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ABSTRACT

EXTENDING THE CSP++ FRAMEWORK WITH

TIMED CSP OPERATORS

Yuriy Solovyov Advisor:
University of Guelph, 2008 Professor W. B. Gardner

Communicating Sequential Processes (CSP) is a formal process algebra used to specify

and reason about concurrent systems. Timed CSP was subsequently created to add the

capabilities of delays, timeouts, and interrupts, necessary for specifying systems with

time-sensitive properties. The tool CSP++ was developed to make machine-readable

CSPm specifications directly executable via automatic C++ code generation, and extensi-

ble via user-coded functions. Formerly, CSP++ could only synthesize CSP specifications

abstracted from any timing information. In this work, CSP++ was extended to translate

and synthesize specifications with new operators drawn from Timed CSP. These new fea-

tures are demonstrated with a VAC Automated Cleaner case study and compared to other

CSP-inspired programming libraries.
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1 Introduction

The goal of this research was to extend the capabilities of the existing tool, CSP++ [Gar05],

to synthesize C++ code from a specification including Timed CSP [Sch00] operators. This

provides system designers using CSP++ with the new ability to specify delays, timeouts,

and interrupts. In this introduction, we first give background on CSP++ and the benefits of

automatically generating source code from a formal specification. Next, we define the

problem of incorporating Timed CSP and the immediate motivations for tackling it.

Finally, the research contributions of this thesis are summarized.

1.1 Background
It is hard to underestimate the role software plays in our everyday lives. Sadly, there are

examples of situations when poorly-developed software was directly responsible for signif-

icant damages to property and infrastructure or even loss of human life. Examples of such

events include the Therac-25 radiation therapy machine [LT93] which due to software race

conditions claimed the lives of five people, and the North American Blackout of 2003

[Pou04]. To avoid such extreme situations or simply to make software more reliable, devel-

opers may turn to formal methods which allow them to reason about software and expose

unwanted behaviour such as deadlocks, livelocks, race conditions and other resource star-

vation hazards when no meaningful progress is made by the system.

Commercial tools exist which allow formally verified systems to be checked and
1



reasoned about. Unfortunately, formal specifications, even after being subjected to verifi-

cation tools, cannot guarantee the absence of any revealed flaws in the final software prod-

uct. There are several reasons for that. First, the life cycle of many software products,

especially those running on expensive and unique hardware, reaches years and often

decades. During the life cycle, software undergoes numerous changes and upgrades which

may lead to inconsistencies with the original formally-verified design. Second, there are no

guarantees that hand-translation of formal specifications to the final software implementa-

tion did not introduce any errors, or the programming language of choice supported all the

features used in the formal specifications.

Automated software synthesis tools can be used to battle these drawbacks. Given

that the automated translation process is correct, such code synthesis tools can provide

guarantees that the formal specifications and the final implemented products will stay in-

sync. Any changes made to the formal specification will automatically make it into the final

product.

Development of such a tool, based on Communicating Sequential Processes (CSP),

has been the primary research focus of W.Gardner and his students at the University of

Guelph. CSP++ [Gar00, Gar03] was originally created as part of W.B.Gardner’s Ph.D.

thesis work at the University of Victoria. It was subsequently updated and extended by

Stephen Doxsee, as part of his Master’s thesis [Dox05], and by Joshua Moore-Oliva. What

sets CSP++ aside from other software synthesis tools or CSP-inspired libraries is a combi-

nation of things: the ability to make formal specifications written in CSP directly execut-

able in the form of generated C++ code (hence the tool’s name), and extensibility of the

generated code with User-Coded Functions (UCFs). The tool provides the ability to for-
2



mally specify and subsequently generate C++ code for only the critical parts (responsible

for process synchronization and interaction) of software products being designed. Further-

more, parts of the system responsible for simple Input/Output operations or any calcula-

tions can be plugged into the formal specification via user-coded functions saving

developers from needless efforts to specify those parts formally.

Until recently, CSP++ was unable to synthesize code from Timed CSP specifica-

tions, i.e., specifications that include the notion of time, where not only the order of per-

formed operations is important, but also the times at which those operations take place. The

rest of this chapter explains the motivation and the approach taken to reengineer the CSP++

tool to include Timed CSP operators. The roadmap for the rest of the thesis is also pre-

sented.

1.2 Problem Definition and Motivation
Although CSP++ features a wide range of CSP operators and constructs and is quite capa-

ble of synthesizing and running C++ code derived from formal CSP specifications, it could

not do so for CSP specifications which included the notion of time. Numerous examples

that may require formal specification within the time domain can be found in such fields as

networking, operating systems, financial transactions, etc.

In the “traditional” untimed CSP language, the correctness of systems is treated

only in terms of the order of events which programs can perform. In reality, however, it is

hard to completely abstract from the notion of time. Certain systems may require time as

their integral component, that is, the system view will be incomplete unless it is viewed

within the realm of time.
3



With regards to safety-related specifications, it may be necessary to analyze sys-

tems considering their real-time behavior. Unfortunately, the traditional CSP language

cannot accommodate such demands. Thus, it was necessary to expand CSP with a new

semantic model, which would include timing constructs. Using such a model allows the

analysis of the correctness of CSP processes with regard to time, i.e., correctness of a

system would shift from the simple order in which it performed events to include concrete

times at which it performed these events [Sch00].

In order for CSP++ to become a more attractive tool in the software development

field, it had to be extended with new features allowing the tool to be used in a wider range

of applications. Considering the fact that CSP++ already features most of the CSP con-

structs, aside from non-deterministic operators, the decision was made to fully explore the

previously unexploited area of Timed CSP. 

We say fully explore Timed CSP because until this research, CSP++’s ability to deal

with timed formal specifications was very limited. The untimed CSP language uses a spe-

cial tock event to mark the passage of time, and it represents one abstract time unit. It can

be thought of as an internal clock regulating the passage of time. To represent a time delay

between execution of two successive events, a number of tocks would have to be inserted

between them. Such treatment of time in the traditional CSP language can lead to very con-

fusing and hard-to-read formal specifications of timed systems, and is completely unac-

ceptable for specification of large and complex systems.

Timing operators, specifically designed to represent time, were a perfect fit and a

great extension of the untimed CSP language. Timed CSP made even complex formal spec-

ifications easier to read and understand. Furthermore, when implemented in CSP++, new
4



timed operators, such as delay, untimed and timed timeouts, and untimed and timed inter-

rupts, would allow users to have greater control over their formal specifications and the

generated code.

Dr. Michael Alexander, a professor at Vienna University of Economics and Busi-

ness Administration, Austria, whose research focuses on using formal methods to model

transactions between financial agents, expressed interest in using CSP++ as the tool for

generating an executable back-bone in his formal models [Ale05]. This further strength-

ened the decision to research the possibility of implementing timed CSP operators in

CSP++ making it a more appealing and versatile automated software synthesis tool. Aside

from financial transactions, a whole range of soft real-time applications could adopt CSP++

once it was extended with timing operators.

1.3 Research Approach and Contributions
Research presented in this thesis had to be divided into several stages in order to achieve

the desired goal of adding CSP timing operators to the existing CSP++ tool.

