h) generates code to reference
the OthLi t in the Agent’s argument array. A complementamndef is needed to avoid

interfering with any other uses of the symbaillater in the program.

This CSP statement has a single free variable. All free variables should be declared

with classFr eeVar at the start of the block.
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4.3.2 Prefix

This basic invocation of actions comesin two flavours, At oni ¢ and Channel .

P(_x) ::= chan?_y-foo(_x+y)-a ... #define x ARFO0)
FreeVar _y;

char>>_vy;
foo(_x+_y);

a();
/1rest of body

Each prefix action becomes a separate C++ statement. “>>" is input, “<<” is output. Vari-
ables in expressions are automatically converted to integers due to the provision of a vir-
tuali nt () operator in thé.i t er al base class. (There will be a runtime error if the

Li t eral type is notNum). Unsubscriptedt om cs take an empty function argument

list.

4.3.3 Environment stack

Action names for hiding, synchronizing, and renaming need to be pushed onto the
Agent’s environment stack (more about this stack in the chapter on run-time operation,

Section 5.2 on page 87).

#{ f oo=bar} static ActionRef foo r(foo),
bar _r(bar);
foo r.renane( bar r );
/[1invoke Q
Agent : : popEnv( 1 );
(S| T static ActionRef a_r_6(a(l,6)),
~a(6), b})\{b} b_r(b);
b r.hide();
ar _6.sync();
b r.sync();

/linvoke S||T
Agent : : popEnv( 3 );

As explained in Section 4.1.3 abovat i onRef s appear in the global declara-
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tions. These objects encapsulate a reference to a particular Channel or (possibly sub-

scripted) At omi ¢ action.

Three classes which are not seen above, EnvHi de, EnvSync, and EnvRenane
(Agent.h), are instantiated and linked onto the stack of the current Agent when the
hi de(),sync(), andrenane( Acti onRef) methods of Acti onRef areinvoked.
An inverse method, Agent : : popEnv( n), removes and deletes a specified number of
objects. Note that popping is not needed at the logical end of an agent body (see next sec-

tion).

4.3.4 Agent constants

Agent bodies often end with an agent constant. In this case, the agent can chain to the
next one, which causes the resources of the present task to be reused.

P(_X) ::= Q _x)#{foo=bar} #define x ARFO0)
/lpush Q’s environment
CHAIN1(Q_, x);

Z(x):=a -L(1,_x) #define _x ARG(1)

a();
CHAIN2(L_b, 1, x);

The CHAI Nn macro (Agent.h) hands over control to another Agent Pr oc, after

reusing its own argument array to store n arguments.

Why needn’'tQs environment be explicitly popped in this case? The answer is that
Q will either chain to another agent—in which case the renagnfrmp=bar} should
still apply to its dynamic descendants—or else it will exit V@i P. That will terminate

the Agent task, cleaning up its branch of the environment stack in the process.

In the first example above, we assume the translator is able to statically determine
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which Agent Pr oc to invoke. But for the second, suppose three L agents are known:

L(1, 1) ::= ...
L(1, 2) ::= ...
L(2, i) ::=...

Their Agent Pr oc signatureswould belL_c1cl1,L_c1c2,andL_c2v. Since the value
of _x isnot available at compile time, run-time binding is needed. Thus the translator
codes CHAI N2(L_b, .. .), referencing the Agent Bi nder object defined for L
instead of one of the three fixed Agent Pr ocs. The CHAI N2 macro invokes
bi nd(args) onL_b to obtain the correct Agent Pr oc, and then the transfer of control

proceeds in the usual way.

4.3.5 Composition (parallel, subordination, and interleaving)

In cspl2, parallel composition (| |) requires an explicit synchronization list, in that the tool

makes no attempt to infer the agents’ common alphabet. This is also true of subordina-
tion (P/ / Q, where a sync list equal td® (alphabet oP) must be supplied. Similarly,
interleaving (] | |) is just composition with no synchronization list. Thus, it suffices to han-

dle the general parallel case.

R::=((9]|T(2)) /I push environnent
"{a(6), b})\{b}  agent:: conpose( 2 );

Agent* al=STARTO( S, 0 );
Agent* a2=START1( T, 1, 2);

WAl T(al);
VWAl T(a2);

The Agent :: conpose(m) method prepares amway process fork. Each
STARTn macro (Agent.h) creates a nédgent task, and specifies thgent Pr oc sig-

nature (withn arguments) that it should start running. The second argumerr &eh
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number (from O to m-1) to associate with that ne&gent . It will apply to any synchro-

nization attempts originating in that branch of the dynamic process tree. The returned
Agent * pointer allows théMI T macro to suspend the present task (by invokig
agent. wai t ( Agent *) ) until the descendant terminat®#®l T also deletes the Agent

upon wake up.

Things become more complicated whespressions are composed, rather than sim-
ple agent names:

R(_x) ::= AGENTPROC( R s1 )
(a-P(_ x)||b-Q *{c} #define _x ARE 0)
a();
CHAIN1( P_v, _x);
#undef X

}
AGENTPROC( R s2 )

b();
CHAINO( Q );

}
ACGENTPROC( R v )
#define x ARE0)

/] push environnent
Agent : : conpose( 2 );

Agent* al=START1( R sl1, 0, x);
Agent* a2=STARTO( R s2, 1 );

WAl T(al);
WAl T(a2);

#undef _x

}

In such cases, the expressions need to be extractatagents and translated into
separatédgent Pr ocs. (We use the signature ©"g0 indicate translator-extracted sub-
agents.) Care must be taken to ensure that such subagents have access to the arguments
and variables of the parent. Part of this can be achieved by passing the parent’s argu-
ments (in this case, _x) to the subagent. Variables referenced in subagents are dealt with

by promoting them to global scope and generating unique names (prefixed with the par-
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ent’s signature) to avoid aliasing.

4.3.6 Sequential composition

In sequential composition it is necessary for the pakgant to stay alive while all but

the final Agent are executing:
R ::= S#{foo=bar}; T /lpush S’s environment
Agent::compose( 1);

Agent* al=STARTO(S_,0);
WAIT(al);

Agent::popEnv( 1);
CHAINO( T_);

In this exampleS's environment must be popped before chaining to

4.3.7 Loop

Section 4.3.4 dealt with the case where agent bodies end with an agent constant. If that
constant is preceded by the “loop” operator (@), it must be treated differently.
P:i=a? x -@Q(X) a>> x;

while(1) {

Agent::compose( 1);
Agent* al=START1( Q_v, 0, _Xx);
WAIT(al);

}

Here the loop is translated as an infinite “while” loop. Each time a@agent termi-

nates, the loop is recycled and anofQereated.

This implementation is not particularly efficient. It would be preferable to Rave
do its own looping, since that would not involve the wasteful creation/deletibgenft
tasks. This could be accomplished by passing a “loop flag” té\gleet constructor. If

the flag is found to be set, tAgent must save its initiahgent Pr oc (hereQ v) and
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argument array (including _x) so that it can restart execution when its body finishes.

4.3.8 Fixed point

Thisisashorthand cspl2 way of putting an agent body in-line. The simple case is where

the fixed name comes at the logical end of the expression:

R::= a= a();
fix X (c-X| b=  phije(1) {

Agent : : start DChoi ce(2);
c();

b();
swi t ch( Agent : : whi chDChoi ce())

{

case 0: conti nue;

case 1: CHAINO(S);

}
}

A fixed point expression can be handled as an infinite “while” loop (as opposed to
recursion). Reinvocations of the fixed name are treated as escaping back to the loop (so
such constructs should specify a means of termination, done in this example by determin-

istic choice).

It is obvious that the translation above is inadequate for expressions where the fixed
name is embedded. An example (not necessarily useful) would be:
R::=a-fix X( b-S | c=(X|]Y) | d=(X2) )
These invocations of need to be handled by new agents. In such cases, the translator
should extract the expression as a subagent (sAgeant Pr oc calledR_s1 in this
case) so it can B8TARTed. This would result in the following:

R::= a-Rsl

Rsl ::=b-oS| c-(RS1|]Y) | d-(R_s1;2)
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As with subagents extracted for composition (Section 4.3.5), access to the parent’s

arguments and variables must be provided.

4.3.9 Deter ministic choice

Such choices are specified in terms of several alternative prefixes. The choice whose ini-
tial action succeeds first is taken, and the alternatives are abandoned.

P::=a? x-Q _x) | Agent: : start DChoice( 3 );
I

b.d_-R| c'foo_-S a>> x:

b();

c<<f oo;
swi tch( Agent: : whi chDChoi ce() )
{
case 0: CHAINL( Qv, _Xx);
case 1:

d();
CHAINO( R );

case 2: CHAINO( S_);

This is the most elaborate construct in CSP++. The
Agent : : st art DChoi ce( n) method prepares for amway choice. The initial actions
of then prefixes are tried in turn until one succeeds, either because synchronization with
another agent was achieved on that action, or, for external actions, because the external
routine returned a success code. Whgent : : whi chDChoi ce() is invoked, it
checks to see whether any of the preceding actions succeeded. If not, it suspends the
Agent until some success is signalled. (The signaldggnt will also have cancelled
any outstanding actions which were still waiting.) Finally, it returns a choice number and

the switch statement selects the corresponding case.

Note the implications of the above behaviour on the channel input construct trans-

lated into C++ a®m>>_x. If this statement were being executedside the context of
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deterministic choice, the call to the extraction (>>) operator would not return until syn-

chronization and data transfer had completed. In contrast, inside a choice construct the
operator returns immediately. This can be a problem, because any temporaries which the
C++ compiler generates on the stack will go out of scope as soon as the statement is fin-

ished.

In practice, this only causes trouble for channel input into a Dat unvar , for exam-
ple, a>>f oo( _x) instead of a>> x. Recall that f 0o hereisactually afunction call that
returns a Dat unvar (see Section 3.3.4 on page 49). The stack temporary generated for
f 0o’s return value can be captured in block scope by declaridag amvar explicitly,

thus:

Agent : : st art DChoi ce( 3 );
Dat umvar foo_dv = foo(_x);

a>>f oo_dv;

In this examplef oo_dv is an explicit translator temporary which will not go out of
scope until the surrounding block terminates, by which time the execution of
whi chDChoi ce() will have ensured that the data transfer (here, into variables

complete.

4.3.10 Conditionals

Conditional expressions can be translated directly into C++, taking care to substitute the

latter’s version of comparison operators, cspl2’s syntax being slight different:

if x=1then P if (x ==1) {
CHAINO( P_);
}
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Also see Section 4.4.1 on page 80 concerning the use of conditionals with general choice.

4.3.11 Agent termination
Agents may explicitly terminate in any of three ways.

1. By chaining to another Agent Pr oc (discussed above in Section 4.3.4).

2. By executing SKI P. Thisistrandated asthe END AGENT macro
(Agent.h), which smply returns zero. This value terminates the Agent

task, which will wake up awaiting parent.

3. By executing STOP. Thisistrandated asacall to Agent : : stop() . A
dump of al active Agent tasksis printed, and then the program exits to
the operating system.

Otherwise, an agent’s last act will be to start one or moreAg@mt s. In that case,
implicit termination, as ifSKI P had been executed, will occur when those descendant

Agent s themselves terminate.

4.3.12 Arithmetic expressions

cspl2 operators must be translated to their C++ equivalents, as shown in the chart below:

cspl2 C++
+ - same
= <> == 1=
< <= > >= same
mod %
not available /

Division does not appear in the cspl2 syntax definition (this may simply be a typographi-
cal error), but if the standard “/” operator is coded in a specification, it can be easily

mapped to the C++ division operator.
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4.3.13 Pipe

This derived operator (> or |>) isimplemented asin cspl2, that is, by expansion to primi-
tive operators. That is, P [> Q expands to:

(((P#{right=comi}) || Q#{!| eft=comm}))*{commi)\{comi
Agents being “pipelined” must haveef t andr i ght channels for this to be effective.
P'sri ght channel is synchronized witBis | ef t channel by renaming them both to

conmm which is then hidden from the enclosing environment.

4.4 Partially implemented constructs

The implementation listed in this section is not considered complete. Its nondeterminism
is problematic and more study is needed. Generally speaking, nondeterminism can be
useful for keeping specifications at a high level of abstraction, but its semantics from the

standpoint of code generation are open to debate.

4.4.1 General choice

Also called nondeterministic choice, a prominent use is in conjunction with conditional
expressions.
R(_x) ::=(if x=1thenP) +Q if (_x ==1) {
CHAINO( P_ );

}
CHAINO( Q_ );

Aside from this usage, the desired semantics seems to be a kind of extended deter-

ministic choice. Consider the following sample:

P::=a-(Q+ R+ Y)
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[Chen94] explainsthat Q, R, and S may either have acommon initial action, or they may

not. If not, we will choose among them based on the agent whose initial action occurs
first. In effect, we wish to wait until one of the agents Q, R, or S has gotten started, and
then abandon the other two. This could be handled very similarly to deterministic choice.
Instead of waiting locally for the first of several actions to complete, we can start three
Agent s, also setting flags so that the first successful action in any of them will cause the
other two to be cancelled. This presents a messier unwinding problem than deterministic

choice, but it should still be possible to implement.

On the other hand, if Q, R, and S do have a common initial action, we should
choose an agent “nondeterministically.” In practice, we could still follow the behaviour
described above. Then what will actually happen is that the first agent listed in the “+”
expression will have priority. This may be a satisfactory implementation, though it is not

truly “nondeterministic.”

4.5 Future constructs

Constructs listed in this section caused difficulties. Since they are special features of the

cspl2 dialect, they are left for future implementation.

451 Menu

This construct is employed in the following sample:

_x:{a, b,c} -P(_x)
The idea is that some action in the mémaw b, c} must be taken. Its identity is recorded

in variable _x, which value may be used in succeeding agents or expressions. One appli-
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cation is menus of numerically-named actions—e.g., a list of coin denominations

{1,5,10,25} inserted into a vending machine—the intention being to operate on the num-
ber in a subsequent arithmetic expression, or, as in the sample above, to use its value as

an argument or subscript.

CSP++ does not currently allow numerically-named actions (they would not be
legal C++ identifiers). If this is all that is desired, we could define a new subclass of

At om c, sayNumAt om c. The translator could deal with the sample above as follows:

NumAtomi ¢ na_1(1), na_5(5), na_10(10), na_25(25);

FreeVar _Xx;

Agent : : start DChoice( 4 );

na_1();

na_5();

na_10();

na_25();
switch ( Agent::whi chDChoice() ) {

case 0: _x=na_1l; break;
case 1: _x=na_5; break;
case 2: _x=na_10; break;
case 3:

}

For this to work, there would need to be definddua®’t om ¢ toLi t conversion that

_X=na_25; break;

produces the numeric value coded in et om ¢ declaration.

