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ABSTRACT

One of the useful formalisms for designing concurrent systems is the process algebra

called CSP, or Communicating Sequential Processes. CSP statements can be used to

model a system’s control and data flow in an intuitive way, constituting a kind of hierar-

chical behavioral specification. Furthermore, when coupled with simulation and model-

checking tools, these statements can be executed and debugged until the desired behavior

has been accurately captured. Certain properties (such as absence of deadlocks) can be

proved, to help verify the correctness of the design.

To make the verified specifications executable in a practical sense, refinement to a

programming language is required. In this work, an new object-oriented application

framework is described which realizes the basic elements of CSP—processes, sy

nizing events, and communication channels—in natural terms as C++ objects. In ad

a new software tool is provided to customize the framework by translating CSP 

ments into invocations of the framework elements. CSP specifications, thus reexp

in C++  and compiled, form the control portion of a system, able to be linked with o

software written in C++ that completes the functionality.
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simply relieving the collection of superfluous bulky artifacts, but to me, an immigrant,

gown will be a very special and intimate link with a bright name in Canada’s own his

and a reminder that robust faith and dedicated service ought always to go hand in h

With God’s grace, this gown will again join in convocation processions at the schoo

its former owner loved so much, and to which he devoted the final active years of hi

life on earth.

WBG
Langley, British Columbia
August 1999



CHAPTER 1

Introduction Chapter 1

Concurrent systems are well-known as a fertile source of design challenges [Rosc98].

The work in this dissertation concerns the development of new techniques and associated

automated tools to support design and implementation in the realm of concurrent systems

by way of formal methods and software synthesis. In this introductory chapter, the

research will first be motivated, followed by an overview of the results.

1.1  Problems of concurrent system design

Concurrent systems often exhibit a high degree of complex interactions, both with their

environment, as in the case of reactive real-time systems, and internally in terms of syn-

chronization and communication among their constituent processes. One serious conse-

quence is that designers have trouble guaranteeing system properties, whether this means

the presence of good properties such as liveness, or the absence of bad properties such as

deadlock.

The typical practices of traditional, as well as object-oriented (OO), software engi-

neering, regardless which notations are employed for analysis and design, rely heavily on

methodical testing to provide some assurances concerning system properties. However,

for complex concurrent systems, it is difficult to rule out the possibility that some

untested sequence of stimuli occurring in the field will expose, for example, a lurking

deadlock situation. This provides a strong motivation to consider designing concurrent
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systems using formal methods.

In contrast with informal design notations, design formalisms have strict semantics,

whether, following Alagar’s and Periyasamy’s classification [Alag98], they are base

algebra, logic, set theory, relations, or some combination of these. Their underlying 

ematical basis means that it is possible to ask questions about a formally-specifie

tem, and answer the questions by carrying out a mathematical procedure. Becaus

procedures may be both onerous and error-prone when carried out manually, rese

have developed automated tools to facilitate the checking of formally-modeled de

Their use enables software engineers to provide rigorous assurance about the pro

of such systems that go beyond a warm feeling that “adequate testing” has bee

formed.

Leaving aside for the moment (until Chapter 2) the question of industry accep

of formal methods, another important question arises: While it may be worthwhi

prove that a formally-specified design has the desired properties, who can say whet

properties carry over into the implementation created from the model-checked desig

Since the specification notation cannot “run” on a target platform, since the notati

not itself a full-featured programming language, and since it is written at a relatively

level of abstraction, transformation (also called “refinement” [Hinc95]) into a deta

conventional program is required.

We know from experience that in the usual course of transforming a specific

into an implementation, each step of manual refinement presents a fresh opportu

introduce undocumented design decisions, and to cause the end product to diverg

its specified behavior. If we started with a formal model, the verified properties may
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become lost in the transformation. Another unhappy, but common, result is that the speci-

fication may become an isolated early design artifact. The more transformation steps are

required, the less likely the specifications will ever be updated to reflect “as built” st

and the less value they will have to future maintainers.

If, on the other hand, the specification can somehow become the system, many pit-

falls can potentially be avoided, including the abandonment of formal properties. W

a specification executable when there are tools to simulate it, reason about it, and, 

ally, synthesize a realization using a chosen technology. It is fair to say that exec

specifications are something of a Holy Grail for system designers.

We propose a two-part conceptual solution for concurrent system design that 

tates the use of a formal design notation, while at the same time avoiding the trad

problems of hand-transformation. This solution is based on the foundation of exec

specifications, and it will now be described.

1.2  Conceptual solution via executable specifications

In the first subsection below, the strategy of using executable specifications is su

mented with another important element, that of extensible specifications. Together thes

elements make up a conceptual solution. This is followed by a statement of the re

goals and the application domains to which we expect the results can be applied.

1.2.1  Two-pronged approach

The first thrust is to replace manual transformation with automatic translation from

mal specifications to executable code. In doing so we can preserve formal properti
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can also keep the specification in sync with the implementation by modifying the former

and regenerating the latter, which is a sounder practice than what is usually done: modify-

ing the latter and (possibly never) updating the former.

But automatic translation by itself is problematic because of some characteristics of

formal notations, alluded to above:

• The specification, being at a relatively high level of abstraction, lacks the 

details needed for a full implementation.

• Moreover, the specification notation likely lacks even the semantical notions 

or syntactical constructs to denote those details.

These observations are approximately the same as saying that formal notations are not

full-featured programming languages.

From here we can take either of two routes to close the abstraction-level gap in the

pursuit of software synthesis:

1. We can extend the formalism’s native notation by mixing in programming 

language-like constructs. This results in a hybrid notation or even a uniqu

new language.

2. We can allow the formalism to play its major role in expressing high-level 

abstractions—such as hierarchical decomposition, control flow, synchroni

zation, and communication—and provide, in addition, a “trap door” for 

stepping out of the formalism into a notation where the detailed, low-level

operations can be expressed in a more conducive manner. This, in essen

means putting “hooks” into the formalism to accommodate extensions.

The big drawback to the first route is that tampering with the formal notation m

at best, make it incompatible with the model-checking tools we want to employ, a

worst, may “break” the formalism by introducing constructs that lack a consistent m
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matical basis. Thus, the second route is the one we will take. It neither tampers with the

formal notation nor breaks the mathematical basis, provided that the “hooks” are su

circumscribed in their effects. This constitutes the second thrust of our two-prong

tion, that of making specifications extensible as well as executable. It is a nece

ingredient in our synthesis solution for concurrent systems.

We can now set forth our goals for constructing the solution outlined above.

1.2.2  Research goals

First, we want to start with a formal specification notation that is both checkable and syn-

thesizeable. Checkable, here, means that there exists a well-developed suite of so

tools that allow a designer to reason about a specification and verify its properties.

out this kind of model-checking support, the benefits of using a formalism are much

difficult to obtain, and our whole strategy loses its appeal. Synthesizeable means th

formal notation lends itself to conversion into an executable program, i.e., that it is a

of executable specification. Formalisms that are largely systems of constraints, for 

ple, may not be synthesizeable. If a model-checking tool supports simulation, i.e.,

ning” a specification, this is a likely indicator that its input formalism is synthesizeabl

Second, we want to develop a technique for synthesizing software from the fo

ism that can be executed on a target platform (characterized by some combination 

cessor and operating system) as “production code,” apart from resource-h

simulation tools. Achieving this goal is the main thrust of this work and takes up the

of this dissertation.

Finally, having made the observation above that for practical programming u
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formalism needs to be extended in some fashion, we want to provide a means of hooking

procedural extensions into a formal control specification. The extension language should

be a popular programming language, and must be compatible with the programs which

are output by our synthesis tool.

1.2.3  Application domain

The goals just described, in principle lay out a general-purpose solution for concurrent

systems design, not targeted to any particular domain of software applications. However,

the choice of a particular formal specification methodology and the choice of a language

for software synthesis and specification extensions—that is to say, the actual inpu

outputs of the automated tools—will bring some practical limitations that will be mor

less suitable for diverse application domains.

Since the purpose of this research is not to produce a finished, marketable pr

but rather to explore and demonstrate a proof-of-concept, it is acceptable to con

within theoretical constraints implied by the goals above, choices based on prudent

teria such as technical familiarity, development cost, and personal interest. The se

of CSP, Communicating Sequential Processes [Hoar85], for input, and C++ for out

explained and justified in Chapter 2.

Given those choices, the application domain for this research in its initial form

be systems that are natural to model using CSP, including those with inherent pa

ism, and targeted on hardware/OS platforms that support C++. As to the former, th

mary commercial user of CSP so far seems to be the telecommunications industry, 

according to Formal Systems of Oxford [FSE], it has been effective in modeling com
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nications protocols. Other application areas cited by Formal Systems include VLSI

design, networking and data distribution, control, signaling, fault-tolerant systems, and

human-computer interface. As for C++, its compilers and run-time libraries are ubiqui-

tous.

Taking CSP and C++ together, the main targets that would probably be ruled out by

this combination are hard real-time systems (because CSP, in its original form, lacks any

notion of timing) and highly resource-constrained systems. The latter includes the subset

of embedded systems with strictly-limited CPU ability, idiosyncratic processors for which

no C++ compiler exists or compiled code is too uncompetitive with hand-coded assem-

bly language, and/or small memory that cannot afford much heap space, or stack space

for multiple threads. More will be said about our limitations in Chapter 2. It should be

noted that some of these limitations can be reduced or eliminated by carrying out the pro-

spective Future Work (see Section 7.2).

Having ruled out that group of candidates, we are still left with a wide range of

computing platforms, from large-scale general-purpose systems down to embedded sys-

tems that are not too constrained. With the availability of our technique, it is possible that

using CSP will become more popular with designers of systems of all sizes for which ver-

ification is a priority—for example, safety-critical systems—who had previously tur

away from formal methods due to a lack of assistance with software synthesis.

1.3  Overview of results

This section provides a road map to the rest of the dissertation, as well as a broa

mary of the results obtained.
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In Chapter 2, we present the background on and rationale for our choice of the for-

malism CSP, and related work in the area of software synthesis.

The main novel approach that results from this research is the use of object-ori-

ented application framework (OOAF) technology as a target for software synthesis. Back-

ground on OOAFs is also included in Chapter 2. In short, we automatically translate a

CSP specification into source code for customizing the framework we call CSP++. A

customized framework instance is then converted to an executable program by a conven-

tional C++ compiler, and linked with user-coded extensions known as external routines,

also written in C++. This design flow is depicted in Figure 1, with the heavy borders

denoting the software components created by this research. When the customized frame-

work code is run, the effect is of executing the original CSP specification, coupled with

the C++ user extensions.

SOFTWARE for TARGET SYSTEM

user
source
code

CSP
specs

verification

CSP++
translator

simulate
& refine

CSP++
source
code

CSP++
header
files

C++ compiler

user
input

CSP++
run-time
library

synthesis
steps

synthesized
output

external
routines

Figure 1: Use of CSP++ framework

tool
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In practice, we envision the CSP specification as forming a “control layer” in

layered system model illustrated in Figure 2. One can think of the CSP control port

the “brain,” with the user code forming the system’s “limbs and organs.” This figure 

shows the capability of the user-coded external routines to provide an interface la

packaged software modules—supplied perhaps in the form of other C++ class libra

such as a database subsystem or OS facilities.

The key purpose of this work was to create a means of synthesizing software

CSP specifications. These results are presented in Chapter 3, which describes 

architecture of the CSP++ framework, and in Chapter 4, which exhaustively list

translations for the various CSP constructs into analogous C++ code based on the

work’s components. These translations are carried out automatically by cspt, the tool that

was created to customize a CSP++ framework instance according to a given CSP s

cation. This translator, fully documented in Appendix D, is vital for making any prac

use of the software synthesis design flow.

Chapter 5 further illumines the CSP++ framework infrastructure by detailing

run-time operation as it implements the basic semantical features of CSP. Our solu

CSP control layer

external routines
SW packages

OS facilities

hardware components

Figure 2: Layered system model
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given for the critical problem of implementing multiprocess synchronization in the pres-

ence of the CSP deterministic-choice operator.

The CSP++ framework and cspt translator have been implemented, and currently

run on two platforms. Chapter 6 gives the results of timing and memory measurements

that were made on several test cases, and a comparison with a commercial synthesis tool

based on StateCharts. Discussion of research results, conclusions, and possibilities for

future work form the final chapter.

A case study based on a simplified disk server is introduced in Chapter 2 and picked

up again in Chapter 6, where its translation and execution are explained. Source code for

the case study and a user’s manual for the tools are supplied in appendices.

In summary, this dissertation presents pioneering work in the areas of CSP syn

and OO application frameworks. It is hopeful that with some additional developmen

optimization, this work could form the nucleus of commercial CASE tools and help 

ularize CSP as a design methodology.
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CHAPTER 2

Background and Rationale Chapter 2

The purpose of this chapter is to introduce and explain the two key design choices in this

research: first, the selection of CSP as the input formalism, and second, the use of a syn-

thesis approach based on OO application frameworks, and the associated use of C++ as

the implementation medium. In the course of this explanation we refer to related work

and discuss the advantages and disadvantages of these two choices.

2.1  CSP

The usefulness of formal methods for system design is often disputed. In modern general-

purpose software engineering texts, treatment varies from lightly touching on the Z for-

malism under “Advanced Topics” [Pres97], to devoting a few chapters to an overvie

so-called “algebraic” and “model-based” methods, with a fuller look at Z as repres

tive of the latter category [Somm96]. Both these texts highlight the controversial n

of formal specifications, viz “Formal specification on trial,” a section heading

[Somm96]. Textbooks aimed at teaching formal methods to computer science stu

e.g., Alagar and Periyasamy’s Specification of Software Systems [Alag98], are still fairly

rare.

On the one hand, proponents point to the superiority of formal notation over na

language specifications for reducing ambiguity and the typical proliferation of alte

interpretations amongst software developers, test engineers, and other participants
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ematical analysis of formal specifications can result in provably correct software behav-

iour, which is undeniably important for safety-critical applications such as nuclear power

plant control systems, medical devices, and avionics. The prospect of significant savings

in design, implementation, and validation stages is held out, at the expense of additional

investment at the specification stage.

On the other hand, opponents object to what they maintain is a confusing use of

abstruse mathematical notation, which practitioners are reluctant to master, and addi-

tional engineering process steps that commercial developers are reluctant to budget for.

Sommerville helpfully points out that proponents tend to argue about claimed technical

improvements, while opponents often respond on the basis of unjustified costs

[Somm96]. A balanced perspective is given in the article “Formal Methods: Promise

Problems” [Luqi97]. 

It is not the purpose of this research to take sides in this debate. We take

granted that some people will be enthusiastic over incorporating algebraic notation 

system’s specifications, while others will demur. Rather, our interest is in providing a

tool that can make the adoption of one formal design notation, CSP, more practic

attractive. By building an avenue from model checking and simulation to software

thesis, we broaden the usefulness of CSP.

2.1.1  Background on CSP

The classic work on CSP, Communicating Sequential Processes, was written by its inven-

tor Tony Hoare [Hoar85]. It methodically covers the fundamental principles of proce

concurrency, and communication, and introduces formal techniques by which m
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expressed in CSP may be logically verified. We note that, over the years, CSP notation

has not been standardized, and that new operators can be invented, thus dialects of CSP

have evolved.

The abundance of algebraic and set notation in Hoare’s original book may 

overwhelming.  In that case the following new book by A.W. Roscoe will be a b

choice: The Theory and Practice of Concurrency [Rosc98]. As well as being designed a

an undergraduate textbook, with a gentler ramping up of the math, it has been flesh

with more case studies.  It also has the advantages of incorporating recent resear

of using a dialect of CSP compatible with the commercial FDR model-checking tool 

Formal Systems (more about FDR below).

Recently, Michael Hinchey and Stephen Jarvis have contributed a book [Hin

that features updated notation conventions. It should be noted that this book has

under heavy fire from one CSP expert, Bryan Scattergood of Formal Systems, for h

“far too many technical errors” [Scat95], and should therefore by used with caution.

ertheless, the authors have been associated with the seminal Programming R

Group at Oxford University, whose CSP archive [CSP] is a good starting point for ex

ing CSP on the Internet.

One more worthwhile source is Gajski et al, Specification and Design of Embedded

Systems [Gajs94], which surveys CSP in the context of many other alternative meth

ogies. It also gives an overview of StateCharts, which we use in the next section to

duce a case study in a graphical manner.

Simply put, each statement in a CSP specification is the description of a process.
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The process engages in a sequence of named events, which may include point-to-point

communication with another process via a nonbuffered, unidirectional channel. The set of

all events that a process may ever engage in is called its alphabet. These may correspond

to real-world occurrences such as sensor input, device actuation, and so on.

Things get interesting when processes define themselves in terms of other pro-

cesses, including several processes running in parallel. Then, the formalism provides for

interprocess synchronization each time an event occurs that is in their common alphabet.

This also implies that processes synchronize around channel communication. CSP state-

ments can thus be used to model a system’s control and data flow in an intuitive

constituting a kind of hierarchical behavioral specification.

An example will make this easier to follow. The simplified disk server is one

which we will return later.

2.1.2  Disk server case study

The CSP notation we use here is that which is accepted by an in-house verificatio

csp12. It is mostly identical with the notation found in [Hinc95]. Csp12 was written

Prolog by Dr. M.H.M. Cheng, Department of Computer Science, University of Victo

BC. To rigorously follow csp12 input conventions, we should use “::=” in place of “=”

and “->” in lieu of “→” in the sample statements, and terminate each statement w

period. The source code in Appendix A is true csp12 code.

First consider Figure 3 which uses StateCharts [Gajs94] to visually portray DSS

Disk Server Subsystem, interacting with C(cl) standing for multiple clients. We write th

CSP for a two-client system starting from the complete system view:
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SYS = ( DSS || (C(1) ||| C(2)) )^{ds,ack(1),ack(2)}

This states that the system SYS is defined as the parallel composition of the disk

server DSS and two client processes, C(1) and C(2). Here, the parenthetical notation

should be thought of as machine-readable subscripting: C1 and C2. Parallel composition

C(cl) DSS
Disk Server Subsystem

ack(cl)

ds!req(cl,blk)

Client

cl client no.

blk block no.

channel

event

DQueue

DSched

enq!item deq
next!item empty

ack(cl)

ds!req(cl,blk)

dci!start(cl,blk)
dco!fini(cl,blk)

DCtrl
dio!blk

dint
Disk

DSS

Disk Request Queue

Disk Scheduler

Disk Controller

CHECK

BUSYIDLE

ds?req/enq

ds?req/dci!start

empty dco?fini/ack,deq

next/dci!start

Figure 3: Disk Server StateCharts
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of concurrent processes is expressed with the symbol “||” plus an outer caret “^” that

explicitly denotes the set of events on which the processes will synchronize. The sy

nization set includes channel ds, over which a client communicates a request, a

ack(cl), the acknowledge event to client cl. The clients are composed using the symb

“|||” which stands for interleaving; that is, they run concurrently but they do not sync

nize with each other.

Strictly speaking, it should not be necessary to list the synchronization set, 

CSP defines that any events in the common alphabet will implicitly cause synchro

tion. However, in practice it is difficult for simulators to derive the intersection of alp

bets, and easy enough for the specifier to write it out. From the software engine

standpoint, an added benefit of this explicit notation is that these events change

being invisibly implied elements of the specification to being visibly documented.

The disk server is also defined as a number of subprocesses, corresponding

four inner components of the DSS StateChart in Figure 3:

DSS = ( (DSched || DQueue)^{enq,deq,next,empty}

|| (DCtrl || Disk)^{dio,dint} )^{dci,dco}

The disk request scheduler DSched is composed with the queue, DQueue. Their syn-

chronizing events concern the enqueuing and dequeuing of requests. The disk con

DCtrl is shown in this simplified model composed with a dummy process standin

the actual disk drive.

The scheduler DSched in Figure 3 is drawn as a state machine, and these 

statements will show how CSP can accommodate this:

DSched = DS_idle
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DS_idle = ds?req(_cl,_blk)→dci!start(_cl,_blk)→ DS_busy

DS_busy = dco?fini(_cl,_blk)→ack(_cl)→deq→DS_check

| ds?req(_cl,_blk)→enq!req(_cl,_blk)→DS_busy

DS_check = empty→DS_idle

| next?req(_cl,_blk)→dci!start(_cl,_blk)→DS_busy

The specification for DS_idle illustrates two constructs. First, ds?req(_cl,

_blk) means that the process waits for input on the channel named ds. Input is denoted

by the symbol “?” followed by a variable. Similarly, output is shown with “!” followed b

a value. Here, channel ds receives the complex datum req which is made up of the cli-

ent number and block number. These names _cl and _blk function as local variables

for the process. The right arrow is a transition to the next event in the process, the 

of the start datum on the channel dci. After this, the DS_idle process continues a

the process DS_busy, in effect performing a state transition to IDLE.

DS_busy illustrates deterministic choice, which works like this example:

P = a→Q | b→R

P has a choice. If event a occurs, P will continue as process Q, but if b occurs, it will con-

tinue as R. (If neither occurs, P will not proceed at all). Looking back to DS_busy, we

see that if the scheduler hears from the controller that the disk has finished a reque

input dco?fini), it will acknowledge the appropriate client and enter the CHECK st

Otherwise, if it gets a fresh request from a client (ds?req) in this BUSY state, it will

enqueue the request and remain BUSY.

The CSP for the controller and disk are simple sequences of events:

DCtrl = dci?start(_cl,_blk)→dio!_blk→

dint→dco!fini(_cl,_blk)→DCtrl
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Disk = dio?_blk→dint→Disk

DCtrl waits for a start request on its dci channel. The start datum contains the

client number and disk block. The controller sends the block request on its output chan-

nel dio and then waits for an interrupt event dint. On the line below, the Disk pro-

cess simulates inputting the request and outputting dint. Thereupon, DCtrl signals

completion by sending the fini datum on channel dco. The process continues as itself

(DCtrl= … →DCtrl ), which specifies a loop (not recursion, as one might imagine).

The disk request queue (internal details not shown in Figure 3) is more interesting

and shows the last of the CSP notation to be introduced here:

DQueue=((DQ(0)||BUFF)^{left,right,shift} )\{left,right,shift}

DQ(_i) = enq?_x→left!_x→shift→DQ(_i+1)

| deq→( ( if _i=0 then empty→DQ(0) )

+ fix X.( right?_y→next!_y→DQ(_i-1)

| shift→X )

)

BUFF = CELL |> CELL |> CELL

CELL = left?_x→shift→right!_x→CELL

The queue process is described as a buffer (here only 3 cells) composed with a sub-

scripted process DQi, where i denotes the number of items currently in the queue. Each

CELL process receives a datum on its left  channel and, after being told to “shift”

delivers it on its right channel, and then continues being a CELL. The symbol “|>“ is a

special kind of parallel composition, which can be defined in terms of other CSP o

tors, used just for pipelines. P |> Q has the effect of making P’s right channel syn-

chronize with Q’s left channel, so that data is passed from P to Q. The entire BUFF

pipeline has left and right channels to communicate with DQi, and can be told by DQi
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when to shift. The set of events prefixed by backslash “\” will be made local to this

process DQueue, and not visible to any process with which it may have been comp

at a higher level (this is called hiding or concealment).

As for DQi, when it gets input on enq it enqueues _x on BUFF’s left channel and

does a shift. When it gets a deq event, then it faces a choice (“+” is the general cho

operator): if there are no items in the queue (shown by a zero subscript), the empty event

occurs and the process continues as DQ0. Otherwise, a subprocess X is declared (“fix” is a

way of putting a process in-line): If BUFF’s right channel yields up an item _y, it is

passed out through channel next and the process continues as DQi-1. Otherwise, a

shift is ordered and the subprocess is repeated.

We can make two observations about this buffer specification: (1) The shift a

in CELL is actually superfluous and is given to illustrate more CSP++ constructs. (2

evident that CSP is hardly an optimal way of implementing a simple FIFO buffer. H

the strength of CSP in specifying control flow gives way to its weakness in manipul

data. An improvement would be to implement the buffer with a user-coded ext

action.

There are a few other CSP constructs that we have not encountered in this ex

These include event renaming (which is how pipelines are implemented) and non

ministic choice, which is useful for keeping specifications at a high level of abstrac

though not for actual implementation. As noted above, it is permissible in CSP to i

new operators. For example, the “fix” operator is a convenience notation supported 

in-house tool csp12. Variants of CSP also exist, one of the most useful for real-time 

tems being Timed CSP [Davi92], which adds timing constraints to the arrows bet
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Now that we have the specification, what’s next? Since CSP specs are exec

we can turn to a simulation tool to run it. At the University of Victoria, csp12 will acc

the above syntax. A more sophisticated “industrial strength” simulation tool, called 

[Rosc94], is available commercially through Formal Systems of Oxford [FDR]. Th

tools can also perform model-checking, which is a major virtue of formal methods ha

ing precise algebraic rules. In general, three properties can be checked, requiring v

amounts of run time depending on the complexity of the specification: deadlock, live

(infinite loop), and equivalence. The last property means that if we have two spec

tions for a process or system (perhaps one, P′, is intended to be a “better” version of P

we can prove whether they are indeed equivalent. See Chapter 3 of [Hinc95] for det

The difference between simulation and model-checking is this: When a CSP

tem is simulated, one of many possible paths through the specification will be follo

and the path will be logged in the form of a trace, that is, a sequence of executed even

A number of successful simulation runs no doubt builds confidence in the correctne

the specification, especially for simple systems, but does not by itself guarantee th

falls are not lying down paths that have not been exercised. Model-checking, on the

hand, conducts an exhaustive analysis (which is why it tends to be expensive in com

tion time) of all possible traces, in order to verify that certain desirable states c

reached under specified conditions, and that no harmful states can occur. This

advantage that formal methods can afford compared to conventional programming.
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2.1.3  Why CSP?

In terms of an input formalism for this research, our stated goals (Section 1.2.2) require

that the formalism be checkable and synthesizeable. A few algebraic specification lan-

guages meet these criteria, including CCS, Calculus of Communicating Systems

[Miln95], and ACP, Algebra of Communicating Processes [Berg85]. The special appeal

of CSP came from the availability of the free in-house tool (csp12, described above), and

the factor of greater familiarity. The existence of the sophisticated commercial tool, FDR,

meant that a path for applying this research in industry could potentially be followed up.