Much time and thought was dedicated to researching the history of the Timed CSP

language, as there is no unified standard. As CSP was never intended to be a programming

language per se, it was necessary to decide what CSP paradigms it would actually be pos-

sible to implement in CSP++. Our implementation of Timed CSP tries to follow

Schneider’s interpretation [Sch00] as closely as possible, however, some paradigms were

left unimplemented. Detailed discussion of what Timed CSP features made it into CSP++

and why is presented in Chapter 3. We also present reasons why some features were left

unimplemented.
5



CSP++ can be divided into two main parts: a translator, called cspt, which parses a

formal CSP specification and creates corresponding C++ objects, and the back-end Object-

Oriented Application Framework (OOAF), which actually runs the translated code. Signif-

icant thought was given to what type of Timed CSP syntax our tool should support. To this

point, CSP++ conformed to CSPm syntax. CSPm is a machine-readable dialect of CSP. It

is supported by several commercial tools developed by Formal Systems, Ltd. [For]: Fail-

ure-Divergence Refinement 2 (FDR2), used to expose or verify absence of any deadlocks,

livelocks, or other properties in a CSP specification; Probe Behaviour Explorer (ProBE),

used to explore possible execution paths in a given CSP specification; and Checker used

for type checking. As useful as these tools are for untimed CSP specifications, they cannot

be used to reason about Timed CSP specifications as they only support two of the operators

we set out to implement in this research. It should be noted that the aforementioned tools

are still the primary tools used for verification of untimed CSPm specifications. However,

a tool that supports the whole range of timed CSP operators was needed. Fortunately, a

research team at the National University of Singapore is currently working on a Timed CSP

verification tool, called HORAE [DZSH06]. Chapters 2 and 4 show how our Timed CSP

syntax can be adjusted to work with HORAE.

CSP++’s back-end also underwent changes to accommodate the newly added timed

operators. The greatest challenge was the implementation of interrupt operators. CSP++

uses GNU’s non-preemptible Pth threading library to run synchronous processes. Due to

the non-preemptive nature of the threading library it was necessary to figure out a way to

interrupt, i.e., stop execution of a running thread, so that the interrupting process can take

over. The answer came in the form of C++ exceptions. It should be noted that only blocking
6



operations (operations that force a running thread to go to sleep and be woken up upon exe-

cution of a desired event or a signal) of a running thread can be interrupted. A more detailed

and technical discussion of how timing operators were implemented in CSP++ will be

found in Chapter 3.

After timing operators had been implemented, it was necessary to demonstrate the

new capabilities of the reengineered CSP++ tool. A case study featuring VAC, an auto-

mated household vacuum, was developed. The study implements the full range of timed

CSP operators and shows how they can be combined to reach the desired system behaviour.

A number of much smaller regression tests were added to the system to make sure subse-

quent work on the OOAF or the translator will not break or alter the existing CSP++ fea-

tures.

Finally, for the sake of better measuring CSP++ against “the competition,” a study

has been conducted to compare CSP++ with CSP-inspired libraries.

The rest of the thesis is organized as follows: Chapter 2 provides the background on

the Timed CSP language, presents a brief history of CSP++, lists verification tools used to

reason about Timed CSP specifications and gives a survey of competing CSP-inspired

libraries. Chapter 3 discusses considered approaches and challenges encountered during

the implementation of timed operators in CSP++, and is the core of this research. In

Chapter 4, the VAC case study is presented. Chapter 5 compares the performance of

untimed CSP++ with the new timed version. Chapter 6 gives a more detailed comparison

between CSP++ and competing CSP libraries. Chapter 7 concludes this thesis with a sum-

mary of achieved results and possible future work.
7



2Background and Related Work

Information provided in Chapter 2 is meant to help the reader more easily understand the

CSP language and its timed extension, Timed CSP. A brief history of CSP++ is presented

to show the technical origins of this research. We also survey available CSP verification

tools and competing projects aimed at bridging the CSP formalism with conventional pro-

gramming languages.

To avoid any confusion, it is important to distinguish between some of the key

terms used in this chapter. CSP, or Communicating Sequential Processes, refers to the

formal method developed by Tony Hoare and first introduced in 1978 [Hoa78]. Timed

CSP refers to the updated CSP language which includes all of the original CSP constructs

as well as new timed constructs aimed at describing time-sensitive systems. CSPm is a

machine-readable dialect of CSP supported by a number of commercial tools and CSP++.

The CSP++ synthesis tool, first developed by W.Gardner, currently a professor at the Uni-

versity of Guelph, as part of his Ph.D. thesis work [Gar00] and extended as part of this the-

sis, consists of two parts, the cspt translator (called hereafter “the translator”), and the

object-oriented application framework (“the framework”).

Chapter 2 will begin by presenting an overview of CSP in Section 2.1 to prepare the

reader for better understanding of the material presented in this thesis. Sections 2.2 and 2.3

will extend the reader’s knowledge of CSP with different timing models. Section 2.4 will

discuss formal verification of Timed CSP specifications. Section 2.5 will give an overview
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of CSP++ to set the tone for Chapter 3 and detailed implementation details. Finally, Section

2.6 will survey CSP inspired libraries, followed by a more detailed discussion in Chapter 5.

2.1 Overview of Communicating Sequential Processes
Communicating Sequential Processes was specifically designed to formally describe and

reason about distributed and concurrent systems. These systems may be very complex and

usually consist of many parts which execute in parallel and synchronize at certain points.

Such parallel execution may lead to phenomena not present in sequential programs, in par-

ticular, deadlocks, livelocks, and race conditions. Formal specification of concurrent sys-

tems using CSP can help reveal such pitfalls before they make it to the final product.

We will use a simple vending machine example to illustrate some of the CSP con-

structs to make the reader more comfortable with CSP syntax and formal specifications.

The operators are explained in the sections below.

VM = coin → (soda → VM return_coin → VM)

USER = coin → soda → SKIP

USER || VM

2.1.1  Processes

Every system described by CSP is defined in terms of processes that perform certain events.

These processes may engage in communication and synchronization with one another. The

vending machine example above consists of two processes: a vending machine (VM), and

a customer purchasing a soda (USER). The two processes are composed in parallel. 

Simple processes, such as USER, are defined by their names, ‘=’ sign, and a series

of events they can perform separated by the ‘→’ prefix operator. More complex processes
9



may be defined in terms of other processes.

Every process has a notion of alphabet associated with it. It is the set of all possible

events that a process can engage in. For instance, VM’s alphabet is {coin, soda,

return_coin}. It contains three events, however, every iteration of VM executes only two

of the three events. This brings us to the notion of traces. Every process’s execution leaves

a so-called trace, or a sequence of events it engaged in. For example, VM’s trace in the

vending machine specification would be <coin, soda>.

2.1.2  Process Termination, Looping and Chaining

In CSP every process definition has to end with another process. CSP defines two pro-

cesses, SKIP and STOP, which do not produce any action, but rather define either success-

ful termination (SKIP) or a deadlock situation (STOP). For instance, the Vending Machine

example has a USER process, which performs actions coin and soda, and then success-

fully terminates with SKIP.

It is possible in CSP to define processes in terms of themselves to accommodate

recursion. The VM process in the Vending Machine specification is an example of such tail

recursion, where VM, after accepting a coin and dispensing a soda, returns to its original

state and is ready to perform those actions again.