If something more elaborate than numerically-named actions is wanted, then the
most useful semantics is not obvious. Therefore this construct is left for further study and

future implementation.
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4.5.2 Independent actions

This is another way of combining actions using “&” that is defined in csp12:

(a &b &c)-P

The meaning is that all the actions—a, b, and c—must be taken independently, i.e., , in no
particular order, before going onRoThis is similar to the prefix expression,

a-b-c-P
except that in the latter the order is defined. Two ways of implementing independence in

CSP++ are the following:

1. Extract the actions a&gent subexpressions and translate as interleaving:
( a-SKIP ||| boSKIP ||| c-SKIP) =P

2. Handle similarly to deterministic choice, but instead of having the first-
occurring action cancel the rest, waiting would continue until all had com-

pleted. For example:

Agent ::startlndep( 3 );
a();
b();
c();
Agent ::wai t | ndep();
CHAINO( P_);

The first approach is crude (in that it involves starting tasks that are not truly
required), but it could be done within existing CSP++. The latter approach, essentially a
multiprocess synchronization technique known as a “barrier” [Lewi98], is probably pref-

erable.

Now that the method of statically translating CSP constructs into OOAF terms has
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been explained, we are ready to describe in more detail the dynamic operation of the

framework’s components at run time. This is the subject of the next chapter.
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CHAPTER 5

CSP++ Run-time Operation

Execution of a C++ program commences at the mai n() function, which for CSP++ han-
dles any command line arguments (see Appendix B.4) and then simply creates the SYS
Agent . Depending on how the user has specified SYS, it will in turn spawn other

Agent s and these will invoke actions, including their associated external routines.

To fully appreciate how the framework objects—chieflgent and Acti on
instances—collaborate in executing a translated specification, several areas need to be

elucidated:

the algorithm used for run-time binding of variable-argument agent

invocations to the proper one of several candidate definitions

« therun-time stack structure that enables action execution to take place in a
multi-layered environment of synchronization lists, action renaming, and

conceal ment
« the means of synchronizing multiple concurrent agents on a common action
 the mechanism used to implement deterministic choice

These vital operations, which form the heart of our implementation of CSP, are described

in the following sections.

5.1 Agent binding

As explained in Section 4.1.2 above, the bi nd( args) method of an Agent Bi nder

object attempts to choose from an array of Agent Pr ocs (the so-called y array) by means
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of matching input arguments with the descriptors in the corresponding x array. Here we

enlarge on the earlier sketchy explanation with the aid of afuller example:

Suppose that there are three definitions of agent P: P(1, 1), P(1, 2), ad
P( 2, n) . Now suppose there is an agent defined as follows:
Q::= foo?bar(_i, _j)-P(_i,_j)
Which P definition to chain to isimpossible for the translator to decide, so it codes a call
to P’'s Agent Bi nder, P_b. The two arrays generated along withb will look like

this:

int Px[] ={
0,1, 1,1, AB CALL,
0,1, 1,2, AB CALL,
0,2, AB CALL,
AB_END };
Agent Proc* P y[] = { P_clcl, P_clc2, P_c2v };

P_x’s initialization has been broken out here by rows to show the purpose of each
integer more clearly. The first row is a description of the arguments of the first element of
P_y , thatis, ofP_cl1c1l, the Agent Pr oc signature ofP( 1, 1) . Within each pair of
numbers, the first is an argument index (from 0) and the second is its required value. Thus
the first row means “arg O is 1 and arg 1 is 1.” The binder goes along the first row com-
paring the requirements with the actual values of input argumerdsd_j . If it reaches
the symbolAB_CALL (an enumerated data type) without finding a contradiction, it
chooses the firshgent Pr oc* in P_y. But if an argument does not match, it skips past
AB_CALL and tries the next row. If it manages to reaBh END, it means that the input

arguments did not match any of the descriptions, so a run-time error will be issued.
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Some agents, like P( 2, n) above, have a mixture of constant and variable argu-

ments. In that case, their x descriptors do not mention the variable arguments, the effect
being that any input value in the variable positions will match. Note that agent definitions
must not have ambiguously overlapping arguments; that is, it would be an error to also

define P(n, 2), sinceit would overlap both P( 1, 2) andP( 2, n) .

5.2 Environment stack

What exactly happens when an action is executed by an agent? In CSP that depends, not

only on the action’s name, but on @wironment. That environment is the accumulation

of the concealment, renaming, and synchronization lists that have been piled up by the
immediate agent as well as all its ancestors. Since agent descent (i.e., parents creating
child tasks) in CSP is dynamic, not static, a run-time stack is needed to keep track of the

environment.

The environment stack, also called dgent descent tree, adds a leaf node when-
ever a newAgent is created. Figure 8 is a snapshot of the tree after the first several
agents of the disk server case study have been started by the two CSP statements printed

below the tree.

Each box represents akgent instance (including extracted subagents). Each
Agent has its own section of the stack, containing what&mr objects have been
pushed while it is executing. In addition, e@gent object contains a pointer to its par-
ent, so that stack searches can extend beyond the immagdeié upward through all

of its ancestors. The purpose of tranch numbers will be explained shortly.
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|| (DCrl || Disk)~{dio,dint} )~{dci,dco}

Figure 8: Sample of agent descent tree

Overdl this structure grows, or shrinks, like atree, but since any given Agent only
sees the nodes above it (toward the root SYS), the Agent considers that path to be its
own personal environment stack. For example, an Acti on executing in the DCt r|
Agent (CSP statement not shown) would be subject to the total environment represented

by the Env Sync objects within the shaded rectangles of Figure 8.

How the stack isinvolved with Act i on execution will be described in the next sec-

tion.
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5.3 Action execution

89

Figure 9 isa UML diagram of the classes mentioned in the rest of this chapter. It reveals

more details than the class hierarchy in Figure 5 on page 44.

Whether an action isan At om ¢ or Channel type, it is executed by invoking the

base class’#ct i on: : execut e() method. The method carries out these steps of pro-

cessing until the action has been “taken”:

1. Check whether there is arternal routine associated with the action. If so,

call it and then return, considering the action “taken.”

2. Otherwise, start searching the environment stack, from the current agent

callingexecut e() upward through its parents. The actual searching is

done byAgent : : sear chEnv().

Agent

— crp: ChoiceRecord[n]

+ searchEnv()

+ doSync()

+ saveSync()

+ loadSync()

+ unSync()

+ startDChoice(n: int)
+ getChoiceMade(): int
+ whichDChoice(): int

executes
Action
Gl . < ActionRef
N + execute()
+ reexecute()
n
EnvSync
— syncFlags: Bits
— waitForFlag: object
— envelope: Lit*
Chooser 1 1' — choosers: List<Chooser>

L« —who: Agent*
— choiceNum: int

Figure 9: Details of classes involved in action execution
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3. If an Env object isfound having an Act i onRef that matchesthis

Act i on’s name! process according to tiEmv subclass:

« EnvHi de: Consider the action “taken”; it can have no further effect.
« EnvRenane: Do the substitution and resume searching upward.

« EnvSync: Cdl Agent : : doSync() to attempt synchronization (see
next section). After it succeeds, mark the action as “taken.” If we are

the active party to the syncchronization, resume searching.

The reason we resume searching after synchronization is in case a renaming appears
farther up the stack. If so, this should affect the name of the trace. To avoid duplicate
traces, our convention is that the “active” party (defined as the last agent to arrive at the
sync, while the “passive” agents are sleeping) is responsible for printing the trace. The

passive parties are silent.

When the stack search reaches its end, a trace will be printed showing the name of
the current agent, its arguments, the name of the action, and its subscripts or channel data.
If the tracing option is not selected on the command line (see Appendix B.4), then stack

searching in support of tracing is bypassed in order to save execution time.

A more drastic aid to debugging is obtained by recompiling CSP++ with the
ACTWATCH symbol defined (see Appendix B.1). This activates code that prints out the
detailed steps of environment searching and matching onethe standard error 1/O

stream at run time.

1. Thiscomparison, performed by Act i onRef : : oper at or ==() , isnot lexicographic, but smply com-
pares Act i on* pointers, soitisvery fast. When At omi ¢ Act i onRef smatch, it is necessary to compare
their subscriptstoo, so, for example, ack( 1) zack( 2) .
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5.4 Multi-party synchronization

Each EnvSync object (Agent.h) on the environment stack is, in effect, a “nerve centre”

for synchronization. It contains the following data members:

1. syncFl ags: These flag bits (implemented by the Standard Components
Bi t s class) are all 0 when no synchronization is in progress. When a syn-
chronization attempt begins, one flag is reserved for Agent that was
composed below this level in the agent descent tree. Setting a flag to 1 sig-
nifies that anAgent is trying to synchronize on thct i on represented

by theEnv Sync object.

For example, in Figure 8, tltd nt EnvSync object would have two flags, #0 for
use byDCtrl _, and #1 for use by sk _, or their respective descendants. If the
Action di nt occurs inDi sk_, the usual environment search will discodemt in
the stack ofAgent DSS_s2. SinceDi sk_ is composed under thAgent ’s branch 1,

Di sk_ must usali nt . syncFl ags[ 1] when synchronizing.
2. wai t For Fl ag: This single flag is an instanceabj ect (task.h), so it
can be waited for as described in Section 3.3.1 above. Agents that are not a
party to an in-progress synchronization, but want to start a fresh synchroni-
zation as soon as tlsgncFl ags are free, wait for this object to be

alerted. This will happen when the current synchronization is finished, as

part of the usual cleanup process.

The need for this flag is apparent from the following scenario, again referring to
Figure 8. Suppose that clientAgent C c1, has sent a message to the disk server via
Channel ds, and is waiting folDSched__ to receive the message by synchronizing on
this Channel . Now suppose that, meanwhile, client,c2, also wants to start some

disk action. Both clients lie on the same agent descent tree branch®&wso they
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both must use ds. syncFl ags[ 1] to communicate with DSched_. Inthiscase, C c2

will find that “its flag” is busy, therefore it will wait its turn by having recourse to
ds. wai t For Fl ag.
3. envel ope: This points to a hedpi t , to which, or from which, a

Channel can copy data (required since the stack variables in the other

agent may be out of scope when synchronization takes place).

The data structures in the agent descent tree have to be accessible tAgdhthe
tasks. In the LinuxThreads implementation, where preemption can occur at any time, they
must be protected by a Pthreads mutex. The use of the global oljitext : : m ock,
shown in Figure 5 on page 44, was explained in Section 3.3.3. The convention is for the
low-level synchronization methofigent : : doSync() to lock this mutex before test-
ing and manipulating flags, sleeping, or signaling other threads via
obj ect::alert (). This ensures the inviolability of the synchronization critical sec-

tion indoSync() .

To summarize, an agent attempting to synchronize uses the above data structures in
the following series of steps, carried outdySync() . These are also depicted in the
UML sequence diagraf{Pool99] of Figure 10, which illustrates a typical case of syn-
chronization. In the figure, agen sk_ andDSched_ are synchronizing oAt omi ¢
di nt, andDi sk_ happens to arrive at the synchronization first. UML message sequence

numbers are noted in brackets in the steps below.

2. We make one modification to the notation in [Pool99]. When an object directly accesses a data member

of another class—in this case,Agent accessindgnvSync’s members as a “friend class™—we draw the

arrow that would normally indicate a message being sent to the accessed object, but we suppress the rectan-
gle that indicates the activation of a member function.



2.2.1: mutexLock

Disk: Agent dint: Atomic object dint: EnvSync DSched: Agent
[ | | | (]
1: execute n | |
1.1: searchEnv | |
_4—
| |
— _1.2:doSync | |
_47
1.2.1:| | mutexLock | |
|
1.2.2:T syncFlagg[0]=1 |
| -
) 1.2.3: Seep | —- ' ' 2 execite
| 2.1: searchEnv |
>_
| |
| 2.2:doSync | -
| |
|

|2.2.2: syncFags[1]=1
-

|
2.2.3: reset syncFlags
= Sy ag

| 2.2.4: dert

225
e waitForFlag.alert

| 2.2.6: mutexUnlock

active| return

U r

|
7
mutex is unlocked by wai

g

%,
<
1.2.4:] |mutexUnlock
passive return
— — = — =
passive return

| active return

ting on condition variable in sleep()

NOTE: After 2.2.6, which return occurs first, active or passive, depends on scheduling.

Figure 10: Sequence diagram of synchronization

1. Tryto get a syncFlag: Since there may be other interleaved agents at this

level, all trying to synchronize on the same action (named at a higher level),

itispossiblethat thesyncFl ag reserved for thisbranch will already bein
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use. If so, wait onwai t For Fl ag. Upon wake up, repeat thistest until the

desired flag isfound to be 0.

2. Checkin: “Check in” for the synchronization by setting this branch’s flag
[1.2.2 and 2.2.2]. Then count the set flags to see whether synchronization

has just been completed.

3. Activereturn: If so, we are the “active” party, responsible for cleanup and
tracing. Clear theyncFl ags [2.2.3] and wake up allgent s waiting
either for a flag to become available (alertwae t For FI ag object
[2.2.5]) or for the synchronization to complete (alertEne Sync object
[2.2.4]).

4. Passivereturn: If there are othefgent s still to check in, wait on the

EnvSync object [1.2.3]. The last agent checking in will alert it [2.2.4].

5.5 Deterministic choice

Choice greatly complicates the straightforward picture painted above, where individual
Act i ons were able to wait on their own for synchronization, thus suspending their
Agent s while they wait. But in the context of multiple alternative actions, if any one
were to wait, the others then could not be tried. So in order to allaetions to wait in
concert, it is necessary to add a try-then-back-out apparatus to the synchronization mech-

anism.

When an Agent initiates an n-way deterministic choice by calling
Agent : : st art DChoi ce(n), an array ofn Choi ceRecord objects (Agent.h) is
created. These records will be needed for backing out and retrying. Each action is tried in

turn, according to these steps:
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1. If an earlier choice already succeeded (find out via

Agent : : get Choi ceMade() ), this one becomes a no-op; just return.

2. Otherwise, begin to carry out the steps of Act i on execution (Section 5.3)
asusual. If the action is taken, then this choice succeeds (and others previ-
ously tried may need to be cancelled).

3. Otherwise, if synchronization isinvolved, doSync() isnot allowed to
walit asit normally would. Instead, it must take note of which stage the syn-
chronization is a (i.e., waiting-for-flag or waiting-for-sync), and then call
saveSync() to make asnapshot of thisstateinaChoi ceRecor d. In
addition, aChooser object is created and attached to thechooser s list
of the EnvSync object to provide a back-pointer to this Agent . That
pointer will later be used by the Agent completing the sync, in order to

cleanup our choice state for us.3

When all choices have been tried, Agent : : whi chDChoi ce() iscaled. It deter-

mines which of these two situations holds:

1. Achoice succeeded: Theother failed Choi ceRecor dsare examined, and
if any represents a synchronization that was started, it is cancelled by call-
ing Agent : : unSync( ) . Depending on the stage of the synchronization,
unSync() will clear the branch’syncFl ag (and alert anjagent s
waiting for it), or remove thégent from the list of those waiting for

access to the flag.