Generally speaking, this same work could have been done with an alternate formalism;

however, we are not aware that anyone has done so. Furthermore, it would be possible to

adapt our framework for code generation—in particular, the translation front end—t

lize an alternate input language, as noted under Future Work (Section 7.2.5).

The main disadvantage that arises from using CSP is its lack of the notion of

We have already indicated (in Section 1.2.3) that this limits the application domain o

technique. On the other hand, Roscoe argues that CSP’s handshaken style of com

tion is a good means of abstracting away the timing element, and that protocols t

not rely on timing for correct behaviour can be more robust [Rosc98]. This is not by

means to deny that timing is a requirement in some systems, and it would indeed b

sible to extend this work to implement a timed variant of CSP, as described under 

Work (Section 7.2.3). However, we have intentionally left that more complex issu

later.
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2.2  Object-oriented application frameworks

The second key underpinning of this work is the decision to involve OO application

frameworks. This is not just an unthinking reflection of the “OO craze,” but actually 

resents a fresh approach to software synthesis. We employ an OOAF as a high-lev

thesis target, as opposed to the customary approach targeting assembly language 

level language source code. The choice was intended to pose the research que

whether this approach would be worthwhile, and to probe its strengths and weakn

As with the choice of CSP above, a rationale will be presented following a brief b

ground section.

2.2.1  Background on OO application frameworks

Object-oriented application frameworks are a fairly new development in the world o

software engineering, and not a lot has been written about them yet. Budd defin

OOAF as “a set of classes that cooperate closely with each other and together em

reusable design for a general category of problems” [Budd97]. The first book on

emerging technology, Object-Oriented Application Frameworks, writes in similar terms

of classes “with a built-in model of interaction,” constituting “a programming envir

ment for vertical applications” [Lewi95].

This version of the recurring OO theme of code reuse represents, in a way, an exten

sion of class libraries, a venerable OO practice, and design patterns [Gamm95], the

siasm that just preceded frameworks. The contrast is instructive:

• Class libraries package up sets of utility functions in precoded OO format, 

for use in any kind of system that happens to need those functions. 
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Utilization is via instantiating the classes and/or subclassing (inheriting) 

them for refinement purposes.

• Design patterns, on the other hand, do not come precoded. They are generic 

solutions to common design problems, laid out in terms of cooperating 

classes, and are utilized by copying the models and filling in the details 

according to one’s own application.

Like class libraries, frameworks are comprised of a set of precoded classe

unlike class libraries—and like design patterns—the classes were all designed to c

ate to implement a particular kind of application. Frameworks are specific enough

they are not amenable for use in arbitrary applications, yet they are general enough

degree of customization is possible. Another useful way to view a framework is 

semicomplete application that contains certain fixed aspects common to all applic

in the problem domain, along with certain variable aspects unique to each appli

generated from it” [Srin99]. These variable, or customizable, aspects have come

known as hot spots.

Examples in [Lewi95] are mostly from the world of systems programming, 

concern areas such as operating system I/O and graphical user interfaces, includ

well-known Microsoft Foundation Classes. In contrast, when the Communications of the

ACM special issue on frameworks was published two years later [Faya97], it fea

frameworks drawn from diverse industries, from multimedia to semiconductor man

turing. In another two years, growth of the technology has been sufficiently explosiv

Wiley and Sons is issuing a three-volume set with these titles:

• Building Application Frameworks: Object-Oriented Foundations of 

Framework Design
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• Implementing Application Frameworks: Object-Oriented Frameworks at 

Work

• Domain-Specific Application Frameworks: Frameworks Experience by 

Industry

To our knowledge, CSP++ is the first application of this technology to software

synthesis, so it is interesting for that reason alone. CSP++ is featured in chapter 9, co-

authored with Dr. M. Serra [Gard99b], in the book Implementing Application Frame-

works: Object-Oriented Frameworks at Work [Faya99], part of the new Wiley OOAF set.

2.2.2  Why a C++ OOAF?

The problem of software synthesis requires generating code that will run on a target plat-

form consisting of a designated CPU and OS combination. Unless the platform is

extremely limited, there will normally be a range of possibilities as to the level of source

code that can be generated for it. These levels are portrayed, albeit simplistically, in Fig-

ure 4. Generally speaking, the difficulty of code generation is directly related to the logi-

cal “distance” between the input abstraction (in our case, CSP) and the level of the

generation target. A greater distance results from a semantic mismatch betwe

abstraction’s model of computation and that of the target language. For example,

abstraction is a dataflow model, then assembly language for a typical von Neumann

represents a relatively large distance. If the semantic mismatch is not great, then s

tic differences would carry more weight.

Therefore, assuming the input abstraction is not very primitive, generating asse

code for a bare processor with no executive is by far the hardest job. Such a code 

tor must concern itself with low-level issues such as register allocation and memor



25

s run-

4 as a

librar-
out. In contrast, moving up one level (in Figure 4) and outputting high-level language

(HLL) source code, say C, would be much easier, because it leverages the existing well-

developed technology resident in the C compiler, and the services of the compiler’

time library and underlying OS.

In recent years, Java has presented another option. It is portrayed in Figure 

higher-level target because it relies on a virtual machine (VM) and extensive class 

Figure 4: Levels of targets for code generation
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We show “OOAF” as a still-higher level target. This is because the most prim

components that the code generator must be concerned with can be intentionally de

to be very close to those in the design abstraction itself. Thus, the translation dista

shortened, such as the distance between the German and Dutch languages, for e

as compared to, say, English and Chinese.

We also picture OOAF as smaller than the Java VM. This is meant to show

while the JVM has to be general-purpose, with a resource footprint to match, an O

contains only what is necessary for its specific mission, in this case, emulating com

cating sequential processes.

To utilize an OOAF approach, we create a set of classes representing the basi

ponents of the CSP paradigm, and make them cooperate to perform CSP’s basi

tions: process creation, event execution, choice, interprocess communic

synchronization, and so on. Indeed, it was pointed out by a reviewer of [Gard99b] 

CSP specification is itself already a kind of “framework,” at least in the way we are u

it, in that the abstract events are the “hot spots” which are customized when asso

with user code.

Commercial frameworks are typically large and complex, and customization is

large degree manual. In contrast, the CSP++ framework is small and relatively si

and its customization—which occurs every time a CSP specification is translate

largely automatic.

Using an OOAF approach naturally implies using an OO programming langu
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We use C++ because it has compilers known to generate efficient code, and because fea-

tures such as polymorphism, operator overloading, templates, and preprocessor macros

can all be pressed into service in order to create a framework customization methodol-

ogy, i.e., CSP++ statements, largely similar to CSP syntax. The effect is that the C++

compiler is enlisted to do the heavy work of assembly code generation, after the CSP++

translator has done the comparatively light work of producing compiler-ready C++.

Another benefit of packaging CSP++ as an OOAF is that the multitasking model is

not too difficult to change, which may be necessary for porting to a different OS. Ideally,

one should need only to alter the task base classes, and leave the rest of the framework

intact. Our experience in porting to a new platform showed that this was largely the case

(see Section 3.5 “Platforms” and Section 3.5.3 “Lessons from Linux port”).

To be sure, using C++ brings drawbacks for some potential application areas.

the viewpoint of more resource-limited embedded systems, C++ seems to make 

use of resources, particularly memory. Multithreaded C++ is even worse, because

thread requires its own stack, as well as the heap for dynamically allocated variable

Nonetheless, we believe the benefits of an OOAF approach outweigh the 

backs. One considerable benefit was that by erecting a high-level code generation

and thereby shortening the translation distance, the entire project became tractable 

person over a reasonable time frame. Furthermore, the relative ease with which the

tial features of CSP were implemented using this approach eclipses the meagre 

obtained by some earlier work (CCSP) that attempted to translate CSP to a lowe

target (the C language). That and other related work will be presented in the next se
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2.3  Related work

In relation to our goal of software synthesis from CSP, there have been some efforts at

making CSP specifications run as programs. Historically, the programming language

occam has been derived from CSP, and Chapter 9 of [Hinc95] shows how to convert

from CSP to occam, but they also acknowledge that it is a “very specialized langu

intended for implementation on transputers.” Our goal is quite different: We wis

translate CSP into a popular language that will make it easy to combine with other

that fills out the functionality of the system.

Code generation has been done to some extent for the C language. The CC

[Arro94] provides a limited facility for translating a subset of CSP into C, but it does

directly support the key parallel composition operator (||). Instead, each CSP p

becomes a heavyweight UNIX process, and channels are implemented as UNIX so

In contrast, our approach supports the full functionality of concurrent composition, a

implemented using threads, thus making it practical for a larger range of application

For Java enthusiasts it is worth noting that the JavaPP (Java Plug & Play) P

has created a set of classes called CJT, Communicating Java Threads [Hild97], wh

designed to bring CSP-style synchronization and communication to Java prog

Again, this represents a different goal from ours, but does open up an avenue for co

ing CSP to Java. We have declined to take this route, partly because of the consid

overhead entailed in running a Java Virtual Machine. More pragmatically, when

research commenced in 1995, Java was still at too early a stage to be seriously 

ered. Nonetheless, the Java option may be worth exploring under future work, esp

in light of the recent development of native bytecode processors, e.g., Sun’s PicoJa



29

lism.

 ratio-

. Our

pecifi-

famil-

arts of

ols to
cessor core [McGh98].

There is another well-developed derivative of CSP and CCS called LOTOS

[Logr92]. It is similar to occam in being a full-featured programming language. In addi-

tion to the process-algebraic aspect, LOTOS also incorporates a data-algebraic subset

based on abstract data types, and it compiles to executable code. The language has been

standardized (ISO 8807), and is in use, particularly in Europe, for design of distributed

systems and protocols. In conjunction with using LOTOS as a specification language for

hardware/software codesign [Carr96], synthesis tools for translation of LOTOS to C and

VHDL have been created. As with occam, LOTOS represents a different direction than

our work—that of utilizing an entirely new language, albeit based on a design forma

2.4  Objections and rejoinders

In light of the background and related work above, this section further discusses the

nale for our approach by means of raising and responding to objections.

1. Since there are already compilable programming languages based on a 

formal model, why not just write software in one of those?

That approach is valid, and has been taken in the cases of occam and LOTOS, where one

or more formalisms was expanded into a full-featured programming language

approach starts with two assumptions: (a) at the high level there are going to be “s

cations” in any case; and (b) at the implementation level, people prefer to code in 

iar, popular languages.

Our suggestion is: First, learn to write those specs in CSP, at least for those p

the target system for which CSP is a natural expression. Use model-checking to
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events as user-coded procedures, which will form the bulk of the total code. Asking some

upper level designers to write CSP is very different, organizationally, from asking every

programmer to become proficient in occam or LOTOS. After all, CSP is not one of the

very obscure or abstruse formalisms, so even the programmers who do not master it can

understand specifications written in it.

2. Why attempt to implement a concurrent system in C++, a language that 

lacks a built-in model of concurrency?

The overhead of Java, which does possess built-in concurrency has been cited as a draw-

back above. We could, alternatively, have turned to a concurrent programming language,

but this would have defeated the purpose of involving a common, popular language. In

fact, it is not difficult to provide concurrency for C++ programs by utilizing a POSIX

threads package [Lewi98], or other suitable class library, as we have done.

3. What is the advantage of mixing two languages, CSP and C++, into a sin-

gle system implementation?

The point of using CSP at all is as a powerful specification tool, not a programming lan-

guage per se. However, by applying our research, we can directly make it executable.

Therefore we can maintain that portion of the system’s code arising from the CS

directly maintaining the spec, and regenerating the code whenever the spec is ch

Note that this is the opposite of the usual software engineering practice (i.e., chan

code, and then hopefully update the spec).

Another advantage that falls out of this approach is that the design can be mo

ized in two places:



31

cified

,” that

rocess

sired

re, the

er, set-

com-

ause

th the

ode is
First, and most obviously, we can modularize in terms of abstract CSP events. That

is, a programmer could be assigned to implement a particular event in C++. The CSP pro-

cess context in which the event is invoked represents the spec, and if the programmer

wants to change that, it can be handled as a spec change. This point is important, since the

change may affect other modules or even the system behaviour. In that case, if the CSP

specification is under configuration control, it should be modified by a higher-level

designer, reverified, and resimulated.

Second, since CSP processes can be expressed in terms of other processes, not

solely in terms of events, a process can become a “module” as well, with a spe

interface of channels and events. Such a process can be initially coded as a “stub

simply goes through its communication handshake and exits. The Disk process in the

DSS example is just such a stub. Implementation could proceed by refining the p

into subprocesses, until finally the level is reached of individual events having the de

degree of complexity.

4. If there is a problem in the translated CSP, how will a programmer trace it 

back to a particular CSP source statement?

This is the same problem that arises with a compiled language such as C++. The

practice is to add numerous print statements, or else run the program in a debugg

ting breakpoints, etc.

We have provided two debugging features in CSP++: First, one may run the 

piled system with the command line trace (-t) flag (see Appendix B.4). This will c

the run-time framework to log all the events as they are executed, annotated wi

name of the process in control at that moment. Second, the translated CSP++ c
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itself standard C++ source code, not assembly language. The target system can easily be

run in a thread-aware symbolic debugger such as gdb, breakpoints can be set, the code

can be stepped through, variables inspected, and so on. Moving back and forth between

the translated CSP statements and the user-coded C++ procedures is completely seam-

less. If the translator is invoked with the source (-s) option (Appendix B.2), the CSP input

source code will be interleaved with the C++ output as comment lines, making it easy to

associate them with the corresponding C++ statements during debugging.

5. By adding user-coded procedures to the semantically-limited primitive 

communication events of CSP, doesn’t this “break” the formalism? Does 

this render our analysis, simulation, and tool-based model-checking inef-

fective?

To put the question another way, are we achieving a mere veneer of formalism? The

answer hinges on what the user-coded procedures are allowed to do. As long as the proce-

dures never communicate or synchronize with one another “behind CSP’s back,”

speak, the encompassing formal model is maintained. As far as the model is conc

its abstract named events are strictly atomic and of indefinite duration, and wh

event’s semantics are in the context of the computer system is irrelevant.

While it would probably be legitimate to allow any or all events in a CSP speci

tion to be associated with user-coded procedures, in order to prevent confusion an

the implementation of synchronization straightforward, we imposed the following rul

1. Events used for interprocess synchronization must be dedicated to that pu

pose, and are not allowed to have associated user code.

2. Consequently, interprocess communication must be performed strictly via

CSP channels.
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Note that these rules do not prevent user procedures from participating in choices, nor

from implementing channel semantics by performing their own I/O operations, e.g., to

communicate with the system’s environment. That would be the case with, sa

DCtrl process in the DSS example, if the dummy Disk process is removed. Further

more, user procedures can even safely communicate with one another (e.g., throug

variables) as long as they are only ever invoked by the same process.

The above arrangement, embodied in CSP++, offers the “best of both world

formal method for specifying high-level system behaviour, and a popular program

language, C++, for implementing detailed low-level behaviour. This is made possib

the ability to automatically translate the former portion into C++ to link with the latter
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CHAPTER 3

The CSP++ Framework Chapter 3

This chapter describes the architecture of the OOAF, which forms the run-time system of

CSP++ and is customizable, via the translator, to execute any given CSP specification. It

is the code generation target for the cspt translator and forms the heart of our novel soft-

ware synthesis solution.

First, we present a lengthy discussion of architectural issues that arise in building a

software system to emulate the semantics of CSP. This ranges over the choice of objects

that will serve as code generation targets, and the dynamic aspects of CSP, including pro-

cess scheduling, interprocess communication, and the binding of symbols in the process

environment.

Next, the framework’s design goals are presented, which influenced certain im

mentation choices. Following this, the detailed design description proceeds, in the

way for OO designs, by walking through the class hierarchy. Then, the means of int

ing user code with the framework is outlined. Finally, a description is given of the

platforms on which the framework has been implemented to date.

A detailed walk-through of run-time operation is deferred until Chapter 5. This

be more meaningful after the representation of CSP statements in terms of the OO

been presented in Chapter 4.
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3.1  Architectural issues

These issues have to do with the challenge of replicating the CSP computation model in a

C++ framework which is capable of being customized to act in a fashion specified by a

set of CSP statements. The sections below, for the most part do not describe the details of

our implementation, but instead highlight the theoretical issues that any form of imple-

mentation has to grapple with.

3.1.1  Process scheduling

The first critical issue concerns the run-time flow of execution in a customized frame-

work instance. To start with, the model of computation inherent in CSP maps directly into

multitasking or multithreading, where each CSP sequential process becomes an individ-

ual task or thread, having the appearance of sequential execution. There is no reason why

we cannot use conventional multithreading as the basis for our implementation, and it

will be convenient to do so. Just as the execution of CSP statements results in the cre-

ation and termination of processes, we can mirror this by dynamically creating and termi-

nating threads at run time.

Multithreading brings with it the issue of thread scheduling. We observe that in

regard to concurrent processes, CSP has an interleaving model of concurrency [Hinc95]

with a loose execution order. For example, consider the following statements:

A = p→q→z→SKIP

B = r→s→z→SKIP

C = (A||B)^{z}
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When process C causes A and B to run concurrently, there is no constraint on the order of

A’s events relative to B’s, except that they must both finish by synchronizing on z. That

is, any of these traces would satisfy the specifications: (p,q,r,s,z), (r,s,p,q,z), (p,r,

and so on.

This kind of concurrent execution is readily provided by conventional multitas

or multithreading operating systems, regardless of their policies on preemption or 

ity. In other words, one can use nonpreemptible, equal-priority threads to emulate

trace semantics. Or one can use preemptible threads with adjustable priorities, a

required CSP trace semantics will still be maintained. This means that we have a

deal of latitude in our framework’s scheduling policy.

The kind of dynamic scheduling needed to accommodate on-the-fly process

ation naturally requires more run-time overhead than static scheduling schemes 

times utilized for hard real-time systems. However, dynamic scheduling is comp

with the requirement for run-time binding of process names (see Section 3.1.4 b

with our method of integrating user code (Section 3.4), and with the general abse

timing constraints in CSP, so there is little motivation to look for alternatives.

3.1.2  Code generation targets

Our purpose is to synthesize code from CSP specifications. In an OO implement

that means creating objects. Following a typical OO design methodology, we can 

classes directly corresponding to objects in the problem domain, in this case, proc

events (including communication channels), and data items. Processes will need to

called active objects, i.e., possessing a thread of control.
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Armed with these classes, we can map out a strategy for software synthesis. We

begin by statically analyzing a set of CSP specifications to identify all object occurrences.

A customization file—actually a C++ source program—can then be generated in two

tions: (1) compile-time definitions for all passive objects, that is, events and non-t

data items; and (2) sequential code segments for all processes, packaged as o

function per process. Creation of active objects is deferred until run time in ord

implement the dynamic occurrence of parallel composition operators (| | and | | |) w

in effect, cause process spawning. These processes, as their execution flows thro

function bodies that represent CSP statements, will invoke methods on event objec

cause interprocess synchronization, channel communication, and user code invoca

take place.

3.1.3  Interprocess communication

All interprocess synchronization is required to be carried out via event rendezvous

channel communication being a special case of event handshaking. This means th

current programs specified in CSP do not have a “critical section problem,” because

is no concept of shared memory that needs to be protected. Thus, at the level of 

work customization, our implementation need not provide any explicit synchroniza

devices such as semaphores or monitors. All we have to do is replicate CSP’s barrier

[Lewi98] style of multiprocess synchronization via the behaviour of the framewo

event objects.

Unfortunately, the straightforward picture of concurrent processes heading tow

synchronization barrier will be complicated by participation in deterministic choice. 
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solution to this problem is too involved to present here—see Section 5.5 on page 

details.

If we wish to take advantage of shared memory internally in order to reduc

involvement of the OS in interprocess message passing, we can do so by providi

framework’s internal data structures with mutual exclusion locks, utilizing what

primitives the OS may provide for this purpose. This will be transparent at the lev

framework customization, i.e., the level at which software synthesis is taking place.

3.1.4  Binding of symbols

Symbols in CSP are of three categories: (1) process names, (2) event (channel) 

and (3) variable names. Both process names and event names can be subscripted

case of process definitions this is considered as taking arguments.) The binding

first two categories to compile-time objects is a troublesome area.

Because a process reference can be subscripted by a run-time value, as in r→S(n),

and several “S” variants could be defined, a dynamic mechanism is required in or

instantiate the correct version of the process. Note that this represents preparing

worst-case scenario. Even a subscripted process reference may well be unambig

its context and capable of resolution by the translator.

The subscripting of event names similarly requires a runtime mechanism to m

up subscript values. That is, if two processes are to synchronize on event a(2), then

when, say, a(n) occurs, the framework must dynamically evaluate the subscript in o

to determine whether to invoke synchronization.

Much more problematic than subscripting is the binding of event names in a
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A = p→q→z→SKIP

B = r→s→z→SKIP

C = (A||B)^{z}

When code is being generated for event z in processA or B, in the case above the transla

tor could actually analyze all three statements and conclude that it needs to genera

to invoke synchronization on z.

However, in the general case, this kind of static analysis is impractical for CS

the sample above, if we add the following statement:

START = A;B

and execution arrives at A and B via process START, then event z must not attempt to

synchronize the processes. Instead, z will be executed twice.

The difference in these two cases is found in the environments of A and B a

time. A translator cannot deal with this through static analysis alone, unless we ar

pared either to restrict the specifications that can be synthesized (the example 

including both C and START, would be rejected), or else perform a complete control fl

analysis and generate code for every possible case (i.e., generate a “C” version of A and a

“START” version, and the same for B).

CSP’s capability of event renaming (# operator) further muddies the water. This 

because the translator does not know that z in the process definition will still be “z” at

run time; it could be renamed in the process’s environment to some other event.

To preserve as far as possible the full flexibility of CSP, even though it means 
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more work, we have elected to implement a run-time environment mechanism that allows

proper dynamic binding of event names. This elaborate mechanism, called the environ-

ment stack, is detailed in Section 5.2 on page 87.

3.2  Design goals

In the architectural issues just discussed, solutions have been proposed for all the prob-

lems involved in synthesizing C++ software from CSP. It should be noted that some solu-

tions could be redesigned with a view to reducing run-time overhead, most notably the

symbol binding mechanism. However, it was judged that at this stage in the research it

was more important to preserve flexibility, and that optimization based on different trade-

offs could be performed in the future, perhaps in conjunction with transforming CSP++

into a commercial tool.

Now we turn to design goals to be applied in the context of these architectural

choices. These are: (1) run-time efficiency, (2) understandable code, and (3) portability.

The rationale for these goals and the specific design choices that they engendered will

now be discussed.

3.2.1  Run-time efficiency

Having acknowledged earlier that multithreaded C++ may be unattractive altogether for

certain highly resource-constrained systems, this is no excuse for eschewing the resource

savings that can result from some simple optimizations. With this in mind, a number of

design principles were laid down for CSP++:

1. Favour looping over recursion.
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CSP notation naturally lends itself to a recursive interpretation, as in self-referential pro-

cesses (e.g., A(i)::= c→A(i+1) ) or fixed point ( fix X. ...expression with X... ).

While elegant in concept, a conventional stack implementation of recursion can result in

an explosion of storage. Both these constructs can just as well be implemented with loop-

ing.

2. Only create processes when control truly forks.

Similarly, it is tempting to simply create a new process (in the OS sense of thread or task)

whenever a process is invoked, but this can result in a rapidly mushrooming environ-

ment. Even if 95% of the active processes are only waiting for their descendants to fin-

ish, they are still consuming memory, and, depending on process management algorithms,

may have to be constantly stepped over in scheduling queues. But much extraneous pro-

cess creation can be avoided by observing, as in the example above, that when A(i+1)

starts, there is no need to keep A(i) alive; the task running A(i) can instead be trans-

formed into A(i+1). This temptation appears again for deterministic choice: Given

a→P|b→Q|c→R, one might wish to fork three processes to concurrently try events a,

b, and c, but this can also be avoided.

3. Limit storage growth by utilizing automatic (stack) variables and putting 

heap variables under their control.

This strategy enlists the C++ compiler to do the storage management and thus avoid the

“leakage” to which user-managed schemes are often susceptible.

4. Avoid dynamic binding features whenever static binding is possible.

This is a strategy for reducing run-time computation. For example, a dynamic bin

solution for identifying agents and actions might be to assign them ID numbers, and
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look them up in a table when they are invoked. However, by giving each a unique exter-

nal symbol, the loader can be enlisted to bind them to their invocations at load time. In

the same spirit, gratuitous use of C++ virtual functions is avoided.

3.2.2  Understandable code

We tried to design the CSP++ translation to be human-readable and similar to CSP. This

is not an obvious goal, given that compilers typically produce opaque output (for

instance, the C output of AT&T’s cfront compiler is extremely cryptic). The purposes

(a) to ease the work of translation (remembering that it had to be done by hand in t

tial stages of this work), and (b) to make the generated code readily accessible for 

ing and debugging. This has been accomplished as follows:

1. relying on C++ operator overloading to create a syntax similar to CSP

2. translating each CSP action as a fresh C++ statement, thus allowing sym

bolic debuggers (e.g., gdb) to set breakpoints, single step execution, etc. 

Even when automatic translation is utilized, having understandable high-leve

put—compared, for example, with assembly statements—makes it convenient to 

that the translator is generating the C++ that one expects, and to debug any ass

user-coded procedures.

3.2.3  Portability

Here we speak of the ability to transfer the OOAF to another processor/OS combin

different from what it was originally built for. Framework portability has been enhan

by these features:
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1. CSP++ is written throughout in ANSI C++; no assembly language has been 

used.

2. A task library was selected for the initial implementation that was compati-

ble with a variety of architectures, and capable of being layered on top of 

an OS multithreading scheme.

We succeeded in changing from the AT&T task model under SunOS to POSIX

threads under Linux. Details on this port and lessons learned are discussed in Section 3.5

and Section 3.5.3, respectively.

3.3  Class hierarchy

Since this implementation was created for the csp12 dialect in order to conform with the

in-house tool mentioned in Chapter 2 above, a slight shift to csp12 terminology needs to

be made at this point: CSP processes are known as agents, and CSP events are called

actions. We further distinguish between channel actions, which communicate data, and

atomic actions, which do not. This terminology is reflected in the framework’s nomen

ture. The most noticeable idiosyncrasy in csp12 statement syntax, relative to that o

Hinchey and Jarvis [Hinc95], is that agents are defined by a “::=” operator rather than

the plain equals sign.