To define finite loops, CSP employs the concept of parameterized processes, for

example:

COUNTDOWN(n) = tick → COUNTDOWN(n-1)

COUNTDOWN(0) = time_is_up → SKIP

COUNTDOWN(5)
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Every iteration of COUNTDOWN performs a tick event and decrements variable n that it

passes to itself. When n reaches zero, COUNTDOWN performs its last iteration and suc-

cessfully terminates. The trace of COUNTDOWN(5) would be <tick, tick, tick, tick, tick,

time_is_up>.

CSP also allows for specifications where upon successful termination one process

can continue as another, i.e., sequential composition. For instance,

STUDENT = SCHOOL; HOMEWORK

SCHOOL = class1 → break → class2 → SKIP

HOMEWORK = reading → break → writing → SKIP

When SCHOOL process is successfully terminated with SKIP, STUDENT immediately

goes into HOMEWORK mode, and executes reading, break, and writing events, and also

successfully terminates.

2.1.3  Choice

In CSP one can describe systems which may have several possible execution paths. Which

execution path a process takes is determined by input from its environment, and the concept

is dubbed external choice. The vending machine example illustrates the use of external

choice, defined by the ‘ ’ operator:

VM = coin → (soda → VM return_coin → VM)

USER = coin → soda → SKIP

USER || VM

After accepting a coin, VM is ready to either dispense a soda or return_coin before

going back to its original state. Input from USER (in this case synchronization on soda)

is what determines what path VM takes.
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CSP also defines internal choice where no input from the environment is necessary

for a system to determine which path to follow. The system resolves the choice internally.

Being a nondeterministic operator, the internal choice operator ‘ ’ is not very useful in

software synthesis, but does allow developers to describe a wider range of systems.

2.1.4  Event Renaming and Hiding

So far, we have only used CSP specifications in which events perform simple actions. CSP,

however, supports more complex event actions, such as event renaming and event hiding.

In certain specifications it makes sense to hide particular events from the specifica-

tion interface, i.e., make them internal to the process. This is very similar to the object-ori-

ented concept of encapsulation. Below is an updated Vending Machine example, which

illustrates event hiding:

VM = (coin → calculate_change →

(soda → VM return_coin → VM) ) \calculate_change

USER = coin → soda → SKIP

USER || VM

The calculate_change event in the VM process above is made internal to the process and

is denoted by backslash ‘\’ followed by the set of events to be hidden. There is no need for

the USER to see how VM performs calculate_change as long as the correct amount of

change is returned. The event calculate_change will not appear in a trace of VM.

At times it may be desirable to reuse a certain portion of specification code, how-

ever, under different names. CSP can do just that with event renaming. The following

example is adapted from [Sch00]:
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ISABELLA = isabella.get_pencil → isabella.draw →

isabella.drop_pencil → SKIP

KATE = ƒ(ISABELLA) 

ISABELLA ; KATE

where ƒ(isabella.x) = kate.x and ƒ(y) = y if y is not of the form isabella.x

Say we want to model behaviour of two girls, ISABELLA and KATE, who get a pencil,

draw a picture, and then drop the pencil. Both girls perform the exact same events only

under different names. It makes sense to model only ISABELLA’s behaviour and then

rename all of the events to suit KATE’s needs.

Line KATE = ƒ(ISABELLA) of the above specification says that process KATE is

equal to process ISABELLA, i.e., it has the same set of events, however, each isabella

event should be renamed, by the given renaming function, to kate in process KATE. Exe-

cution of the two processes sequentially will result in the following trace <isa-

bella.get_pencil, isabella.draw, isabella.drop_pencil, kate.get_pencil, kate.draw,

kate.drop_pencil>.

2.1.5  Parallel Execution

As already mentioned, Communicating Sequential Processes was specifically developed to

describe and reason about concurrent systems, whose processes execute in parallel. Two

major types of parallel execution supported by CSP are synchronized and interleaved.

Synchronized composition (also called interface parallel) means that all participat-

ing processes may execute independently until an event present in all of the processes’

alphabets (set of events a process can potentially engage in) is encountered. Going back to

the Vending Machine example at the beginning of Section 2.1, processes VM and USER
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are composed in parallel with their synchronization points being soda, coin, and

return_coin. This means VM and USER must perform events coin and soda simulta-

neously, and if one of the processes arrives at the synchronization point before the other, it

must wait so that both may cross the “checkpoint” together.

Another type of parallel execution is interleaved parallel where two or more pro-

cesses can execute in parallel, but completely independently. No synchronization, except

for termination, is allowed for participating processes, even in situations where they con-

tain the same events in their respective alphabets. For example,

ENGINE ||| WINDSHIELD_WIPERS

A car engine and windshield wipers have different functions and operate completely inde-

pendently of one another with absolutely no need for synchronization, except for termina-

tion: when a car is turned off, both the engine and the windshield wipers stop working.

2.1.6  Channels and Process Communication

In CSP processes can not access each other’s private data directly, and any communication

and data transfer between processes is restricted to the use of channels, which can be

regarded as a special case of process synchronization. A channel is defined as synchronous

non-buffered unidirectional communication between a pair of processes. This implies that

CSP processes must block until data is transferred from one end to another. Note that

machine-readable CSPm dialect, and CSP++, lift the restriction for unidirectional commu-

nication between a pair of processes, meaning it is possible to have a broadcasting situation

where several processes may read the same data from one channel output by a single pro-

cess.
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To illustrate the concept, we will enhance the vending machine example with

simple non-buffered unidirectional data transfer between two processes:

VM = (coin?x → if (x > 1) then calculate_change → change → soda → VM

else if (x==1) then soda → VM

else not_enough → VM ) \calculate_change

USER = coin!2 → change → soda → SKIP

USER || VM

To distinguish between channel communication and simple synchronization, special char-

acters are used to signify input/output between processes. In the example above, the USER

writes 2 to channel coin signified by ‘!’ sign, while the VM process reads (‘?’) the data on

the same channel into variable x. Variable x can be further accessed throughout that pro-

cess’s execution and can possibly be passed to another process via parameterized pro-

cesses.

The example above also illustrates other operators available in CSP, such as if/else

selection and relational expressions.

2.2 Extension of CSP with Timing Operators
Timed CSP is a real-time extension of the traditional CSP language. While the CSP lan-

guage is a great tool for describing and analyzing concurrent and parallel systems, it pro-

vides no facilities for analyzing systems with regard to their real-time behavior. Often

correctness of systems may depend on their performance within the time domain; examples

of such programs include networking protocols and operating systems. Consequently,

timing was introduced into CSP. It was first proposed by Reed and Roscoe in 1986 [RR88].

Timed CSP language has evolved through many changes since its inception. A brief history
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of Timed CSP may be found in [DS95] and [OS05]. The following subsections present the

main characters and events in the Timed CSP history.

2.2.1  Roots of Timed CSP: G.M. Reed and A.W. Roscoe 

A timing model was first introduced into CSP by Reed and Roscoe in their paper “A Timed

Model for Communicating Sequential Processes” [RR88]. Their original requirements for

the timing model included:

• Continuous with respect to time. Time should be represented by non-negative real num-

bers and there should be no minimal time difference between two consecutive visible 

events performed by two processes executed asynchronously in parallel.

• Realistic. A process is only able to perform finitely many events in a finite amount of 

time.

• Continuous and distributive with respect to semantic operators. “All semantic opera-

tors should be continuous, and all the basic operators ..., except recursion, should dis-

tribute over nondeterministic choice” [RR88]. Consider an example of distribution over 

nondeterministic choice:

a → (P1 P2) = (a → P1) (a → P2)

An observer cannot distinguish whether the internal choice was made before or after 

the performance of event a.