3. Anessential point isthat it cannot safely be left to agents to cleanup their own choice state. Thisis

because scheduling, inthe AT&T task library, is neither prioritized nor preemptible. When one sync action

that is subject to an N-way choice completes, it isimportant to prevent any others from completing, by can-
celling them at once. But there is no way to insure that atask wanting to cancel its own choices will get the
CPU next, thus a race condition could result. This is prevented by having the synchronizing or “active”
Agent , which already has the CPU, perform all cancellations on behalf of the pagsivts. That, in

turn, requires back-pointers from teavSync object to all the choosinggent s that require the cancella-
tion service.

In the LinuxThreads version, the possibility of preemption means that the cleanup has to be conducted with
other threads locked out by means of the global mutex.
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2. No choice succeeded: Inthat case, one or more of the tried actions must

have initiated a synchronization. This Agent will sleep, waiting for a

wake-up from the first synchronization that compl etes.
The scene now shifts to some other Agent task which is calling
Agent : : doSync() to complete one of the synchronizations we are waiting for:
1. When the sync is completed, the associated chooser s list is examined to
locate all parties who are involved in a choice.

2. For each Agent onthelist, itsChoi ceRecor ds areinspected in turn
andunSync() iscalledfor each one (except the choice that succeeded).

All waiting agents are waked as usual.
Back now inwhi chDChoi ce() of theoriginal choosing Agent task:
1. Reload the information in the Choi ceRecor d which succeeded by call-
ing Agent : : | oadSync() .

2. Cdl Action::reexecute() tocontinue processing the successful

action that had been interrupted earlier. r eexecut e() will, inturn, call
doSync() again.
Finally, at the end of all this bouncing back and forth, one synchronization will have

been allowed to complete—it has been “chosen”—and all other synchronization attempts

in the alternative choices will have been rolled back as if they had never been started.

Returning briefly to the theme of critical sections, it is obvious that in the context of
trying several choices, the simple conventiomoSync() capturing and releasing the
mutex is insufficient when preemption can occur (LinuxThreads). The series of alterna-
tives could then be interrupted by oth&gent s, and one which had just been deter-

minednot to have taken place might indeed have completed “behind the backs,” so to



speak, of the subsequent choices prior to whi chDChoi ce() being executed. The way
to prevent this confusion is to modify the locking convention when a deterministic choice
in effect: startDChoi ce() will capture the lock, and whi chDChoi ce() will

release it.

With the above description, the explanation of the CSP++ framework is essentially
complete, though of course many details remain in the code. In the next chapter we return
to our disk server case study, to show how it is actually translated and executed by the

OOAF.

97
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CHAPTER 6

Case Study and Experimental Results

The disk server case study was introduced in Section 2.1.2. Here we compl ete the case
study by describing its translation and execution with CSP++. We then we present experi-
mental results, obtained from a number of variations on the case study system that were
evaluated in terms of resource consumption. For purposes of comparing our approach to
“the legitimate competition,” we reimplemented the disk server using a commercial CAD
tool based on StateCharts. It will be seen below that CSP++ is actually competitive,

despite being in its initial unoptimized version.

6.1 Disk server case study

In order to run a simulation of the disk server, we need to specify the behavior of some

client processes for test purposes (refer to Figure 3 on page 15). For example:

A1)
xA2)

ds!req(1, 100) -noreone -ack(1) -SKI P

ds!req(2, 150) -noretwo-ack(2) -SKI P

This has each client making a disk request, performing some more activity asynchro-
nously fror eone andnor et wo), waiting for acknowledgment from the server, and

then terminating successfully (the special SKIP process in CSP).

Appendix A gives the complete C++ output of the translated disk server specifica-
tion, including the two client processes shown above. This listing was produced using the

“-s” source option (see Appendix B.2 user’s manual) which conveniently copies the
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cspl2 source statements into the C++ file as comments directly before the generated

agent definitions.

After the translated output is compiled and linked with the framework, we execute it
with the “-t -i” trace and idle command line options (see Appendix B.4 user’s manual).
The trace option instructs the framework to printomr r (stderr) the trace of every
action taken. The idle option starts an additional agent that wakes up periodically and
checks whether all the other agents are idle. If so, it aborts execution and dumps the

framework’s status toer r (stderr)?

Running the DSSsim system produces the following output (line numbers added in
brackets). Each line starting with “|=" is part of the trace. The name of the agent produc-
ing the trace (the one that completes the sync) is printed first, followed by the action
taken. As in the traces output by the csp12 tool, “$” denotes a synchronization of channel

communication, with the transferred data value following.

[1] |=Ds_idle [ds$req( 1, 100 )]
[ 2] | =C( 1 ) [noreone]

[3] Action: noreone

[4] [=DCtrl [dci$start( 1, 100 )]
[5] |=DS_busy [ds$req( 2, 150 )]
[6] |=C( 2 ) [noretwo]

[7] Action: noretwo

[8] |=Disk [dio$100]

[9] |=Disk [dint]

[10] |=DQ O ) [eng$req( 2, 150 )]
[11] |=DS_busy [dco$fini( 1, 100 )]
[12] |=DS busy [ack( 1 )]

1. Thisidle-checking function wasinherent in theinitial AT& T coroutines version. In the Pthreads version,
when the feature is wanted it hasto be provided by an explicit thread.



[13]
[14]
[ 15]
[ 16]
[17]
[18]
[19]
[20]
[21]
[ 22]
[ 23]
[24]
[ 25]
[ 26]
[27]
[ 28]
[29]
[30]
[31]
[ 32]

100
| =DQ 1) [deq]
|=DQ( 1 ) [next$req( 2, 150 )]
| =DS_check [dci $start( 2, 150 )]
| =DCtrl [di 0$150]
| =Di sk [dint]
| =DCtrl [dco$fini( 2, 150 )]
| =DS_busy [ack( 2 )]
| =DQ 0 ) [deq]
| =DQ 0 ) [enpty]
idletask: Al tasks |DLE!
Agent::exit_fn: Dunp printed on stdout
== AGENT DUMP ==
Current # Literals: 1; H gh water marks: 9 Literals, 17 tasks

task #16 ' DQ (| DLE)

This task running as Agent DQ 0 )
Wiiting for sync on enq

My sync flag is #1 (LSB=#0) in [10]
Wiiting for sync on deq

My sync flag is #1 (LSB=#0) in [10]

From this we can observe how client C( 1) submits to the disk scheduler a request

for disk block 100 (line 1) and then continues about its business (lin&)i tn:

nor eone” (line 3) is the default output from an action that has no external routine pro-
vided, but neither is trapped in the environment for synchronization. These default actions

are printed orrout (stdout), independent of whether tracing is enabled, and are useful as

stubs for external routines until they can be written and linked in.

C(1)’s request is passed to the disk controller (line 4). We observe how the disk

scheduler goes from the IDLE state (line 1) to BUSY (line 5), and rec€i2%’s

request for block 150. The second request is queued, but the trace for this action doesn’t

appear until line 10. The action is taken by ad&p(t0) , signifying that there were pre-
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viously zero requests in the queue.

Meanwhile, C( 2) continues (lines 6-7). At this point, the disk controller orders the
disk drive (via channel di 0) to access block 100 (line 8) to carry out the first request.
After some time, the disk interrupts (action di nt ), the controller notifies the scheduler,
and the scheduler acknowledges client C( 1) (lines 9, 11, and 12). We then observe them
repeat the cycle with the second request (lines 13-19), which was enqueued while the
server was busy. (The inner queue actions are not traced because the CSP code ordered

them hidden.)

Finally, things come to a halt when the disk scheduler checks the queue again and
finds it empty (lines 20-21). Since there is no ready-to-run task, the idle-check agent acti-
vated by the “-i” option calls the exit function, which prints a dump of all the existing
agents (only the first one is reproduced here). This same dump can be produced by an
agent transferring to the special ag&8mOP. Useful information includes maximal
resource usage (“high-water marks”) and precise agent status. In the case of the task
shown above, we can see that its identity is aDp€O0) , and it is waiting for synchroni-
zation to occur on either of two actioren)q or deq. The sync flags from those two
EnvSync objects are displayed, and we observe the agent’s flag (the left-hand bit) set,

just as it should be, sin€X) 0) has arrived first at the syncs.

Following the above example in Appendix A, there is a second worked example
which suggests how system development can proceed. In the second system, the simu-
lated Di sk agent has been removed from the specification of agent DSS. Now, the
actions that previously synchronized wibhsk, i.e., the channali o and the atomic

actiondi nt, go out to the environment. If no external routines were provided to link
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with them, default actions would be logged, just as with actions nor eone and nor et wo

in the trace above. However, in this example C++ procedures are provided. They are
linked in by means of preprocessor symbols during compilation (see Appendix B.3 for
exact procedure). When the DSS system is executed, the routines are called whenever the

di o anddi nt actions occur, as shown in the trace log (Appendix A.6).

6.2 Commercial CAD tool comparison

In order to put CSP++ into perspective as atool for code generation, it is helpful to com-
pare it with something similar. One is tempted to produce a hand-coded C++ program,
say of the disk server case study, and let it go head-to-head with the program generated
by CSP++. The main theoretical objection to this kind of comparison is that thereis no
straightforward way for a programmer to proceed, starting from either the CSP or State-
Charts (Figure 3 on page 15) specification of the system. Basically, one has two choices
when faced with a non-trivial specification:
1. One can preserve the specification’s computational model—that is, concur-
rent synchronizing processes, or concurrent hierarchical finite state

machines—in which case one is forced to construct the infrastructure

required to support the model’'s execution.

2. Alternatively, one can use the specification as a behavioural model for
designing a program using a different computational model. This would be
one whose infrastructure is inherent in the chosen programming language,

l.e., a conventional structured design or an object-oriented design.
As for the first choice, this is exactly what has been accomplished in creating the

CSP++ OOAF for the general case. There is little point in carrying out the exercise again
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by hand for a specific case. The problem with the second approach is that without a meth-

odology for converting an analysis in one computational model into a design in another
model, the result is apt to be extremely arbitrary and may not be significantly representa-
tive of “hand-coded programs.” Again, it is the exact purpose and achievement of this
research to formulate a methodology for converting CSP specifications to C++ programs,
and to do it automatically. To find another way of doing the same thing manually, does

not really qualify as “comparison to hand-coded C++.”

Leaving aside comparisons that have superficial appeal but questionable value, we
turn to a more relevant arena, that of CAD tools which have a similar purpose to CSP++.
ObjecTime Limited produces a commercial tool expressly for C or C++ code generation
from StateChart models, or more precisely, the adaptation known as ROOMcharts
[Seli93]. ObjecTime Developer claims to be “the only object-oriented software develop-
ment toolset designed specifically for event-driven, real-time systems” [OTI]. Implement-
ing the disk server case study in ObjecTime is a meaningful comparison, first, because we
do not have to change the computational model (we already have a StateChart diagram in
Figure 3, and StateCharts are fairly compatible with CSP), and second, because the output
of the tool is also executable C++ code. We can even do the timing on the same hardware,

albeit under different operating system environments.

6.3 Timingtests

Using the disk server case study as a baseline, repetitions were introduced to inflate its
execution time to a significantly measurable level. These test cases are laid out in Table 2,

along with the average execution time obtained on a 400 MHz Pentium Il with 128Mb of
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memory, running Red Hat Linux 6.2. The g++ compiler used was ecgs-2.91.66, with -O2

User System Total
Test Case Description Secs. Secs. Secs.

(1) 20,000 disk accesses in 20,000 process creations 6.33 4.45 10.78
C(1) = ds!req(1, 100) - >ack( 1) - >SKI P.
C(2) = ds!req(2, 150) - >ack( 2) - >SKI P.
Test(_i) ::=

(if _i>0 then ((C(1)]||]C(2)); Test(_i-1)))

+ STOP.
SYS ::= (DSS| | Test (10000))~{ds, ack(1), ack(2)}.
(2) 20,000 disk accesses, synchronized in pairs, in 2 process creations 1.60 125 2.85
C(1, n) ::=

(if _n>0 then ds!req(1, 100)->ack(1)->syncC

->C(1,_n-1)) + SKIP.

C(2, _n) ::=

(if _n>0 then ds!req(2, 150)->ack(2)->syncC

->C(2,_n-1)) + SKIP.

Test(_i) ::=(C(1,_i)|1Cc2,_i))"syncC,; STOP.
SYS ::= (DSS| | Test (10000) )~{ds, ack(1),ack(2)}.
(3) 20,000 disk accesses; same as (2) but syncC removed from clients 1.65 124 2.89
Test(_i) ::=(C(1,_i)|ll1C(2,_i)); STOP.
(4) 10,000 disk accesses; same as (1) with Test (5000) 3.20 2.16 5.36

Table 2: Timing test results

optimization. Timing was obtained by running the executable with the “-q” option (to
prevent a status dump; see Appendix B.4) under control of the tcsh (Ctshelfom-

mand. Each test was run five times, and the timings averaged.

6.3.1 Test results

The first case introduceslast process into the system specification to drive the repeti-
tions. The rest of the code mirrors the baseline, except thabtheone andnor et wo

actions, which just result in printing on the console, have been removed. Since Linux
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deals with POSIX threads directly in the kernel, there is a substantial system time compo-

nent in the total execution time: 41%. In contrast, when this same test was run on a
Solaris system, where the POSI X threads are mostly managed in user space, system time

drops to under 1%.

It was observed that in test (1), 20,000 processes are being created and destroyed as
the Test process loops composing the clientsin C( 1) | | | C( 2) . Intest (2), the 10,000-
cycle loop is moved from the Test process down into the clients themselves. A new
syncC action is introduced in order to synchronize the disk requests in pairs, to avoid
overflowing the primitive disk request queue. Now, C( 1) and C(2) are created only
once each. One would expect the thread management overhead to decrease accordingly,
and indeed the results show a dramatic drop in execution time. Interestingly, the propor-

tion of system time vs. total is about the same as before (44%).

The purpose of test (3) was to see whether pairwise synchronization was really
required. It was not, though removing the extra sync C action has hardly any appreciable
effect on the timing. Tests (2) and (3) seem to be the “best case” timing that can be
obtained for 10,000 repetitions (20,000 simulated disk accesses) by simple process

restructuring.