The hierarchy of classes used to implement the above strategy is shown in Fig

and Figure 6 on page 50, drawn using UML notation [Pool99]. Details of data mem

and methods are omitted where not necessary for the explanations below. The pr

base classes are as follows:

• Agent—embodies a process definition, subclassed from AT&T Task Library 

task class, representing a schedulable thread of control
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• Action—encompasses the two flavors of CSP events, channel actions whic

pass data, and atomic actions which do not

• Env—declarative objects used to introduce an Action reference 

(ActionRef) into the environment of a process in one of three roles: for 

synchronization (̂{a,b,…} ), hiding (\{a,b,…} ), or renaming 

(#{a=b,c=d,…} )

Each of the above is described in a subsequent section, finishing with the classes

devoted to data manipulation.

Figure 5: CSP++ non-data class hierarchy

object

– mlock: pthread_mutex
– waiters: List<task*>

+ mutexLock()
+ mutexUnlock()
+ remember( tp: task* )
+ forget( tp: task* )
+ alert()
+ this_task(): task*

task
{abstract}

– cv: pthread_cond_t

# run()
+ sleep( op: object* )
+ wait( tp: task* )

Agent

– ap: AgentProc*

+ run()

ChannelAtomic

Action ActionRef

Env

EnvSync EnvHide EnvRename

0..*

0..*
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3.3.1  Agent class

Since C++ does not contain the notion of concurrency, we have to provide it ourselves.

The AT&T task library is based on a coroutine type of thread model. That is, the u

application runs as a single (heavyweight) Unix process under SunOS, but is f

spawn as many tasks as needed—in our case, csp12 agents. Under this model, an

desiring to have a schedulable thread of control is derived from class task. The thread

body to be executed is none other than the object’s constructor. Normally in C++ the

structor is briefly given control when an object is created. But what being a “task” m

is that (a) execution of the constructor will be delayed until the task is dispatched f

first time, and (b) it will thereafter be suspended and resumed according to the ope

of scheduling primitives (task methods). This is arguably an abuse of the philosoph

C++ constructors, but without concurrency in the language, such contrivance

expected.

This model might suggest that a unique subclass must be created for each a

that it can have its own constructor. We avoid this class proliferation by making

Agent class, which is derived from task, a simple function-caller. As was mentione

above, each CSP process definition is translated into an individual function (of

AgentProc). An argument to the Agent constructor designates which AgentProc

the task is to run. When that finishes, its return code may designate another AgentProc

to succeed it. This allows execution to chain from AgentProc to AgentProc until one

ends with the special CSP SKIP process, which will terminate that Agent task and wake

up its waiting parent (also an Agent task). The source code in Appendix A provid

numerous examples.
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Combining inheritance with concurrent synchronization raises the spectre of poten-

tial “inheritance anomalies” [Mats93]. However, since our design utilizes a simple 

of inheritance in which the task base class’s synchronization methods are used “as

(i.e., without being overridden in the Agent class, and Agent has no subclasses), the

according to [Reit97] this pattern of so-called “sequential inheritance” should not en

der anomalies.

The above model had to be changed slightly for the LinuxThreads implement

which is what is depicted in Figure 5 above. The original AT&T task library ins

another class sched between object and task. Only the features of these classes th

were actually being used were reimplemented with LinuxThreads, and in the pr

sched was collapsed into task. The AT&T task constructor appropriated the sub

class constructor by “hacking” the caller’s stack and, in effect, hijacking the subclass

structor—which in C++ is normally executed after the parent’s constructor—for 

dispatch as an independent schedulable thread. Without our writing assembly cod

behaviour could not be replicated using LinuxThreads. Instead, the task body (for

the Agent constructor) was moved into a new virtual Agent::run() method. This is

similar to the technique that Java uses for thread creation [Lea96].

To summarize, whenever the thread of control must fork (as when composing 

lel or interleaved agents), one or more new Agent objects will be created. Arguments ar

passed to the generic Agent::Agent constructor indicating which AgentProc to run

and providing its arguments. The parent task would then wait for the newly created

tasks to finish before carrying on.
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3.3.2  Action class

The two subclasses, Atomic and Channel, correspond to the two types of actions

available in CSP. Operators are defined to allow function-call syntax to invoke Atomic

actions (e.g., foo(2) ), and C++-style I/O syntax to invoke Channel actions (e.g.,

chan<<1 for chan!1 output, and chan>>x for chan?x input). This is similar, though

not identical, to CSP syntax, and contributes to CSP++ source code readability.

The above classes are derived from the Action base class, which provides com-

mon methods needed for executing either kind of action. These lead to searching the

agent environment for hiding, renaming, and synchronization orders, performing multi-

agent synchronization, handling deterministic choice situations, and printing traces.

These operations are explained in Chapter 5.

As was mentioned in Section 2.4 under point 5 on page 32, actions are either

intended for internal synchronization use or for linkage to external routines. In the case

where no synchronization is ordered, nor has a corresponding external routine been sup-

plied, the Atomic and Channel classes each exhibit some primitive default behaviour:

An Atomic action will simply print its name and subscripts, Channel output will print

its name and value, and Channel input will prompt the user to type an integer (or more

than one, if a DatumVar is the receptacle). These default actions are useful as “st

for external routines until they can be written and linked in.

3.3.3  Environment classes

The three subclasses EnvSync, EnvHide, and EnvRename correspond to the three kind

of conditions that can be placed in an agent’s execution environment. For example,
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(A||B)^{c,d}\{c}#{e=f}

means:

• A and B will synchronize on actions c and d.

• Hide c (the invoker of this statement will not be aware when c occurs).

• Rename e to f.

This would result in four environment objects being pushed into the environment of

parallel composition (A||B): EnvSync(c), EnvSync(d), EnvHide(c), and

EnvRename(d,e). The action names themselves would be instances of the

ActionRef class. Since each environment object contains at least one ActionRef, it

is stored in the base class Env. EnvRename contains a second ActionRef (here, e).

EnvSync is the most complex class because it is used to implement synchroniza-

tion. Since it is subclassed from the object class of the task library, it incorporates a list

of tasks that are currently waiting on it. That is, an agent needing to wait for synchroniza-

tion with another agent adds itself to the appropriate EnvSync object’s wait list by

invoking the task method sleep(&theEnvSync), which also causes the task to b

suspended. In the LinuxThreads version, sleep() blocks the task on its own condition

variable, cv [Lewi98].

Later, when the other agent arrives at the synchronizing action, it invoke

method theEnvSync.alert(), which wakes up any waiting agents (signals th

condition variables). Note that in the AT&T task model, the task class inherits from

object. This is so that a task can be waited for (“joined”) by using the same me

nism just described.

Naturally, the manipulation of an object instance’s waiters list must be done
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in a critical section. This is ensured by making the rule that callers of remember(),

forget(), alert(), sleep(), and wait() must bracket their use by calling

mutexLock() and mutexUnlock().

The mutex object::mlock is actually a static class variable; that is, there is only

one mutex for the system. This may seem unduly heavy-handed, in terms of limiting

opportunities for concurrent execution and maximizing contention for the lock, but there

is a reason for it. Since deterministic choice in CSP may make an agent party to multiple

concurrent synchronization attempts, it is possible for an Agent object to put itself on

more than one EnvSync’s waiters list. If each object instance had its own mutex

these would all have to be acquired serially, which would open the door to circular 

ing and hence to deadlock. By having only a single mutex, deadlock is prevent

denying it a necessary condition [Silb98].

Note that in the AT&T coroutine task library, where preemption was not an is

no mutexes were required. That apparatus had to be retrofitted for the Pthreads re

mentation.

3.3.4  Data classes

This area presented a challenge in view of the design goals related to storage effi

(Section 3.2.1), the desire to allow for easy addition of data types in the future, an

determination to make CSP++ data items participate in C++ arithmetic expressions

out piling up much special-purpose code. Fortunately, OO technology is very help

these areas.

The hierarchy of data classes is shown in Figure 6. These are used to 
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Literal instances which are passed between agents.The base class for data items is

Literal. The storage for Literals is carefully managed by the container class Lit.

Literals have no public constructors; rather, when a Lit is created, it (privately) allocates

a new Literal of the appropriate subclass on the heap and stores a pointer to it. Each

Literal keeps a count in links of the Lits pointing to it. When one Lit is assigned

to another Lit, it is simply a matter of copying Literal* pointers and updating link

counts. When a link count is reduced to 0, this signifies that no more containers point to

the Literal, so the ~Literal destructor is invoked, which releases its storage. This is

essentially a garbage collection scheme.

Lits, in turn, are fully managed by the C++ compiler as automatic (stack) vari-

ables, the principle being that if the compiler manages the Lits (as blocks of code go in

and out of scope), and the Lits manage the Literals (as the Lits are created, assigned,

and destroyed), no storage leaks should be possible. Furthermore, since Literals are

heap based, their addresses are valid in any Agent task, so there is no difficulty with

interchannel data transfers.

Literals currently come in two flavours, Num (integer value) and Datum. The

Figure 6: CSP++ data class hierarchy

Num

– val: int

Literal
{abstract}

– links: int

Datum

– did: DatumID*

DatumVar

– did: DatumID*

Var
{abstract}

FreeVar

Lit

0..*

0..*

1..*

0..*
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latter complex data type is the CSP++ equivalent of csp12’s label, written as a symbolic

DatumID (char*) optionally followed by a series of subscripts in parentheses. E

subscript is a Lit, which means it points to any type of Literal, possibly another

Datum. Thus,

request( client(10), block(5), flags(buff,eof,10) )

would be a valid Datum literal. Other DatumIDs mentioned here within the request

Datum are client, block, flags, buff, and eof (the last two having no sub

scripts).

A Datum will be created in a context demanding a Lit when the pattern

“DatumID( subscripts )” is encountered. For this to work properly, a function with t

same name as the DatumID is defined to take a certain number of arguments. One s

function would be the following:

Lit request( Lit a1, Lit a2, Lit a3 ) {...}

This function would package up the three subscripts into a List<Lit>, and return a

Lit pointing to the new Datum. Part of the CSP++ translator’s work is to generate 

appropriate Datum-constructing function for each label appearing in the CSP specif

tion. One consequence of this approach is that a given label must always be used w

same number of subscripts. This is not felt to be an unreasonable restriction. 

restrictions are listed in Appendix C.

Turning from literals to variables, it is evident that Lit containers already function

as variables, since they can point to any Literal. However, it is desirable to have a sp

cial data type corresponding to the concept of “free variables” in CSP notation. Thes

be required in contexts that demand receptacles, particularly channel input. To thi
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the FreeVar class was defined as containing a Lit* pointer, and DatumVar—by

analogy to Datums—a labelled list of FreeVar* pointers. Both are derived from th

abstract base class Var, so that either will do in a context requiring a variable.

The DatumVar is troublesome to implement but highly useful. The desired beh

iour is as follows (in csp12 notation):

P ::= chan!foo(1,2,3)

Q ::= chan?foo(i,j,k)

When P and Q synchronize on channel chan, we wish to assign 1 to i, 2 to j, and 3 to

k. (The DatumIDs must match: It would be an error for P here to output bar(1).) Thus

another function named “foo” is needed for this context, one that will package, no

values in FreeVars i, j, and k (as the request function would above, since we ca

supply a standard conversion from FreeVar to Lit), but rather their FreeVar*

addresses. Here is that function:

DatumVar foo(FreeVar& a1, FreeVar& a2, FreeVar& a3) {...}

Now we can let polymorphism determine which foo datum-builder to invoke—the

Datum version or the DatumVar version—depending on the context.

A final note on data classes is that the Literal hierarchy is easily extensible: On

need only create additional subclasses of Literal—say, String or Set—and appro-

priate operators to go with them. All the rest of the data handling mechanisms shou

them in stride without any modification.
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3.4  Integration of user code

The framework provides “hooks” for linking user code to CSP actions. In the section

lowing, we first describe how this feature is used in practice, and then give a d

explanation of the underlying concepts, including participation of user procedures 

CSP choice construct.

3.4.1  Practical overview

Each Channel or Atomic action can either be used for internal synchronization (i.e

with another CSP process) or it can be linked to an external routine. Trying to do bo

with the same action is not permitted and results in a run-time error. In the latter

when the action is performed, the associated external routine is invoked with argu

corresponding to the Atomic subscripts, Channel input variables, or Channel output

values.

This technique of integration is portrayed in Figure 7, which shows how a sy

sized CSP program interacts with its external routines. Part (a) shows how the two

synthesized
CSP program

external
routines

HW components

TARGET SYSTEM

SW components

user
source
code

CSP
specs

(a)

Xc2

Xa1

Xc3

synthesized CSP program external routines

Pi concurrent agent process Xj external action routine

ak atomic sync] [
] [ cl channel I/O

(b)

c1 c2

c3

a1

a2a3
P1

P4

P3

P2

Figure 7: CSP and user code integration
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ware components are prepared from the CSP specification and user source code,

respectively, and how the latter interacts with the system’s hardware components. P

shows processes communicating and synchronizing via internal actions (c1, a2, an

Other actions (a1, c2, and c3) are used to invoke the external routines.

In the disk server case study (Section 2.1.2 on page 14), all actions shown 

CSP code are used for internal synchronization. To embed this CSP in a hardware

ronment, the dummy Disk process can simply be removed from the statement 

defines DSS,

DSS = ( (DSched || DQueue)^{enq,deq,next,empty}

|| (DCtrl || Disk)^{dio,dint} )^{dci,dco}

leaving the following:

DSS = ( (DSched || DQueue)^{enq,deq,next,empty}

|| DCtrl )^{dci,dco}

Now the dio and dint actions are available for external use. When DCtrl

reaches dio!_blk,

DCtrl = dci?start(_cl,_blk)→dio!_blk→

dint→dco!fini(_cl,_blk)→DCtrl

the external routine associated with dio will be called, which presumably starts the har

ware I/O (non-blocking). Similarly, the routine associated with dint will block awaiting

a completion interrupt (details, of course, being hardware and/or OS dependent

source code for this example is actually given in Appendix A.4ff.
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3.4.2  Conceptual model

In the CSP++ system model, the CSP specification describes the control flow of the sys-

tem in terms of concurrent processes. The user source code can be regarded as fleshing

out the semantics of those actions which interact with other hardware and software com-

ponents of the system. This model sounds fine from a superficial standpoint, but we need

to probe its semantics.

In the disk server example of the preceding section, some indication is given of the

steps used in system integration: Initially, the entire system, including agent “stubs” 

lating its environment, is described in high-level terms purely through CSP specifica

executing actions. Each action is either used for interprocess synchronization and

munication, or else it is completely abstract: just a name with no effect except th

printing a trace.

Subsequently, external procedures are introduced and linked with a subset 

actions. This may occur in the context of stripping out the agents that simulated th

tem environment (e.g., the Disk agent above). When that occurs, some actions (like dio

and dint) that were initially used for interprocess synchronization become abstra

the specification. Any abstract action is a candidate for linking with an external a

procedure.

Now, the key point to observe is that any action that has always been abstract (i.e.

never used for synchronization) can be linked with impunity to an external procedur

does anything at all (save, of course, for communicating with another CSP-specifie

cess). Such a procedure can engage in I/O and even block its thread without affect
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semantics of the model-checked specification. In contrast, an action that has been used

for synchronization (both dio and dint fall into this category), must continue to obey

the semantics of synchronization. This should not be surprising, because such actions are

in reality being used to synchronize a CSP process with the external system environment.

That is to say, dio and dint were originally synchronizing agent DCtrl with dummy

agent Disk; now they are synchronizing DCtrl with the physical disk hardware (or pos-

sibly with system calls that perform the I/O instructions). Naturally, the synchronization

semantics cannot change.

The place where this model has tricky implications, is in the special demands put on

an external procedure when its associated CSP action is participating in a deterministic

choice construct. As will be shown in detail in Section 5.5, a choice statement such as,

a→E | b→F

means that action a has to be tried first, and if it doesn’t succeed, then b is tried. If neither

succeeds, the run-time mechanism lies in wait for a future, delayed success from

action. This implies that an external procedure which is going to participate in ch

must be capable of being “tried,” of setting up an asynchronous call-back that inform

run-time mechanism of a delayed success, and of being cancelled when another

succeeds first.

The above description hints that the interface between CSP++ and the ex

action procedures is not trivial. On the other hand, neither are such requirements un

dented: After all, the OS uses just such a regime whenever it sets up asynchrono

gets a call-back from an interrupt handler, and cancels an I/O request due to a timeo
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In the current version of CSP++, only the most fundamental part of this interface

has been implemented. For actions that do not take part in choice, this limitation is of no

practical consequence. For actions that do take part in choice, the effect of the current

limited implementation is that an action is deemed to succeed as soon as its external pro-

cedure returns to the framework.

Nonetheless, one can still set up a choice situation with external procedures by

embedding their actions in concurrent agents. For example, suppose one wants to write

the following agent:

P ::= xa→Q | xb→R

where xa and xb are linked with external procedures. In the current version of CSP++,

control will stall on xa until it returns, then pass to agent Q, and xb will never be tried.

But this variation should have the desired effect:

Pa ::= xa→dida→SKIP

Pb ::= xb→didb→SKIP

Pc ::= dida→Q | didb→R

P ::= ( Pc || ( Pa|||Pb) )^{dida,didb}

Additional internal actions, dida and didb, have been created to report the occurrence

of external actions xa and xb, and agent Pc has been set up to synchronize the choice.

Completion of the external procedure interface, with full attention to deterministic

choice, is listed for future work (see Section 7.2.2).
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3.5  Platforms

The first version of CSP++ was created on the SunOS platform that was readily available

at the time. In preparing this research for publication [Gard99b], which entailed distribut-

ing the source code, it was felt that readers would better appreciate code they had a rea-

sonable chance of running, so to that end a more common platform was targeted.

Furthermore, the exercise of porting would offer an excellent opportunity to find out

whether the OOAF approach would prove portable or not. These two platforms are

described below.

3.5.1  AT&T cfront on SunOS with USL coroutines

Working on a Sun 4 (SunOS Version 4 Unix), we wanted a C++ compiler that came with

the following features: (1) some implementation of multithreading or multitasking; and

(2) a class library with template support for basic data structures (linked list, bit vector,

and so on). These needs were filled by AT&T C++ Version 3.02 (cfront, an early C++

compiler that emitted C code) and its associated USL Standard Components Library (SC-

3.0). This library includes an OO multitasking model.

Things were not quite this simple though, because it turned out that the USL task

library ironically did not support the Sun 4 architecture that we were compiling on. Fortu-

nately, the necessary object files were found in the Sun C++ distribution (SC1.0, in reality

an older version of cfront, V2.1), although that compiler had to be rejected due to its

inability to handle templates.

Thus, V1.0 of CSP++ was built using the task.h header (slightly modified to fix an

external symbol problem) and libtask.a from Sun’s SC1.0 library, the rest of the USL
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3.0 library (apart from task.h), and the AT&T C++ compiler. This version includes the

full OOAF, but not the CSP-to-C++ translator, since at that time translation was still

being carried out by hand.

3.5.2  GNU g++ on Red Hat Linux with Pthreads

By 1999, AT&T cfront was essentially obsolete and its Standard Components library had

been superseded by the C++ Standard Template Library or STL [Aust99]. We decided to

attempt a port of the V1.0 C++ code to GNU g++ (ecgs version 2.90.29) on Red Hat

Linux 5.2, a popular x86 version of Linux. g++ includes the STL, which we used in the

translator, cspt (see Chapter 6).

But what were we to do with V1.0’s dependency on the USL Standard Compo

and task libraries? Mindful of the programmer’s maxim, “Never change code that wo

it was considered that substituting STL templates into the existing framework code

risky. Therefore, we simply copied the few SC-3.0 files that we needed and recom

them with g++. This proved entirely effective, if not wholly satisfactory from a “hou

keeping” standpoint.

However, this simple approach—recompiling with g++ for Linux—could not wo

for the task library since it would have meant porting assembly language from the S

the PC. The AT&T task model uses assembly language to modify the stack when

subclass constructor inheriting from class task is invoked (see Section 3.3.1 on pag

45). Assembly language is used again for swapping stacks during task reschedulin

were determined not to use assembly code due to its adverse impact on portability.

Instead, we opted to switch to the POSIX threads (Pthreads) model, LinuxTh
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[LXT], that came with Red Hat Linux. The task base class was reimplemented using

calls to Pthreads routines, and the framework code which inherits from task was very

largely unchanged.

AT&T tasks are actually coroutines. That is, they have no concept of priorities or

preemption—a task runs until it voluntarily yields control to another task. This is kn

as the “many-to-one” model, meaning that many threads are swapped on and off 

kernel-scheduled entity (this could be a single heavyweight Unix process in SunO

example). That is to say, preemption of a coroutine by another kernel-scheduled 

can occur, and in Unix does so constantly (e.g., servicing interrupts), but this is of no

sequence to the set of coroutines (aside from timing consequences, naturally).

POSIX threads can be implemented as coroutines, but need not be [Lewi98

LinuxThreads version of Pthreads is built on lightweight kernel-scheduled threads, 

includes the possibility of thread preemption. This is known as the “one-to-one” mod

Changing from coroutines to preemptible threads could not be totally transp

with respect to the framework code’s inherited classes; though, interestingly, the re

would have been so. This is because preemptible threads represents the more 

case, in regards to requirements for locking resources that are shared among m

threads.

The Pthreads version of CSP++ is publicly available as noted in Section

(Table 4 on page 116). This version can also be compiled and run on Solaris for th

SPARC architecture without modification.
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3.5.3  Lessons from Linux port

To fairly evaluate the framework’s degree of portability in the rather extreme circ

stance of changing the task model, we should first clarify expectations. In order of

portable to least portable, the following conditions would obtain:

1. Totally portability: no source code changes required whatsoever.

2. Code changes in the task library (classes task and object), but not in 

the framework classes.

3. Code changes in the framework classes, but not in customization 

(expressed as the translation algorithms of Chapter 4).

4. Code changes throughout.

It should go without saying that “changes” here does not refer to the dubious pract

peppering the source code with OS-dependent #ifdef statements. That sort of illusory

“portability” is not what we had in mind.

Level 1 was never expected, so level 2 would have been ideal. The task librar

“fair game” for any kind of changes as it originated in the USL library as a self-conta

scheduler for a threadless OS, and was being reengineered as a thin interface to

threads.

An outline of the steps taken in porting CSP++ from AT&T coroutines

LinuxThreads has already been presented in Sections 3.3.1, 3.3.3, and 3.5.2. In sh

introduction of thread preemption made it necessary to institute a locking disciplin

shared data structures. As far as possible, these changes were absorbed within 

and object classes (level 2), but some slight changes to the Agent and Action classe

unavoidable. In any event, no changes were necessitated to the translation algo
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which is the main thing if affording a significant degree of portability.

It could be argued that the locking of shared data structures is de rigueur for concur-

rent programming and should have been part of the original version. If we accepted this

argument, then the changes above could be considered a remediation of original deficien-

cies, and portability could then be assessed at or near level 2.

However, the argument is simplistic: First, coroutines provide a sort of security

blanket, or as Lewis calls it, a “superior programming paradigm” [Lewi98:62], bec

one does not have to worry about the consequences of something that cannot

namely preemption. Second, the point is moot in any case, because the AT&T task

provided no locking mechanisms (no mutexes, no semaphores, no monitors), no

primitives from which they could be constructed. There was never any way to incorp

these features in the original design of CSP++, working within the AT&T task model.

The above comments might produce the impression that switching from the c

tines model to kernel-scheduled threads should be regarded a necessary evil. Tha

at all the case. Quite to the contrary, the latter model gives external procedures th

dom to block with impunity, say for I/O, without causing scheduling of the entire CS

system to freeze. This is a major advantage over the many-to-one scheduling mode

Having achieved success with the Linux port, we tried to recompile the new

sion, still using g++, on a Sun workstation under Solaris, which also supports Pth

This turned out to be a true “level 1” port, and worked immediately. Ironically, that re

victory reveals less about CSP++’s portability than the more hard-won struggle to c

the task model. Maybe the Solaris port was “too easy” and would have worked wh
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OOAF technology was used or not. In contrast, the LinuxThreads port revealed the

boundary between OS-dependent and OS-independent code, and as hoped, the boundary

fell, to an overwhelming extent, at the border between the framework classes and the task

library.

This chapter has described the basic ingredients of the CSP++ framework, which

are sufficient to build executable and extensible specifications. The next chapter details

how each construct in CSP can be translated into C++ code that creates or invokes these

framework elements.
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CHAPTER 4

Representation of CSP Statements in CSP++Chapter 4

Given the CSP++ framework described in the previous chapter, customizing it for a par-

ticular CSP specification is a matter of systematically translating each csp12 construct

into C++ code that invokes the elements of the OOAF. The method of doing this is one of

the chief results of this research.

Chapter 4 states the rules for this translation, which can be manually or automati-

cally carried out. Naturally, manual translation is tedious and error-prone, so an auto-

matic translation tool forms an indispensable part of the CSP++ design flow. This

translator, called cspt, is sketched in this chapter, with the full design details appearing in

Appendix D.

Some csp12 constructs have not been implemented yet, due to some ambiguities  of

interpretation that will be explained, and some only partially implemented. These are

listed at the end.

4.1  Naming conventions

Most names—variables, actions, and datums—can be copied directly from their 

form; however, agents need more elaborate conventions because of multiple defin

The issue of run-time binding also arises for agents having variable arguments. F

generated names are needed as handles on actions that will be pushed on the e

ment stack to implement synchronization, hiding, and renaming.
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A comprehensive chart of all translator-generated names is given in Table 1. 

4.1.1  AgentProc signatures

Consider, a CSP specification containing the following agent definitions:

P(0,i) ::= ...

P(1,i) ::= ...

These two must be translated into separate C++ procedures, called AgentProcs, so they

need different names.