• Verifiable design. The model should provide means for verification of time critical sys-

tems.

• Compatible. The model and the proof system associated with it should simply be an 

extension of the already existing framework of the untimed CSP language.

The authors, in effect, added only two new operators to untimed CSP:

• WAIT t, where t ≥ 0. WAIT t successfully terminates after t units of time.

• ⊥, a diverging process that does not engage in any visible event with the environment. 

Consider, a simple CSP process P = a → P. If we wish to hide event a from the envi-
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ronment, then P\a = ⊥. Essentially, ⊥ did not add any new semantics to CSP, but 

allowed for easier representation of diverging processes.

Reed and Roscoe also formulated several timing postulates or basic assumptions

about timing as related to the domain of a distributed system. The major assumption was

the inclusion of δ, a system delay constant, to ensure the requirement for realism: only

finitely many events can be performed in a bounded time. For example, process a → P ini-

tially performs event a and is then ready to engage in process P. δ introduced a short delay

following the occurrence of event a, describing a requirement for the overall process to

recover from execution of event a and prepare to execute P. Recursive statements followed

the same idea, where every recursive call would be delayed by δ. Another postulate stated

that “the order of events which happen at the same time is irrelevant” [RR88]. Both

assumptions were later dropped, which led to a simpler and more coherent semantics of the

timed language. In a later article, “The Timed Failures-Stability Model for CSP” [RR99],

the authors reiterated the above-mentioned postulates with the exception of the delay con-

stant. They also argued that no additional operators besides WAIT t are necessary to reflect

real-time behavior of systems. If it is possible to use a combination of the original CSP

operators with WAIT t to produce timeouts and interrupts, adding only one timed construct

to the untimed language is, essentially, sufficient to specify time-critical systems.

It should be mentioned, however, that the current semantics of interleaved execu-

tion in CSP requires all interleaved processes to synchronize on termination. This require-

ment led to the impossibility of representing interrupts using traditional CSP operators. One

interleaved process cannot interrupt another, as the interrupted process is required to

remain alive and wait for the interrupter to synchronize on termination. The requirement
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for interleaved processes to synchronize on termination is very reasonable and can be illus-

trated by a simple example. Imagine a car: Windshield wipers and turn signals operate inde-

pendently of each other, running as interleaved processes. However, when the ignition key

is turned off these processes do synchronize on termination.

2.2.2  Research by Steve Schneider

Early articles by Steve Schneider essentially followed and built upon the ideas introduced

by Reed and Roscoe. Thus there are many similarities. We will only highlight the main

points. As mentioned above, Timed CSP introduced a non-zero delay δ imposing a mini-

mum time interval between any two events. For example, process Q = a → b has a time

delay δ between events a and b. The implicit inclusion of δ was especially valuable during

declaration of recursive calls. For instance, N = a → N was time-guarded and could not

perform infinitely many a events in no time. Subsequent evolution of timed CSP eliminated

δ from the alphabet of timed CSP. Currently, all delays associated with process executions

have to be made explicit. The two processes mentioned above are now written as Q = a →

(WAIT d; b) and N = a → (WAIT d; N). More information on the original timed CSP

can be found in [DS88].

In [Sch00], Steve Schneider gives a detailed description of the CSP language,

including Timed CSP. The Timed Computational Model introduces three operators into

CSP. They are timeout, delay, and interrupt. Before these constructs are analyzed in more

detail it is necessary to point out important assumptions used in the timed computational

model:
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• Instantaneous events. Events are performed at an instant the process is ready to perform 

them and take no time to execute. Events that take time to complete may be modeled as 

an event at which action begins and an event at which it ends.

• Newtonian time. “Time passes with reference to a single conceptual global clock” 

[Sch00].

• Real-time. Time can only be represented in terms of real non-negative numbers.

• Maximal parallelism represents the notion of each process having its own processor 

that it executes on. Any scheduling analysis must be made explicit.

• Maximal progress. An event must occur at an instant all synchronizing parties are ready 

to perform it. This assumption also includes urgency of internal events. They must be 

performed at the instant they become available.

• Finite variability. Only a finite number of events can be performed in a finite amount of 

time.

• Synchronous communication. Synchronization events require simultaneous participa-

tion of all involved parties.

Possible executions of CSP processes are viewed in terms of transitions and evolu-

tions. Event transitions do not include any notion of time and are only concerned with

instantaneous execution of events. Evolutions, on the other hand, are used to describe the

flow of time. Such separation allows for seamless integration of time into an existing

framework of untimed CSP operators. “Delays and durations in a process description must

then be given explicitly, and are not implicitly bound up with individual operators”

[Sch00].

An important property that must be considered is that process evolutions are deter-

ministic, that is, a process can reach only one state by simply allowing time to pass. Any

other state reached in the same amount of time implies introduction of event transitions
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somewhere along the way. The passage of time alone does not introduce any new possibil-

ities for system behavior.

The passage of time can be represented using the following evolution transition

Q  Q′, where d can be any positive real number: d > 0. Such notation describes evo-

lution of process Q to process Q′ which takes d units of time. Furthermore, it is possible

for a process to undergo a series of states {Qi} over all time without performing any events

described as Q , which can only appear as the final step in the execution. In this case

Q is said to be stable1, since it will not perform any internal events, i.e., not visible to the

environment. It must be noted that Q  is not an evolution transition as it can never be

completed.

2.2.3  Timed CSP Operators

STOP

Process STOP represents a deadlock situation, at which point the system is not able to per-

form any internal or external events. It is only logical to conclude that passage of time has

no influence on the STOP process, i.e., STOP may allow any amount to time to pass and

it will still remain STOP.

SKIP

Process SKIP is used to denote immediate and successful termination of a system. The pro-

cess is immediately ready to terminate, and it remains ready as time passes. SKIP

denotes a possibility when SKIP is prevented from termination, in which case termination

1.  Process Q is said to be stable when it (a) does not perform any internal transitions, and (b) can always 
respond to the environment’s offer to perform a certain event, given that event is in Q’s alphabet.
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may never occur.

Event Prefix

The Timed CSP language introduces a more general form of event prefix, which allows the

recording of times at which events occur. For example, the traditional CSP expression a →

Q describes a situation where the system is ready to engage in event a after which it con-

tinues as process Q. Timed CSP introduces a slightly different notation for timed event pre-

fixing: a@u → Q. a@u records the amount of time that has passed since the initial offer

of event a till its actual performance, i.e., the amount of time event a was on offer. u is a

time variable that can subsequently be used throughout process Q.

Timed and Untimed Timeout

Untimed CSP included the ability of representing timeouts in systems’ behavior:

Q1 Q2 

Initially the control is with process Q1, but only the performance of the first external event

by either Q1 or Q2 will resolve the choice in favour of that process, i.e., Q1 and Q2 may

both perform internal events, but they will not resolve the choice. Unfortunately, without

any timing information associated with the timeout operator, there is no way to tell when it

will happen, leading to nondeterministic resolution of choice.

Timed CSP enhanced the timeout operator to be able to describe time-sensitive pro-

cess behavior. It is written as Q1  Q2. It specifies a time limit, d, for Q1 to get started.