Test (4) cuts the repetitions of test (1) in half to see whether the time for looping is
scaling linearly, as one would hope. The results, almost exactly one-half of (1), shows

that this is the case.

An attempt was made to make the simulation more realistic by incorporating a new

del ay( msec) action into theédi sk process, implemented by an external procedure call-
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ing the Linux nanodeep() function. This did produce the desired delay, and allowed for

rescheduling between requests, which made for more consistent exercise of the disk
request queue processes (BUFF and CELL). Another test was created where BUFF and
CELL were replaced by an efficient user-coded queue. Unfortunately, calling nanosleep()
or sleep() seemed to reset the Linux timekeeping to zero, and it was impossible to obtain

any useful measurements this way.

6.3.2 Comparison with ObjecTime

The model built using ObjecTime Developer 5.2.1 mirrored the StateCharts diagram (Fig-
ure 3) asfar as possible, with additional behaviour filled in from the CSP specifications.
The printout of the structural and behavioural modelsis given in Appendix E. The tool
was used to generate C++ code to run under control of the ObjecTime real-time execu-
tive (Micro Run Time System Release 5.21.C.00). It was compiled using Microsoft
Visual C++ 6, and executed in a DOS window under NT4. The hardware platform was

identical to that used for the CSP++ time trials under Linux.

In order to set up a test case comparable to those above, the test harness behaviour
in the outermost block triggered the clients 10,000 times, thus resulting in 20,000 disk
requests, as in the CSP++ version. Timing data was obtained by calling the ANSI C
clock() function to return the elapsed CPU time at the start and end of model execution.
The difference of start and end times of five runs was averaged to get the result of 3.76

CPU seconds.
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6.3.3 Analysis

The key inference coming from the timing data concerns the overhead inherent in the
CSP++ OOAF asit is currently implemented. The helpful breakout of user versus system
times in Linux shows clearly that the framework’s overhead—consisting of thread cre-
ation, thread scheduling, mutex locking and unlocking, and condition variable waiting

and signalling—is at least 40%. This is therefore a ripe area to target for optimization.

The purpose of the ObjecTime comparison is to show whether the CSP++ execu-
tion times areeasonable in light of state-of-the-art code generation tools. As a matter of
fact, they compare quite favourably with the ObjecTime results. ObjecTime ran faster
than test (1), but when the huge amount of gratuitous process creation was cut out in tests
(2) and (3), the CSP++ program finished first. Considering that ObjecTime is an expen-
sive commercial tool (licensed at over US$15,000 per seat), and the company has had
years to optimize its real-time executive, the result obtained by the initial version of

CSP++ running under generic desktop PC Linux is quite gratifying.

It is also worth noting that the graphical entry method of ObjecTime model con-
struction was found to be exceedingly slow and tedious compared with the simple textual
entry method of CSP++. This is similar to the contrast between schematic capture versus
hardware description language methods for entering circuits in modern CAD tools, and
helps explain why in recent years the graphical methods have been largely overshadowed

by the textual for large designs.



6.4 Memory estimates

Sizes for the object files that make up test (1) are listed in Table 3, as obtained via the

GNU size utility. This does not tell the whole story, since dynamically linked modules are

Code Sections
Filename / category Text Data Bss Total
Framework files 15988
Action.o 4175 148 0 4323
Agent.o 5062 116 0 5178
Lit.o 2842 92 0 2934
task.o 3317 232 4 3553
SC-3.0library 5805
Bits.o 2644 0 4 2648
List.o 2735 0 0 2735
Pool.o 422 0 0 422
Trandated test (1)
DSSsim.o 8874 | 320| 504 | 9698
Runtimelibrary 4814
Executable
DSSsim 34145 | 1036 | 1124 | 36305

Table 3: CSP++ object file sizes

pulled in from the C++ and POSI X threads shared object libraries at execution time. And
of course, the heap for dynamically allocated variables and per-thread stacks are not
accounted for. Still, the basic code size of both the framework and the translated applica-
tion are relatively modest. The approximately 21K of code and datais the fixed frame-
work component (including the SC-3.0 library routines) that will not vary from

application to application.

At this stage of development, no attempt has been made to control the size of the

heap and the stacks. The system defaults have been allowed to take their course. How-

108
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ever, there is an option for creating POSIX threads with a user-specified stack size, and

since there is no recursion in the OOAF, it should be possible to determine a safe maxi-

mum. The dump provided at the end of a CSP++ execution states the “high water mark”
for tasks (i.e., threads) and dynamically allocated literals during the course of execution.
In the case of test (1) these numbers are 14 literals and 16 tasks. Multiplying the latter by
the maximum stack size would yield the total memory requirement for stack space. Simi-
larly, we can put an upper bound on heap requirements through knowing the maximum

number of literal and task objects to be allocated.

Turning back to ObjecTime, this unfortunately degenerates into an “apples and
oranges” kind of comparison with regard to memory use. A crude comparison can be
made of the executables. The DiskServer Sys.exe file includes 131K of code and 37K of
data, for a total initial footprint of approximately 168K. Superficially this appears to be
nearly five times the size of the analogous CSP++ DSSsim executable. On the other hand,
Sys.exe executes from a DOS prompt, and already contains the linked run-time library
modules. Furthermore, the real-time executive includes a primitive debugger interface,
which is taking up space. The ObjecTime documentation gives complex instructions for
estimating the runtime memory requirements of a given application, but the calculations
are difficult to carry out. More detailed analysis would be required to make meaningful

comparisons in this area.

In summary, the studies above show that CSP++ is on the way to being an efficient
software synthesis tool. There is certainly room for optimization, both in execution time

and memory use, and these can be carried out with later versions under Future Work.
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CHAPTER 7/

Conclusons and Future Work

In light of the work described in the preceding chapters, the two main gquestions which
can now be answered are these:

1. Did we succeed in making CSP specifications executable, in the software

synthesis sense?

2. Isthere valuein the OOAF approach to software synthesis?
These questions are discussed below. In addition, a number of avenues of future work will
be put forward. Finally, we report the exact status of our work to date, for the sake of
those who wish to explore, utilize, or expand on it, including the availability of CSP++ to

the public.

7.1 Conclusions
7.1.1 Proof of concept demonstrated

The answer to the first question above is “yes”: By means of the cspt translator and run-
time framework, we showed that CSP specifications can be executed as a C++ program
and their traces printed, just as if being simulated by a verification tool. Most important,
we are able to fully support the essential features of deterministic choice with multi-party
synchronization. Furthermore, we showed how to link CSP specifications with user-coded
procedures by identifying the latter with CSP actions. This enables CSP specifications to

be directly transformed into a C++ control program for a larger software system.
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7.1.2 Viability of OOAF approach

We consider that the OOAF approach has also been shown to be valuable. Its strengthslie

in two particular areas:
1. The framework’s elements provide a good high-level code generation tar-
get, much easier to translate to, compared with conventional object code or

assembly language targets, or even a procedural high-level language
(HLL).

Translating from the source language—CSP, in this case—to C++ invocations of the
framework is a relatively short step both syntactically and semantically, and allows the

burden of code generation to be largely shifted onto a existing HLL compiler (here, g++).

This approach is faster, simpler, and more maintainable than writing a conventional
compiler: faster and simpler, because the job has been subdivided into two more tractable
pieces; more maintainable, because the run-time system is itself HLL, not assembly lan-
guage, and it is collected in one place, not dispersed throughout the translated target out-
put. The approach is analogous to that taken with Java: writing a Java compiler that
produces byte code, and writing a Java Virtual Machine (the run-time environment) that
executes it. This is “faster, simpler, and more maintainable” than writing a number of Java

native code compilers.

2. The OOAF has high portability.
This characteristic was illustrated by the conversion of the task model—arguably the most
sensitive aspect of the run-time system—with practically no disturbance of the frame-

work’s source code, and no change to the translation algorithms.

That OOAF technology should prove valuable in the specialized context of soft-
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ware synthesis is interesting, because it is not a “traditional” use (inasmuch as anything in

so new a field can be called that) of the technology.

7.2 Futurework

There are a number of potentially fruitful directions in which this research can be carried
forward. These fall roughly into three categories, listed in order of increasing scope:
1. Consolidating the current work, that is, maturing it from “proof of concept”

stage to the status of a robust and well-exercised tool more likely to be used

for something beyond academic experimentation.

2. Extending the power of CSP++ by incorporating capabilities of other dia-
lects of CSP.

3. Applying the OOAF technique to other formalisms.
One area which isot recommended, although it may readily spring to mind, is the job of
finishing up support for the partially implemented and unimplemented constructs of

cspl2. The rationale for this advice is explained in the first section below.

7.2.1 Integration with commercial model-checker

While cspl2-style CSP has been an excellent baseline for proof-of-concept development,
not to mention entailing zero cost, the limited prospects for ongoing support of this in-

house tool make it a less strategic underpinning for future work. Instead, a commercially-
supported tool should be procured and time should be invested in realigning the front end
of cspt to accept its syntax. FDR is the obvious choice. Taking this as the first step in any

future work will obviate the need to deal with the unimplemented and partially imple-
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mented cspl2 constructs (Sections 4.4 and 4.5) that do not occur in FDR’s dialect. This

recommendation falls squarely under plans for “consolidation.”

7.2.2 Enhancement of user code interface

The design of the framework’s interface to user-coded action procedures is relatively
immature, and ought to be addressed in order to consolidate the work. Now that a proof-
of-concept has been achieved, what is lacking is a more realistic case study, that would
also include simulation and model checking. An good example of this kind of effort,
which is no small undertaking, is an RS-232 character repeater design by the Naval
Research Laboratory [Moor96]. Moore and Payne used CSP for the design, and two tools
for model checking, FDR and EVESOne could even start by duplicating their design
and synthesizing it with CSP++. Chapter 7 of [Hinc95] also contains a lengthy case study

based on a network communications protocol.

The main point is that in the course of working through such a case study, it will
become apparent in what ways the action procedure interface needs to be enhanced. For
example, the issue of handling interrupts must be considered. Of particular interest will
be the precise means of making user-coded procedures participate in deterministic

choices. These changes will likely involve the OOAF itself, but not the translator.

7.2.3 Adaptation to other CSP dialects

It was mentioned earlier that CSP++, and indeed CSP itself, have no way of dealing with

timing constraints. This can be remedied by implementing constructs from Timed CSP.

1. EVES, aformal methods tool not specific to CSP, is available via free download from ORA Canada
[EVE].
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Sections 4.1ff. of [Hinc95] have a good discussion of these operators and their algebraic

properties. The key addition is a new built-WWAl T n” process that delays execution for
n time units. A newimeout operator is also defined:tb Q runs as process P for no more

thant time units, whereupon it switches to process Q.

The TOSCA tool [Balb96] shows another way to introduce timing into a CSP-like
environment (in their case, Occam Il): Simply provide a special channel that outputs an
integer representing the current time. This gives agents, in effect, a way to read the sys-

tem’s real-time clock just by executing an action, €ggck?_ti ne.

In a related area, some control could be given to agents over their scheduling prior-
ity. Currently, all agents are created as equal-priority threads. POSIX threads provide for
dynamic priority adjustment, and this feature could be made accessible to agents by

means a special process or action. This could meet the needs of some real-time systems.

Some of these extensions will require modifications to both the OOAF and the

translator.

7.2.4 Optimization of resour ce usage

For highly-resource constrained applications, CSP++ would be more attractive if its
resource usage could be reduced. There are many avenues for optimization that can be
explored, such as the following:

» Discontinue the use of C++ I/O classes to communicate with the user, asthis

pullsin numerous bulky modules from the library.

« Port the framework to an economical real-time kernel that supports C++.

Alternatively, write asimple scheduler along the lines of the AT& T coroutine
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library. Returning to a coroutine threading model has the potential to

markedly reduce system overhead (locking, waiting, preempting, €tc.).
« Caculate actual stack requirements, instead of relying on OS defaults.

« Perform static analysis on the process structure, so asto determine action
binding for synchronization purposes at translation time. In cases where this

succeeds, run-time searching of the environment stack could be eliminated.
No doubt many other ways to reduce memory and CPU usage will be found when

optimization is seriously attempted.

7.2.5 Adaptation to other formalisms

Finaly, it would be interesting to apply the OOAF approach underlying CSP++ to other
formalisms. CCSis a good place to start, both because of its similarity to CSP and the
availability of commercial verification tools comparable to FDR. For formalisms that
have CSP-like semantics, it may be possible to rework the lexical/syntax phase of the
translator to build, say, a CCS parse tree, and then convert it to an analogous tree built
with cspl2 parse nodes. The back end of the existing translator would then generate C++
code based on the CSP++ framework classes, and thereby execute the CCS specifica-
tions. Alternatively, a CCS-specific framework could be created, using CSP++ as a source
of design patterns. The latter approach would be suitable for formalisms that are semanti-

cally remote from CSP.

7.3 Statusand availability of CSP++

The details in this dissertation are based on the latest version of CSP++ numbered V2.1,

which is available to the public by anonymous FTP from the author’s web site [Gard]. It
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will compile and execute on Linux and Solaris, and likely on any platform having both a

current C++ compiler and OS supporting POSIX threads. Table 4 gives the complete pic-
ture of the various versions of CSP++ and where they can be obtained. Source code for

some variation on the Disk Server case study isincluded in each distribution.

Task

Model Version | Platforms Contents Source Code Documentation

USL task | 1.0 Sun/SunOS, AT&T cfront OOAF CD ROM [Gard99a] Tech

library accompanying | Report (PDF

POSIX | 20 PC/Red Hat Linux, g++ OOAF [Fayad9] fileon CD)

threads 21 PC/Red Hat Linux & OOAF& | FTPfromweb | Dissertation
SPARC/Solaris, g++ cspt site [Gard] (PDFfile)

Table 4: Availability of CSP++ software
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APPENDIX A

Source Codefor Disk Server Case Study

The following listings are provided in this appendix:

1. DSSsim example, with ssimulated disk:
e Input to cspt (file DSSsim.cspl2): cspl2 specification (Section A.1
on page 122)
« Parse tree produced by “cspt -t” translation (Section A.2 on page 123)

e C++ output (file DSSsim.cc) produced by “cspt -s” translation

(Section A.3 on page 127)
It will be helpful to view these listings in conjunction with the Statecharts depiction of the
Disk Server, found in Figure 3 on page 15, and the run-time trace given in Section 6.1 on

page 98.

2. DSS example, with external procedures in place of the simulated disk:
« Input to cspt (file DSS.cspl2): cspl2 statements showing Di sk
agent removed from DSS specification (Section A.4 on page 134)

e C++ source code for external routines (file DiskProcs.cc) (Section
A.5 on page 135)

« Run-time trace showing invocation of external routines (Section A.6

on page 135)



A.1 Cgpl2 specification (DSSsim)

% This is the sinmulated D sk Server,
sinmulated clients.

with simul ated D sk and

O/
% DQueue:
%

% | nterface:

% eng!<itenrenqueue item

% deq dequeue item followed by:
% next?_x next itemreturned, or
% enpty enpty queue indication

di sk request queue

CELL ::=left? x -> shift -> right!_x ->CELL.