AgentProcs will be named according to their argument signature. The two above

would be P_c0v and P_c1v, where “c” indicates a constant argument (with its val

following) and “v” a variable argument. This allows the translator to set up the right i

cation depending on the arguments used. The empty string stands for a nil argumen

A special signature of s1, s2, etc., is affixed for subagents that are created fr

Pattern Usage
Section 
References

Where π = agent name:
π_sig AgentProc name; sig = argument signature 4.1.1

π_sig_v Globalized FreeVar instance; v = variable name 4.3.5

AG_π_sig AgentID instance 4.2.2

π_sn AgentProc name of nth extracted subagent 4.1.1, 4.3.5

π_x Array of ints: [arg index, value] descriptor pairs 4.1.2

π_y Array of AgentProc* 4.1.2

π_b AgentBinder instance 4.1.2

Where κ = action name:
κ_r ActionRef instance for Action κ 4.1.3

κ_r_subs ActionRef for subscripted Atomic κ(subs) 4.1.3

κ_p Preprocessor symbol, name of ActionProc 4.2.2

Where δ = DatumVar name:
δ_dv DatumVar temporary for Channel input 4.3.9

Table 1: Translator-generated names
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extracted subexpressions (see Section 4.2.3 below). Subagents are never subject to run-

time binding.

4.1.2  Agent binders

Static binding is the preferred way to match arguments with the appropriate signature.

However, in the case of agents with constant argument definitions being invoked with

variable arguments, run-time binding is required. That is, which signature above matches

the invocation of P below?

Q ::= chan?n→P(n,0)

This depends on the value of n, which can only be determined at run time.

Agents requiring run-time binding must supply a table of instructions for the binder

to consult. A detailed explanation of binding tables is given in Section 5.1 on page 85, but

in general the contents are pairs of numbers [i, v], where i is the index of a constant argu-

ment, and v is its integer value. The two P definitions above would be described by [0, 0],

meaning “arg0 = 0”, and [0, 1], “arg0 = 1”. In addition to a table of argument descripto

another table of AgentProc* pointers is supplied. Then if a descriptor in the jth set of

pairs matches the given arguments, the jth AgentProc will be called.

The pair of tables described above are declared as follows:

static int agent_x[] = { descriptor pairs };

static AgentProc* agent_y[] = { AgentProcs };

Next an AgentBinder object is declared in order to associate the tables with an a

name:

static AgentBinder
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agent_b( agent_x, agent_y, "agent", num args );

In the example above, these items would be named P_x, P_y, and P_b.

4.1.3  Action references

ActionRef (Action.h) objects are used to prepare Action names for pushing on the

environment stack. An ActionRef for an Atomic must give the number of subscripts

followed by their (integer) values. The names of these objects are generated in global

scope since action names are themselves global. There can be more ActionRefs than

Actions, because differently subscripted references to the same Atomic name are

treated as referring to different actions.

4.2  Translated source code

The cspt translator (see Appendix D) operates in two phases: first, a combined lexical and

syntax phase which scans the csp12 input file and produces a syntax tree; second, a code

generation phase that walks the tree and produces a C++ output file. In addition to the

syntax tree, the other data structures that persist between phases are the symbol tables.

The C++ source file resulting from translation has four sections: header file inclu-

sions, global declarations, translated agent bodies, and finally the main program. These

are described next.

4.2.1  Header files

This section calls up the C++ “.h” files for the CSP++ class definitions. They are L

Agent.h, Action.h, and main.h. In the LinuxThreads version, we also include Listio.c

List.c from the USL Standard Component Library, as explained in Note 1 on Page 1
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4.2.2  Declarations

In order to accommodate forward references within agent bodies, all non-local symbols

must be collected by the translator and emitted here. Another purpose is to associate com-

pile-time names with ASCII strings, so that run-time diagnostics can print the names of

the offending agents, actions, and datums. These declarations fall into three categories:

1. Agent definitions: The AGENTDEF macro (Agent.h) is used to declare each 

AgentProc signature. Returning to the example in Section 4.1.1 above, the 

two definitions of P would be generated as follows:

AGENTDEF(P_c0v, "P", 1);
AGENTDEF(P_c1v, "P", 1);

where 1 here specifies the number of arguments. AGENTDEF generates a 

declaration of the AgentProc, for forward referencing purposes. The 

macro also secretly defines a symbol of the form AG_signature, of type 

AgentID, to point to the agent’s ASCII name. 

2. Action definitions: The class names Atomic and Channel (Action.h) are 

used as in these examples:

Atomic nak("nak");
Atomic ack("ack", 1);
Channel next("next");

where 1 specifies that the Atomic has that number of subscripts (e.g., 

ack(5) ). If an external routine is being linked with a CSP action, it needs

to be declared as an external of type ActionProc, and inserted in the 

action definition:

extern ActionProc buttonProc;
Atomic button("button", 0, buttonProc);

To avoid having to hardcode routine names like buttonProc into CSP 

specifications, the translator substitutes a preprocessor symbol of the form

action_p. If the symbol is defined at compile time, its value is used for the 

ActionProc name; otherwise, no routine is linked in.
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3. Datum definitions: The DATUMDEF macros (Lit.h) are used to declare each 

DatumID:

DATUMDEF(foo, 0);
DATUMDEF(bar, 1);

where, again, the number specifies the subscripts. Then one could later 

write in an agent body, foo (no subscripts) or bar(0), bar(foo), 

bar(bar(10)), and so on.

4.2.3  Agent bodies

Each CSP agent body must be translated into one or more AgentProcs, depending on

whether or not complex subexpressions are present. For convenience, the AGENTPROC

macro (Agent.h) is provided, so we have:

AGENTPROC( P_c0v )

... translated body goes here ...

}

This macro includes code to establish the agent’s identity as “P” (by referencin

AgentID) for the sake of any diagnostics that may print out while it is executing.

4.2.4  Main program

The last section is the standard C++ main program:

main( int argc, char* argv[] )

{

MAIN( argc, argv, top );

}

The MAIN macro processes any command line options (see Appendix B.4) and crea

Agent task to run the top-level AgentProc top.
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One reason that “main” is coded here within the translated source is because

the program is executed in a graphical debugger (e.g., xxgdb or ddd), main’s source file

is automatically displayed. The agent body code will thus appear in front of the prog

mer, which is convenient for setting breakpoints in the translated code.

4.3  Agent body translations

In the following code samples, the shaded column is CSP notation (csp12) and th

column is the corresponding CSP++.

4.3.1  Agent arguments and free variables

Variable names in csp12 start with an underscore. C++ can accept this, so the nam

be copied directly.

In this example, _x is the 0th argument of agent P. The #define allows the agent

body to refer to it by its name _x. The macro ARG (Agent.h) generates code to referen

the 0th Lit in the Agent’s argument array. A complementary #undef is needed to avoid

interfering with any other uses of the symbol _x later in the program.

This CSP statement has a single free variable. All free variables should be de

with class FreeVar at the start of the block.

P(_x) ::= chan?_y→foo(_x+_y) ... #define _x ARG(0)
FreeVar _y;

//rest of body

#undef _x
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4.3.2  Prefix

This basic invocation of actions comes in two flavours, Atomic and Channel.

Each prefix action becomes a separate C++ statement. “>>” is input, “<<” is output.

ables in expressions are automatically converted to integers due to the provision o

tual int() operator in the Literal base class. (There will be a runtime error if th

Literal type is not Num). Unsubscripted Atomics take an empty function argumen

list.

4.3.3  Environment stack

Action names for hiding, synchronizing, and renaming need to be pushed ont

Agent’s environment stack (more about this stack in the chapter on run-time oper

Section 5.2 on page 87).

As explained in Section 4.1.3 above, ActionRefs appear in the global declara

P(_x) ::= chan?_y→foo(_x+_y)→a ... #define _x ARG(0)
FreeVar _y;

char>>_y;
foo(_x+_y);
a();
//rest of body

Q#{foo=bar} static ActionRef foo_r(foo),
bar_r(bar);

foo_r.rename( bar_r );

//invoke Q

Agent::popEnv( 1 );

((S||T)
^{a(6),b})\{b}

static ActionRef a_r_6(a(1,6)),
b_r(b);

b_r.hide();
a_r_6.sync();
b_r.sync();

//invoke S||T

Agent::popEnv( 3 );
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scripted) Atomic action.

Three classes which are not seen above, EnvHide, EnvSync, and EnvRename

(Agent.h), are instantiated and linked onto the stack of the current Agent when the

hide(), sync(), and rename(ActionRef) methods of ActionRef are invoked.

An inverse method, Agent::popEnv(n), removes and deletes a specified number of

objects. Note that popping is not needed at the logical end of an agent body (see next sec-

tion).

4.3.4  Agent constants

Agent bodies often end with an agent constant. In this case, the agent can chain to the

next one, which causes the resources of the present task to be reused.

The CHAINn macro (Agent.h) hands over control to another AgentProc, after

reusing its own argument array to store n arguments.

Why needn’t Q’s environment be explicitly popped in this case? The answer is 

Q will either chain to another agent—in which case the renaming {foo=bar} should

still apply to its dynamic descendants—or else it will exit with SKIP. That will terminate

the Agent task, cleaning up its branch of the environment stack in the process.

In the first example above, we assume the translator is able to statically dete

P(_x) ::= Q(_x)#{foo=bar} #define _x ARG(0)

//push Q’s environment

CHAIN1( Q_, _x );

Z(_x) ::= a →L(1,_x) #define _x ARG(1)

a();
CHAIN2( L_b, 1, _x );
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which AgentProc to invoke. But for the second, suppose three L agents are known:

L(1, 1) ::= ...

L(1, 2) ::= ...

L(2, _i) ::= ...

Their AgentProc signatures would be L_c1c1, L_c1c2, and L_c2v. Since the value

of _x is not available at compile time, run-time binding is needed. Thus the translator

codes CHAIN2(L_b,...), referencing the AgentBinder object defined for L

instead of one of the three fixed AgentProcs. The CHAIN2  macro invokes

bind(args) on L_b to obtain the correct AgentProc, and then the transfer of control

proceeds in the usual way.

4.3.5  Composition (parallel, subordination, and interleaving)

In csp12, parallel composition (| |) requires an explicit synchronization list, in that the tool

makes no attempt to infer the agents’ common alphabet. This is also true of subo

tion (P//Q), where a sync list equal to αP (alphabet of P) must be supplied. Similarly,

interleaving (| | |) is just composition with no synchronization list. Thus, it suffices to 

dle the general parallel case. 

The Agent::compose(m) method prepares an m-way process fork. Each

STARTn macro (Agent.h) creates a new Agent task, and specifies the AgentProc sig-

nature (with n arguments) that it should start running. The second argument is a branch

R ::= ((S||T(2))
^{a(6),b})\{b}

//push environment

Agent::compose( 2 );

Agent* a1=START0( S_, 0 );
Agent* a2=START1( T_, 1, 2 );

WAIT(a1);
WAIT(a2);
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number (from 0 to m–1) to associate with that new Agent. It will apply to any synchro-

nization attempts originating in that branch of the dynamic process tree. The ret

Agent* pointer allows the WAIT macro to suspend the present task (by invoking this-

agent.wait(Agent*) ) until the descendant terminates. WAIT also deletes the Agen

upon wake up.

Things become more complicated when expressions are composed, rather than sim

ple agent names: 

In such cases, the expressions need to be extracted as subagents and translated into

separate AgentProcs. (We use the signature “_sn” to indicate translator-extracted sub

agents.) Care must be taken to ensure that such subagents have access to the a

and variables of the parent. Part of this can be achieved by passing the parent’s

ments (in this case, _x) to the subagent. Variables referenced in subagents are de

by promoting them to global scope and generating unique names (prefixed with th

R(_x) ::=
(a→P(_x)||b→Q)^{c}

AGENTPROC( R_s1 )
#define _x ARG(0)

a();
CHAIN1( P_v, _x );

#undef _x
}

AGENTPROC( R_s2 )
b();
CHAIN0( Q_ );

}

AGENTPROC( R_v )
#define _x ARG(0)

//push environment

Agent::compose( 2 );

Agent* a1=START1( R_s1, 0, _x );
Agent* a2=START0( R_s2, 1 );

WAIT(a1);
WAIT(a2);

#undef _x
}
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4.3.6  Sequential composition

In sequential composition it is necessary for the parent Agent to stay alive while all but

the final Agent are executing: 

In this example, S’s environment must be popped before chaining to T.

4.3.7  Loop

Section 4.3.4 dealt with the case where agent bodies end with an agent constant

constant is preceded by the “loop” operator (@), it must be treated differently.

Here the loop is translated as an infinite “while” loop. Each time a new Q agent termi-

nates, the loop is recycled and another Q created.

This implementation is not particularly efficient. It would be preferable to havQ

do its own looping, since that would not involve the wasteful creation/deletion of Agent

tasks. This could be accomplished by passing a “loop flag” to the Agent constructor. If

the flag is found to be set, the Agent must save its initial AgentProc (here Q_v) and

R ::= S#{foo=bar}; T //push S’s environment

Agent::compose( 1 );
Agent* a1=START0( S_, 0 );
WAIT(a1);

Agent::popEnv( 1 );

CHAIN0( T_ );

P ::= a?_x →@Q(_x) a>>_x;

while(1) {

Agent::compose( 1 );
Agent* a1=START1( Q_v, 0, _x);
WAIT(a1);

}
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argument array (including _x) so that it can restart execution when its body finishes.

4.3.8  Fixed point

This is a shorthand csp12 way of putting an agent body in-line. The simple case is where

the fixed name comes at the logical end of the expression:

A fixed point expression can be handled as an infinite “while” loop (as oppose

recursion). Reinvocations of the fixed name are treated as escaping back to the lo

such constructs should specify a means of termination, done in this example by det

istic choice).

It is obvious that the translation above is inadequate for expressions where the

name is embedded. An example (not necessarily useful) would be:

R ::= a→fix X.( b→S | c→(X|||Y) | d→(X;Z) )

These invocations of X need to be handled by new agents. In such cases, the tran

should extract the expression as a subagent (say an AgentProc called R_s1 in this

case) so it can be STARTed. This would result in the following:

R ::= a→R_s1

R_s1 ::= b→S | c→(R_s1|||Y) | d→(R_s1;Z)

R ::= a→
fix X.(c→X | b→S)

a();

while(1) {

Agent::startDChoice(2);
c();
b();

switch(Agent::whichDChoice())
{

case 0: continue;

case 1: CHAIN0(S_);
}

}
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As with subagents extracted for composition (Section 4.3.5), access to the pa

arguments and variables must be provided.

4.3.9  Deterministic choice

Such choices are specified in terms of several alternative prefixes. The choice who

tial action succeeds first is taken, and the alternatives are abandoned.

This is the most elaborate construct in CSP++. T

Agent::startDChoice(n) method prepares for an n-way choice. The initial actions

of the n prefixes are tried in turn until one succeeds, either because synchronization

another agent was achieved on that action, or, for external actions, because the e

routine returned a success code. When Agent::whichDChoice() is invoked, it

checks to see whether any of the preceding actions succeeded. If not, it suspen

Agent until some success is signalled. (The signalling Agent will also have cancelled

any outstanding actions which were still waiting.) Finally, it returns a choice numbe

the switch statement selects the corresponding case.

Note the implications of the above behaviour on the channel input construct 

lated into C++ as a>>_x. If this statement were being executed outside the context of

P ::= a?_x→Q(_x) |
b→d→R | c!foo→S

Agent::startDChoice( 3 );

a>>_x;
b();
c<<foo;

switch( Agent::whichDChoice() )
{

case 0: CHAIN1( Q_v, _x );

case 1:
d();
CHAIN0( R_ );

case 2: CHAIN0( S_ );

}
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deterministic choice, the call to the extraction (>>) operator would not return until syn-

chronization and data transfer had completed. In contrast, inside a choice construct the

operator returns immediately. This can be a problem, because any temporaries which the

C++ compiler generates on the stack will go out of scope as soon as the statement is fin-

ished.

In practice, this only causes trouble for channel input into a DatumVar, for exam-

ple, a>>foo(_x) instead of a>>_x. Recall that foo here is actually a function call that

returns a DatumVar (see Section 3.3.4 on page 49). The stack temporary generated for

foo’s return value can be captured in block scope by declaring a DatumVar explicitly,

thus:

Agent::startDChoice( 3 );

DatumVar foo_dv = foo(_x);

a>>foo_dv;

...

In this example, foo_dv is an explicit translator temporary which will not go out 

scope until the surrounding block terminates, by which time the executio

whichDChoice() will have ensured that the data transfer (here, into variable _x) is

complete.

4.3.10  Conditionals

Conditional expressions can be translated directly into C++, taking care to substitu

latter’s version of comparison operators, csp12’s syntax being slight different:

if _x = 1 then P if (_x == 1) {

CHAIN0( P_ );
}
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Also see Section 4.4.1 on page 80 concerning the use of conditionals with general choice.

4.3.11  Agent termination

Agents may explicitly terminate in any of three ways:

1. By chaining to another AgentProc (discussed above in Section 4.3.4).

2. By executing SKIP. This is translated as the END_AGENT macro 

(Agent.h), which simply returns zero. This value terminates the Agent 

task, which will wake up a waiting parent.

3. By executing STOP. This is translated as a call to Agent::stop(). A 

dump of all active Agent tasks is printed, and then the program exits to 

the operating system.

Otherwise, an agent’s last act will be to start one or more new Agents. In that case,

implicit termination, as if SKIP had been executed, will occur when those descend

Agents themselves terminate.

4.3.12  Arithmetic expressions

csp12 operators must be translated to their C++ equivalents, as shown in the chart 

Division does not appear in the csp12 syntax definition (this may simply be a typogr

cal error), but if the standard “/” operator is coded in a specification, it can be e

mapped to the C++ division operator.

csp12 C++

+ – * same

= <> == !=

< <= > >= same

mod %

not available /
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4.3.13  Pipe

This derived operator (  or |>) is implemented as in csp12, that is, by expansion to primi-

tive operators. That is, P |> Q expands to:

(((P#{right=comm})||Q#{left=comm}))^{comm})\{comm}

Agents being “pipelined” must have left and right channels for this to be effective

P’s right channel is synchronized with Q’s left channel by renaming them both t

comm, which is then hidden from the enclosing environment.

4.4  Partially implemented constructs

The implementation listed in this section is not considered complete. Its nondeterm

is problematic and more study is needed. Generally speaking, nondeterminism c

useful for keeping specifications at a high level of abstraction, but its semantics fro

standpoint of code generation are open to debate.

4.4.1  General choice

Also called nondeterministic choice, a prominent use is in conjunction with conditi

expressions.

Aside from this usage, the desired semantics seems to be a kind of extended

ministic choice. Consider the following sample:

P ::= a→(Q + R + S)

R(_x) ::= (if _x = 1 then P) + Q if (_x == 1) {

CHAIN0( P_ );
}

CHAIN0( Q_ );
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[Chen94] explains that Q, R, and S may either have a common initial action, or they may

not. If not, we will choose among them based on the agent whose initial action occurs

first. In effect, we wish to wait until one of the agents Q, R, or S has gotten started, and

then abandon the other two. This could be handled very similarly to deterministic choice.

Instead of waiting locally for the first of several actions to complete, we can start three

Agents, also setting flags so that the first successful action in any of them will cause the

other two to be cancelled. This presents a messier unwinding problem than deterministic

choice, but it should still be possible to implement.

On the other hand, if Q, R, and S do have a common initial action, we should

choose an agent “nondeterministically.” In practice, we could still follow the behav

described above. Then what will actually happen is that the first agent listed in th

expression will have priority. This may be a satisfactory implementation, though it i

truly “nondeterministic.”

4.5  Future constructs

Constructs listed in this section caused difficulties. Since they are special features

csp12 dialect, they are left for future implementation.

4.5.1  Menu

This construct is employed in the following sample:

_x:{a,b,c}→P(_x)

The idea is that some action in the menu {a,b,c} must be taken. Its identity is recorde

in variable _x, which value may be used in succeeding agents or expressions. One
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cation is menus of numerically-named actions—e.g., a list of coin denomination

{1,5,10,25} inserted into a vending machine—the intention being to operate on the 

ber in a subsequent arithmetic expression, or, as in the sample above, to use its v

an argument or subscript.

CSP++ does not currently allow numerically-named actions (they would no

legal C++ identifiers). If this is all that is desired, we could define a new subcla

Atomic, say NumAtomic. The translator could deal with the sample above as follow

NumAtomic na_1(1), na_5(5), na_10(10), na_25(25);

FreeVar _x;

Agent::startDChoice( 4 );

na_1();

na_5();

na_10();

na_25();

switch ( Agent::whichDChoice() ) {

case 0: _x=na_1; break;

case 1: _x=na_5; break;

case 2: _x=na_10; break;

case 3: _x=na_25; break;

}

For this to work, there would need to be defined a NumAtomic to Lit conversion that

produces the numeric value coded in the NumAtomic declaration.

If something more elaborate than numerically-named actions is wanted, the

most useful semantics is not obvious. Therefore this construct is left for further stud

future implementation.
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4.5.2  Independent actions 

This is another way of combining actions using “&” that is defined in csp12:

(a & b & c)→P

The meaning is that all the actions—a, b, and c—must be taken independently, i.e.,

particular order, before going on to P. This is similar to the prefix expression,

a→b→c→P

except that in the latter the order is defined. Two ways of implementing independe

CSP++ are the following:

1. Extract the actions as Agent subexpressions and translate as interleaving:

( a→SKIP ||| b→SKIP ||| c→SKIP )→P

2. Handle similarly to deterministic choice, but instead of having the first-

occurring action cancel the rest, waiting would continue until all had com-

pleted. For example:

Agent::startIndep( 3 );

a();

b();

c();

Agent::waitIndep();

CHAIN0( P_ );

The first approach is crude (in that it involves starting tasks that are not 

required), but it could be done within existing CSP++. The latter approach, essent

multiprocess synchronization technique known as a “barrier” [Lewi98], is probably p

erable.

Now that the method of statically translating CSP constructs into OOAF terms
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been explained, we are ready to describe in more detail the dynamic operation of the

framework’s components at run time. This is the subject of the next chapter.
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CHAPTER 5

CSP++ Run-time Operation Chapter 5

Execution of a C++ program commences at the main() function, which for CSP++ han-

dles any command line arguments (see Appendix B.4) and then simply creates the SYS

Agent.  Depending on how the user has specified SYS, it will in turn spawn other

Agents and these will invoke actions, including their associated external routines.

To fully appreciate how the framework objects—chiefly Agent and Action

instances—collaborate in executing a translated specification, several areas need

elucidated:

• the algorithm used for run-time binding of variable-argument agent 

invocations to the proper one of several candidate definitions

• the run-time stack structure that enables action execution to take place in a 

multi-layered environment of synchronization lists, action renaming, and 

concealment

• the means of synchronizing multiple concurrent agents on a common action

• the mechanism used to implement deterministic choice

These vital operations, which form the heart of our implementation of CSP, are described

in the following sections.

5.1  Agent binding

As explained in Section 4.1.2 above, the bind(args) method of an AgentBinder

object attempts to choose from an array of AgentProcs (the so-called y array) by means
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of matching input arguments with the descriptors in the corresponding x array. Here we

enlarge on the earlier sketchy explanation with the aid of a fuller example:

Suppose that there are three definitions of agent P: P(1,1), P(1,2), and

P(2,n). Now suppose there is an agent defined as follows:

Q ::= foo?bar(_i,_j)→P(_i,_j)

Which P definition to chain to is impossible for the translator to decide, so it codes a call

to P’s AgentBinder, P_b. The two arrays generated along with P_b will look like

this:

int P_x[] = {

0,1, 1,1, AB_CALL,

0,1, 1,2, AB_CALL,

0,2, AB_CALL,

AB_END };

AgentProc* P_y[] = { P_c1c1, P_c1c2, P_c2v };

P_x’s initialization has been broken out here by rows to show the purpose of 

integer more clearly. The first row is a description of the arguments of the first eleme

P_y , that is, of P_c1c1, the AgentProc signature of P(1,1). Within each pair of

numbers, the first is an argument index (from 0) and the second is its required value

the first row means “arg 0 is 1 and arg 1 is 1.” The binder goes along the first row 

paring the requirements with the actual values of input arguments _i and _j. If it reaches

the symbol AB_CALL (an enumerated data type) without finding a contradiction

chooses the first AgentProc* in P_y. But if an argument does not match, it skips pa

AB_CALL and tries the next row. If it manages to reach AB_END, it means that the input

arguments did not match any of the descriptions, so a run-time error will be issued.



87

n

by the

reating

 of the

-

veral

 printed

ch

r-
Some agents, like P(2,n) above, have a mixture of constant and variable argu-

ments. In that case, their x descriptors do not mention the variable arguments, the effect

being that any input value in the variable positions will match. Note that agent definitions

must not have ambiguously overlapping arguments; that is, it would be an error to also

define P(n,2), since it would overlap both P(1,2) and P(2,n).

5.2  Environment stack

What exactly happens when an action is executed by an agent? In CSP that depends, not

only on the action’s name, but on its environment. That environment is the accumulatio

of the concealment, renaming, and synchronization lists that have been piled up 

immediate agent as well as all its ancestors. Since agent descent (i.e., parents c

child tasks) in CSP is dynamic, not static, a run-time stack is needed to keep track

environment.

The environment stack, also called the agent descent tree, adds a leaf node when

ever a new Agent is created. Figure 8 is a snapshot of the tree after the first se

agents of the disk server case study have been started by the two CSP statements

below the tree.

Each box represents an Agent instance (including extracted subagents). Ea

Agent has its own section of the stack, containing whatever Env objects have been

pushed while it is executing. In addition, each Agent object contains a pointer to its pa

ent, so that stack searches can extend beyond the immediate Agent upward through all

of its ancestors. The purpose of the branch numbers will be explained shortly.
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Overall this structure grows, or shrinks, like a tree, but since any given Agent only

sees the nodes above it (toward the root SYS), the Agent considers that path to be its

own personal environment stack. For example, an Action executing in the DCtrl_

Agent (CSP statement not shown) would be subject to the total environment represented

by the EnvSync objects within the shaded rectangles of Figure 8.

How the stack is involved with Action execution will be described in the next sec-

tion.

Figure 8: Sample of agent descent tree

SYS_

^ds ^ack(1) ^ack(2)

DSS_

^dci ^dco

SYS_s1

C_c1 C_c2DSS_s1

^enq ^deq ^next ^empty

DSS_s2

^dio ^dint

DSched_ DQueue_ DCtrl_ Disk_

0

10

0 0

0

1 1

1

SYS ::= ( DSS || (C(1) ||| C(2)) )^{ds,ack(1),ack(2)}

DSS ::= ( (DSched || DQueue)^{enq,deq,next,empty}

|| (DCtrl || Disk)^{dio,dint} )^{dci,dco}

Agent

Env objects

parent
branch #

LEGEND

1
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5.3  Action execution

Figure 9 is a UML diagram of the classes mentioned in the rest of this chapter. It reveals

more details than the class hierarchy in Figure 5 on page 44.