As execution of the system begins, process Q1 is in control. If process Q1 performs any

external event before d units of time elapse, then the choice is made in favour of Q1, and

Q2 is abandoned without ever being started. Q1 may perform any number of internal
21



events, however, they do not resolve the choice. If by the time d units of time elapse Q1

does not engage in an external event, control is passed to process Q2. If Q1 attempts to

engage in a communication event at precisely time d then the result of such action is non-

deterministic.

Timeout, being an internal event, brings up the notion of urgency of internal events.

This follows from the maximal progress assumption. A process cannot delay performing

an internal event and must perform it as soon as it becomes available. “No time may pass

whenever an internal event is enabled” [Sch00]. Of course, this is an unrealistic situation

in the real world, where time cannot be blocked. This contradictory situation is what actu-

ally forces internal events to become urgent. This is simply a mechanism used to express

urgency.

Delay

The timeout operator can be used to introduce delays into process descriptions. For exam-

ple, to delay execution of process Q by d units of time we may construct the following CSP

expression:

STOP Q

Initially the system cannot perform any external or internal events, which is represented by

the STOP event. After d units of time, however, the choice is resolved in favor of process

Q. 

Representation of delays in Timed CSP specifications is quite frequent, therefore,

delayed event prefix was introduced with its own notation written as:

a Q
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In the above specification, event a can happen at any point in time. After event a, the pro-

cess cannot perform any events for d units of time. Only after d units of time can process

Q begin its execution. It is important to note that delays following events do not specify

precise delays between the events, but rather the minimum delay imposed by the preceding

event before the subsequent one can occur.

A waiting process which delays for exactly d time units before successfully termi-

nating can be defined using this construction:

WAIT d = STOP SKIP

Process WAIT d cannot perform any events for d units of time since STOP cannot perform

any events (external or internal). After d units of time, the timeout operator resolves the

choice in favor of SKIP which successfully terminates. WAIT 0 and SKIP are semantically

equivalent.

 The delayed prefix and timeout operators allow us to represent minimum and max-

imum delays, respectively, between occurrences of events.

Recursion

One of the main differences between the traditional version of CSP and the timed one is the

requirement for time-guarded definitions. Without such requirement, there is a possibility

of performing an infinite number of recursive calls in no time. For example, process

N=a→N may perform an infinite number of a events in no time. Thus, it is vital to intro-

duce delays which provide a lower bound for the time it takes to reach a fresh recursive call.

For example, N = a N. This ensures that d units of time will pass before the next recur-

sive call of N. Of course, the environment may prevent such infinitely fast iterations, how-
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ever, it is preferable to make such safeguards explicit.

Concurrency

“Concurrent processes must always agree on the performance of evolution transitions. This

is due to a combination of the maximal parallelism property and the Newtonian time

assumption, which require that concurrent processes are executed together rather than

scheduled one after the other, and that time passes at the same rate in all processes”

[Sch00]. This is impossible to implement in software, due to processor scheduling, unless

every CSP process has a dedicated CPU.

“Two processes can synchronize on an event they both perform only at a time when

both are ready” [Sch00]. This may seem trivial but is different from the traditional CSP,

where both processes can synchronize on an event as long as both of them have it in their

alphabet. Another way to put it is that offers to synchronize can be withdrawn after a spec-

ified interval.

The following example is adapted from [Sch00]:

HELEN = (meet work → STOP) work → STOP

CARL = run_errands SKIP;

((meet home → STOP) home → STOP)

HELEN || CARL

HELEN is willing to wait to meet CARL for 30 minutes before giving up and going to

work. If they do meet, it will be at least 30 minutes before she goes on to work. Similarly,

CARL is willing to wait 30 minutes before going home. CARL is running errands the first

15 minutes that HELEN is available to meet with him, however, it is still possible for them

to meet, since times they are both available overlap, i.e., times at which HELEN and CARL
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are ready to engage in event meet overlap. This is clearly shown in Figure 2-1.

Now, let’s consider a situation when CARL is not available to meet during the first

45 minutes.

HELEN = (meet work → STOP) work → STOP

CARL = run_errands SKIP;

((meet home → STOP) home → STOP)

HELEN || CARL

By the time CARL is ready to meet, HELEN has already given up and left for work. Even

though they both have meet in their common alphabet, they do not synchronize on meet

due to their respective timing constraints, as shown in Figure 2-2.

The example of HELEN and CARL illustrates the fact that in order for two pro-

cesses to synchronize on an event in Timed CSP, not only do the processes need to have

overlapping alphabets, but also overlapping times at which synchronization events are

offered.

Figure 2-1. Possible meeting time for HELEN and CARL
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Hiding

The property of maximal progress requires an event to occur when all of its participants are

ready. This forces hidden events to become urgent, occurring at the instant they are

enabled, since all participants of an internal event are identified in the process description.

Renaming

In the timed context, event renaming may introduce nondeterminism. For example, in the

following choice situation,

(a → c → STOP) (b → c → STOP) 

renaming events a and b to d would result in:

(d → c → STOP)  (d → c → STOP)

Here, the left and right sides of the external choice operator become semantically and syn-

tactically equivalent, thus, regardless which side is chosen, the process will remain deter-

ministic.

Figure 2-2. Impossibility for HELEN and CARL to meet
26



The same example with the inclusion of time, however, yields nondeterministic

results:

(a  c → STOP)  (b c → STOP)

When a and b are renamed to d, we get:

(d  c → STOP)  (d c → STOP)

Now, choosing the left or right side determines the availability of c, either after 3 seconds

or after 5 seconds. Thus, the availability of c after 4 seconds becomes nondeterministic, and

external choice becomes equivalent to internal choice:

(d  c → STOP) (d c → STOP)

Interrupt vs. Timed Interrupt

The interrupt construct Q1 Δ Q2 allows the first process Q1 to execute, but it may be inter-

rupted at any time by Q2 executing its first external, i.e., visible event. “Unlike sequential

composition, in the interrupt construction both Q1 and Q2 evolve together” [Sch00]. A

static interrupting process Q2 which does not evolve as Q1 progresses can be achieved by

using a prefix or a prefix choice process as an interrupting process. For instance,

Q1 Δ e → Q2

As Q1 progresses, Q2 remains static. Interrupting event e will be offered to the environ-

ment at the same time Q1 starts executing. If the environment decides to participate in e,

the progress of Q1 will be interrupted and execution will continue with Q2.

There may be situations when a process may not be permitted to run longer than a

specific amount of time. In this case, the passage of time itself can set off the interrupt and

remove control from the executing process.
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Q1 Δd Q2

For example, the above specification allows Q1 to run for precisely d units of time,

after which control is passed to Q2, unless Q1 has terminated previously. There is no need

for Q2 to execute concurrently with Q1 since it will not be invoked until time d. 

The important distinction between event-driven interrupt and timed interrupt is that

the former might never occur if the environment of the process does not wish to engage in

the interrupt event, whereas the latter is bound to occur, since the environment does not par-

ticipate in the interrupt performance, and thus cannot prevent it from happening.

2.3 Discrete Time Model
The introduction of time into the CSP language described so far concentrated on the con-

tinuous time model. This section describes a different approach focused on the discrete

timing model where the untimed CSP language is extended with a tock event used to

describe the passage of time.