% BUFF ::= CELL |> CELL |> CELL .just 2 cells for now
BUFF ::= (((CELL#{right=comi) ||
(CELL#{| ef t =comm} ) ) *{ comm} )\ { conm} .

DQueue ::= ((DQYO0) || BUFF)~{left, right, shift})\{left,
right, shift}.
DQ_i) ::=enq?_x -> ( left!_x ->shift-> DQ_i+1) )
| deq -> ( (if _i=0 then enpty -> DY O0))
+ fix X (right?_y -> ( next!_y ->DQ_i-1) )
| shift -> X

).
%
%DCtrl: disk controller
%

% | nterface:

% dci!start(_cl, _blk)start operation on block <_bl k> for
client < cl>

% dco?fini(_cl,
Oy

(o

_bl k) operation finished

DCtrl ::= dci?start(_i, _blk)-> dio!_blk->dint ->
deo!fini(_i, _blk) ->DOrl.

%

% D sk: disk drive (sinulated)

%

% | nterface:
% dio!_blkperformdisk i/o on block _blk

% dint di sk interrupt signalled
O/

Disk ::= dio?_blk -> dint ->D sk.

%

% DSched: di sk schedul er

%

% | nterface:

% ds!req(_cl,
< bl k>

% ack(_cl) client’s operation finished
%

_blk)client <_cl> requests operation on bl ock

DSched ::= DS idle.

DS _idle ::= ds?req(_cl, _blk) -> dci!start(_cl, _blk) ->
DS _busy.

DS_busy ::= dco?fini(_cl, _blk) -> (ack(_cl) -> DS_check)
| ds?req(_cl, _blk) -> eng!req(_cl, _blk) -> DS_busy.

DS_check ::= deq -> (empty -> DS_idle

act



| next?req(_cl, _blk) -> dcil!start(_cl,
DS busy ).

O

% DSS:  di sk server subsystem
%
% I nterface: (see DSched)

O

DSS ::= ( (DSched || DQueue)”{enq, deq, next, enpty}

[
(Darl || Disk)~{dio, dint} )~{dci,dco}.

SYS 1= (BSS || (A1)][1C2)) )*{ds,ack(1),ack(2)}.

O

% Deno

O/

(1) = ds!req(1, 100) - >nor eone- >ack( 1) - >SKI P.
c(2) = ds!req(2, 150) - >nor et wo- >ack( 2) - >SKI P.

A.2 Syntax tree (DSSsim)

Reading fromfile: DSSsimcspl2
Translating to file: DSSsimcc

Cot definition: CELL ::= { prefix
{ input
Channel |eft
_X
}
{ prefix
shift
{ prefix

_blk) ->

{ out put

Channel ri ght
X
}
Agent CELL
}
}
}
Cot definition: BUFF ::={ Env H
{ Env S
{ conpose
{ Env R
Agent CELL
{ rename from... to
Action right
Action conm
}
}
{ Env R
Agent CELL
{ rename from... to
Action left
Action comm
}
}
}
Action comm
}
Action comm
}
CGot definition: DQueue ::={ Env H
{ Env S
{ conpose
Agent DQ 0 )
Agent BUFF
}

et



Action left
Action right
Action shift
}
Action left
Action right
Action shift
}
CGot definition: DQ _i ) ::={ choice
{ prefix
{ input
Channel enq
X

}
{ prefix

{ out put
Channel |eft
X

}
{ prefix
shift
Agent DQ { Operator #0
i
1
)

}

}
{ prefix
deq
{ or
{ if ... then
{ Qperator #4
i

0

{ prefix
enpty
Agent DQ 0 )
}
}
{ Fix
X
{ choi ce
{ prefix
{ input
Channel right
_y
}
{ prefix
{ out put
Channel next
_y
}
Agent DQ { Operator #1
i
1
)
}
}
{ prefix
shift
Agent X
}
}
}
}
}
}
CGot definition: DQrl ::={ prefix
{ input
Channel dci

14"



Dat unvar start( _i _blk )

}
{ prefix
{ out put
Channel dio
_blk
}
{ prefix
di nt
{ prefix
{ out put
Channel dco
Datumfini( _i _blk)
}
Agent DCtrl
}
}
}
}
Cot definition: Disk ::={ prefix
{ input
Channel dio
_blk
}
{ prefix
di nt
Agent Di sk
}
}
CGot definition: DSched ::= Agent DS idle
Cot definition: DS_idle ::= { prefix
{ input
Channel ds
Dat unvar req( _cl _blk)
}
{ prefix

{ out put
Channel dci
Datumstart( _cl _blk )
}
Agent DS busy
}
}
CGot definition: DS busy ::= { choice
{ prefix
{ input
Channel dco
Datunmvar fini( _cl _blk)
}
{ prefix
ack( _cl )
Agent DS _check
}
}
{ prefix
{ input
Channel ds
Datunmvar req( _cl _blk)
}
{ prefix
{ out put
Channel enq
Datumreq( _cl _blk)
}
Agent DS _busy
}
}
}
Got definition: DS _check ::= { prefix
deq
{ choi ce
{ prefix

qct



enmpty
Agent DS idle
}
{ prefix
{ input
Channel next

Datunvar req( _cl _blk)

}
{ prefix

{ out put
Channel dci
Datumstart( _cl

}
Agent DS _busy

}
}
Cot definition: DSS::={ Env S
{ conpose
{ Env S
{ conpose
Agent DSched
Agent DQueue

}
Action eng

Action deq
Action next
Action enpty
}
{ Env S
{ conpose
Agent DCtrl
Agent Di sk

}
Action dio

_blk)

Action dint

}
}

Action dci
Action dco
}
Cot definition: SYS::={ Env S
{ conpose
Agent DSS
{ conpose
Agent C( 1)
Agent C( 2 )
}
}

Action ds
Action ack( 1)
Action ack( 2 )
}
CGot definition: QC 1) ::={ prefix
{ out put
Channel ds
Datumreq( 1 100 )
}
{ prefix
nor eone
{ prefix
ack( 1)
SKI P

}
}
Got definition: QC 2 ) ::={ prefix
{ out put
Channel ds
Datumreq( 2 150 )

9T



{ prefix
nor et wo
{ prefix
ack( 2 )
SKI P
}
}

A.3 C++trandation (DSSsim)

/*

Transl ated by cspt @
(cspl2) DSSsi mcspl2 >>> (CSP++) DSSsimcc

*/

#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude
#i ncl ude

AGENTDER(
AGENTDEFR(
AGENTDEFR(
AGENTDEFR(
AGENTDER(
AGENTDEFR(
AGENTDEFR(
AGENTDEFR(
AGENTDEFR(

"Lit.h"
"Agent . h"
"Action. h"
"mai n. h"
"Listio.c"
"List.c"

BUFF_, "BUFF', 0);
BUFF_s1, "BUFF",
BUFF_s2, "BUFF",
Cecl, "C', 1):;
Cc2, "C', 1):
CELL_, "CELL", 0):;

0);
0);

DQrl_, "DQrl", 0);
DQsl, "DQ', 1);
DQv, "DQ', 1);

static FreeVar DQv__y;

AGENTDEFR(

DQueue_, "DQueue", 0 );

ACENTDEF( DSS_, "DSS', 0 );

ACENTDEF( DSS si1, "DSS', 0 );
AGENTDEF( DSS_s2, "DSS', 0 );
ACENTDEF( DS busy_, "DS busy", 0 );
ACENTDEF( DS check_, "DS_check", 0 );
AGENTDEF( DS idle_, "DS_idle", 0);
ACENTDEF( DSched_, "DSched", 0 );
AGENTDEF( Disk_, "Disk", 0);
AGENTDEF( SYS_, "SYS', 0);

AGENTDEF( SYS_s1, "SYS', 0 );

#i fdef ack_p
extern ActionProc ack_p
#el se
#define ack_p O
#endi f
Atom ¢ ack("ack", 1, ack_p);
static ActionRef ack_r_1( ack, 1

1)
static ActionRef ack_r_2( ack, 1, 2)

#i fdef comm p
extern ActionProc commp;
#el se
#define coommp O
#endi f
Atom ¢ comm("com, O, comm.p);
static ActionRef commr( comm);

#i fdef dci_p
extern ActionProc dci_p
#el se
#define dci_p O
#endi f
Channel dci("dci", dci_p);
static ActionRef dci_r( dci );

LCT



#i fdef dco_p
extern ActionProc dco_p;
#el se
#define dco_p O
#endi f
Channel dco("dco", dco_p);
static ActionRef dco_r( dco );

#i fdef deq_p
extern ActionProc deq_p;
#el se
#define deq_p O
#endi f
Atom c deq("deq", 0, deqg_p)
static ActionRef deq_r( deq );

#i fdef dint_p
extern ActionProc dint_p;
#el se
#define dint_p O
#endi f
Atomc dint("dint", 0, dint_p);
static ActionRef dint_r( dint );

#ifdef dio_p
extern ActionProc dio_p;
#el se
#define dio_p O
#endi f
Channel dio("dio", dio_p);
static ActionRef dio_r( dio);

#i fdef ds_p
extern ActionProc ds_p;
#el se

#define ds_p O
#endi f
Channel ds("ds", ds_p);
static ActionRef ds_r( ds );

#i fdef enpty_p
extern ActionProc enpty_p;
#el se
#define empty_p O
#endi f
Atom c enpty("enpty", 0, enpty_p)
static ActionRef enpty_r( enpty );

#i fdef enqg_p
extern ActionProc enq_p
#el se
#define enq_p O
#endi f
Channel enqg("enqg", enq_p);
static ActionRef enqg_r( enq );

#ifdef left_p
extern ActionProc |eft_p;
#el se
#define left_p O
#endi f
Channel left("left", left_p);
static ActionRef left_r( left );

#i fdef noreone_p
extern ActionProc noreone_p;
#el se
#define noreone_p O
#endi f
At om ¢ nor eone("noreone", 0, noreone_p);

8¢t



#i fdef noretwo_p

extern ActionProc noretwo_p;

#el se

#define noretwo_p O

#endi f

Atom ¢ noretwo("noretwo", 0, noretwo_p);

#i fdef next_p

extern ActionProc next_p;

#el se

#define next_p O

#endi f

Channel next("next", next_p);
static ActionRef next_r( next );

#i fdef right_p
extern ActionProc right_p;
#el se
#define right_p O
#endi f
Channel right("right", right_p);
static ActionRef right_r( right );

#ifdef shift_p

extern ActionProc shift_p;

#el se

#define shift_p O

#endi f

Atomc shift("shift", 0, shift_p);
static ActionRef shift_r( shift );

DATUMDER( fini, 2);
DATUMDEF( req, 2 );
DATUMDEF( start, 2 );

Il %This is the simulated D sk Server, with sinulated D sk
and sinmulated clients.

11
11
/] 9%
/1 % DQueue: disk request queue

Il %

Il %Interface:

/1 %enq! <itempenqueue item

/1 Y%deq dequeue item followed by:
/Il % next? x next itemreturned, or
/[l % enpty enpty queue indication
/] %
11
[/ CELL ::=left?_x -> shift ->right!_x ->CELL.

AGENTPROC( CELL_ )
FreeVar _x;

left >> x;
shift();

right << _x;
CHAI NO( CELL_ );

}

11

/Il %BUFF ::= CELL |> CELL |> CELL .just 2 cells for now
[/ BUFF ::= (((CELL#{right=com}) ||

(CELL#{ | eft =comm}) ) *{ comm} )\ {com}.
AGENTPROC( BUFF_s1 )

right_r.rename(commr);
{

CHAI NO( CELL_ );
}

6cT



}
AGENTPROC( BUFF_s2 )

left_r.renane(commr);
{

CHAI NO( CELL_ );
}

}
AGENTPROC( BUFF_ )

comm r. hide();

{
commr.sync();
{
Agent : : conpose( 2 );
Agent* al = STARTO( BUFF_s1, 0 );
Agent* a2 = STARTO( BUFF_s2, 1 );
WAIT( al );
WAIT( a2 );
}
Agent : : popEnv( 1 );
}
Agent : : popEnv( 1 );
END_AGENT;
}
/1
/] DQueue ::= ((DQO0) || BUFF)™Mleft, right, shift})\{left,

right, shift}.

AGENTPROC( DQueue_ )

left_r.hide();
right_r.hide();
shift_r. hide();
{

}

11
11
11
11
I
Il

left_r.sync();
right_r.sync();
shift_r.sync();

{
Agent : : conpose( 2 );
Agent* a3 = START1( DQv, 0, 0);
Agent* a4 = STARTO( BUFF_, 1 );
WAIT( a3 );
WAIT( a4 );
}
Agent : : popEnv( 3 );
}
Agent : : popEnv( 3 );
END_AGENT;
DQ_i) ::=eng?_x -> ( left!_x -> shift-> DQ_i +1) )

| deq -> ( (if _i=0 then enpty -> DQ0))
+ fix X (right?_y -> ( next! y ->DQ_i-1) )
| shift -> X
).

AGENTPROC( DQ s1 )
#define _i ARJ0)

Agent : :startDChoice( 2 );
right >> DQv__y;
shift();
switch ( Agent::whi chDChoice() ) {

case O:
next << DQ.v__y;
CHAINL( DQv, (_i-1) );

case 1:

0cT



CHAINL( DQs1, i ):
}

#undef _i

}

AGENTPROC( DQ vV )
#define _i ARE0)
FreeVar _x;

Agent : :startDChoice( 2 );
enq >> _X;
deq();
switch ( Agent::whichDChoice() ) {

case O:
left << _x;
shift();
CHAINL( DQ.v, (_i+1) );

case 1:
if (_i==0) {
enpty();
CHAINL( DQv, 0);
}
Agent : : conpose(1);
Agent* a5 = START1( DQ sl1, O,

WAI T( a5 );
br eak;
}
END_AGENT;
#undef _i
}
I
Il %
[l %DCrl: disk controller
Il %

)

Il %Interface:

Il %ci!start(_cl, _blk)start operation on block < bl k> for
client <cl>

/1 %co?fini (_cl, _blk)operation finished

// O/

/1

[/ DQrl ::=dci?start(_i, _blk)-> dio!_blk->dint ->
deo!fini(_i, _blk) ->DQrl.