Whether an action is an Atomic or Channel type, it is executed by invoking the

base class’s Action::execute() method. The method carries out these steps of p

cessing until the action has been “taken”:

1. Check whether there is an external routine associated with the action. If so, 

call it and then return, considering the action “taken.”

2. Otherwise, start searching the environment stack, from the current agent 

calling execute() upward through its parents. The actual searching is 

done by Agent::searchEnv().

Figure 9: Details of classes involved in action execution

Agent

– crp: ChoiceRecord[n]

+ searchEnv()
+ doSync()
+ saveSync()
+ loadSync()
+ unSync()
+ startDChoice(n: int)
+ getChoiceMade(): int
+ whichDChoice(): int

Action

+ execute()
+ reexecute()

EnvSync

– syncFlags: Bits
– waitForFlag: object
– envelope: Lit*
– choosers: List<Chooser>Chooser

– who: Agent*
– choiceNum: int

ActionRef

executes

1..*

n

11..*
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3. If an Env object is found having an ActionRef that matches this 

Action’s name,1 process according to the Env subclass:

• EnvHide: Consider the action “taken”; it can have no further effect.

• EnvRename: Do the substitution and resume searching upward.

• EnvSync: Call Agent::doSync() to attempt synchronization (see 

next section). After it succeeds, mark the action as “taken.” If we are 

the active party to the syncchronization, resume searching.

The reason we resume searching after synchronization is in case a renaming a

farther up the stack. If so, this should affect the name of the trace. To avoid dup

traces, our convention is that the “active” party (defined as the last agent to arrive 

sync, while the “passive” agents are sleeping) is responsible for printing the trace

passive parties are silent.

When the stack search reaches its end, a trace will be printed showing the na

the current agent, its arguments, the name of the action, and its subscripts or chann

If the tracing option is not selected on the command line (see Appendix B.4), then

searching in support of tracing is bypassed in order to save execution time.

A more drastic aid to debugging is obtained by recompiling CSP++ with

ACTWATCH symbol defined (see Appendix B.1). This activates code that prints ou

detailed steps of environment searching and matching on the cerr standard error I/O

stream at run time.

1.  This comparison, performed by ActionRef::operator==(), is not lexicographic, but simply com-
pares Action* pointers, so it is very fast. When Atomic ActionRefs match, it is necessary to compare 
their subscripts too, so, for example, ack(1)≠ack(2).
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5.4  Multi-party synchronization

Each EnvSync object (Agent.h) on the environment stack is, in effect, a “nerve cen

for synchronization. It contains the following data members:

1. syncFlags: These flag bits (implemented by the Standard Components 

Bits class) are all 0 when no synchronization is in progress. When a syn

chronization attempt begins, one flag is reserved for each Agent that was 

composed below this level in the agent descent tree. Setting a flag to 1 si

nifies that an Agent is trying to synchronize on the Action represented 

by the EnvSync object.

For example, in Figure 8, the dint EnvSync object would have two flags, #0 fo

use by DCtrl_, and #1 for use by Disk_, or their respective descendants. If th

Action dint occurs in Disk_, the usual environment search will discover dint in

the stack of Agent DSS_s2. Since Disk_ is composed under that Agent’s branch 1,

Disk_ must use dint.syncFlags[1] when synchronizing.

2. waitForFlag: This single flag is an instance of object (task.h), so it 

can be waited for as described in Section 3.3.1 above. Agents that are not

party to an in-progress synchronization, but want to start a fresh synchron

zation as soon as the syncFlags are free, wait for this object to be 

alerted. This will happen when the current synchronization is finished, as 

part of the usual cleanup process.

The need for this flag is apparent from the following scenario, again referrin

Figure 8. Suppose that client 1, Agent C_c1, has sent a message to the disk server 

Channel ds, and is waiting for DSched_ to receive the message by synchronizing 

this Channel. Now suppose that, meanwhile, client 2, C_c2, also wants to start some

disk action. Both clients lie on the same agent descent tree branch below SYS_, so they
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both must use ds.syncFlags[1] to communicate with DSched_. In this case, C_c2

will find that “its flag” is busy, therefore it will wait its turn by having recourse 

ds.waitForFlag.

3. envelope: This points to a heap Lit, to which, or from which, a 

Channel can copy data (required since the stack variables in the other 

agent may be out of scope when synchronization takes place).

The data structures in the agent descent tree have to be accessible to all the Agent

tasks. In the LinuxThreads implementation, where preemption can occur at any time

must be protected by a Pthreads mutex. The use of the global mutex object::mlock,

shown in Figure 5 on page 44, was explained in Section 3.3.3. The convention is f

low-level synchronization method Agent::doSync() to lock this mutex before test

ing and manipulating flags, sleeping, or signaling other threads 

object::alert(). This ensures the inviolability of the synchronization critical se

tion in doSync().

To summarize, an agent attempting to synchronize uses the above data struct

the following series of steps, carried out by doSync(). These are also depicted in th

UML sequence diagram2 [Pool99] of Figure 10, which illustrates a typical case of sy

chronization. In the figure, agents Disk_ and DSched_ are synchronizing on Atomic

dint, and Disk_ happens to arrive at the synchronization first. UML message sequ

numbers are noted in brackets in the steps below.

2.  We make one modification to the notation in [Pool99]. When an object directly accesses a data member 
of another class—in this case, an Agent accessing EnvSync’s members as a “friend class”—we draw the
arrow that would normally indicate a message being sent to the accessed object, but we suppress th
gle that indicates the activation of a member function.
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1. Try to get a syncFlag: Since there may be other interleaved agents at this 

level, all trying to synchronize on the same action (named at a higher level), 

it is possible that the syncFlag reserved for this branch will already be in 

Figure 10: Sequence diagram of synchronization

Disk: Agent dint: Atomic : object dint: EnvSync DSched: Agent

1: execute

1.1: searchEnv

1.2: doSync

1.2.1: mutexLock

1.2.2: syncFlags[0]=1

1.2.3: sleep
2: execute

2.1: searchEnv

2.2: doSync

2.2.1: mutexLock

2.2.2: syncFlags[1]=1

2.2.4: alert

2.2.5:

2.2.6: mutexUnlock

waitForFlag.alert

2.2.3: reset syncFlags

active return

active return

passive return

passive return

1.2.4:  mutexUnlock

mutex is unlocked by waiting on condition variable in sleep()
NOTE: After 2.2.6, which return occurs first, active or passive, depends on scheduling.
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use. If so, wait on waitForFlag. Upon wake up, repeat this test until the 

desired flag is found to be 0.

2. Check in: “Check in” for the synchronization by setting this branch’s flag 

[1.2.2 and 2.2.2]. Then count the set flags to see whether synchronization

has just been completed.

3. Active return: If so, we are the “active” party, responsible for cleanup and 

tracing. Clear the syncFlags [2.2.3] and wake up all Agents waiting 

either for a flag to become available (alert the waitForFlag object 

[2.2.5]) or for the synchronization to complete (alert the EnvSync object 

[2.2.4]).

4. Passive return: If there are other Agents still to check in, wait on the 

EnvSync object [1.2.3]. The last agent checking in will alert it [2.2.4].

5.5  Deterministic choice

Choice greatly complicates the straightforward picture painted above, where indiv

Actions were able to wait on their own for synchronization, thus suspending 

Agents while they wait. But in the context of multiple alternative actions, if any 

were to wait, the others then could not be tried. So in order to allow all actions to wait in

concert, it is necessary to add a try-then-back-out apparatus to the synchronization

anism. 

When an Agent initiates an n-way deterministic choice by calling

Agent::startDChoice(n), an array of n ChoiceRecord objects (Agent.h) is

created. These records will be needed for backing out and retrying. Each action is t

turn, according to these steps:
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1. If an earlier choice already succeeded (find out via 

Agent::getChoiceMade() ), this one becomes a no-op; just return.

2. Otherwise, begin to carry out the steps of Action execution (Section 5.3) 

as usual. If the action is taken, then this choice succeeds (and others previ-

ously tried may need to be cancelled).

3. Otherwise, if synchronization is involved, doSync() is not allowed to 

wait as it normally would. Instead, it must take note of which stage the syn-

chronization is at (i.e., waiting-for-flag or waiting-for-sync), and then call 

saveSync() to make a snapshot of this state in a ChoiceRecord. In 

addition, a Chooser object is created and attached to the choosers list 

of the EnvSync object to provide a back-pointer to this Agent. That 

pointer will later be used by the Agent completing the sync, in order to 

cleanup our choice state for us.3

When all choices have been tried, Agent::whichDChoice() is called. It deter-

mines which of these two situations holds:

1. A choice succeeded: The other failed ChoiceRecords are examined, and 

if any represents a synchronization that was started, it is cancelled by call-

ing Agent::unSync(). Depending on the stage of the synchronization, 

unSync() will clear the branch’s syncFlag (and alert any Agents 

waiting for it), or remove the Agent from the list of those waiting for 

access to the flag.

3.  An essential point is that it cannot safely be left to agents to cleanup their own choice state. This is 
because scheduling, in the AT&T task library, is neither prioritized nor preemptible. When one sync action 
that is subject to an n-way choice completes, it is important to prevent any others from completing, by can-
celling them at once. But there is no way to insure that a task wanting to cancel its own choices will get the 
CPU next, thus a race condition could result. This is prevented by having the synchronizing or “active
Agent, which already has the CPU, perform all cancellations on behalf of the passive Agents. That, in 
turn, requires back-pointers from the EnvSync object to all the choosing Agents that require the cancella
tion service.

In the LinuxThreads version, the possibility of preemption means that the cleanup has to be conduct
other threads locked out by means of the global mutex.
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2. No choice succeeded: In that case, one or more of the tried actions must 

have initiated a synchronization. This Agent will sleep, waiting for a 

wake-up from the first synchronization that completes.

The scene now shifts to some other Agent task which is calling

Agent::doSync() to complete one of the synchronizations we are waiting for:

1. When the sync is completed, the associated choosers list is examined to 

locate all parties who are involved in a choice.

2. For each Agent on the list, its ChoiceRecords are inspected in turn 

and unSync() is called for each one (except the choice that succeeded). 

All waiting agents are waked as usual.

Back now in whichDChoice() of the original choosing Agent task:

1. Reload the information in the ChoiceRecord which succeeded by call-

ing Agent::loadSync().

2. Call Action::reexecute() to continue processing the successful 

action that had been interrupted earlier. reexecute() will, in turn, call 

doSync() again.

Finally, at the end of all this bouncing back and forth, one synchronization will have

been allowed to complete—it has been “chosen”—and all other synchronization att

in the alternative choices will have been rolled back as if they had never been starte

Returning briefly to the theme of critical sections, it is obvious that in the conte

trying several choices, the simple convention of doSync() capturing and releasing the

mutex is insufficient when preemption can occur (LinuxThreads). The series of alt

tives could then be interrupted by other Agents, and one which had just been dete

mined not to have taken place might indeed have completed “behind the backs,” 
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speak, of the subsequent choices prior to whichDChoice() being executed. The way

to prevent this confusion is to modify the locking convention when a deterministic choice

in effect: startDChoice() will capture the lock, and whichDChoice() will

release it.

With the above description, the explanation of the CSP++ framework is essentially

complete, though of course many details remain in the code. In the next chapter we return

to our disk server case study, to show how it is actually translated and executed by the

OOAF.
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CHAPTER 6

Case Study and Experimental Results Chapter 6

The disk server case study was introduced in Section 2.1.2. Here we complete the case

study by describing its translation and execution with CSP++. We then we present experi-

mental results, obtained from a number of variations on the case study system that were

evaluated in terms of resource consumption. For purposes of comparing our approach to

“the legitimate competition,” we reimplemented the disk server using a commercial 

tool based on StateCharts. It will be seen below that CSP++ is actually compe

despite being in its initial unoptimized version.

6.1  Disk server case study

In order to run a simulation of the disk server, we need to specify the behavior of 

client processes for test purposes (refer to Figure 3 on page 15). For example:

C(1) = ds!req(1,100)→moreone→ack(1)→SKIP

C(2) = ds!req(2,150)→moretwo→ack(2)→SKIP

This has each client making a disk request, performing some more activity asyn

nously (moreone and moretwo), waiting for acknowledgment from the server, an

then terminating successfully (the special SKIP process in CSP).

Appendix A gives the complete C++ output of the translated disk server spec

tion, including the two client processes shown above. This listing was produced usi

“-s” source option (see Appendix B.2 user’s manual) which conveniently copies
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csp12 source statements into the C++ file as comments directly before the generated

agent definitions.

After the translated output is compiled and linked with the framework, we execute it

with the “-t -i” trace and idle command line options (see Appendix B.4 user’s man

The trace option instructs the framework to print on cerr (stderr) the trace of every

action taken. The idle option starts an additional agent that wakes up periodicall

checks whether all the other agents are idle. If so, it aborts execution and dum

framework’s status to cerr (stderr).1

Running the DSSsim system produces the following output (line numbers add

brackets). Each line starting with “|=” is part of the trace. The name of the agent pr

ing the trace (the one that completes the sync) is printed first, followed by the a

taken. As in the traces output by the csp12 tool, “$” denotes a synchronization of ch

communication, with the transferred data value following.

[1] |=DS_idle [ds$req( 1, 100 )]

[2] |=C( 1 ) [moreone]

[3] Action: moreone

[4] |=DCtrl [dci$start( 1, 100 )]

[5] |=DS_busy [ds$req( 2, 150 )]

[6] |=C( 2 ) [moretwo]

[7] Action: moretwo

[8] |=Disk [dio$100]

[9] |=Disk [dint]

[10] |=DQ( 0 ) [enq$req( 2, 150 )]

[11] |=DS_busy [dco$fini( 1, 100 )]

[12] |=DS_busy [ack( 1 )]

1.  This idle-checking function was inherent in the initial AT&T coroutines version. In the Pthreads version, 
when the feature is wanted it has to be provided by an explicit thread.
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[13] |=DQ( 1 ) [deq]

[14] |=DQ( 1 ) [next$req( 2, 150 )]

[15] |=DS_check [dci$start( 2, 150 )]

[16] |=DCtrl [dio$150]

[17] |=Disk [dint]

[18] |=DCtrl [dco$fini( 2, 150 )]

[19] |=DS_busy [ack( 2 )]

[20] |=DQ( 0 ) [deq]

[21] |=DQ( 0 ) [empty]

[22] idletask: All tasks IDLE!

[23] Agent::exit_fn: Dump printed on stdout

[24] == AGENT DUMP ==

[25] Current # Literals: 1; High water marks:  9 Literals, 17 tasks

[26] ==========================================================

[27] task #16 ’DQ’ (IDLE)

[28] This task running as Agent DQ( 0 )

[29]  Waiting for sync on enq

[30] My sync flag is #1 (LSB=#0) in [10]

[31]  Waiting for sync on deq

[32] My sync flag is #1 (LSB=#0) in [10]

From this we can observe how client C(1) submits to the disk scheduler a request

for disk block 100 (line 1) and then continues about its business (line 2). “Action:

moreone” (line 3) is the default output from an action that has no external routine 

vided, but neither is trapped in the environment for synchronization. These default a

are printed on cout (stdout), independent of whether tracing is enabled, and are use

stubs for external routines until they can be written and linked in.

C(1)’s request is passed to the disk controller (line 4). We observe how the

scheduler goes from the IDLE state (line 1) to BUSY (line 5), and receives C(2)’s

request for block 150. The second request is queued, but the trace for this action d

appear until line 10. The action is taken by agent DQ(0), signifying that there were pre
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Meanwhile, C(2) continues (lines 6-7). At this point, the disk controller orders the

disk drive (via channel dio) to access block 100 (line 8) to carry out the first request.

After some time, the disk interrupts (action dint), the controller notifies the scheduler,

and the scheduler acknowledges client C(1) (lines 9, 11, and 12). We then observe them

repeat the cycle with the second request (lines 13-19), which was enqueued while the

server was busy. (The inner queue actions are not traced because the CSP code ordered

them hidden.)

Finally, things come to a halt when the disk scheduler checks the queue again and

finds it empty (lines 20-21). Since there is no ready-to-run task, the idle-check agent acti-

vated by the “-i” option calls the exit function, which prints a dump of all the exis

agents (only the first one is reproduced here). This same dump can be produced

agent transferring to the special agent STOP. Useful information includes maxima

resource usage (“high-water marks”) and precise agent status. In the case of th

shown above, we can see that its identity is agent DQ(0), and it is waiting for synchroni-

zation to occur on either of two actions, enq or deq. The sync flags from those two

EnvSync objects are displayed, and we observe the agent’s flag (the left-hand bi

just as it should be, since DQ(0) has arrived first at the syncs.

Following the above example in Appendix A, there is a second worked exa

which suggests how system development can proceed. In the second system, th

lated Disk agent has been removed from the specification of agent DSS. Now

actions that previously synchronized with Disk, i.e., the channel dio and the atomic

action dint, go out to the environment. If no external routines were provided to 
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with them, default actions would be logged, just as with actions moreone and moretwo

in the trace above. However, in this example C++ procedures are provided. They are

linked in by means of preprocessor symbols during compilation (see Appendix B.3 for

exact procedure). When the DSS system is executed, the routines are called whenever the

dio and dint actions occur, as shown in the trace log (Appendix A.6).

6.2  Commercial CAD tool comparison

In order to put CSP++ into perspective as a tool for code generation, it is helpful to com-

pare it with something similar. One is tempted to produce a hand-coded C++ program,

say of the disk server case study, and let it go head-to-head with the program generated

by CSP++. The main theoretical objection to this kind of comparison is that there is no

straightforward way for a programmer to proceed, starting from either the CSP or State-

Charts (Figure 3 on page 15) specification of the system. Basically, one has two choices

when faced with a non-trivial specification:

1. One can preserve the specification’s computational model—that is, concu

rent synchronizing processes, or concurrent hierarchical finite state 

machines—in which case one is forced to construct the infrastructure 

required to support the model’s execution.

2. Alternatively, one can use the specification as a behavioural model for 

designing a program using a different computational model. This would be

one whose infrastructure is inherent in the chosen programming language

i.e., a conventional structured design or an object-oriented design.

As for the first choice, this is exactly what has been accomplished in creatin

CSP++ OOAF for the general case. There is little point in carrying out the exercise 
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by hand for a specific case. The problem with the second approach is that without a meth-

odology for converting an analysis in one computational model into a design in another

model, the result is apt to be extremely arbitrary and may not be significantly representa-

tive of “hand-coded programs.” Again, it is the exact purpose and achievement o

research to formulate a methodology for converting CSP specifications to C++ prog

and to do it automatically. To find another way of doing the same thing manually, 

not really qualify as “comparison to hand-coded C++.”

Leaving aside comparisons that have superficial appeal but questionable valu

turn to a more relevant arena, that of CAD tools which have a similar purpose to C

ObjecTime Limited produces a commercial tool expressly for C or C++ code gener

from StateChart models, or more precisely, the adaptation known as ROOMc

[Seli93]. ObjecTime Developer claims to be “the only object-oriented software deve

ment toolset designed specifically for event-driven, real-time systems” [OTI]. Implem

ing the disk server case study in ObjecTime is a meaningful comparison, first, becau

do not have to change the computational model (we already have a StateChart diag

Figure 3, and StateCharts are fairly compatible with CSP), and second, because the

of the tool is also executable C++ code. We can even do the timing on the same har

albeit under different operating system environments.

6.3  Timing tests

Using the disk server case study as a baseline, repetitions were introduced to inf

execution time to a significantly measurable level. These test cases are laid out in T

along with the average execution time obtained on a 400 MHz Pentium II with 128M
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memory, running Red Hat Linux 6.2. The g++ compiler used was ecgs-2.91.66, with -O2

optimization. Timing was obtained by running the executable with the “-q” option

prevent a status dump; see Appendix B.4) under control of the tcsh (C shell) time com-

mand. Each test was run five times, and the timings averaged.

6.3.1  Test results

The first case introduces a Test process into the system specification to drive the rep

tions. The rest of the code mirrors the baseline, except that the moreone and moretwo

actions, which just result in printing on the console, have been removed. Since 

Test Case Description
User 
Secs.

System 
Secs.

Total 
Secs.

(1) 20,000 disk accesses in 20,000 process creations

C(1) ::= ds!req(1,100)->ack(1)->SKIP.

C(2) ::= ds!req(2,150)->ack(2)->SKIP.

Test(_i) ::=
(if _i>0 then ((C(1)|||C(2)); Test(_i-1)))
+ STOP.

SYS ::= (DSS||Test(10000))^{ds,ack(1),ack(2)}.

6.33 4.45 10.78

(2) 20,000 disk accesses, synchronized in pairs, in 2 process creations

C(1,_n) ::=
(if _n>0 then ds!req(1,100)->ack(1)->syncC

->C(1,_n-1)) + SKIP.

C(2,_n) ::=
(if _n>0 then ds!req(2,150)->ack(2)->syncC

->C(2,_n-1)) + SKIP.

Test(_i) ::= (C(1,_i)||C(2,_i))^{syncC}; STOP.

SYS ::= (DSS||Test(10000) )^{ds,ack(1),ack(2)}.

1.60 1.25 2.85

(3) 20,000 disk accesses; same as (2) but syncC removed from clients

Test(_i) ::= (C(1,_i)|||C(2,_i)); STOP.

1.65 1.24 2.89

(4) 10,000 disk accesses; same as (1) with Test(5000) 3.20 2.16 5.36

Table 2: Timing test results
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deals with POSIX threads directly in the kernel, there is a substantial system time compo-

nent in the total execution time: 41%. In contrast, when this same test was run on a

Solaris system, where the POSIX threads are mostly managed in user space, system time

drops to under 1%.

It was observed that in test (1), 20,000 processes are being created and destroyed as

the Test process loops composing the clients in C(1)|||C(2). In test (2), the 10,000-

cycle loop is moved from the Test process down into the clients themselves. A new

syncC action is introduced in order to synchronize the disk requests in pairs, to avoid

overflowing the primitive disk request queue. Now, C(1) and C(2) are created only

once each. One would expect the thread management overhead to decrease accordingly,

and indeed the results show a dramatic drop in execution time. Interestingly, the propor-

tion of system time vs. total is about the same as before (44%).

The purpose of test (3) was to see whether pairwise synchronization was really

required. It was not, though removing the extra syncC action has hardly any appreciable

effect on the timing. Tests (2) and (3) seem to be the “best case” timing that c

obtained for 10,000 repetitions (20,000 simulated disk accesses) by simple p

restructuring.

Test (4) cuts the repetitions of test (1) in half to see whether the time for loop

scaling linearly, as one would hope. The results, almost exactly one-half of (1), s

that this is the case.

An attempt was made to make the simulation more realistic by incorporating a

delay(msec) action into the Disk process, implemented by an external procedure c



106
ing the Linux nanosleep() function. This did produce the desired delay, and allowed for

rescheduling between requests, which made for more consistent exercise of the disk

request queue processes (BUFF and CELL). Another test was created where BUFF and

CELL were replaced by an efficient user-coded queue. Unfortunately, calling nanosleep()

or sleep() seemed to reset the Linux timekeeping to zero, and it was impossible to obtain

any useful measurements this way.

6.3.2  Comparison with ObjecTime

The model built using ObjecTime Developer 5.2.1 mirrored the StateCharts diagram (Fig-

ure 3) as far as possible, with additional behaviour filled in from the CSP specifications.

The printout of the structural and behavioural models is given in Appendix E. The tool

was used to generate C++ code to run under control of the ObjecTime real-time execu-

tive (Micro Run Time System Release 5.21.C.00). It was compiled using Microsoft

Visual C++ 6, and executed in a DOS window under NT4. The hardware platform was

identical to that used for the CSP++ time trials under Linux.

In order to set up a test case comparable to those above, the test harness behaviour

in the outermost block triggered the clients 10,000 times, thus resulting in 20,000 disk

requests, as in the CSP++ version. Timing data was obtained by calling the ANSI C

clock() function to return the elapsed CPU time at the start and end of model execution.

The difference of start and end times of five runs was averaged to get the result of 3.76

CPU seconds.
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6.3.3  Analysis

The key inference coming from the timing data concerns the overhead inherent in the

CSP++ OOAF as it is currently implemented. The helpful breakout of user versus system

times in Linux shows clearly that the framework’s overhead—consisting of thread

ation, thread scheduling, mutex locking and unlocking, and condition variable wa

and signalling—is at least 40%. This is therefore a ripe area to target for optimizatio

The purpose of the ObjecTime comparison is to show whether the CSP++ e

tion times are reasonable in light of state-of-the-art code generation tools. As a matte

fact, they compare quite favourably with the ObjecTime results. ObjecTime ran f

than test (1), but when the huge amount of gratuitous process creation was cut out 

(2) and (3), the CSP++ program finished first. Considering that ObjecTime is an e

sive commercial tool (licensed at over US$15,000 per seat), and the company h

years to optimize its real-time executive, the result obtained by the initial versio

CSP++ running under generic desktop PC Linux is quite gratifying.

It is also worth noting that the graphical entry method of ObjecTime model 

struction was found to be exceedingly slow and tedious compared with the simple t

entry method of CSP++. This is similar to the contrast between schematic capture 

hardware description language methods for entering circuits in modern CAD tools

helps explain why in recent years the graphical methods have been largely oversha

by the textual for large designs.
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6.4  Memory estimates

Sizes for the object files that make up test (1) are listed in Table 3, as obtained via the

GNU size utility. This does not tell the whole story, since dynamically linked modules are

pulled in from the C++ and POSIX threads shared object libraries at execution time. And

of course, the heap for dynamically allocated variables and per-thread stacks are not

accounted for. Still, the basic code size of both the framework and the translated applica-

tion are relatively modest. The approximately 21K of code and data is the fixed frame-

work component (including the SC-3.0 library routines) that will not vary from

application to application.