In [Sch00], Schneider describes how to augment CSP with a tock event represent-

ing one unit of time and controlling the passage of time in general. There are two alternative

interpretations of tock:

1.tock represents evolution of time, and takes time to happen. All events between tock 

are simultaneous and instantaneous. Consider a mechanical watch, where the sec-

onds hand is constantly moving between every two second gradations. Events hap-

pen only on the second marks.

2.tock events are instantaneous and occur every unit of time. Now, consider a digital 

watch, where a second hand moves from one second’s gradation to another, but 

does it almost instantaneously, like a drum beat.
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Thus, the introduction of the tock event into the untimed CSP language brings up a non-

continuous view of time, that is, time is not allowed to pass unless a tock event occurs.

There are two approaches as to how a tock can be used:

• tock can be a simple addition to the untimed CSP language.

• tock can be linked to the Timed CSP language.

2.3.1  tock-enhanced “Traditional” CSP

Introduction of a timed event into the untimed language alphabet has several implications

as to how time is treated. Processes are no longer indifferent to the passage of time as in

standard CSP. tock is the only medium that allows time to pass. For example, a simple

specification,

Q = a → b → STOP

if viewed in the timed context (even though tock is not included), does not mean process

Q is indifferent to time. On the contrary, events a, b, and STOP must be performed before

any time can pass. Furthermore, after execution of STOP no time can pass, since STOP

deadlocks and is not able to perform any events. This leads to the situation where the notion

of time has to be included explicitly, for instance:

Q = a → tock → b → tock → STOP

Explicit declaration of tock events becomes even more important during specifica-

tion of recursive processes. Without tock, processes would perform an infinite number of

events in no time. Thus, to ensure time-guardedness, recursive processes must include at

least one tock event.

Q = a → tock → Q
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2.3.2  tock and Timed CSP

Timed CSP can be combined with tock-enhanced standard CSP by means of translating

specifications written in the timed language to tock event-driven processes. Such transla-

tion would require modeling all timed CSP constructs (timeout, delay, and interrupt) using

tock events. Unfortunately, the translation process introduces certain challenges as the

same operators may be treated differently in the timed and untimed models. For example,

passage of time should not resolve external choice in timed CSP, however, when translated

to traditional CSP, external choice may end up with tock events on either side, meaning

simple passage of time will resolve choice. Moreover, tocks on either side of external

choice may introduce nondeterminism. This situation may be fixed by resolving the choice

considering events following tock. However, such “fixes” introduce unnecessary complex-

ity into the system specification process.

After reviewing Timed CSP and tock-CSP, we had to make a decision as to which

timing model would be more appropriate for CSP++ and software synthesis. When all pros

and cons were considered, the decision was made to implement Timed CSP constructs in

CSP++. Chapter 3 provides more information as to why Timed CSP was a better solution

for CSP++.

2.4 Verification of Timed CSP Specifications
Formal Systems, Ltd. is currently the only company that markets formal verification tools

for Communicating Sequential Processes: 

• Checker is the simplest of the tools, and is used to verify the correctness of CSPm syn-

tax in a given specification.
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• Process Behaviour Explorer (ProBE) is used to the explore the possible states, or exe-

cution paths, of all processes in a given specification.

• Failure-Divergence Refinement 2 (FDR2) is the most sophisticated tool and is used to 

verify the absence of deadlocks, livelocks, or any nondeterministic properties in a spec-

ified system, or to expose such properties and, if possible, provide counterexamples.

The three tools listed above provide the full range of support for writing and veri-

fying an untimed CSP specification. Unfortunately, if one decides to write a Timed CSP

specification, the tools cannot be used as they only support the untimed CSP operators.

Up until recently, there were no verification tools for Timed CSP specifications. In

“Reasoning About Timed CSP Models,” Dong, Zhang et al. [DZSH06] reported on the

development of an interactive system used to compose and reason about Timed CSP spec-

ifications. Their HORAE system uses Constraint Logic Programming (CLP) as the under-

lying verification framework. The front-end of the tool is implemented in Java and has the

following features:

• building Timed CSP models

• specifying properties in a systematic way

• verifying various kinds of properties with counterexamples provided, if any

• generating LaTeX presentation of the Timed CSP models

The system incorporates an editor used to write Timed CSP specifications. One of

the underlying components of the system, tcsp2clp, then translates the Timed CSP specifi-

cation to a CLP specification, which can be verified for safety and liveness, timewise

refinement, and variable bounds. Several popular Timed CSP case studies including Timed

Vending Machine, Dining Philosophers, and Railroad Crossing have been used to test the

system (these case studies were also implemented in CSP++ and the results are presented
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in Appendix A). The results matched those obtained from FDR2. It should be noted that

unlike HORAE, FDR2 does not have the ability to verify the timing properties of specifi-

cations, and, thus, only results which abstract from the notion of time were compared.

2.5 Overview of CSP++ 
This section provides an overview of CSP++ including a brief outline of changes the tool

has seen and a more technical description of the system itself. This is done to help the reader

understand the challenges encountered when extending CSP++ with Timed CSP operators.

2.5.1  Summary of CSP++ development changes

CSP++ [Gar00] [Gar03] was originally created as part of W. Gardner’s Ph.D. thesis work

at the University of Victoria and later updated and extended by Stephen Doxsee, as part of

his master’s thesis [Dox05], and by Joshua Moore-Oliva.

2.5.1.1 csp12 to CSPm

At first, CSP++ accepted a local machine-readable dialect of Communicating Sequential

Processes, called csp12. This was done to conform to an in-house verification tool devel-

oped by Dr. M.H.M. Cheng at the Department of Computer Science, University of Victoria,

BC. The system was later reengineered by Stephen Doxsee at the University of Guelph to

accept CSPm syntax [Dox05, DG05]. The move to CSPm syntax allowed inclusion of new

features, not previously available with csp12. This also allowed specifications to be directly

verifiable by the robust commercial tool FDR2. The main relics remaining from csp12 are

the names of classes: Agent class which implements CSP process semantics and Action

class which implements CSP event semantics.
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2.5.1.2 Threading libraries

CSP++ was originally based on AT&T’s USL (Unix Systems Library) task library. By the

late 90’s these non-preemptive, non-prioritized coroutines had become obsolete, and the

decision was made to move to preemtable, kernel-level LinuxThreads. CSP++ was demon-

strated to work with the new threading library, but “because the original CSP++ design was

based on non-preemptive threads, there was always a suspicion that the move to preemtable

threads was done too hastily and without complete identification of critical sections in the

framework code” [Dox05]. CSP++ was once again ported to use the non-preemptive

threading library, GNU Pth, which is being used to date.

2.5.1.3 General CSP++ changes

A number of changes to CSP++ were also contributed by Joshua Moore-Oliva, then an

undergraduate student at the University of Guelph. 

Removing the framework’s reliance on heavyweight C++ I/O classes and Standard

Template Library (STL) reduced the “footprint” of CSP++ at run-time. The reengineered

version, or “micro edition,” became more suitable for targeting embedded systems with

limited hardware resources.

A suite of regression tests based on the CppUnit Framework and the Boost Test

Library was developed. This suite is constantly being updated and is utilized every time a

change to the system is made to insure that no features were broken in the meantime.

CSP++ code was also reorganized to allow installation via autoconf. This made

porting to any Unix/Linux platform much easier.
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2.5.2  CSP++ Design Flow

CSP++ is an object-oriented application framework which allows CSP specifications to be

directly executable and extensible, while retaining the original specification properties that

may have been verified with FDR2 to ensure the absence of deadlocks and livelocks, and

deterministic character of the specified system [Gar03].