AGENTPROC( DCrrl_ )
FreeVar _bl k;
FreeVar _i;

dci >> start(_i, _blk);
dio << _blk;
dint();
dco << fini(_i, _blk);
CHAINO( DCrrl _ );

}

11
Il %
Il %Disk: disk drive (sinmulated)

Il %

Il %Interface:

/1 %lio! _blkperformdisk i/o on block _blk

Il %li nt di sk interrupt signalled
Il %

11

/1 Disk ::= dio?_blk -> dint ->Disk.

AGENTPROC( Disk_ )
FreeVar _bl k;

dio >> _blk;
dint();

TET



CHAI NO( Di'sk_ );
}

/1
Il %
Il % DSched: disk schedul er
Il %

Il %Interface:

Il %s!req(_cl, _blk)client < cl> requests operation on bl ock

<_bl k>

/1 %ack( _cl) client's operation finished
1%
I

// DSched ::= DS idle.

AGENTPROC( DSched_ )

CHAINO( DS_idle_);
}

I

/I DS_idle ::= ds?req(_cl, _blk) -> dci'start(_cl, _blk) ->
DS _busy.

AGENTPROC( DS _idle_)
FreeVar _blk;
FreeVar _cl;

ds >>req(_cl, _blk);

dci << start(_cl, _blk);

CHAINO( DS_busy_);
}

Il
/I DS_busy ::= dco?fini(_cl, _blk) -> (ack(_cl) -> DS_check
)

/I |ds?req(_cl, _blk) -> enqlreq(_cl, _blk) -> DS_busy.

AGENTPROC(DS_busy_)
FreeVar _blk;
FreeVar _cl;

Agent::startDChoice( 2 );
DatumVar fini_dv = fini(_cl, _blk);
dco >> fini_dv;
DatumVar req_dv = req(_cl, _blk);
ds >>req_dv;

switch ( Agent::whichDChoice() ) {

case 0:
ack(_cl);
CHAINO( DS_check_);

case 1:
eng << req(_cl, _blk);
CHAINO( DS_busy_);
}
}

Il
/I DS_check ::= deq -> (empty -> DS_idle

i | next?req(_cl, _blk) -> dci'start(_cl, _blk) ->
DS _busy).

AGENTPROC(DS_check_ )
FreeVar _blk;
FreeVar cl;

deq();

Agent::startDChoice( 2 );
empty();
DatumVar req_dv =req(_cl, _blk);
next >> req_dyv;

et



switch ( Agent::whi chDChoice() ) {

case 0:
CHAINO( DS_idle_);

case 1:
dci << start(_cl, _blk);
CHAI NO( DS busy_ );

}

Il %
Il %DSS: disk server subsystem
Il %

Il %lInterface: (see DSched)

Il %
11

[/ DSS ::=( (DSched || DQueue)”™{enq,deq, next, enpty}

|
/1 (Drl || Disk)~{dio,dint} )~{dci,dco}.

AGENTPROC( DSS s1 )

eng_r.sync();
deq_r.sync();
next _r.sync();
enmpty_r.sync();

{
Agent : : conpose( 2 );
Agent* a6 = STARTO( DSched_, 0 );
Agent* a7 = STARTO( DQueue_, 1 );
WAI T( a6 );
WAl T( a7 );

}

Agent : : popEnv( 4 );

END_AGENT;

}

AGENTPROC( DSS s2 )

}

dio_r.sync();
dint_r.sync();

{

}

Agent : : conpose( 2 );

Agent* a8 = STARTO( D&rl _, 0);
Agent* a9 = STARTO( Disk_, 1);
WAI T( a8 );

WAl T( a9 );

Agent : : popEnv( 2 );
END_AGENT;

AGENTPROC( DSS_ )

}

I

dci _r.sync();
dco_r.sync();

{

}

Agent : : conpose( 2 );

Agent* al0 = STARTO( DSS s1, 0 );
Agent* all = STARTO( DSS s2, 1)
WAl T( al0 );

WAl T( all );

Agent : : popEnv( 2 );
END_AGENT;

I/ SYS ::= (DSS || (C(1)]]]C2)) )*ds,ack(1),ack(2)}.

AGENTPROC( SYS s1 )

Agent : : conpose( 2 );

eet



}

Agent* al2 = START1( Ccl, 0, 1);
Agent* al3 = START1( Cc2, 1, 2);
WAl T( al2 );

WAI T( al3 );

END_AGENT;

AGENTPROC( SYS_ )

}

I
11
Il
11
11
11

ds_r.sync();
ack_r_1.sync();
ack_r_2.sync();

{
Agent : : conpose( 2 );
Agent* al4 = STARTO( DSS_, 0 );
Agent* al5 = STARTO( SYS_si1, 1);
WAl T( al4 );
VWA T( al5 );

}

Agent : : popEnv( 3 );

END_AGENT;

%

% Deno

%

C(1) ::= ds!req(1, 100) - >nor eone->ack(1)->SKI P.

AGENTPROC( C cl )

ds << req(1, 100);
nor eone() ;

ack(1);

END_AGENT;

11
Il C(2) ::= ds!req(2, 150) - >nor et wo- >ack( 2) - >SKI P.

AGENTPROC( C c2 )

ds << req(2, 150);
nor et wo( ) ;

ack(2);

END_AGENT;

Il
11

mai n( int argc, char* argv[] )
{
#i f ndef START
#defi ne START SYS_
#endi f
MAI N( argc, argv, START );

A.4 Simulated Disk removed (DSS)

% This is the "real" Disk Server, with sinmulated clients.
The D sk

% process is comrented out in DSS. Note, it does no harmto
| eave the

% Di sk process defined.

%

% DSS:  di sk server subsystem
%

VET



% | nterface: (see DSched)
O/
%SS ::= ( (Dsched || DQueue)”{enq, deq, next, enpty}
% |l
% (D&rl || Disk)~{dio,dint} )~{dci, dco}.
DSS ::= ( (DSched || DQueue)”{enq, deq, next, enpty}

[

DCrl )~ dci, dco}.

A.5 External routines (DiskProcs.cc)

/*
* Di skProcs. cc
*
* External
At om ¢ dint
*/

action procedures |linked to Channel dio and

#include "Lit. h"
#i nclude "Action.h"

/*
* Repl aces di 0?bl ock:
*/
void di o_chanl nput( ActionType t, ActionRef* a, Var* v,
bl ock )

{
cerr << "*** djo_chanl nput:
*pl ock << endl;

}

start I/O on given bl ock #

Lit*

Starting 1/Oon block # " <<

/*

* Repl aces dint:
*/

void dint_atomc( ActionType t, ActionRef* a, Var* v,
)

{
cerr << "*** djnt_atonic:
endl ;

}

di sk interrupt

Lit* |

Receiving disk interrupt” <<

A.6 Execution trace (DSS)

| =DS_i dl e [ds$req( 1, 100 )]
|=C( 1) [noreone]

Action: noreone

*** dio_chanlnput: Starting I/O on block # 100
| =DCtrl [di 0$100]

*** dint_atom c: Receiving disk interrupt

| =DCtrl [dint]

|=DS_idle [dci$start( 1, 100 )]
| =DS_busy [dco$fini( 1, 100 )]
=DS busy [ack( 1 )]

0) [deq]

0) [enpty]

=DS_idle [ds$req( 2, 150 )]

| =C( 2 ) [noretwo]

Action: noretwo

*** dio_chanlnput: Starting I/O on block # 150
[ =DCtrl [di 0$150]

*** dint_atom c: Receiving disk interrupt

| =DCtrl [dint]

| =DS_idle [dci$start( 2, 150 )]
| =DS_busy [dco$fini( 2, 150 )]
| =DS_busy [ack( 2 )]

| =DQ 0 ) [deq]

GET



|=DQ 0 ) [enpty] This task running as Agent DCirl

idletask: Al tasks |DLE M/ sync flag is #1 (LSB=#0) in [10] -- waiting for sync on
Agent::exit_fn: Dunp printed on stdout dei
== AGENT DUWP == task #5 ' DSS (1 DLE)

This task running as Agent DSS

Qurrent # Literals: 1; Hgh water marks: 9 Literals, 13

t asks task #4 ’ SYS ( TERM NATED)
Result =0

task #12 ' CELL’ (1DLE)

This task running as Agent CELL task #3 ' DSS (1 DLE)

M/ sync flag is #1 (LSB=#0) in [10] -- waiting for sync on This task running as Agent DSS

conm

task #2 'idle’ (RUNNI NG

task #8 ' CELL' (1DLE)

This task runhi ng as Agent C!ELL o task #1 ' SYS (1DLE)
IM/ff,ync flag is #1 (LSB=#0) in [10] -- waiting for sync on This task running as Agent SYS
e

task #0 'main’ (1DLE)

task #11 "BUFF (1DLB) task::stop exiting

This task running as Agent BUFF

task #6 'DQ (IDLE)

This task running as Agent DQ( 0 )
Waiting for sync on enq

M/ sync flag is #1 (LSB=#0) in [10]
Waiting for sync on deq

M/ sync flag is #1 (LSB=#0) in [10]

task #10 ' DQueue’ (I DLE)
This task running as Agent DQueue

task #9 'DS idle’ (IDLE)
This task running as Agent DS idle
M/ sync flag is #0 (LSB=#0) in [01] -- waiting for sync on ds

task #7 'DCrl’ (I1DLE)

ocT
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APPENDIX B

CSP++ User's Manual

B.1 Compiling the framework and transator

Since the platform for the AT& T cfront version, CSP++ V1.0, is essentially obsolete, we
only give directions for compiling the Pthreads version. If the former version is of inter-

est, its makefile should be consulted.

B.1.1 Sourcedistribution

Figure 11 shows the directory structure that results from unzipping the source archive of

V2.1. Rectangles represent subdirectories. It is assumed that g++ is available.

CSP++ root
framework SC-3.0 |
Makefile -3 xlator
*h*.c
Standard Components . cspt
lib a d

*h*c ! Makefile emo

Standard Components *h*.cc i
_ cspl2.* Makefile
Makefile *.cspl2

*h*.c

Figure 11: CSP++ V2.1 source code organization

One should start by compiling the USL Standard Components library: “make”

SC-3.0/lib/Makefile. The other files in the SC-3.0 subdirectory are for inclusion at com-
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piletime.l
Next, compile the CSP++ framework using the Makefile in the top-level directory.

Thiswill result in anumber of *.0 object files that can be linked with a translated applica-

tion later.

Compile the trandator using xlator/Makefile. This will run flex and bison, so their
pathnames may need to be modified to suit a given installation, not only for the binaries,

but also for the flex library (libfl.a).

To test the software, try compiling the example programs in the demo subdirectory
using the Makefile provided. The trandlator will be run on the *.csp12 specifications, then
the resulting *.cc files compiled. These will link with the framework elements in the top-
level directory. The Makefile assumes that all the Pthreads routines are in the
libpthread.so (“-Ipthread”). If this is not the case—for example, on our Solaris host it was
also necessary to also load libposix4.so (“-Iposix4”)—unsatisfied externals will occur at
link time, and the Makefile should be modified accordingly. Run the examples by typing

“DSS” or “DSSsim” with various command line options (Section B.4).

1. Thesefiles were designed to be compiled with cfront, which builds a precompiled template repository.
Complex methods, considered too lengthy to go in, say, afoo.h, were placed in an additional foo.c filewhere
cfront knew to look for them. (The default extension for C++ fileswas .c, not .cc.) But for g++ compilations,
whenever foo.h isto be included by a.c file, one must also explicitly include foo.c in order to get the rest of
the template methods. Failure to do so results in mysterious load-time errors, because those methods will
never have been created in any object file.

This scenario is made more confusing by the fact that in a Standard Components “lib” subdirectory there
might be found yet another foo.c file; that is, having the same name as the file just described, but with differ-
ent contents. These .c files were supposed to be separately compiled and stored in a library archive to supply
some non-parameterized template methods. We compile these into foo.o files, and explicitly load them with
the rest of the object files that make up a CSP++ executable program.
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B.1.2 Compile-time symbols

In some cases, a user may wish to have greater visibility into the inner workings of the
CSP++ run-time framework than is provided by tracing. This can be obtained by recom-
piling the framework with certain preprocessor symbols defined:
1. MEMWATCH: OrderstheLi t er al routinesto print all storage-related
activities, including allocating, assigning, and deleting, in order to check

for leaks. Also enablescodeinLi t : : mentt at us to print an annotated

message giving the current number of outstanding Li t er al s.

2. ACTWATCH: Orders details printed of every action’s execution, including

step-by-step environment stack search.
In the top-level Makefile, one could specify, for exam@RTS="- DACTWATCH' to get

action logging. The output of these options can be quite voluminous.

B.2 Running the cspt trandator

The syntax for invoking the translator is as follows:

cspt [-s] [-d] [-t] <cspl2 file>
If the input file has a .cspl2 extension, C++ output is produced in a similarly-named file

with .cc extension, otherwise .cc is just appended to the input file name.
Here are the command line options:

1. -S. copy the cspl2 source statements into the translated output file, inter-

leaved so that they appear just prior to their translated C++ code.

2. -d: “debug” option, produces a syntax treecar r (stderr).
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3. -t: turnson the flex and bison trace features, which logs how each cspl2

statement is analyzed and parsed.
Note that error recovery is primitive. If the trandator encounters an error in the
input, it will generally report the problem and abort processing without attempting to read

further.

B.3 Compiling the synthesized code

When g++ isinvoked to compile the output of the trandator, it must have accessto the .h
include files in the top-level directory, and those in the SC-3.0 subdirectory. The com-

piler’s “-g” option may be used to insert information for symbolic debugging.

The “-Dsymbol=value” option is used for two purposes:

1. Specify an external routine of navaue to be linked to an action. If the
action (atomic or channel) is namiedo, symbol should be written with
the suffix “_p”, i.e.,f 0oo_p. Any number of “-D” definitions may be sup-

plied.

2. Override the normal starting point for execution of the compiled system,
which is the agent nam@&YS. If the specification does not contain such an
agent, or if it is desired to start execution elsewhere, redefine the START

symbol as follows:
- DSTART=agent pr oc

Note thatagentproc is not the cspl2 name of the agent, like E(2), but rather
the name given by the translator to its corresponding procedure, e.g.,

E c2. These names are most easily located in the .cc file as arguments to
the AGENTPROC macro.

g++ can also be used to link/load the compiled system with any external routines.
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From the top-level directory load: Lit.o, Agent.o, Action.o, and task.o. From SC-3.0/lib

load: Bits.o, List.o, and Pool.o. Specify library -Ipthread (and -Iposix4 if needed).

B.4 Invoking the compiled system
These option flags should be typed with the command that executes your CSP++ system,

i.e., the binary file produced from the previous link/load step:

1. -t: Printtracesoncer r (stderr) of every action taken.