At this stage of development, no attempt has been made to control the size of the

heap and the stacks. The system defaults have been allowed to take their course. How-

Filename / category

Code Sections

Text Data Bss Total

Framework files 15988

Action.o

Agent.o

Lit.o

task.o

4175

5062

2842

3317

148

116

92

232

0

0

0

4

4323

5178

2934

3553

SC-3.0 library 5805

Bits.o

List.o

Pool.o

2644

2735

422

0

0

0

4

0

0

2648

2735

422

Translated test (1)

DSSsim.o 8874 320 504 9698

Runtime library 4814

Executable

DSSsim 34145 1036 1124 36305

Table 3: CSP++ object file sizes
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ever, there is an option for creating POSIX threads with a user-specified stack size, and

since there is no recursion in the OOAF, it should be possible to determine a safe maxi-

mum. The dump provided at the end of a CSP++ execution states the “high water 

for tasks (i.e., threads) and dynamically allocated literals during the course of exec

In the case of test (1) these numbers are 14 literals and 16 tasks. Multiplying the la

the maximum stack size would yield the total memory requirement for stack space.

larly, we can put an upper bound on heap requirements through knowing the max

number of literal and task objects to be allocated.

Turning back to ObjecTime, this unfortunately degenerates into an “apples

oranges” kind of comparison with regard to memory use. A crude comparison ca

made of the executables. The DiskServer Sys.exe file includes 131K of code and 3

data, for a total initial footprint of approximately 168K. Superficially this appears to

nearly five times the size of the analogous CSP++ DSSsim executable. On the othe

Sys.exe executes from a DOS prompt, and already contains the linked run-time l

modules. Furthermore, the real-time executive includes a primitive debugger inte

which is taking up space. The ObjecTime documentation gives complex instruction

estimating the runtime memory requirements of a given application, but the calcula

are difficult to carry out. More detailed analysis would be required to make meani

comparisons in this area.

In summary, the studies above show that CSP++ is on the way to being an ef

software synthesis tool. There is certainly room for optimization, both in execution 

and memory use, and these can be carried out with later versions under Future Wor
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Conclusions and Future Work Chapter 7

In light of the work described in the preceding chapters, the two main questions which

can now be answered are these:

1. Did we succeed in making CSP specifications executable, in the software 

synthesis sense?

2. Is there value in the OOAF approach to software synthesis?

These questions are discussed below. In addition, a number of avenues of future work will

be put forward. Finally, we report the exact status of our work to date, for the sake of

those who wish to explore, utilize, or expand on it, including the availability of CSP++ to

the public.

7.1  Conclusions

7.1.1  Proof of concept demonstrated

The answer to the first question above is “yes”: By means of the cspt translator an

time framework, we showed that CSP specifications can be executed as a C++ pr

and their traces printed, just as if being simulated by a verification tool. Most impor

we are able to fully support the essential features of deterministic choice with multi-

synchronization. Furthermore, we showed how to link CSP specifications with user-c

procedures by identifying the latter with CSP actions. This enables CSP specificati

be directly transformed into a C++ control program for a larger software system.
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7.1.2  Viability of OOAF approach

We consider that the OOAF approach has also been shown to be valuable. Its strengths lie

in two particular areas:

1. The framework’s elements provide a good high-level code generation tar-

get, much easier to translate to, compared with conventional object code o

assembly language targets, or even a procedural high-level language 

(HLL).

Translating from the source language—CSP, in this case—to C++ invocations o

framework is a relatively short step both syntactically and semantically, and allow

burden of code generation to be largely shifted onto a existing HLL compiler (here, g

This approach is faster, simpler, and more maintainable than writing a conven

compiler: faster and simpler, because the job has been subdivided into two more tra

pieces; more maintainable, because the run-time system is itself HLL, not assemb

guage, and it is collected in one place, not dispersed throughout the translated targ

put. The approach is analogous to that taken with Java: writing a Java compile

produces byte code, and writing a Java Virtual Machine (the run-time environment

executes it. This is “faster, simpler, and more maintainable” than writing a number of

native code compilers.

2. The OOAF has high portability.

This characteristic was illustrated by the conversion of the task model—arguably the

sensitive aspect of the run-time system—with practically no disturbance of the fr

work’s source code, and no change to the translation algorithms.

That OOAF technology should prove valuable in the specialized context of 
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ware synthesis is interesting, because it is not a “traditional” use (inasmuch as anyth

so new a field can be called that) of the technology.

7.2  Future work

There are a number of potentially fruitful directions in which this research can be ca

forward. These fall roughly into three categories, listed in order of increasing scope:

1. Consolidating the current work, that is, maturing it from “proof of concept” 

stage to the status of a robust and well-exercised tool more likely to be use

for something beyond academic experimentation.

2. Extending the power of CSP++ by incorporating capabilities of other dia-

lects of CSP.

3. Applying the OOAF technique to other formalisms.

One area which is not recommended, although it may readily spring to mind, is the job

finishing up support for the partially implemented and unimplemented construc

csp12. The rationale for this advice is explained in the first section below.

7.2.1  Integration with commercial model-checker

While csp12-style CSP has been an excellent baseline for proof-of-concept develop

not to mention entailing zero cost, the limited prospects for ongoing support of th

house tool make it a less strategic underpinning for future work. Instead, a commer

supported tool should be procured and time should be invested in realigning the fro

of cspt to accept its syntax. FDR is the obvious choice. Taking this as the first step 

future work will obviate the need to deal with the unimplemented and partially im
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mented csp12 constructs (Sections 4.4 and 4.5) that do not occur in FDR’s dialec

recommendation falls squarely under plans for “consolidation.”

7.2.2  Enhancement of user code interface

The design of the framework’s interface to user-coded action procedures is rela

immature, and ought to be addressed in order to consolidate the work. Now that a

of-concept has been achieved, what is lacking is a more realistic case study, that

also include simulation and model checking. An good example of this kind of ef

which is no small undertaking, is an RS-232 character repeater design by the 

Research Laboratory [Moor96]. Moore and Payne used CSP for the design, and tw

for model checking, FDR and EVES.1 One could even start by duplicating their desi

and synthesizing it with CSP++. Chapter 7 of [Hinc95] also contains a lengthy case

based on a network communications protocol.

The main point is that in the course of working through such a case study, i

become apparent in what ways the action procedure interface needs to be enhanc

example, the issue of handling interrupts must be considered. Of particular intere

be the precise means of making user-coded procedures participate in determ

choices. These changes will likely involve the OOAF itself, but not the translator.

7.2.3  Adaptation to other CSP dialects

It was mentioned earlier that CSP++, and indeed CSP itself, have no way of dealin

timing constraints. This can be remedied by implementing constructs from Timed 

1.  EVES, a formal methods tool not specific to CSP, is available via free download from ORA Canada 
[EVE].
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Sections 4.1ff. of [Hinc95] have a good discussion of these operators and their algebraic

properties. The key addition is a new built-in “WAIT n” process that delays execution fo

n time units. A new timeout operator is also defined: P  Q runs as process P for no m

than t time units, whereupon it switches to process Q.

The TOSCA tool [Balb96] shows another way to introduce timing into a CSP-

environment (in their case, Occam II): Simply provide a special channel that outpu

integer representing the current time. This gives agents, in effect, a way to read th

tem’s real-time clock just by executing an action, e.g., clock?_time.

In a related area, some control could be given to agents over their scheduling

ity. Currently, all agents are created as equal-priority threads. POSIX threads provi

dynamic priority adjustment, and this feature could be made accessible to age

means a special process or action. This could meet the needs of some real-time sys

Some of these extensions will require modifications to both the OOAF and

translator.

7.2.4  Optimization of resource usage

For highly-resource constrained applications, CSP++ would be more attractive

resource usage could be reduced. There are many avenues for optimization that

explored, such as the following:

• Discontinue the use of C++ I/O classes to communicate with the user, as this 

pulls in numerous bulky modules from the library.

• Port the framework to an economical real-time kernel that supports C++. 

Alternatively, write a simple scheduler along the lines of the AT&T coroutine 

t
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library. Returning to a coroutine threading model has the potential to 

markedly reduce system overhead (locking, waiting, preempting, etc.).

• Calculate actual stack requirements, instead of relying on OS defaults.

• Perform static analysis on the process structure, so as to determine action 

binding for synchronization purposes at translation time. In cases where this 

succeeds, run-time searching of the environment stack could be eliminated.

No doubt many other ways to reduce memory and CPU usage will be found when

optimization is seriously attempted.

7.2.5  Adaptation to other formalisms

Finally, it would be interesting to apply the OOAF approach underlying CSP++ to other

formalisms. CCS is a good place to start, both because of its similarity to CSP and the

availability of commercial verification tools comparable to FDR. For formalisms that

have CSP-like semantics, it may be possible to rework the lexical/syntax phase of the

translator to build, say, a CCS parse tree, and then convert it to an analogous tree built

with csp12 parse nodes. The back end of the existing translator would then generate C++

code based on the CSP++ framework classes, and thereby execute the CCS specifica-

tions. Alternatively, a CCS-specific framework could be created, using CSP++ as a source

of design patterns. The latter approach would be suitable for formalisms that are semanti-

cally remote from CSP.

7.3  Status and availability of CSP++

The details in this dissertation are based on the latest version of CSP++ numbered V2.1,

which is available to the public by anonymous FTP from the author’s web site [Gar
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will compile and execute on Linux and Solaris, and likely on any platform having both a

current C++ compiler and OS supporting POSIX threads. Table 4 gives the complete pic-

ture of the various versions of CSP++ and where they can be obtained. Source code for

some variation on the Disk Server case study is included in each distribution.

Task 
Model Version Platforms Contents Source Code Documentation

USL task 
library 

1.0 Sun/SunOS, AT&T cfront OOAF CD ROM
accompanying 
[Faya99]

[Gard99a] Tech 
Report (PDF 
file on CD)POSIX 

threads
2.0 PC/Red Hat Linux, g++ OOAF

2.1 PC/Red Hat Linux &
SPARC/Solaris, g++

OOAF & 
cspt

FTP from web 
site [Gard]

Dissertation 
(PDF file)

Table 4: Availability of CSP++ software
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APPENDIX A

Source Code for Disk Server Case Study Appendix A

The following listings are provided in this appendix:

1. DSSsim example, with simulated disk:

• Input to cspt (file DSSsim.csp12): csp12 specification (Section A.1 

on page 122)

• Parse tree produced by “cspt -t” translation (Section A.2 on page 123

• C++ output (file DSSsim.cc) produced by “cspt -s” translation 

(Section A.3 on page 127)

It will be helpful to view these listings in conjunction with the Statecharts depiction o

Disk Server, found in Figure 3 on page 15, and the run-time trace given in Section 

page 98.

2. DSS example, with external procedures in place of the simulated disk:

• Input to cspt (file DSS.csp12): csp12 statements showing Disk  

agent removed from DSS specification (Section A.4 on page 134)

• C++ source code for external routines (file DiskProcs.cc) (Section 

A.5 on page 135)

• Run-time trace showing invocation of external routines (Section A.6 

on page 135)
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A.1 

% This
simula

%=====

% DQue

%

% Inte

% en

% de

%   

%   

%=====

CELL :

% BUFF

BUFF :
(CELL#

DQueue
right,

DQ(_i)

  

%=====

% DCtr

%

% Inte

operation on block <_blk> for 

on finished

-> dio!_blk-> dint -> 

d)

n block _blk

signalled

Disk.

cl> requests operation on block 

d

(_cl, _blk) -> 

_cl) -> DS_check )

, _blk) -> DS_busy.
 Csp12 specification (DSSsim)

 is the simulated Disk Server, with simulated Disk and 
ted clients.

=======================

ue:  disk request queue

rface:

q!<item>enqueue item

q dequeue item, followed by:

next?_x  next item returned, or

empty  empty queue indication

=======================

:= left?_x -> shift -> right!_x ->CELL.

 ::= CELL |> CELL |> CELL .just 2 cells for now

:= (((CELL#{right=comm}) || 
{left=comm}))^{comm})\{comm}.

 ::= ((DQ(0) || BUFF)^{left, right, shift})\{left, 
 shift}.

 ::= enq?_x -> ( left!_x -> shift-> DQ(_i+1) )

 | deq -> ( (if _i=0 then empty -> DQ(0))

    + fix X.(right?_y -> ( next!_y -> DQ(_i-1) )

     | shift -> X)

    ).

=======================

l:  disk controller

rface:

% dci!start(_cl, _blk)start 
client <_cl>

% dco?fini(_cl, _blk)operati

%============================

DCtrl ::= dci?start(_i, _blk)
dco!fini(_i, _blk) -> DCtrl.

%============================

% Disk:  disk drive (simulate

%

% Interface:

% dio!_blkperform disk i/o o

% dint disk interrupt 

%============================

Disk ::=  dio?_blk -> dint ->

%============================

% DSched:  disk scheduler

%

% Interface:

% ds!req(_cl, _blk)client <_
<_blk> 

% ack(_cl)client’s operation finishe

%============================

DSched ::= DS_idle.

DS_idle ::= ds?req(_cl, _blk) -> dci!start
DS_busy.

DS_busy ::= dco?fini(_cl, _blk) -> ( ack(

    | ds?req(_cl, _blk) -> enq!req(_cl

DS_check ::= deq -> ( empty -> DS_idle
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DS_bus

%=====

% DSS:

%

% Inte

%=====

DSS ::

 |

  

SYS ::

%=====

% Demo

%=====

C(1) :

C(2) :

A.2 

Readin

Transl

Got de

   { i

      

      

   }

   { p

      

      

v H

 to

 to

Env H
     | next?req(_cl, _blk) -> dci!start(_cl, _blk) -> 
y ).

=======================

  disk server subsystem

rface: (see DSched)

=======================

= (  (DSched || DQueue)^{enq,deq,next,empty}

|

 (DCtrl || Disk)^{dio,dint}   )^{dci,dco}.

= (DSS || (C(1)|||C(2)) )^{ds,ack(1),ack(2)}.

=======================

=======================

:= ds!req(1,100)->moreone->ack(1)->SKIP.

:= ds!req(2,150)->moretwo->ack(2)->SKIP.

 Syntax tree (DSSsim)

g from file: DSSsim.csp12

ating to file: DSSsim.cc

finition: CELL ::= { prefix

nput

Channel left

_x

refix

shift

{ prefix

         { output

            Channel right

            _x

         }

         Agent CELL

      }

   }

}

Got definition: BUFF ::= { En

   { Env S

      { compose

         { Env R

            Agent CELL

            { rename from ...

               Action right

               Action comm

            }

         }

         { Env R

            Agent CELL

            { rename from ...

               Action left

               Action comm

            }

         }

      }

      Action comm

   }

   Action comm

}

Got definition: DQueue ::= { 

   { Env S

      { compose

         Agent DQ( 0 )

         Agent BUFF

      }
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   }

   Act

   Act

   Act

}

Got de

   { p

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

   }

   { p

      

      

      

      

      

      

      

right

el next

( { Operator #1

refix
Action left

Action right

Action shift

ion left

ion right

ion shift

finition: DQ( _i ) ::= { choice

refix

{ input

   Channel enq

   _x

}

{ prefix

   { output

      Channel left

      _x

   }

   { prefix

      shift

      Agent DQ( { Operator #0

         _i

         1

      } )

   }

}

refix

deq

{ or

   { if ... then

      { Operator #4

         _i

         0

      }

            { prefix

               empty

               Agent DQ( 0 )

            }

         }

         { Fix

            X

            { choice

               { prefix

                  { input

                     Channel 

                     _y

                  }

                  { prefix

                     { output

                        Chann

                        _y

                     }

                     Agent DQ

                        _i

                        1

                     } )

                  }

               }

               { prefix

                  shift

                  Agent X

               }

            }

         }

      }

   }

}

Got definition: DCtrl ::= { p

   { input

      Channel dci
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   }

   { p

      

      

      

      

      

      

      

      

      

      

      

      

      

      

   }

}

Got de

   { i

      

      

   }

   { p

      

      

   }

}

Got de

Got de

   { i

      

      

   }

   { p

k )

 choice

blk )

lk )

lk )

{ prefix
Datumvar start( _i _blk )

refix

{ output

   Channel dio

   _blk

}

{ prefix

   dint

   { prefix

      { output

         Channel dco

         Datum fini( _i _blk )

      }

      Agent DCtrl

   }

}

finition: Disk ::= { prefix

nput

Channel dio

_blk

refix

dint

Agent Disk

finition: DSched ::= Agent DS_idle

finition: DS_idle ::= { prefix

nput

Channel ds

Datumvar req( _cl _blk )

refix

      { output

         Channel dci

         Datum start( _cl _bl

      }

      Agent DS_busy

   }

}

Got definition: DS_busy ::= {

   { prefix

      { input

         Channel dco

         Datumvar fini( _cl _

      }

      { prefix

         ack( _cl )

         Agent DS_check

      }

   }

   { prefix

      { input

         Channel ds

         Datumvar req( _cl _b

      }

      { prefix

         { output

            Channel enq

            Datum req( _cl _b

         }

         Agent DS_busy

      }

   }

}

Got definition: DS_check ::= 

   deq

   { choice

      { prefix
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   }

}

Got de

   { c

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

      

 S

prefix

prefix
   empty

   Agent DS_idle

}

{ prefix

   { input

      Channel next

      Datumvar req( _cl _blk )

   }

   { prefix

      { output

         Channel dci

         Datum start( _cl _blk )

      }

      Agent DS_busy

   }

}

finition: DSS ::= { Env S

ompose

{ Env S

   { compose

      Agent DSched

      Agent DQueue

   }

   Action enq

   Action deq

   Action next

   Action empty

}

{ Env S

   { compose

      Agent DCtrl

      Agent Disk

   }

   Action dio

         Action dint

      }

   }

   Action dci

   Action dco

}

Got definition: SYS ::= { Env

   { compose

      Agent DSS

      { compose

         Agent C( 1 )

         Agent C( 2 )

      }

   }

   Action ds

   Action ack( 1 )

   Action ack( 2 )

}

Got definition: C( 1 ) ::= { 

   { output

      Channel ds

      Datum req( 1 100 )

   }

   { prefix

      moreone

      { prefix

         ack( 1 )

         SKIP

      }

   }

}

Got definition: C( 2 ) ::= { 

   { output

      Channel ds

      Datum req( 2 150 )

   }
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   { p

      

      

      

      

      

   }

}

A.3 

/*

Tr

(c

*/

#inclu

#inclu

#inclu

#inclu

#inclu

#inclu

AGENTD

AGENTD

AGENTD

AGENTD

AGENTD

AGENTD

AGENTD

AGENTD

AGENTD

st

AGENTD

, 0 );

k", 0 );

, 0 );

0 );

ack, 1, 1 );

ack, 1, 2 );

p);

omm );

i );
refix

moretwo

{ prefix

   ack( 2 )

   SKIP

}

 C++ translation (DSSsim)

anslated by cspt @ 

sp12) DSSsim.csp12 >>> (CSP++) DSSsim.cc

de "Lit.h"

de "Agent.h"

de "Action.h"

de "main.h"

de "Listio.c"

de "List.c"

EF( BUFF_, "BUFF", 0 );

EF( BUFF_s1, "BUFF", 0 );

EF( BUFF_s2, "BUFF", 0 );

EF( C_c1, "C", 1 );

EF( C_c2, "C", 1 );

EF( CELL_, "CELL", 0 );

EF( DCtrl_, "DCtrl", 0 );

EF( DQ_s1, "DQ", 1 );

EF( DQ_v, "DQ", 1 );

atic FreeVar DQ_v__y;

EF( DQueue_, "DQueue", 0 );

AGENTDEF( DSS_, "DSS", 0 );

AGENTDEF( DSS_s1, "DSS", 0 );

AGENTDEF( DSS_s2, "DSS", 0 );

AGENTDEF( DS_busy_, "DS_busy"

AGENTDEF( DS_check_, "DS_chec

AGENTDEF( DS_idle_, "DS_idle"

AGENTDEF( DSched_, "DSched", 

AGENTDEF( Disk_, "Disk", 0 );

AGENTDEF( SYS_, "SYS", 0 );

AGENTDEF( SYS_s1, "SYS", 0 );

#ifdef ack_p

 extern ActionProc ack_p;

#else

#define ack_p 0

#endif

 Atomic ack("ack", 1, ack_p);

static ActionRef ack_r_1( 

static ActionRef ack_r_2( 

#ifdef comm_p

 extern ActionProc comm_p;

#else

#define comm_p 0

#endif

 Atomic comm("comm", 0, comm_

static ActionRef comm_r( c

#ifdef dci_p

 extern ActionProc dci_p;

#else

#define dci_p 0

#endif

 Channel dci("dci", dci_p);

static ActionRef dci_r( dc
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#ifdef

 exter

#else

#defin

#endif

 Chann

st

#ifdef

 exter

#else

#defin

#endif

 Atomi

st

#ifdef

 exter

#else

#defin

#endif

 Atomi

st

#ifdef

 exter

#else

#defin

#endif

 Chann

st

#ifdef

 exter

#else

);

ty_p);

empty );

q );

;

eft );

 moreone_p);
 dco_p

n ActionProc dco_p;

e dco_p 0

el dco("dco", dco_p);

atic ActionRef dco_r( dco );

 deq_p

n ActionProc deq_p;

e deq_p 0

c deq("deq", 0, deq_p);

atic ActionRef deq_r( deq );

 dint_p

n ActionProc dint_p;

e dint_p 0

c dint("dint", 0, dint_p);

atic ActionRef dint_r( dint );

 dio_p

n ActionProc dio_p;

e dio_p 0

el dio("dio", dio_p);

atic ActionRef dio_r( dio );

 ds_p

n ActionProc ds_p;

#define ds_p 0

#endif

 Channel ds("ds", ds_p);

static ActionRef ds_r( ds 

#ifdef empty_p

 extern ActionProc empty_p;

#else

#define empty_p 0

#endif

 Atomic empty("empty", 0, emp

static ActionRef empty_r( 

#ifdef enq_p

 extern ActionProc enq_p;

#else

#define enq_p 0

#endif

 Channel enq("enq", enq_p);

static ActionRef enq_r( en

#ifdef left_p

 extern ActionProc left_p;

#else

#define left_p 0

#endif

 Channel left("left", left_p)

static ActionRef left_r( l

#ifdef moreone_p

 extern ActionProc moreone_p;

#else

#define moreone_p 0

#endif

 Atomic moreone("moreone", 0,
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#ifdef

 exter

#else

#defin

#endif

 Atomi

#ifdef

 exter

#else

#defin

#endif

 Chann

st

#ifdef

 exter

#else

#defin

#endif

 Chann

st

#ifdef

 exter

#else

#defin

#endif

 Atomi

st

DATUMD

DATUMD

DATUMD

sk Server, with simulated Disk 

===

eue

wed by:

rned, or

cation

===

-> right!_x ->CELL.

 CELL .just 2 cells for now

mm}) || 
comm}.
 moretwo_p

n ActionProc moretwo_p;

e moretwo_p 0

c moretwo("moretwo", 0, moretwo_p);

 next_p

n ActionProc next_p;

e next_p 0

el next("next", next_p);

atic ActionRef next_r( next );

 right_p

n ActionProc right_p;

e right_p 0

el right("right", right_p);

atic ActionRef right_r( right );

 shift_p

n ActionProc shift_p;

e shift_p 0

c shift("shift", 0, shift_p);

atic ActionRef shift_r( shift );

EF( fini, 2 );

EF( req, 2 );

EF( start, 2 );

// % This is the simulated Di
and simulated clients.

// 

// 

// %=========================

// % DQueue:  disk request qu

// %

// % Interface:

// %enq!<item>enqueue item

// %deq dequeue item, follo

// %  next?_x  next item retu

// %  empty  empty queue indi

// %=========================

// 

// CELL ::= left?_x -> shift 

AGENTPROC( CELL_ )

FreeVar _x;

   left >> _x;

   shift();

   right << _x;

   CHAIN0( CELL_ );

}

// 

// % BUFF ::= CELL |> CELL |>

// BUFF ::= (((CELL#{right=co
(CELL#{left=comm}))^{comm})\{

AGENTPROC( BUFF_s1 )

   right_r.rename(comm_r);

   {

      CHAIN0( CELL_ );

   }
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}

AGENTP

   lef

   {

      

   }

}

AGENTP

   com

   {

      

      

      

      

      

      

      

      

      

   }

   Age

   END

}

// 

// DQu
right,

AGENTP

   lef

   rig

   shi

   {

DQ_v, 0, 0 );

BUFF_, 1 );

t!_x -> shift-> DQ(_i+1) )

n empty -> DQ(0))

-> ( next!_y -> DQ(_i-1) )

ce() ) {

 );
ROC( BUFF_s2 )

t_r.rename(comm_r);

CHAIN0( CELL_ );

ROC( BUFF_ )

m_r.hide();

comm_r.sync();

{

   Agent::compose( 2 );

   Agent* a1 = START0( BUFF_s1, 0 );

   Agent* a2 = START0( BUFF_s2, 1 );

   WAIT( a1 );

   WAIT( a2 );

}

Agent::popEnv( 1 );

nt::popEnv( 1 );

_AGENT;

eue ::= ((DQ(0) || BUFF)^{left, right, shift})\{left, 
 shift}.

ROC( DQueue_ )

t_r.hide();

ht_r.hide();

ft_r.hide();

      left_r.sync();

      right_r.sync();

      shift_r.sync();

      {

         Agent::compose( 2 );

         Agent* a3 = START1( 

         Agent* a4 = START0( 

         WAIT( a3 );

         WAIT( a4 );

      }

      Agent::popEnv( 3 );

   }

   Agent::popEnv( 3 );

   END_AGENT;

}

// 

// DQ(_i) ::= enq?_x -> ( lef

//    | deq -> ( (if _i=0 the

//     + fix X.(right?_y 

//      | shift -> X)

//     ).

AGENTPROC( DQ_s1 )

#define _i ARG(0)

   Agent::startDChoice( 2 );

      right >> DQ_v__y;

      shift();

   switch ( Agent::whichDChoi

      case 0:

         next << DQ_v__y;

         CHAIN1( DQ_v, (_i-1)

      case 1:
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   }

#undef

}

AGENTP

#defin

FreeVa

   Age

      

      

   swi

      

      

      

      

      

      

      

      

      

      

      

      

      

   }

   END

#undef

}

// 

// %==

// % D

// %

 operation on block <_blk> for 

ion finished

===

lk)-> dio!_blk-> dint -> 

===

ated)

on block _blk

signalled

===

 ->Disk.
   CHAIN1( DQ_s1, _i );

 _i

ROC( DQ_v )

e _i ARG(0)

r _x;

nt::startDChoice( 2 );

enq >> _x;

deq();

tch ( Agent::whichDChoice() ) {

case 0:

   left << _x;

   shift();

   CHAIN1( DQ_v, (_i+1) );

case 1:

   if (_i==0) {

      empty();

      CHAIN1( DQ_v, 0 );

   }

   Agent::compose(1);

   Agent* a5 = START1( DQ_s1, 0, _i );

   WAIT( a5 );

   break;

_AGENT;

 _i

==========================

Ctrl:  disk controller

// % Interface:

// %dci!start(_cl, _blk)start
client <_cl>

// %dco?fini(_cl, _blk)operat

// %=========================

// 

// DCtrl ::= dci?start(_i, _b
dco!fini(_i, _blk) -> DCtrl.