C++ code synthesis from CSPm specifications is achieved by running the specifi-

cation through the cspt translator (CSP++ front-end) and then linking the generated code to

the system’s runtime library. Running the generated code will print the trace of the system,

a list of executed events. At this stage these “events” remain abstract implementations of

events described in the CSPm specification, and the whole system is very suitable for sim-

ulation purposes, but not much else. What sets CSP++ apart from other software synthesis

tools is the ability to extend these abstract events via user-coded functions (UCFs). The tool

provides the ability to formally specify and subsequently generate C++ code for only crit-

ical parts (responsible for process synchronization and interaction) of software products

being designed. Furthermore, parts of the system responsible for simple input/output oper-

ations or any calculations can be plugged into the formal specification via UCFs, which

saves developers from needless efforts to specify those parts formally. Such freedom over

which parts of the system need to be formally specified was subsequently dubbed “selective

formalism” [Gar03].

The whole process of running a CSPm specification through CSP++ and extending

it with UCFs is illustrated in Figure 2-3.

A developer starts with a CSPm specification, which is run through verification

tools such as FDR2 and ProBe until the specified system is free of deadlocks and livelocks,
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is deterministic and has other desired properties. The cspt translator then translates the

CSPm specification into C++ source code. The source code is compiled and linked with the

CSP++ run-time library, at which point the synthesized program is ready to be executed.

The executable specification can be extended with user-coded functions which are linked

to CSP events included in the specification. As long as UCFs do not participate in any inter-

process communication or synchronization, system properties verified with FDR2 and

ProBe will stay intact.

2.5.3  CSP++ class hierarchy

CSP++’s back-end is an object-oriented application framework consisting of several key

classes, shown using UML in Figure 2-4. While adding Timed CSP constructs to CSP++,

some of these classes were changed or extended with additional features. To better under-

stand implementation details presented in the next chapter, we present a brief overview of

the principal CSP++ framework classes. A more detailed description of CSP++ framework

CSPm Specs 

Verification 
Tools 

cspt 
Translator 

CSP++ Control Backbone

User-coded 
Functions 
                             Utilities

User-coded 
C++ Functions 

Target System 

Operating System 

Figure 2-3. CSP++ Design Flow
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classes can be found in [Gar00].

• Agent—“embodies a process definition ... representing a schedulable thread of con-

trol.” Every CSP process definition is represented by an individual function of type 

AgentProc. An Agent class constructor schedules execution of its AgentProcs. 

When one AgentProc finishes its execution, it may designate another AgentProc to 

be executed after it until the CSP SKIP process is encountered, which signifies the end 

of the current process’s execution. Throughout this project a number of functions were 

added to the Agent class to handle the logistics of the newly-added CSP operators.

• Action—represents the two types of CSP events: channels, which pass data, and 

atomic, which do not.

object

– mlock: pthread_mutex
– waiters: List<task*>

+ mutexLock()
+ mutexUnlock()
+ remember( tp: task* )
+ forget( tp: task* )
+ alert()
+ this_task(): task*

task
{abstract}

– cv: pthread_cond_t

# run()
+ sleep( op: object* )
+ wait( tp: task* )

Agent

– ap: AgentProc*

+ run()

ChannelAtomic

Action ActionRef

Env

EnvSync

EnvHide

EnvRename

0..*

Figure 2-4. CSP++ Class Diagram

EnvInt

EnvSyncSet

0..
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• Env—declarative objects that introduce an Action reference (ActionRef) into a pro-

cess’s environment to accommodate synchronization, event hiding, event renaming, 

and, finally, interrupts, introduced as part of this thesis work. EnvInt is a subclass of 

Env that implements interrupts.

Detailed discussion of how these classes are utilized and cooperate is given in the

next chapter.

2.6 Survey of competing CSP libraries
Communicating Sequential Processes was never intended to be a programming language,

but does provide the necessary features to describe complex parallel systems. A number of

projects have been developed that tried to bridge CSP with conventional programming lan-

guages. [DG05] briefly describes the three main approaches taken to marry CSP with a full-

features programming language:

• Programming languages inspired by CSP. Examples of such programming languages 

include LOTOS and occam, and even though these languages cannot be directly for-

mally verified, they provide means of doing so through intermediate steps. For 

instance, LOTOS has CADP [FGM+92], a toolset supporting verification, while 

[HJ95] provides steps for translating a CSP specification into an occam program.

• Formal libraries. A number of projects have focused on the development of libraries of 

classes and functions that follow formal semantics and are tailored towards a particular 

programming language. A number of libraries originated at the Computing Laboratory 

at the University of Kent, England: C++CSP for C++ [BW03, Bro07a], JCSP for Java 

[WBM+07], CCSP for C, and xCSP for a number of languages. xCSP spun off as a sep-

arate commercial project developed by Quickstone, but has since disappeared. Another 

library aimed at the Microsoft .NET framework, CSP.NET [Ols06, LO06], was devel-

oped at the Department of Computer Science at the University of Copenhagen, Den-

mark. The project has since become known as Jibu, maintained by a Department of 
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Computer Science spin-off company Axon7, and currently features a uniform API for 

the .NET Framework, C++, and Java [Axo07].

Such formal libraries simply provide alternative concurrency models, and usually do 

not require any knowledge of CSP, unless the original project specification was given 

in CSP. The upside to this is that any programmer can take advantage of such libraries 

invoking calls to functions, which implement particular CSP constructs, provided in the 

library API. The downside, however, is that no direct formal verification is possible. 

Moreover, if the original project specification was written in CSP, much efforts will be 

put into hand-translating such specifications into programming code linked to the 

library function calls.

• Direct code synthesis features direct code generation from CSP specifications. Raju et 

al. [RRS03] describe a tool featuring direct translation of CSPm specifications to Java 

and C programs linked to JCSP and CCSP libraries. The paper dates to 2003 and no 

additional developments have been reported since then. CSP++ falls into this category 

as well, but provides more comprehensive support for CSPm [DG05].

Since there has not been any apparent news about the automated translator for JCSP

and CCSP described above, in Chapter 5 we will present a more detailed comparison

between CSP++, C++CSP and JCSP libraries, describing variety of features, pros and cons,

and implementation scenarios.
38



3CSP++ and Timing Operators

The original design of CSP++ did not feature any timing operators, which limited the scope

of system design specifications that could be synthesized with our tool. Once the decision

was made to extend the existing CSP++ with timing constructs, we were left with two

options: (1) use the discrete timing model with tock, or (2) extend the translator and the

OOAF with additional timing operators, such as timed prefix, timeout, and interrupt.

The first option of using tock alongside standard CSP did have its advantages, but

in the end was rejected in favour of Timed CSP. The main advantage of tock-CSP was the

minimum number of changes required to CSP++ in order to accommodate this timing par-

adigm. In fact, CSP++ is currently able to handle tock-CSP. Required changes would have

included:

• automatic detection of tock in all synchronizing processes, and

• linking tock to a function that would handle different time units and suspend the cur-

rent thread for the specified amount of time.