2. -i: Startsan idler task which wakes up periodically and checks the status of
al non-terminated tasks. If al are found to be idle, adump of the task sta-
tusis performed, and the program exits. High water marks are reported for

the maximum number of Li t er al sand tasksin existence.

3. -Q: Exits with a fast “quit” to the command line, by suppressing the usual

dump, when STOP is executed or all tasks are idle (-i option).
The idler task interval is hardcoded at 2 seconds. This can be modified in main.h
(see argument todl et ask constructor). The dump and termination can also be trig-
gered by an agent’s executing STOP. Suppression of the dump (-g option) is useful when

making timing measurements on an executable.
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APPENDIX C

Regtrictionsand Limitations

C.1 Restrictions

Some restrictions are listed in Table 5. Most of them are in terms of constructs which may

AREA RESTRICTION CONSEQUENCE
Action If an external routineis linked to an Action, Make surethat internal and external Actions
the Action cannot aso be used for sync. are distinguished in the CSP specification.
Agent All definitions of the same-named agent must | One cannot define, say, both X and X(i), nor
have the same number of non-overlapping X(0) and X(i). Instead, define only X(i) and
arguments. Constant arguments can only be start by testing i for O.
integers.
Atomic | Subscripts must be integers. “P::=a(foo(1) }» Q" is illegal since the

Datum foo is considered a subscript. To
communicate a Datum, use a channel
instead.

Channel| Default channel input action is to accept an Default channel input actions cannot be
integer. used for typing in non-Num data values.

Datum A given DatumID must always appear with th@®ne cannot write, say, foo(1,2) in one agent
same number of subscripts, because Datumsbody and foo(x) in another.
have global scope.

Table 5: Restrictions in current CSP++

be allowed in cspl2 (or are loosely specified), but which were not carried over into

CSP++. None would be considered difficult to live with.

C.2 Numerical limitations
There are a handful of compile-time constants, listed in Table 6, which serve as fixed
array dimensions. There are also limits on function argument lists. All such limits could

have been avoided by certain techniques (such as variable-length argument lists), but this
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CONSTANT LIMITATION (Max. no.) IMPACT OF INCREASING

AG_ARGS Agent Pr oc arguments (4) More storage for array of Li t s, and more callsto
Li t constructors/destructors when Agent s start/
terminate.

AG_COWPCSE | Agentsthat can be composed (8) | More storage for syncFl ags bit stringsin
EnvSync objects (negligible).

AT_SUBS At omi ¢ subscripts (4) Code more arguments for Act i onRef
constructor and At omi ¢: : operator ().
none, see Lit.h | Dat umsubscripts (4) Code more DATUM_n macros.

Table 6: Locations of limitations

would have disabled argument type checking and was not considered worth the trouble.
These constants were set to arbitrary useful values, and can all be increased by recompil-
ing CSP++. In some cases, more code must be written. Originally, these constants were in

severd .hincludefiles, but as of V2.1 they are all in Limits.h.
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APPENDIX D

Detailed Design of cspt Trandator

Since CSP++ was purposely designed to make the job of translating from CSP straight-
forward, it is natural that the translator should not be a greatly complex piece of soft-
ware. It was built using the conventional compiler-writing tools, LEX and YACC, or
actually their Gnu cousins, flex [Paxs95] and bison [Donn92], that come with Red Hat

Linux.

In the sections below we first present a brief overview, followed by a detailed
description of the translator’s two phases. That complete, we return once more to our disk

server case study to show its translation and execution.

D.1 Overview

Cspt operates in two phases: first, a combined lexical and syntax phase which scans the
cspl2 input file and produces a syntax tree; second, a code generation phase that walks
the tree and produces a C++ output file. In addition to the syntax tree, the other data

structures that persist between phases are the symbol tables.

Object-oriented design has been used throughout. The syntax tree is built from
Par seNode objects, each of which knows how to generate itself and its subtree in the
code generation phase. The C++ STL has been utilized wherever possible to avoid writ-
ing and debugging code for stock data structures. Its benefits have been especially appre-

ciated in the areas of tree building, tree-navigation, and symbol table access.
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In contrast to the run-time framework, where pains were taken to bolster efficient

execution, no such design goals were applied to the trandator, either with regards to
memory use or execution speed. The sole criteria were alogical design and ease of cod-
ing. Despite this “spendthrift” policy vis-a-vis hardware resources, translating the case

study on a Pentium 200 running Linux took well under one second.

The only technical challenges to speak of arose in three areas:
1. identifying and extracting complex subagents for separate generation,
while ensuring access to their parents’ symbols

2. managing the symbols for multiple agent definitions and binding them to

agent invocations

3. handling agent termination, whether by chaining, returning, or starting new

agents, depending on the context
None of these were at all intractable, though the third one, intuitive enough when hand
translating, proved to be surprisingly resistant to being reduced to a deterministic decision

algorithm.

Some attention has been given to diagnosing problems in the translator’s input,
down to the offending line and character where practical. Still, this feature is fairly rudi-
mentary at present. Cspt also has been equipped with command line switches that are
used to turn on flex and bison debugging features, and to produce translated output inter-
leaved with cspl2 source statements (in the form of C++ comments). These options are

described in the translator’s User’s Manual (see Appendix B.2).
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D.2 Lexical and syntax phase

First, areview of how flex and bison are used to process a language:

Trangdlation is driven by the bison-generated parser, which is invoked from the
user’smai n() function (in bison source file csp12.y). The parser shifts input tokens on
and off its stack until it recognizes patterns in the language’s grammar. The patterns are
supplied by the compiler writer in pseudo-BNF style when the bison generator is invoked.
The parser, in turn, gets its input tokens from the flex-generated scanner, which breaks
them out of the input stream according to the language’s lexical features. Those rules are
also supplied by the compiler writer, along with a routine to read the actual input file and
fill the scanner’s buffer. When the parser recognizes a grammatical pattern, it calls a user

routine, which in our case adds nodes to the parse tree under construction.

In this fashion, the parser and scanner carry on in tandem until the csp12 source file

is fully processed. This constitutes the first phase of cspt.

The rules used to customize flex and bison are given below. This is followed by a

detailed description of the relevant data structures, the parse tree and the symbol tables.

D.2.1 Lexical rules

These rules are contained in the flex source file cspl2.lex. First are the cspl2 operators
and delimiters. These range from single-character tokens such as “!” and “#” to double-
and triple-character tokens “->", “| |, “::=", “| | |", etc. A handful of reserved words are
recognized by flexdone, i f, fi x, SKI P, STOP, andt hen. Such tokens are reported to

the parser by code number. For single-character tokens, the ASCII value of the character

Is its number. The others are assigned code numbers from a table in the file cspl2.tab.h,
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which is generated by bison from the % oken statements appearing in the bison source

file cspl2.y.
The above description applies to tokens that are fixed character strings. Other kinds
of tokens, such as numbers and identifiers, are recognized by patterns. Cspl2 uses four

types:

1. Lower-caseidentifier or LI D, used for action and datum names
2. Upper-case identifier or Ul D, used for agent names
3. Variable or VAR, an identifier starting with underscore “_”

4. Numeric orNUM integers

NUMtokens are reported to the parser using their integer value.

Identifiers can contain any alphanumeric character, plus “_” ahdlhe types are
distinguished based on the leading character: upper case, lower case, or underscore. They
are stored as C+stri ng objects, the instances being allocated by the scanner. The
value of aL.l D, Ul D, or VAR passed to the parser isstsri ng* pointer. No attempt is
made to economize on storage by recognizing identical previously-allocated strings and

copying their pointers.
The scanner is also told to recognize cspl2 style line-oriented comments: anything
to the right of “%” is ignored.

D.2.2 Grammar rules

These rules are contained in the C++ source file cspl2.y. They are listed in Table 7,

rewritten in conventional BNF. Thus, Table 7 helpfully documents both the accepted



Parent Pseudocode?
2| el = 2 | gen()
= 2 2 S o and details for entries marked “>”
Accepted cspl2 syntax in BNF O | & o Subclass Name o o (ctor = constructor)
Par seNode > | OK | ctor: storeline number
gen(): OK
* | PNt ok {} - |-
* | PNcop {} | apply prep/gen to each operand in turn; stop on bad status
* | PNcid {} > | prep(): apply to each arg/subscript; stop on bad status
gen(): output name
<definition> ::= <signature> "::=’ <agent> ‘.’ * PNdef n {} | NC | prep signature and agent; use agent’s symbol entry to
gen AGENTPROC, arg #defines, and FreeVars
(genAgentProc); gen agent body; “ENDAGENT” if
needed; gen arg #undefs (genEndAgent)
<agent> ;= ( ‘(' <agent>")’ | <prefix> see <prefix> below
| <prefix> ‘| <prefix> {|" <prefix>} * PNchoi ce {} - | “Agent::startDChoicen)”; set flag for PNinput
(DatumVar gen); genPre actions;
“Agent::whichDChoice()"; genPost agents
| FIX <UID> ‘" <agent> * PNf i x {} > | prep(): use agent’'s symbol entry to extract agent as
subagent (makeSubAgent); change <UID> refs in
subagent to new PNconstSub (changeConstRefs); d
subagent
gen(): gen the PNconstSub
| <agent>‘;’ <agent> {';’ <agent>} * PNseq {} - | gen each agent, flagging last one
| ‘@’ <agent> * PN oop {} - | “while(1) {"; gen agent; “}"

Table 7: BNF syntax with corresponding parse node classes

en
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bol

Parent Pseudocode?
x| &l = a = gen()
= 2 2 S o and details for entries marked “>”
Accepted cspl2 syntax in BNF O | & o Subclass Name o o (ctor = constructor)

| <agent> ‘| | <agent> * PNconpose {} | > |prep(): prep simple agents; complex: use agent’s sym

| <agent> | | |' <agent> entry to extract subagents (makeSubAgent), then ge
gen(): “Agent::compose]”’; “START” each agent;
“WAIT” each agent

| <agent> ' { <name>{,<name>} ‘Y * PNenv {} | - |gen the ActionRefs; “.”; “sync()”, “hide()”, or gen

| <agent> V' ‘{’ <name>{,<name>} ‘}’ PNrename; gen the associated agent,

’ “Agent::popEnv()” if needed

| <agent> ‘# ‘{" <rename>{,<rename>} '}

| <agent> ‘+' <agent> * PNor {1} - | gen each agent

| STOP * PNst op {} - | "Agent::stop()”

| SKIP * PNski p {} - |setflag to get ENDAGENT generated

| <UID>[ ‘(" <exp>{,<exp>}")"] * | PNconst {} | > [|prep(): find in agentTable, get agentproc name via
bindSig@rgs)
gen(): “CHAIN", “START", or “START/WAIT"
depending on context

| IF <exp> THEN <agent>) A PN ft hen {} | > |prep(): prep agent
gen(): “if ("; gen exp; “) {*; gen agent; “}"

<prefix> ::= <action> ‘->’ <agent> * PNpr ef i x {} - |gen(): -

genPre(): gen action
genPost(): gen agent

Table 7: BNF syntax with corresponding parse node classes (Continued)

6vT
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Parent Pseudocode?
3| 8|3 2 | g ~ geng
S|l =zl =z =) ] and details for entries marked “>"
Accepted cspl2 syntax in BNF O | & o Subclass Name o o (ctor = constructor)
<signature> ::= <UID> ‘(* <numvar>{,<numvar>} ‘)’ * | PNsig > > | ctor: find in agentTable, or insert new variant
prep(): find signature in agentTable, set its symbol entry
as the translation context; setup symbol entry to har
symbols for variant (prep)
gen(): NC
<numvar> ::= ( <NUM> * PNnum {} - | output value
| <VAR>) * PNvar {} | > |prep(): report to agent’s symbol entry (addvar) with
“global” flag if in subagent
gen(): output var name, maybe globalized, obtained
from agent’s symbol entry (ref)
<action> ::= ( DONE * PNdone {} - |-
| <LID>[ ‘(" <exp>{,<exp>}‘)"] * | PNatom ¢ > | OK | ctor: find/insert in actionTable
gen(): output name, gen subscripts
| <LID> *?’ (<VAR> | <datumvar>) * PN nput > - | ctor: new PNchannel
gen(): if datumvar, “DatumVartemp “=" gen
datumvar; gen PNchannel; “>>"; gen PNvatanp
| <LID> ‘I" <exp>) * PNout put > | OK | ctor: new PNchannel
gen(): gen PNchannel; “<< (“; gen exp; “)”
* PNchannel > - | ctor: find/insert in actionTable
gen(): output name
<datumvar> ::= <LID>[ ‘(' <VAR>{,<VAR>} ‘)" ] * | PNdat unvar > - | ctor: find/insert in datumTable
gen(): output name, gen subscripts
<name> ::= <LID>[ ‘(' <NUM>{,<NUM>} ‘)’ ] * PNacti on {} | OK [find in actionTable, output ActionRef, gen subscripts

Table 7: BNF syntax with corresponding parse node classes (Continued)

0ST



Parent Pseudocode?
3| 8|3 2 | g ~ geng
S|l =zl =z =) ] and details for entries marked “>"
Accepted cspl2 syntax in BNF O | & o Subclass Name o o (ctor = constructor)
<rename> ::= <name> ‘=" <name> I PNr ename > | OK | ctor: get 2nd name into actionTable (makeAtomic)
gen(): gen 1st PNaction; “.rename(”; gen 2nd PNacti
oy
<exp> = ( <numvar> see <numvar> above
| <LID> ‘(* <exp>{,<exp>} ‘) * | PNdat um > | OK | ctor: find/insert in datumTable
gen(): output name, gen subscripts
| ‘=" <exp> * PNop {} |OK [“(“; gen left exp; op; gen right exp; “)”
| <exp> <op> <exp>)
<op> = (| =T =E <
=< ] => | )
Prep-time node substitution: * | PNsi gSub {} | > |prep(): note subagent no. in translation context
new extracted subagent’s <signature> gen(): NC
replaces complex <agent> subtree, refers to PNconst | PNconst Sub | {} |OK |default to PNconst::gen()

subagent

Table 7: BNF syntax with corresponding parse node classes (Continued)

a. Abbreviations:{ } = no-op; - = default to parent’s method; OK = no-op, return good status (0); NC = method is notealled; “f

output “foo”

b. Constructor: The obvious action of storing arguments in data members is not explicitly written out.

TGT
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input syntax and the translator’s related construction side-by-side in one place. It should

be the starting place for anyone wishing to modify the translator.

There is an area of significant divergence from cspl2 syntax. It will be recalled that
cspl2 is a tool for model checking as well as simulation. Thus it includes syntactic ele-
ments for collecting traces and performing logical operations such as temporal verifica-

tion. That subset of csp12, which is not synthesizable, is not supported by cspt.