AGENTPROC( DCtrl_ )

FreeVar _blk;

FreeVar _i;

   dci >> start(_i, _blk);

   dio << _blk;

   dint();

   dco << fini(_i, _blk);

   CHAIN0( DCtrl_ );

}

// 

// %=========================

// % Disk:  disk drive (simul

// %

// % Interface:

// %dio!_blkperform disk i/o 

// %dint disk interrupt 

// %=========================

// 

// Disk ::=  dio?_blk -> dint

AGENTPROC( Disk_ )

FreeVar _blk;

   dio >> _blk;

   dint();
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   CHA

}

// 

// %==

// % D

// %

// % I

// %ds
<_blk>

// %ac

// %===

// 

// DSch

AGENT

   CHAI

}

// 

// DS_id
DS_bus

AGENT

FreeVa

FreeVa

   ds >>

   dci <<

   CHAI

}

// 

// DS_b
)

//     | d

le

rt(_cl, _blk) -> 
IN0( Disk_ );

==========================

Sched:  disk scheduler

nterface:

!req(_cl, _blk)client <_cl> requests operation on block 
 

k(_cl)client’s operation finished

=========================

ed ::= DS_idle.

PROC( DSched_ )

N0( DS_idle_ );

le ::= ds?req(_cl, _blk) -> dci!start(_cl, _blk) -> 
y.

PROC( DS_idle_ )

r _blk;

r _cl;

 req(_cl, _blk);

 start(_cl, _blk);

N0( DS_busy_ );

usy ::= dco?fini(_cl, _blk) -> ( ack(_cl) -> DS_check 

s?req(_cl, _blk) -> enq!req(_cl, _blk) -> DS_busy.

AGENTPROC( DS_busy_ )

FreeVar _blk;

FreeVar _cl;

   Agent::startDChoice( 2 );

      DatumVar fini_dv = fini(_cl, _blk);

      dco >> fini_dv;

      DatumVar req_dv = req(_cl, _blk);

      ds >> req_dv;

   switch ( Agent::whichDChoice() ) {

      case 0:

         ack(_cl);

         CHAIN0( DS_check_ );

      case 1:

         enq << req(_cl, _blk);

         CHAIN0( DS_busy_ );

   }

}

// 

// DS_check ::= deq -> ( empty -> DS_id

//      | next?req(_cl, _blk) -> dci!sta
DS_busy ).

AGENTPROC( DS_check_ )

FreeVar _blk;

FreeVar _cl;

   deq();

   Agent::startDChoice( 2 );

      empty();

      DatumVar req_dv = req(_cl, _blk);

      next >> req_dv;
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   swi

      

      

      

      

      

   }

}

// %==

// % D

// %

// % I

// %==

// 

// DSS

//  |

//   

AGENTP

   enq

   deq

   nex

   emp

   {

      

      

      

      

      

   }

   Age

   END

rl_, 0 );

k_, 1 );

S_s1, 0 );

S_s2, 1 );

2)) )^{ds,ack(1),ack(2)}.
tch ( Agent::whichDChoice() ) {

case 0:

   CHAIN0( DS_idle_ );

case 1:

   dci << start(_cl, _blk);

   CHAIN0( DS_busy_ );

==========================

SS:  disk server subsystem

nterface: (see DSched)

==========================

 ::= (  (DSched || DQueue)^{enq,deq,next,empty}

|

 (DCtrl || Disk)^{dio,dint}   )^{dci,dco}.

ROC( DSS_s1 )

_r.sync();

_r.sync();

t_r.sync();

ty_r.sync();

Agent::compose( 2 );

Agent* a6 = START0( DSched_, 0 );

Agent* a7 = START0( DQueue_, 1 );

WAIT( a6 );

WAIT( a7 );

nt::popEnv( 4 );

_AGENT;

}

AGENTPROC( DSS_s2 )

   dio_r.sync();

   dint_r.sync();

   {

      Agent::compose( 2 );

      Agent* a8 = START0( DCt

      Agent* a9 = START0( Dis

      WAIT( a8 );

      WAIT( a9 );

   }

   Agent::popEnv( 2 );

   END_AGENT;

}

AGENTPROC( DSS_ )

   dci_r.sync();

   dco_r.sync();

   {

      Agent::compose( 2 );

      Agent* a10 = START0( DS

      Agent* a11 = START0( DS

      WAIT( a10 );

      WAIT( a11 );

   }

   Agent::popEnv( 2 );

   END_AGENT;

}

// 

// SYS ::= (DSS || (C(1)|||C(

AGENTPROC( SYS_s1 )

   Agent::compose( 2 );
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   Age

   Age

   WAI

   WAI

   END

}

AGENTP

   ds_

   ack

   ack

   {

      

      

      

      

      

   }

   Age

   END

}

// 

// %==

// % D

// %==

// 

// C(1

AGENTP

   ds 

   mor

   ack

   END

}

retwo->ack(2)->SKIP.

)

;

 removed (DSS)

ver, with simulated clients.  

 DSS.  Note, it does no harm to 
nt* a12 = START1( C_c1, 0, 1 );

nt* a13 = START1( C_c2, 1, 2 );

T( a12 );

T( a13 );

_AGENT;

ROC( SYS_ )

r.sync();

_r_1.sync();

_r_2.sync();

Agent::compose( 2 );

Agent* a14 = START0( DSS_, 0 );

Agent* a15 = START0( SYS_s1, 1 );

WAIT( a14 );

WAIT( a15 );

nt::popEnv( 3 );

_AGENT;

==========================

emo

==========================

) ::= ds!req(1,100)->moreone->ack(1)->SKIP.

ROC( C_c1 )

<< req(1, 100);

eone();

(1);

_AGENT;

// 

// C(2) ::= ds!req(2,150)->mo

AGENTPROC( C_c2 )

   ds << req(2, 150);

   moretwo();

   ack(2);

   END_AGENT;

}

// 

// 

main( int argc, char* argv[] 

{

#ifndef START

#define START SYS_

#endif

    MAIN( argc, argv, START )

}

A.4  Simulated Disk

% This is the "real" Disk Ser
The Disk

% process is commented out in
leave the

% Disk process defined.

%============================

% DSS:  disk server subsystem

%
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% Inte

%=====

%DSS :

%  |

%   

DSS ::

 |

  

A.5 

/*

 * Dis

 * 

 * Ext
Atomic

 */

#inclu

#inclu

/*

 * Rep

 */

void d
block 

{

    ce
*block

}

rupt 

t, ActionRef* a, Var* v, Lit* l 

 Receiving disk interrupt" << 

 (DSS)

/O on block # 100

sk interrupt

)]

]

/O on block # 150

sk interrupt

)]

]

rface: (see DSched)

=======================

:= (  (DSched || DQueue)^{enq,deq,next,empty}

|

 (DCtrl || Disk)^{dio,dint}   )^{dci,dco}.

= (  (DSched || DQueue)^{enq,deq,next,empty}

|

 DCtrl   )^{dci,dco}.

 External routines (DiskProcs.cc)

kProcs.cc

ernal action procedures linked to Channel dio and 
 dint 

de "Lit.h"

de "Action.h"

laces dio?block:  start I/O on given block #

io_chanInput( ActionType t, ActionRef* a, Var* v, Lit* 
)

rr << "*** dio_chanInput: Starting I/O on block # " << 
 << endl;

/*

 * Replaces dint:  disk inter

 */

void dint_atomic( ActionType 
)

{

    cerr << "*** dint_atomic:
endl;

}

A.6  Execution trace

|=DS_idle [ds$req( 1, 100 )]

|=C( 1 ) [moreone]

Action: moreone

*** dio_chanInput: Starting I

|=DCtrl [dio$100]

*** dint_atomic: Receiving di

|=DCtrl [dint]

|=DS_idle [dci$start( 1, 100 

|=DS_busy [dco$fini( 1, 100 )

|=DS_busy [ack( 1 )]

|=DQ( 0 ) [deq]

|=DQ( 0 ) [empty]

|=DS_idle [ds$req( 2, 150 )]

|=C( 2 ) [moretwo]

Action: moretwo

*** dio_chanInput: Starting I

|=DCtrl [dio$150]

*** dint_atomic: Receiving di

|=DCtrl [dint]

|=DS_idle [dci$start( 2, 150 

|=DS_busy [dco$fini( 2, 150 )

|=DS_busy [ack( 2 )]

|=DQ( 0 ) [deq]
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|=DQ( 

idleta

Agent:

== AGE

Curren
tasks

======

task #

This t

My syn
comm

======

task #

This t

My syn
left

======

task #

This t

======

task #

This t

 Waiti

My syn

 Waiti

My syn

======

task #

This t

======

task #

This t

My syn

======

task #

trl

n [10] -- waiting for sync on 

================================

S

================================

================================

S

================================

================================

S

================================
0 ) [empty]

sk: All tasks IDLE!

:exit_fn: Dump printed on stdout

NT DUMP ==

t # Literals: 1; High water marks:  9 Literals, 13 

=======================================================

12 ’CELL’ (IDLE)

ask running as Agent CELL

c flag is #1 (LSB=#0) in [10] -- waiting for sync on 

=======================================================

8 ’CELL’ (IDLE)

ask running as Agent CELL

c flag is #1 (LSB=#0) in [10] -- waiting for sync on 

=======================================================

11 ’BUFF’ (IDLE)

ask running as Agent BUFF

=======================================================

6 ’DQ’ (IDLE)

ask running as Agent DQ( 0 )

ng for sync on enq

c flag is #1 (LSB=#0) in [10]

ng for sync on deq

c flag is #1 (LSB=#0) in [10]

=======================================================

10 ’DQueue’ (IDLE)

ask running as Agent DQueue

=======================================================

9 ’DS_idle’ (IDLE)

ask running as Agent DS_idle

c flag is #0 (LSB=#0) in [01] -- waiting for sync on ds

=======================================================

7 ’DCtrl’ (IDLE)

This task running as Agent DC

My sync flag is #1 (LSB=#0) i
dci

=============================

task #5 ’DSS’ (IDLE)

This task running as Agent DS

=============================

task #4 ’SYS’ (TERMINATED)

 Result = 0

=============================

task #3 ’DSS’ (IDLE)

This task running as Agent DS

=============================

task #2 ’idle’ (RUNNING)

=============================

task #1 ’SYS’ (IDLE)

This task running as Agent SY

=============================

task #0 ’main’ (IDLE)

task::stop exiting
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APPENDIX B

CSP++ User’s Manual Appendix B

B.1  Compiling the framework and translator

Since the platform for the AT&T cfront version, CSP++ V1.0, is essentially obsolete, we

only give directions for compiling the Pthreads version. If the former version is of inter-

est, its makefile should be consulted.

B.1.1  Source distribution

Figure 11 shows the directory structure that results from unzipping the source archive of

V2.1. Rectangles represent subdirectories. It is assumed that g++ is available.

One should start by compiling the USL Standard Components library: “m

SC-3.0/lib/Makefile. The other files in the SC-3.0 subdirectory are for inclusion at c

Figure 11: CSP++ V2.1 source code organization

CSP++ root

SC–3.0 xlator

demolib

framework
Makefile
*.h *.c

Standard Components
*.h *.c

Standard Components
Makefile
*.h *.c

cspt
Makefile
*.h *.cc

Makefile
*.csp12

csp12.*
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Next, compile the CSP++ framework using the Makefile in the top-level directory.

This will result in a number of *.o object files that can be linked with a translated applica-

tion later.

Compile the translator using xlator/Makefile. This will run flex and bison, so their

pathnames may need to be modified to suit a given installation, not only for the binaries,

but also for the flex library (libfl.a).

To test the software, try compiling the example programs in the demo subdirectory

using the Makefile provided. The translator will be run on the *.csp12 specifications, then

the resulting *.cc files compiled. These will link with the framework elements in the top-

level directory. The Makefile assumes that all the Pthreads routines are in the

libpthread.so (“-lpthread”). If this is not the case—for example, on our Solaris host i

also necessary to also load libposix4.so (“-lposix4”)—unsatisfied externals will occ

link time, and the Makefile should be modified accordingly. Run the examples by ty

“DSS” or “DSSsim” with various command line options (Section B.4).

1.  These files were designed to be compiled with cfront, which builds a precompiled template repository.  
Complex methods, considered too lengthy to go in, say, a foo.h, were placed in an additional foo.c file where 
cfront knew to look for them. (The default extension for C++ files was .c, not .cc.) But for g++ compilations, 
whenever foo.h is to be included by a .c file, one must also explicitly include foo.c in order to get the rest of 
the template methods.  Failure to do so results in mysterious load-time errors, because those methods will 
never have been created in any object file.

This scenario is made more confusing by the fact that in a Standard Components “lib” subdirectory th
might be found yet another foo.c file; that is, having the same name as the file just described, but with
ent contents. These .c files were supposed to be separately compiled and stored in a library archive t
some non-parameterized template methods.  We compile these into foo.o files, and explicitly load the
the rest of the object files that make up a CSP++ executable program.
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B.1.2  Compile-time symbols

In some cases, a user may wish to have greater visibility into the inner workings of the

CSP++ run-time framework than is provided by tracing. This can be obtained by recom-

piling the framework with certain preprocessor symbols defined:

1. MEMWATCH: Orders the Literal routines to print all storage-related 

activities, including allocating, assigning, and deleting, in order to check 

for leaks. Also enables code in Lit::memStatus to print an annotated 

message giving the current number of outstanding Literals.

2. ACTWATCH: Orders details printed of every action’s execution, including 

step-by-step environment stack search.

In the top-level Makefile, one could specify, for example, OPTS="-DACTWATCH" to get

action logging. The output of these options can be quite voluminous.

B.2  Running the cspt translator

The syntax for invoking the translator is as follows:

cspt [-s] [-d] [-t] <csp12 file>

If the input file has a .csp12 extension, C++ output is produced in a similarly-name

with .cc extension, otherwise .cc is just appended to the input file name.

Here are the command line options:

1. -s: copy the csp12 source statements into the translated output file, inter-

leaved so that they appear just prior to their translated C++ code.

2. -d: “debug” option, produces a syntax tree on cerr (stderr).
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tines.
3. -t: turns on the flex and bison trace features, which logs how each csp12 

statement is analyzed and parsed.

Note that error recovery is primitive. If the translator encounters an error in the

input, it will generally report the problem and abort processing without attempting to read

further.

B.3  Compiling the synthesized code

When g++ is invoked to compile the output of the translator, it must have access to the .h

include files in the top-level directory, and those in the SC-3.0 subdirectory. The com-

piler’s “-g” option may be used to insert information for symbolic debugging.

The “-Dsymbol=value” option is used for two purposes:

1. Specify an external routine of name value to be linked to an action. If the 

action (atomic or channel) is named foo, symbol should be written with 

the suffix “_p”, i.e., foo_p. Any number of “-D” definitions may be sup-

plied.

2. Override the normal starting point for execution of the compiled system, 

which is the agent named SYS. If the specification does not contain such an 

agent, or if it is desired to start execution elsewhere, redefine the START 

symbol as follows:

-DSTART=agentproc

Note that agentproc is not the csp12 name of the agent, like E(2), but rather 

the name given by the translator to its corresponding procedure, e.g., 

E_c2. These names are most easily located in the .cc file as arguments to

the AGENTPROC macro.

g++ can also be used to link/load the compiled system with any external rou
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From the top-level directory load: Lit.o, Agent.o, Action.o, and task.o. From SC-3.0/lib

load: Bits.o, List.o, and Pool.o. Specify library -lpthread (and -lposix4 if needed).

B.4  Invoking the compiled system

These option flags should be typed with the command that executes your CSP++ system,

i.e., the binary file produced from the previous link/load step:

1. -t: Print traces on cerr (stderr) of every action taken.

2. -i: Starts an idler task which wakes up periodically and checks the status of 

all non-terminated tasks. If all are found to be idle, a dump of the task sta-

tus is performed, and the program exits. High water marks are reported for 

the maximum number of Literals and tasks in existence.

3. -q: Exits with a fast “quit” to the command line, by suppressing the usual 

dump, when STOP is executed or all tasks are idle (-i option).

The idler task interval is hardcoded at 2 seconds. This can be modified in m

(see argument to idletask constructor). The dump and termination can also be t

gered by an agent’s executing STOP. Suppression of the dump (-q option) is usefu

making timing measurements on an executable.
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APPENDIX C

Restrictions and Limitations Appendix C

C.1  Restrictions

Some restrictions are listed in Table 5. Most of them are in terms of constructs which may

be allowed in csp12 (or are loosely specified), but which were not carried over into

CSP++. None would be considered difficult to live with.

C.2  Numerical limitations

There are a handful of compile-time constants, listed in Table 6, which serve as fixed

array dimensions. There are also limits on function argument lists. All such limits could

have been avoided by certain techniques (such as variable-length argument lists), but this

AREA RESTRICTION CONSEQUENCE

Action If an external routine is linked to an Action, 
the Action cannot also be used for sync.

Make sure that internal and external Actions 
are distinguished in the CSP specification.

Agent All definitions of the same-named agent must 
have the same number of non-overlapping 
arguments. Constant arguments can only be 
integers.

One cannot define, say, both X and X(i), nor 
X(0) and X(i). Instead, define only X(i) and 
start by testing i for 0.

Atomic Subscripts must be integers. “P::=a( foo(1) )→Q” is illegal since the 
Datum foo is considered a subscript. To 
communicate a Datum, use a channel 
instead.

Channel Default channel input action is to accept an 
integer.

Default channel input actions cannot be 
used for typing in non-Num data values.

Datum A given DatumID must always appear with the 
same number of subscripts, because Datums 
have global scope.

One cannot write, say, foo(1,2) in one agent
body and foo(x) in another.

Table 5: Restrictions in current CSP++
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would have disabled argument type checking and was not considered worth the trouble.

These constants were set to arbitrary useful values, and can all be increased by recompil-

ing CSP++. In some cases, more code must be written. Originally, these constants were in

several .h include files, but as of V2.1 they are all in Limits.h.

CONSTANT LIMITATION (Max. no.) IMPACT OF INCREASING

AG_ARGS AgentProc arguments (4) More storage for array of Lits, and more calls to 
Lit constructors/destructors when Agents start/
terminate.

AG_COMPOSE Agents that can be composed (8) More storage for syncFlags bit strings in 
EnvSync objects (negligible).

AT_SUBS Atomic subscripts (4) Code more arguments for ActionRef 
constructor and Atomic::operator().

none, see Lit.h Datum subscripts (4) Code more DATUM_n macros.

Table 6: Locations of limitations



144

r disk

ans the

t walks

r data

 from

n the

d writ-

 appre-
APPENDIX D

Detailed Design of cspt Translator Appendix D

Since CSP++ was purposely designed to make the job of translating from CSP straight-

forward, it is natural that the translator should not be a greatly complex piece of soft-

ware. It was built using the conventional compiler-writing tools, LEX and YACC, or

actually their Gnu cousins, flex [Paxs95] and bison [Donn92], that come with Red Hat

Linux.

In the sections below we first present a brief overview, followed by a detailed

description of the translator’s two phases. That complete, we return once more to ou

server case study to show its translation and execution.

D.1  Overview

Cspt operates in two phases: first, a combined lexical and syntax phase which sc

csp12 input file and produces a syntax tree; second, a code generation phase tha

the tree and produces a C++ output file. In addition to the syntax tree, the othe

structures that persist between phases are the symbol tables.

Object-oriented design has been used throughout. The syntax tree is built

ParseNode objects, each of which knows how to generate itself and its subtree i

code generation phase. The C++ STL has been utilized wherever possible to avoi

ing and debugging code for stock data structures. Its benefits have been especially

ciated in the areas of tree building, tree-navigation, and symbol table access.
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In contrast to the run-time framework, where pains were taken to bolster efficient

execution, no such design goals were applied to the translator, either with regards to

memory use or execution speed. The sole criteria were a logical design and ease of cod-

ing. Despite this “spendthrift” policy vis-à-vis hardware resources, translating the 

study on a Pentium 200 running Linux took well under one second.

The only technical challenges to speak of arose in three areas:

1. identifying and extracting complex subagents for separate generation, 

while ensuring access to their parents’ symbols

2. managing the symbols for multiple agent definitions and binding them to 

agent invocations

3. handling agent termination, whether by chaining, returning, or starting new

agents, depending on the context

None of these were at all intractable, though the third one, intuitive enough when

translating, proved to be surprisingly resistant to being reduced to a deterministic de

algorithm.

Some attention has been given to diagnosing problems in the translator’s 

down to the offending line and character where practical. Still, this feature is fairly 

mentary at present. Cspt also has been equipped with command line switches t

used to turn on flex and bison debugging features, and to produce translated outpu

leaved with csp12 source statements (in the form of C++ comments). These optio

described in the translator’s User’s Manual (see Appendix B.2).
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D.2  Lexical and syntax phase

First, a review of how flex and bison are used to process a language:

Translation is driven by the bison-generated parser, which is invoked from the

user’s main() function (in bison source file csp12.y). The parser shifts input token

and off its stack until it recognizes patterns in the language’s grammar. The patter

supplied by the compiler writer in pseudo-BNF style when the bison generator is inv

The parser, in turn, gets its input tokens from the flex-generated scanner, which b

them out of the input stream according to the language’s lexical features. Those ru

also supplied by the compiler writer, along with a routine to read the actual input file

fill the scanner’s buffer. When the parser recognizes a grammatical pattern, it calls 

routine, which in our case adds nodes to the parse tree under construction.

In this fashion, the parser and scanner carry on in tandem until the csp12 sour

is fully processed. This constitutes the first phase of cspt.

The rules used to customize flex and bison are given below. This is followed

detailed description of the relevant data structures, the parse tree and the symbol ta

D.2.1  Lexical rules

These rules are contained in the flex source file csp12.lex. First are the csp12 op

and delimiters. These range from single-character tokens such as “!” and “#” to do

and triple-character tokens “->”, “| |”, “::=”, “| | |”, etc. A handful of reserved words 

recognized by flex: done, if, fix, SKIP, STOP, and then. Such tokens are reported t

the parser by code number. For single-character tokens, the ASCII value of the ch

is its number. The others are assigned code numbers from a table in the file csp12
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which is generated by bison from the %token statements appearing in the bison source

file csp12.y.

The above description applies to tokens that are fixed character strings. Other kinds

of tokens, such as numbers and identifiers, are recognized by patterns. Csp12 uses four

types:

1. Lower-case identifier or LID, used for action and datum names

2. Upper-case identifier or UID, used for agent names

3. Variable or VAR, an identifier starting with underscore “_”

4. Numeric or NUM, integers

NUM tokens are reported to the parser using their integer value.

Identifiers can contain any alphanumeric character, plus “_” and “’ ”. The types are

distinguished based on the leading character: upper case, lower case, or undersco

are stored as C++ string objects, the instances being allocated by the scanner. 

value of a LID, UID, or VAR passed to the parser is its string* pointer. No attempt is

made to economize on storage by recognizing identical previously-allocated string

copying their pointers.

The scanner is also told to recognize csp12 style line-oriented comments: an

to the right of “%” is ignored.

D.2.2  Grammar rules

These rules are contained in the C++ source file csp12.y. They are listed in Ta

rewritten in conventional BNF. Thus, Table 7 helpfully documents both the acce



148

Pseudocodea

gen()
d details for entries marked “>”

(ctor = constructor)

number

 operand in turn; stop on bad status

 each arg/subscript; stop on bad status

ame

<defi  and agent; use agent’s symbol entry to 
ROC, arg #defines, and FreeVars 
c); gen agent body; “ENDAGENT” if 
rg #undefs (genEndAgent)

<age

Choice(n)”; set flag for PNinput 
n); genPre actions; 
DChoice()”; genPost agents

ent’s symbol entry to extract agent as 
keSubAgent); change <UID> refs in 
ew PNconstSub (changeConstRefs); gen 

 PNconstSub

nt, flagging last one

n agent; “}”
Accepted csp12 syntax in BNF

Parent

Subclass NameP
N

to
k

P
N

co
p

P
N

ci
d

ct
o

rb

p
re

p
()

an

ParseNode > OK ctor: store line 

gen(): OK

* PNtok { } - -

* PNcop { } apply prep/gen to each

* PNcid { } > prep(): apply to

gen(): output n

nition> ::= <signature> ‘::=’ <agent> ‘.’ * PNdefn { } NC prep signature
gen AGENTP
(genAgentPro
needed; gen a

nt> ::=  ( ‘(’ <agent> ‘)’ | <prefix> see <prefix> below

| <prefix> ‘|’ <prefix> {‘|’ <prefix>} * PNchoice { } - “Agent::startD
(DatumVar ge
“Agent::which

| FIX <UID> ‘.’ <agent> * PNfix { } > prep(): use ag
subagent (ma
subagent to n
subagent

gen(): gen the

| <agent> ‘;’ <agent> {‘;’ <agent>} * PNseq { } - gen each age

| ‘@’ <agent> * PNloop { } - “while(1) {”; ge

Table 7: BNF syntax with corresponding parse node classes
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ple agents; complex: use agent’s symbol 
t subagents (makeSubAgent), then gen

:compose(n)”; “START” each agent; 
gent

Refs; “.”; “sync()”, “hide()”, or gen 
n the associated agent; 
v(n)” if needed

t

ENDAGENT generated

agentTable, get agentproc name via 

”, “START”, or “START/WAIT” 
 context

ent

n exp; “) {“; gen agent; “}”

<pref

 action

n agent

Pseudocodea

gen()
d details for entries marked “>”

(ctor = constructor)

tinued)
| <agent> ‘| |’ <agent>

| <agent> ‘| | |’ <agent>

* PNcompose { } > prep(): prep sim
entry to extrac

gen(): “Agent:
“WAIT” each a

| <agent> ‘^’ ‘{’ <name>{,<name>} ‘}’

| <agent> ‘\’ ‘{’ <name>{,<name>} ‘}’

| <agent> ‘#’ ‘{’ <rename>{,<rename>} ‘}’

* PNenv { } - gen the Action
PNrename; ge
“Agent::popEn

| <agent> ‘+’ <agent> * PNor { } - gen each agen

| STOP * PNstop { } - “Agent::stop()”

| SKIP * PNskip { } - set flag to get 

| <UID>[ ‘(‘ <exp>{,<exp>} ‘)’ ] * PNconst { } > prep(): find in 
bindSig(args)

gen(): “CHAIN
depending on

| IF <exp> THEN <agent> ) * PNifthen { } > prep(): prep ag

gen(): “if (”; ge

ix> ::= <action> ‘->’ <agent> * PNprefix { } - gen(): -

genPre(): gen

genPost(): ge

Accepted csp12 syntax in BNF

Parent

Subclass NameP
N

to
k

P
N

co
p

P
N

ci
d

ct
o

rb

p
re

p
()

an

Table 7: BNF syntax with corresponding parse node classes (Con
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<sign entTable, or insert new variant

nature in agentTable, set its symbol entry 
tion context; setup symbol entry to handle 
riant (prep)

<num

o agent’s symbol entry (addvar) with 
 in subagent

var name, maybe globalized, obtained 
ymbol entry (ref)

<acti

rt in actionTable

name, gen subscripts

hannel

var, “DatumVar” temp “=” gen 
 PNchannel; “>>”; gen PNvar or temp

hannel

channel; “<< (“; gen exp; “)”

rt in actionTable

name

<datu rt in datumTable

name, gen subscripts

<nam able, output ActionRef, gen subscripts

Pseudocodea

gen()
d details for entries marked “>”

(ctor = constructor)

tinued)
ature> ::= <UID> ‘(‘ <numvar>{,<numvar>} ‘)’ * PNsig > > ctor: find in ag

prep(): find sig
as the transla
symbols for va

gen(): NC

var> ::= ( <NUM> * PNnum { } - output value

| <VAR> ) * PNvar { } > prep(): report t
“global” flag if

gen(): output 
from agent’s s

on> ::= ( DONE * PNdone { } - -

| <LID>[ ‘(’ <exp>{,<exp>} ‘)’ ] * PNatomic > OK ctor: find/inse

gen(): output 

| <LID> ‘?’ (<VAR> | <datumvar>) * PNinput > - ctor: new PNc

gen(): if datum
datumvar; gen

| <LID> ‘!’ <exp> ) * PNoutput > OK ctor: new PNc

gen(): gen PN

* PNchannel > - ctor: find/inse

gen(): output 

mvar> ::= <LID>[ ‘(’ <VAR>{,<VAR>} ‘)’ ] * PNdatumvar > - ctor: find/inse

gen(): output 

e> ::= <LID>[ ‘(’ <NUM>{,<NUM>} ‘)’ ] * PNaction { } OK find in actionT

Accepted csp12 syntax in BNF

Parent

Subclass NameP
N

to
k

P
N

co
p

P
N

ci
d

ct
o

rb

p
re

p
()

an

Table 7: BNF syntax with corresponding parse node classes (Con
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<rena ame into actionTable (makeAtomic)

 PNaction; “.rename(”; gen 2nd PNaction; 

<exp

rt in datumTable

name, gen subscripts

<op>

p; op; gen right exp; “)”

Prep-

ne

bagent no. in translation context

rep
su

onst::gen()

 status (0); NC = method is not called; “foo” = 

licitly written out.

Pseudocodea

gen()
d details for entries marked “>”

(ctor = constructor)

tinued)
me> ::= <name> ‘=’ <name> * PNrename > OK ctor: get 2nd n

gen(): gen 1st
“)”

> ::= ( <numvar> see <numvar> above

| <LID> ‘(‘ <exp>{,<exp>} ‘)’ * PNdatum > OK ctor: find/inse

gen(): output 

| ‘–’ <exp>
| <exp> <op> <exp> )

 ::= ( ‘+’ | ‘–’ | ‘*’ | ‘/’ | ‘=’ | ‘<’ | ‘>’
| ‘=<’ | ‘=>’ | ‘<>’ )

* PNop { } OK “(“; gen left ex

time node substitution:

w extracted subagent’s <signature>

* PNsigSub { } > prep(): note su

gen(): NC

laces complex <agent> subtree, refers to 
bagent

PNconst PNconstSub { } OK default to PNc

a. Abbreviations:{ } = no-op; - = default to parent’s method; OK = no-op, return good
output “foo”

b. Constructor: The obvious action of storing arguments in data members is not exp

Accepted csp12 syntax in BNF

Parent

Subclass NameP
N

to
k

P
N

co
p

P
N

ci
d

ct
o

rb

p
re

p
()

an

Table 7: BNF syntax with corresponding parse node classes (Con
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input syntax and the translator’s related construction side-by-side in one place. It s

be the starting place for anyone wishing to modify the translator.

There is an area of significant divergence from csp12 syntax. It will be recalled

csp12 is a tool for model checking as well as simulation. Thus it includes syntacti

ments for collecting traces and performing logical operations such as temporal ve

tion. That subset of csp12, which is not synthesizable, is not supported by cspt.

D.2.3  Parse tree

Without exception, bison rule recognition always results in either creating a 

ParseNode, or adding a token to an operand list in preparation for creatin

ParseNode from the list. An important typedef is LOPNP, an acronym for “list of

ParseNode pointers.” LOPNP is defined as the STL template deque<ParseNode*>,

and manipulated with the STL’s container class methods.

The ParseNode class hierarchy (ParseNode.h) is shown in Figure 12. The abs

base class records the csp12 input file line number associated with the node (used 

diagnostics for errors discovered in phase two). The virtual prep() and gen() meth-

ods (explained under Section D.3 “Code generation phase”) specify the output stre

print to, and provide a status return which can be used to abort the translation.

The subclasses define three broad categories of specific parse node types:

• PNcop: complex operators, having a list of operands (pnl)

• PNtok: simple tokens

• PNcid: complex identifiers, having a name and a list of arguments or 

subscripts
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e per-

 defi-
These all have default prep() and gen() methods, which may or may not suit their

subclasses. If not, the methods can be overridden.

The specialized parse node subclasses (ParseNodes.h) are listed in Figure 12 under-

neath their respective base classes. The inheritance goes down just this additional level,

with the exception of PNconst, which is the parent of PNconstSub. These classes are

listed opposite their corresponding BNF statements in Table 7. Their constructors (abbre-

viated “ctor” in the table), in most cases, simply store their arguments, though som

form symbol table lookups (see next section).

For debugging purposes, virtual methods are provided for printing each parsed

Figure 12: Parse node class hierarchy

ParseNode
{abstract}

+ lineNum: int

+ prep( ostream& ): int
+ gen( ostream& ): int
+ printMe()
+ prettyPrint()

PNcop

# pnl: LOPNP*

+ prep( ostream& ): int
+ gen( ostream& ): int
+ prettyPrint()

PNcid

# name: string*
# pnl: LOPNP*

+ prep( ostream& ): int
+ gen( ostream& ): int
+ prettyPrint()

PNchoice
PNcompose
PNdefn
PNenv
PNfix
PNifthen
PNinput

PNloop
PNop
PNor
PNoutput
PNprefix
PNrename
PNseq

PNaction
PNatomic
PNconst

PNconstsub

PNdatum
PNdatumvar
PNsig
PNsigSub

PNchannel
PNdone
PNnum
PNskp
PNstop
PNvar

1..* 1..*

1

1

PNcop

+ prettyPrint()



154

 B.2),

odes

.

esenta-

ery-

); rele-

r of

ames

ide a 
that) 
nition. When the “-d” debug flag is used on the cspt command line (see Appendix

prettyPrint() is called each time an agent definition is recognized. Complex n

print their name or type and then recursively prettyPrint() each of their operands

Simple nodes print their name or value. The result is a neatly indented, nested repr

tion of the parse tree printed on cerr (stderr). A sample is given in Appendix A.2.

Not shown in Figure 12 are a handful of additional virtual methods used for qu

ing node types and values: isNum(), intVal(), getName(), and the like. The

abstract base class supplies default methods for these (always returning false or 0

vant subclasses simply override these defaults.

D.2.4  Symbol tables

Symbol collection is an important task of the translator’s first phase. A numbe

ParseNode subclass constructors require access to symbol tables: storing new n

and looking up existing ones.

Symbol tables are constructed with the help of the STL map template. The

SymTable<T> class (Symbols.h), derived from map<string*,T*,SYcompare>,

sets up a mapping from identifiers (string*) to symbol entries (T*). The object

SYcompare1 provides the operator needed to order any pair of string* identifiers by

invoking the C++ string::compare() function. The underlying map functionality

1.  “Compare objects” are a syntactically obscure aspect of the STL (see [Aust99]). They should prov
function call operator that returns true if the first operand is “less than” (however one cares to define 
the second operand. We use lexicographic string comparison:

struct SYcompare {
bool operator()( string* s1, string* s2 ) const
{ return ( s1->compare( *s2 ) < 0 ); }

};
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ensures that there are no duplicate definitions in a SymTable object, and allows its sym-

bols to be iterated in lexicographic order.

Different kinds of symbol entries are defined for agents, actions, and datums. The

hierarchy for the symbol entry classes is shown in Figure 13. The three global symbol

tables are then defined thusly:

SymTable<SYagent> agentTable;

SymTable<SYaction> actionTable;

SymTable<SYdatum> datumTable;

The only method these three tables, or more precisely, the symbol entry classes,

have in common is the gen() method, used to output symbol definitions in the code

generation phase. Other features of these classes are described in the following three sub-

Figure 13: Symbol class hierarchy

Symbol

# plainName: string*
# args: int

+ argsOK(): bool

SYaction

+ gen( ostream& )
+ ref( subs: LOPNP* ): string

SYdatum

+ gen( ostream& )

SYagent

– argls: vector<LOPNP*>
– x: vector<int>
– y: vector<string>
– needBinder: bool

+ gen( ostream& )
+ addSig( args: LOPNP* )
+ bindSig( args: LOPNP* )
+ makeSubagent( agent )
+ prep( variant: int )
+ addVar( name, global )
+ ref( name, global )
+ genAgentProc( ostream& )
+ getEndAgent( ostream& )
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D.2.4.1  SYagent entry

One SYagent object is created to record all variants of a particular agent name; e.g.,

SYS(1,1), SYS(2,_i), and so on, are variants of the name “SYS”. Once an ag

name has been defined, it sets the pattern regarding arguments, and all subseque

ants must have the same argument cardinality.

As each variant is encountered in the input stream, it is processed into the 

named symbol entry by the addSig(args) method:

• Its argument list is appended to the argls vector.

• The arguments are analyzed, resulting in its signature and appropriate entries 

being appended to the y and x vectors, respectively.

These data members are later used for agent binding via the bindSig(args) method. If

compile-time binding ever fails, the needBinder flag gets set, which will cause an

AgentBinder to be dumped out when gen() is later invoked on the symbol entry.

When the code generation phase commences, subagents may be extracted. In that

case a special PNdefn node needs to be created containing the extracted subtree. This

chore is performed by the makeSubagent(agent) method.

The agent argument (that is, the subtree) gets replaced by a PNconstSub node

referring to the subagent name. Such names are assigned sequential numbers within the

symbol entry (e.g., SYS_s1, SYS_s2, etc.). The subtree itself is reinstalled under a new

PNdefn node, along with a PNsigSub signature node containing the subagent’s nu

ber. When gen() is invoked, definitions for all subagents are output.
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Because of the possibility of subagent extraction, the SYagent class must provide

facilities for collecting a variant’s variables and converting them to global scope if 

are referenced in a subagent. This symbol-table-within-a-symbol-table is implemen

three methods:

• prep(variant): sets up the symbol entry so that prep() and gen() will 

utilize symbols for the designated variant number.

• addVar(name,global): invoked whenever a variable name is encountered 

in a channel input context during the prep() subphase of code generation.

• ref(name,global): obtains the C++ name of the variable, which gets 

“uniquified” if the variable is used in subagents. ref() detects the error of 

using the value of a variable before setting it (ref() without a prior 

addVar()).

Two more methods provide the start- and end-of-code-block generators for the

ant specified by prep(variant). These are genAgentProc(ostream&) and

genEndAgent(ostream&).

D.2.4.2  SYaction entry

One SYaction object is created for each atomic action or channel. Atomics are su

to a limited variant phenomenon in that if they are subscripted, all subscripts ac

used must be recorded so that ActionRef objects can be output by gen(). The

ref(subs) method serves this purpose, by both recording the subscripts and also r

ing the C++ name of the corresponding ActionRef.

Aside from ActionRefs, gen() also outputs Channel and Atomic defini-

tions. Each definition is preceded by a block of preprocessor code that tests wheth

user has provided a compile-time definition of the symbol action_p. If so, the symbol’s
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value is used as the name of an external ActionProc to be linked with the action. If

not, the default value of zero suppresses external linkage.

D.2.4.3  SYdatum entry

One SYdatum object is created for each unique Datum or DatumVar name. The first

occurrence fixes the number of subscripts, and subsequent occurrences are validated via

the Symbol::argsOK() method. Invoking gen() outputs a DATUMDEF macro with

the appropriate number of subscripts.

D.3  Code generation phase

When we arrive at the code generation phase in the main() function of csp12.y, the

parse tree is complete and all symbols have been collected. The symbol tables are not,

however, in their final forms, since the subsequent extraction of subagents may cause

some variables to be globalized (names changed), and of course new subagent names to

be added, as described in Section D.2.4.1 above.

Code generation has two subphases:

1. Generate the parse tree to a scratch file.

2. Generate all the symbol definitions to the output file.

This is followed by copying the scratch file to the output file to complete the translation.

Generating the tree is an alternating two-step process, consisting of a prep() step

followed by a gen() step. The purpose of the prep is threefold:

1. to extract subagents where required (PNcompose and PNfix)

2. to note the occurrence and scope of input variables (PNvar)
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3. to bind agent constants to agentproc signatures (PNconst)

In general, calls to prep() are simply relayed down the tree by complex nodes to

leaf nodes. However, if a node type knows that no candidates can lie below it, it can limit

descent by returning a good status (viz “OK” entries in Table 7).

Subagent extraction is needed whenever a complex agent expression is sp

where a simple operand is required. In such cases, the prep() method extracts the sub

tree as a new agent, invokes prep() and gen() on it, so that it physically appears i

the translated output separate from its parent, and then substitutes the name 

extracted subagent for the subtree. This process of extraction can recurse as de

necessary, resulting in a series of nested prep() calls and finally a gen() at the lowest

level, and so on back up the tree.

The parse tree at its base is simply an LOPNP, having one PNdefn node for each

statement in the CSP specification. Generation involves calling gen() on each PNdefn

node, and checking the return code to see if an error has occurred. 

PNdefn::gen() can be regarded as “translation headquarters” at the agent defin

level. Table 7 on page 148 gives the pseudocode for each parse node, showing wh

prep() and gen() methods do. In many cases, defaulting to the parent’s metho

sufficient. Error detection takes place during this phase, but regrettably, error recovery is

essentially nonexistent: most errors print a diagnostic and abort the translation w

attempting to carry on any further.

Following generation of the syntax tree to the scratch file, the symbol definit

now in final form, are generated to the output file. First, there are some stock h

statements output for #include files, then the gen() methods are invoked on the thre
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global symbol tables. It finally remains only to copy the scratch file to output, and tack on

the main program, which by default starts execution of the compiled system at the agent

named SYS.
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APPENDIX E

Disk Server Modeled in ObjecTime Appendix E

The diagrams on the following pages were produced by ObjecTime Developer 5.2.1.

They show the structure of the disk server system in terms of Actors (rectangles), the

basic structural components in ObjecTime. Actors are similar to CSP processes. They

have communication ports (squares) through which they send and receive message sig-

nals. Port bindings are shown by lines, and are similar to CSP channels.

The behaviour of each Actor is specified by a finite state machine (FSM), which is

also shown below. In FSM diagrams, the labels on the transition arrows are merely tex-

tual annotations. The actual triggering events and C++ action code are not printed in these

diagrams.

Both Actors and FSMs (actually, ROOMcharts) can be hierarchically decomposed

into subcomponents. Actors that are purely structural do not have an FSM specified.
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c1c1c1c1c1c1c1c1c1
testControltestControltestControltestControltestControltestControltestControltestControltestControl diskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequest

dssdssdssdssdssdssdssdssdss
diskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequest

c2c2c2c2c2c2c2c2c2
testControltestControltestControltestControltestControltestControltestControltestControltestControl diskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequest

controlC2controlC2controlC2controlC2controlC2controlC2controlC2controlC2controlC2

controlC1controlC1controlC1controlC1controlC1controlC1controlC1controlC1controlC1

countcountcountcountcountcountcountcountcount

finishedfinishedfinishedfinishedfinishedfinishedfinishedfinishedfinished

oneDoneoneDoneoneDoneoneDoneoneDoneoneDoneoneDoneoneDoneoneDone
testTwotestTwotestTwotestTwotestTwotestTwotestTwotestTwotestTwo

truetruetruetruetruetruetruetruetrue

falsefalsefalsefalsefalsefalsefalsefalsefalse

startTimestartTimestartTimestartTimestartTimestartTimestartTimestartTimestartTime

donedonedonedonedonedonedonedonedone

donedonedonedonedonedonedonedonedone

ACTOR CLASS: Sys STATE: top

-- ACTOR CLASS: Sys
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testControltestControltestControltestControltestControltestControltestControltestControltestControl diskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequest

-- ACTOR CLASS: C1

checkAckcheckAckcheckAckcheckAckcheckAckcheckAckcheckAckcheckAckcheckAck

idleidleidleidleidleidleidleidleidle

waitAckwaitAckwaitAckwaitAckwaitAckwaitAckwaitAckwaitAckwaitAck

falsefalsefalsefalsefalsefalsefalsefalsefalse

truetruetruetruetruetruetruetruetrue

initializeinitializeinitializeinitializeinitializeinitializeinitializeinitializeinitialize

otherAckotherAckotherAckotherAckotherAckotherAckotherAckotherAckotherAck
requestrequestrequestrequestrequestrequestrequestrequestrequest

ackackackackackackackackack

ACTOR CLASS: C1 STATE: top

ACTOR CLASS: C2 (same as C1)
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dQueuedQueuedQueuedQueuedQueuedQueuedQueuedQueuedQueue

requestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueue

dScheddScheddScheddScheddScheddScheddScheddScheddScheddiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequest

diskControldiskControldiskControldiskControldiskControldiskControldiskControldiskControldiskControl

requestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueue

dCtrldCtrldCtrldCtrldCtrldCtrldCtrldCtrldCtrl
diskIOdiskIOdiskIOdiskIOdiskIOdiskIOdiskIOdiskIOdiskIO

diskControldiskControldiskControldiskControldiskControldiskControldiskControldiskControldiskControl

diskdiskdiskdiskdiskdiskdiskdiskdisk

diskIOdiskIOdiskIOdiskIOdiskIOdiskIOdiskIOdiskIOdiskIO

diskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequest

-- ACTOR CLASS: Dss
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diskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequestdiskRequest

diskControldiskControldiskControldiskControldiskControldiskControldiskControldiskControldiskControl

requestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueue

-- ACTOR CLASS: DSched

CheckCheckCheckCheckCheckCheckCheckCheckCheck

BusyBusyBusyBusyBusyBusyBusyBusyBusy

IdleIdleIdleIdleIdleIdleIdleIdleIdle

initializeinitializeinitializeinitializeinitializeinitializeinitializeinitializeinitialize

emptyemptyemptyemptyemptyemptyemptyemptyempty

nextnextnextnextnextnextnextnextnext
finishedfinishedfinishedfinishedfinishedfinishedfinishedfinishedfinished

new_reqnew_reqnew_reqnew_reqnew_reqnew_reqnew_reqnew_reqnew_req

new_reqnew_reqnew_reqnew_reqnew_reqnew_reqnew_reqnew_reqnew_req

ACTOR CLASS: DSched STATE: top
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diskIOdiskIOdiskIOdiskIOdiskIOdiskIOdiskIOdiskIOdiskIO

diskControldiskControldiskControldiskControldiskControldiskControldiskControldiskControldiskControl

-- ACTOR CLASS: DCtrl

ActiveActiveActiveActiveActiveActiveActiveActiveActiveIdleIdleIdleIdleIdleIdleIdleIdleIdle

initializeinitializeinitializeinitializeinitializeinitializeinitializeinitializeinitialize

finishfinishfinishfinishfinishfinishfinishfinishfinish

startstartstartstartstartstartstartstartstart

ACTOR CLASS: DCtrl STATE: top
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diskIOdiskIOdiskIOdiskIOdiskIOdiskIOdiskIOdiskIOdiskIO

-- ACTOR CLASS: Disk

ReadyReadyReadyReadyReadyReadyReadyReadyReady

initializeinitializeinitializeinitializeinitializeinitializeinitializeinitializeinitialize

interruptinterruptinterruptinterruptinterruptinterruptinterruptinterruptinterrupt

ACTOR CLASS: Disk STATE: top
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dqdqdqdqdqdqdqdqdq

shiftershiftershiftershiftershiftershiftershiftershiftershifter
inputinputinputinputinputinputinputinputinput

outputoutputoutputoutputoutputoutputoutputoutputoutput

requestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueue

buffbuffbuffbuffbuffbuffbuffbuffbuff
outputoutputoutputoutputoutputoutputoutputoutputoutput
shiftshiftshiftshiftshiftshiftshiftshiftshift

inputinputinputinputinputinputinputinputinput

requestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueue

-- ACTOR CLASS: DQueue
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shiftershiftershiftershiftershiftershiftershiftershiftershifter

inputinputinputinputinputinputinputinputinput

outputoutputoutputoutputoutputoutputoutputoutputoutput

requestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueuerequestQueue

-- ACTOR CLASS: Dq

remainingremainingremainingremainingremainingremainingremainingremainingremaining

dequeuedequeuedequeuedequeuedequeuedequeuedequeuedequeuedequeue

DQiDQiDQiDQiDQiDQiDQiDQiDQiDQ0DQ0DQ0DQ0DQ0DQ0DQ0DQ0DQ0

falsefalsefalsefalsefalsefalsefalsefalsefalse
truetruetruetruetruetruetruetruetrue

initializeinitializeinitializeinitializeinitializeinitializeinitializeinitializeinitialize

nextnextnextnextnextnextnextnextnext

deqdeqdeqdeqdeqdeqdeqdeqdeq

enqenqenqenqenqenqenqenqenq

deqdeqdeqdeqdeqdeqdeqdeqdeq

enqenqenqenqenqenqenqenqenq

ACTOR CLASS: Dq STATE: top
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cell1cell1cell1cell1cell1cell1cell1cell1cell1
rightrightrightrightrightrightrightrightright

shiftshiftshiftshiftshiftshiftshiftshiftshift

leftleftleftleftleftleftleftleftleft
cell2cell2cell2cell2cell2cell2cell2cell2cell2

rightrightrightrightrightrightrightrightright

shiftshiftshiftshiftshiftshiftshiftshiftshift

leftleftleftleftleftleftleftleftleft outputoutputoutputoutputoutputoutputoutputoutputoutput

shiftshiftshiftshiftshiftshiftshiftshiftshift

inputinputinputinputinputinputinputinputinput

-- ACTOR CLASS: Buff
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rightrightrightrightrightrightrightrightright

shiftshiftshiftshiftshiftshiftshiftshiftshift

leftleftleftleftleftleftleftleftleft

-- ACTOR CLASS: Cell

fullfullfullfullfullfullfullfullfullemptyemptyemptyemptyemptyemptyemptyemptyempty

initializeinitializeinitializeinitializeinitializeinitializeinitializeinitializeinitialize

shiftshiftshiftshiftshiftshiftshiftshiftshift

shiftshiftshiftshiftshiftshiftshiftshiftshift

leftleftleftleftleftleftleftleftleft

ACTOR CLASS: Cell STATE: top
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s 
Glossary

The glossary is divided into sections for Acronyms and Technical Terms. Note: italics

indicate terms that appear elsewhere in the glossary.

Acronyms

ACP Algebra of Communicating Processes

BNF Backus Naur Form

CCS Calculus of Communicating Systems

CSP Communicating Sequential Processes, a design formalism that uses alge-

braic statements to model a system in terms of concurrent processes.

FDR Failures–Divergence Refinement, a software tool based on CSP which 

allows the automatic checking of many properties of finite state system

and the interactive investigation of processes which fail these checks.

HLL High-level language

LOPNP List of ParseNode pointers

OO Object-oriented

OOAF Object-oriented application framework

OS Operating system

POSIX Portable Operating Systems Interface

STL C++ Standard Template Library

UML Unified Modeling Language
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VHDL Literally, “VHSIC Hardware Description Language,” where VHSIC in tur

stands for “Very High Speed Integrated Circuit.”

VLSI Very large scale integration (=integrated circuit)

Technical Terms

Action A CSP++ class that corresponds to a CSP event. Actions can be used for 

synchronizing with other agents or interfacing with user-coded external 

routines. Subclasses are “atomic” actions, which do not pass data, and

“channel” actions, which do (see channel).

Agent A CSP++ class that implements a CSP process. In software it would consti-

tute a schedulable thread of control.

Channel (CSP) A named unidirectional, nonbuffered interprocess communication por

When two processes engage in an event whose name is a channel, data is

passed from the process using the output symbol (!) to the process us

the input symbol (?).

Composition, parallel vs. interleaved (CSP)

Designating that a set of processes is to execute concurrently. Parallel com

position allows for communication and synchronization of the compose

processes; interleaved composition does not.

Event (CSP) An abstract named activity that a process engages in. Events are often 

defined to represent real-world occurrences originating in the system o

environment.

Executable specification

A high level description of a system that, in addition to its descriptive u

also functions as source code for simulation, logical verification, and/o

synthesis. VHDL is an executable specification language.
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Hardware As the term is used here it primarily refers to digital logic, typically built in 

the form of integrated circuits or by configuring field-programmable 

devices.

Process (CSP) An abstraction for a locus of control that engages in a sequence of events, 

some of which may synchronize it with other concurrent processes. A pro-

cess may be defined in terms other processes.

Synthesis, hardware and software

The automated processing of a specification into a hardware or software 

end product. In the case of software, the end product is binary machine 

code, or source code that can be readily compiled into it. In the case of 

hardware, it means a manufacturable circuit description (e.g., netlist), or 

source code (such as VHDL) from which the circuit description can be 

automatically created.
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