D.2.3 Parsetree

Without exception, bison rule recognition always results in either creating a new
Par seNode, or adding a token to an operand list in preparation for creating a
Par seNode from the list. An important typedef ISOPNP, an acronym for “list of

Par seNode pointers.”LOPNP is defined as the STL templadeque<Par seNode* >,

and manipulated with the STL's container class methods.

ThePar seNode class hierarchy (ParseNode.h) is shown in Figure 12. The abstract
base class records the cspl2 input file line number associated with the node (used to print
diagnostics for errors discovered in phase two). The vigualp() andgen() meth-
ods (explained under Section D.3 “Code generation phase”) specify the output stream to

print to, and provide a status return which can be used to abort the translation.
The subclasses define three broad categories of specific parse node types:

¢ PNcop: complex operators, having alist of operands (pnl )
e PNt ok: simple tokens

« PNci d: complex identifiers, having a name and alist of arguments or

subscripts



ParseNode
{abstract}

+ lineNum: int

+ prep( ostream& ): int
+ gen( ostreamé& ): int

+ printMe()
+ prettyPrint()
I I |
PNcop PNcop PNcid
# pnl: LOPNP* # name: string*

+ prep( ostream& ): int
+ gen( ostream& ): int
+ prettyPrint()

PNchoice PNloop
PNcompose PNop
PNdefn PNor
PNenv PNoutput
PNfix PNprefix
PNifthen PNrename
PNinput PNseq

+ prettyPrint()

PNchannel
PNdone
PNnum
PNskp
PNstop
PNvar

# pnl: LOPNP*

+ prep( ostream& ): int
+ gen( ostream& ): int
+ prettyPrint()

PNaction PNdatum

PNatomic PNdatumvar

PNconst PNsig
PNconstsub  PNsigSub

Figure 12: Parse node class hierarchy

The specialized parse node subclasses (ParseNodes.h) are listed in Figure 12 under-

subclasses. If not, the methods can be overridden.

form symbol table lookups (see next section).

These all have default pr ep() and gen() methods, which may or may not suit their

neath their respective base classes. The inheritance goes down just this additional level,
with the exception of PNconst , which is the parent of PNconst Sub. These classes are

listed opposite their corresponding BNF statements in Table 7. Their constructors (abbre-

153

viated “ctor” in the table), in most cases, simply store their arguments, though some per-

For debugging purposes, virtual methods are provided for printing each parsed defi-
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nition. When the “-d” debug flag is used on the cspt command line (see Appendix B.2),

prettyPrint() is called each time an agent definition is recognized. Complex nodes
print their name or type and then recursivehett yPri nt () each of their operands.
Simple nodes print their name or value. The result is a neatly indented, nested representa-

tion of the parse tree printed oerr (st derr). A sample is given in Appendix A.2.

Not shown in Figure 12 are a handful of additional virtual methods used for query-
ing node types and valuessNun{(), i ntVal (), get Nane(), and the like. The
abstract base class supplies default methods for these (always returning false or 0); rele-

vant subclasses simply override these defaults.

D.2.4 Symbol tables

Symbol collection is an important task of the translator’s first phase. A number of
Par seNode subclass constructors require access to symbol tables: storing new names

and looking up existing ones.

Symbol tables are constructed with the help of the $#Hp template. The
Synirabl e<T> class (Symbols.h), derived fromap<stri ng*, T*, SYconpar e>,
sets up a mapping from identifierst(i ng*) to symbol entriesT*). The object
SYconpar el provides the operator needed to order any past of ng* identifiers by

invoking the C++stri ng: : conpare() function. The underlyingrap functionality

1. “Compare objects” are a syntactically obscure aspect of the STL (see [Aust99]). They should provide a
function call operator that returns true if the first operand is “less than” (however one cares to define that)
the second operand. We use lexicographic string comparison:

struct SYconpare {
bool operator()( string* sl, string* s2 ) const
{ return ( sl->conpare( *s2 ) <0); }
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Symbol

# plainName: string*

# args: int

+ argsOK(): bool

/\
| |
SYagent SYaction SYdatum

— argls: vector<LOPNP*>
T vector<stngs + gen( ostreams.) + gen( ostreams.)
_ needBinder: bool + ref( subs: LOPNP*): string

+ gen( ostream& )

+ addSig( args: LOPNP*)

+ bindSig( args: LOPNP*)

+ makeSubagent( agent )

+ prep( variant: int)

+ addVar( name, global)

+ ref( name, global )

+ genAgentProc( ostream& )

+ getEndAgent( ostreams. Figure 13: Symbol class hierarchy

ensures that there are no duplicate definitionsin a Synirabl e object, and alows its sym-

bolsto beiterated in lexicographic order.

Different kinds of symbol entries are defined for agents, actions, and datums. The
hierarchy for the symbol entry classes is shown in Figure 13. The three global symbol

tables are then defined thudly:

SymTabl e<SYagent > agent Tabl e;
Synirabl e<SYacti on> acti onTabl e;

Synirabl e<SYydat un®> dat unirabl e;

The only method these three tables, or more precisely, the symbol entry classes,
have in common is the gen() method, used to output symbol definitions in the code

generation phase. Other features of these classes are described in the following three sub-
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sections.

D.2.4.1 SYagent entry

One SYagent object is created to record all variants of a particular agent name; e.g.,
SYS(1,1),SYS(2, i), and so on, are variants of the name “SYS”. Once an agent
name has been defined, it sets the pattern regarding arguments, and all subsequent vari-

ants must have the same argument cardinality.

As each variant is encountered in the input stream, it is processed into the same-

named symbol entry by ttreddSi g( args) method:

« Itsargument list is appended to the ar gl s vector.

« Thearguments are analyzed, resulting in its signature and appropriate entries

being appended to they and x vectors, respectively.
These data members are later used for agent binding viathe bi ndSi g( args) method. If
compile-time binding ever fails, the needBi nder flag gets set, which will cause an

Agent Bi nder to be dumped out when gen( ) islater invoked on the symbol entry.

When the code generation phase commences, subagents may be extracted. In that
case a special PNdef n node needs to be created containing the extracted subtree. This

choreis performed by the makeSubagent ( agent) method.

The agent argument (that is, the subtree) gets replaced by a PNconst Sub node
referring to the subagent name. Such names are assigned sequential numbers within the
symbol entry (e.g., SYS s1, SYS s2, etc.). The subtree itself isreinstalled under a new
PNdef n node, along with a PNsi gSub signature node containing the subagent’s num-

ber. Whergen() is invoked, definitions for all subagents are output.
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Because of the possibility of subagent extraction, the SYagent class must provide

facilities for collecting a variant’s variables and converting them to global scope if they
are referenced in a subagent. This symbol-table-within-a-symbol-table is implemented by
three methods:

e prep(variant) : setsup the symbol entry so that pr ep() andgen() will

utilize symbols for the designated variant number.

« addVar ( name, global) : invoked whenever avariable name is encountered

in achannel input context during the pr ep() subphase of code generation.

- ref (name, global) : obtains the C++ name of the variable, which gets
“uniquified” if the variable is used in subagentsf () detects the error of
using the value of a variable before setting @f(() without a prior
addVvar () ).

Two more methods provide the start- and end-of-code-block generators for the vari-
ant specified byprep(variant). These aregenAgent Proc(ostream&) and

genEndAgent (ost rean®) .

D.2.4.2 SYaction entry

OneSYact i on object is created for each atomic action or channel. Atomics are subject

to a limited variant phenomenon in that if they are subscripted, all subscripts actually
used must be recorded so thatt i onRef objects can be output lgen() . The

r ef (subs) method serves this purpose, by both recording the subscripts and also return-

ing the C++ name of the correspondict i onRef .

Aside from Acti onRef s, gen() also outputsChannel and At oni ¢ defini-
tions. Each definition is preceded by a block of preprocessor code that tests whether the

user has provided a compile-time definition of the synalobbn_p. If so, the symbol's
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value is used as the name of an external Acti onPr oc to be linked with the action. If

not, the default value of zero suppresses external linkage.

D.2.4.3 Sydatum entry
One SYdat umobject is created for each unique Dat umor Dat unvar name. The first

occurrence fixes the number of subscripts, and subsequent occurrences are validated via
the Synbol : : ar gsOK() method. Invoking gen() outputs a DATUVDEF macro with

the appropriate number of subscripts.

D.3 Code generation phase

When we arrive at the code generation phase in the mai n() function of cspl2.y, the
parse tree is complete and all symbols have been collected. The symbol tables are not,
however, in their final forms, since the subsequent extraction of subagents may cause

some variables to be globalized (names changed), and of course new subagent names to

be added, as described in Section D.2.4.1 above.

Code generation has two subphases:

1. Generate the parse tree to ascratch file.
2. Generate al the symbol definitions to the output file.

Thisisfollowed by copying the scratch file to the output file to complete the translation.

Generating the tree is an aternating two-step process, consisting of apr ep() step

followed by agen() step. The purpose of the prep is threefold:

1. to extract subagents where required (PNconpose and PNf i x)

2. to note the occurrence and scope of input variables (PNvar )
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3. to bind agent constants to agentproc signatures (PNconst )

In general, callsto prep() are smply relayed down the tree by complex nodes to
leaf nodes. However, if a node type knows that no candidates can lie below it, it can limit

descent by returning a good status (viz “OK” entries in Table 7).

Subagent extraction is needed whenever a complex agent expression is specified
where a simple operand is required. In such caseprtbp() method extracts the sub-
tree as a new agent, invokesep() andgen() on it, so that it physically appears in
the translated output separate from its parent, and then substitutes the name of the
extracted subagent for the subtree. This process of extraction can recurse as deeply as
necessary, resulting in a series of negtedp() calls and finally agen() at the lowest

level, and so on back up the tree.

The parse tree at its base is simplyL&#®PNP, having onePNdef n node for each
statement in the CSP specification. Generation involves cakmg) on eachHPNdef n
node, and checking the return code to see if an error has occurred. Thus,
PNdef n: : gen() can be regarded as “translation headquarters” at the agent definition
level. Table 7 on page 148 gives the pseudocode for each parse node, showing what their
prep() andgen() methods do. In many cases, defaulting to the parent's methods is
sufficient. Error detection takes place during this phase, but regrettablyreenaary is
essentially nonexistent: most errors print a diagnostic and abort the translation without

attempting to carry on any further.

Following generation of the syntax tree to the scratch file, the symbol definitions,
now in final form, are generated to the output file. First, there are some stock header

statements output féti ncl ude files, then theggen() methods are invoked on the three
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global symbol tables. It finally remains only to copy the scratch file to output, and tack on

the main program, which by default starts execution of the compiled system at the agent

named SYS.
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APPENDIX E

Disk Server Modeed in ObjecTime

The diagrams on the following pages were produced by ObjecTime Developer 5.2.1.
They show the structure of the disk server system in terms of Actors (rectangles), the
basic structural components in ObjecTime. Actors are similar to CSP processes. They
have communication ports (squares) through which they send and receive message sig-

nals. Port bindings are shown by lines, and are similar to CSP channels.

The behaviour of each Actor is specified by a finite state machine (FSM), which is
also shown below. In FSM diagrams, the labels on the transition arrows are merely tex-
tual annotations. The actual triggering events and C++ action code are not printed in these

diagrams.

Both Actors and FSMs (actually, ROOMcharts) can be hierarchically decomposed

into subcomponents. Actorsthat are purely structural do not have an FSM specified.
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testControl diskRequest

-- ACTOR CLASS: C1

| initialize

'checkAck

request

ACTOR CLASS: C1 STATE: top

ACTOR CLASS: C2 (same as C1)
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requestQueue

diskRequest

diskControl

-- ACTOR CLASS: DSched

new_req
initialize

new_req

finished

ACTOR CLASS: DSched STATE: top
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diskControl

-- ACTOR CLASS: DCitrl

initialize

finish

ACTOR CLASS: DCtrl STATE: top
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disklO

-- ACTOR CLASS: Disk

initialize

interrupt

ACTOR CLASS: Disk STATE: top
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left right
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shift
shift

-- ACTOR CLASS: Buff
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-- ACTOR CLASS: Cell

initialize

shift

ACTOR CLASS: Cell STATE: top
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Glossary

The glossary is divided into sections for Acronyms and Technical Terms. Note: italics

indicate terms that appear elsewhere in the glossary.

Acronyms

ACP

BNF

CCS

CSP

FDR

HLL

LOPNP

0]0)

OOAF

(ON)

POSIX

STL

UML

Algebra of Communicating Processes
Backus Naur Form
Calculus of Communicating Systems

Communicating Sequential Processes, a design formalism that uses alge-

braic statements to model a system in terms of concurrent processes.

Failures—Divergence Refinement, a software tool bas&tSBrwhich
allows the automatic checking of many properties of finite state systems

and the interactive investigation jarfocesses which fail these checks.
High-level language

List ofPar seNode pointers

Object-oriented

Object-oriented application framework

Operating system

Portable Operating Systems Interface

C++ Standard Template Library

Unified Modeling Language
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VHDL Literally, “VHSIC Hardware Description Language,” where VHSIC in turn

stands for “Very High Speed Integrated Circuit.”

VLSI Very large scale integration (=integrated circuit)

Technical Terms

Action A CSP++ class that corresponds OSP event. Actions can be used for
synchronizing with otheagents or interfacing with user-coded external
routines. Subclasses are “atomic” actions, which do not pass data, and

“channel” actions, which do (sebanndl).

Agent A CSP++ class that implement&€%P process. In software it would consti-

tute a schedulable thread of control.

Channel CSP) A named unidirectional, nonbuffered interprocess communication port.
When twoprocesses engage in arvent whose name is a channel, data is
passed from the process using the output symbol (!) to the process using

the input symbol (?).

Composition, parallel vs. interleavedSP)
Designating that a set pfocessesis to execute concurrently. Parallel com-
position allows for communication and synchronization of the composed

processes; interleaved composition does not.

Event CSP) An abstract named activity thapeocess engages in. Events are often
defined to represent real-world occurrences originating in the system or its

environment.

Executable specification
A high level description of a system that, in addition to its descriptive use,
also functions as source code for simulation, logical verification, and/or

synthesis. VHDL is an executable specification language.
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Hardware Asthetermisused hereit primarily refersto digital logic, typically builtin

the form of integrated circuits or by configuring field-programmable

devices.

Process (CSP) An abstraction for alocus of control that engages in a sequence of events,
some of which may synchronize it with other concurrent processes. A pro-

cess may be defined in terms other processes.

Synthesis, hardware and software
The automated processing of a specification into a hardware or software
end product. In the case of software, the end product is binary machine
code, or source code that can be readily compiled into it. In the case of
hardware, it means a manufacturable circuit description (e.g., netlist), or
source code (such as VHDL) from which the circuit description can be
automatically created.
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