Despite the relative ease of tock implementation, the disadvantages of using it were

significant. There were two views of tock described in Section 2.3: (1) tock represents a

time evolution and takes one unit of time to happen, and (2) tock is like a drum beat, instan-

taneous, but happening every unit of time. All other events between two consecutive tocks

in a given specification are simultaneous and instantaneous. The first interpretation of tock

is not realistic for CSP++ since there is no true simultaneity, and the CPU would be con-
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stantly evolving rather than making progress. Furthermore, UCFs, or any other events, are

not truly instantaneous and must take time to occur. The second tock model is more realis-

tic, but brings up a problem of UCFs taking more than one tock (one time unit) to execute.

This would delay the next tock synchronization between processes leading to a deadlock

situation and threatening the formal properties of a CSP specification. Moreover, tock-CSP

specifications may grow extremely long with large numbers of tocks, which leads to

tedious work and hard-to-understand specifications. Finally, the biggest concern with using

tock-CSP in CSP++ was the fact that, even if technical and esthetical challenges were over-

looked, use of tock only solved one problem, representation of timed delays. Such con-

structs as timeouts and interrupts would still need to be added to grasp the full range of

timed operators.

In the end, tock-CSP did not seem to be the best fit for CSP++, and the decision was

made to implement Timed CSP operators.

This chapter describes the work of extending CSP++ with timing operators: timed

prefix, timeouts, and interrupts. We begin the chapter by describing the theoretical issues

that had to be resolved to avoid significant system reengineering while keeping it faithful

to CSP semantics. The chapter continues with the description of changes that had to be

made to the CSP++ translator, cspt, and the runtime library to accommodate the new timed

operators.

3.1 Theoretical Issues
In this section we will discuss theoretical and technical difficulties encountered during this

research. We present reasons for the sacrifices and trade-offs that had to be made to make
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Timed CSP++ a useful software synthesis tool.

3.1.1  Timing Postulates

The introduction of Timed CSP was accompanied by a number of assumptions, or timing

postulates, that governed the behavior of new timing operators [Sch00]. When we set out

to extend CSP++ with timing operators, we had to carefully consider each postulate and

decide what implications it may hold if left unimplemented. Below is the list of timing

assumptions, presented earlier in Section 2.2.2, and our considerations:

• Instantaneous events. Events are performed at an instance the process is ready 

to perform them and take no time to execute. Events that take time to complete 

may be modeled as an event at which action begins and an event at which it 

ends.

The universe is bound by the laws of physics, meaning nothing in our world is

instantaneous; hence, this postulate is impossible to implement. “The treatment of events

as synchronizations means that it is appropriate to consider their occurrence as instanta-

neous, performed by a process at the precise point it becomes committed to the event. CSP

is designed to consider systems in terms of synchronizing processes, and so the treatment

of events as instantaneous naturally follows” [Sch00]. In reality, every computer program

is based around CPU availability, so, realistically, it will take time for a computer to exe-

cute an event even when a process is committed to it. The impossibility of implementing

this postulate does not break the flow of time, as in Timed CSP delays are treated as time

intervals occurring between finishing one event and beginning the next, and this property

maps directly to our CSP++ implementation. Therefore, we are only concerned with inter-

vals between events, and not the amount of time one event takes to execute.
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When a Timed CSP specification is synthesized and corresponding C++ code is

generated, CSP++ does not produce a timed execution trace, but rather an untimed one. If

one decides to carry out a timed analysis, the trace produced by CSP++ will not match the

theoretical timed trace, as events do take time to execute. The consequence of this is that a

designer must keep in mind the fact that events take time to execute.

• Newtonian time. “Time passes with reference to a single conceptual global 

clock”[Sch00].

CPU cycles can be treated as the single conceptual global clock, therefore, this pos-

tulate directly translates to the “machine” world.

• Real-time. Time can only be represented in terms of real non-negative num-

bers.

CSP++ accepts time specifications in the form of non-negative integers, while the

numbers themselves can represent different time units: milliseconds (ms), seconds (s), and

minutes (m). Time units are described in more detail in Appendix B. These time units can

be coded in the specification file or be changed via command-line flags before actual exe-

cution, with the command-line flags taking precedence over specification units. This is

done to ease the simulation and debugging of a simulated program which may take a long

time to execute otherwise.

• Maximal parallelism represents the notion of each process having its own pro-

cessor that it executes on. Any scheduling analysis must be made explicit.

The current version of CSP++ can only take advantage of a single processor, in part

due to its underlying threading library, GNU Pth. Hence, every process, represented by a

Pth thread, is subject to Pth scheduling policy, which incorporates thread aging to avoid
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starvation. Use of multithreading is sufficient in an attempt to achieve at least the illusion

of process parallelism, but without having at minimum one CPU available per active CSP

process, maximal parallelism cannot be achieved. A system designer must keep this fact in

mind when constructing a CSP specification: every CSP process will be mapped onto a sep-

arate Pth thread.

• Maximal progress. An event must occur at an instant all synchronizing parties 

are ready to perform it. This assumption also includes urgency of internal 

events. They must be performed at an instance they become available.

In CSP++ event synchronization occurs when all synchronizing processes are ready

to perform it. A process arriving at a synchronization point checks if it is the last one to

arrive. If so, synchronization occurs and processes continue their separate ways. If not, the

process will raise the appropriate flag in the framework and go to sleep, to be later woken

up by the last arriving process. This satisfies the requirement for all synchronizing parties

to perform synchronization together, however, it doesn’t happen instantaneously, but takes

some time for the CPU to perform the appropriate operations.

In the sense of maximal progress, internal events are treated as regular events, and

are executed by the running process when are encountered, with the only exception being

that they do not show up in the trace.

• Finite variability. Only a finite number of events can be performed in a finite 

amount of time.

Being bound by the laws of physics, CSP++ fully satisfies this requirement.

• Synchronous communication. Synchronization events require simultaneous 

participation of all involved parties.

Multiple CPUs would be required to come close to simultaneous synchronization
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of all participating parties, with every process running on a dedicated CPU. CSP++ utilizes

the GNU Pth threading library that cannot take advantage of multiprocessor systems, and

thus, every running thread is a subject to the Pth scheduler. Nonetheless, inability to satisfy

this requirement does not change the behaviour of a simulated system, as every synchro-

nizing party is unable to progress beyond a synchronization point until it is crossed by every

participating process.

After reviewing all of the Timed CSP postulates, it became apparent that two of

them, instantaneous events and maximal parallelism, cannot be implemented in CSP++.

This means that CSP++ is suitable for modeling and synthesis of soft real-time systems,

where only minimum timing guarantees can be met. For example, based on the underlying

GNU Pth threading library, we can guarantee that in the following sample specification:

SAMPLE = a  b → SKIP

at least five seconds (if time units were set to seconds in the specification) will pass after a

finishes execution and the CSP++ framework attempts to engage in b.

However, the main barrier to using CSP++ for hard real-time systems—those

whose correctness or even safety depends on responding to events within tiny latencies

(e.g., on the order of milliseconds or less)—is not the above postulates, but rather the lack

of timing constraints in Timed CSP. There are no constructs to specify that, for instance,

event b must happen within n time units of a previous event. And then, even if there were,

a software synthesis tool ought to generate a custom schedule guaranteed to satisfy the con-

straints, but this is contrary to the way in which the CSP++ framework is currently

designed. It does not generate a schedule at all, but leaves the underlying threads package

to carry out non-preemptive scheduling according to its own algorithm. For such reasons,
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CSP++, even enhanced with Timed CSP operators, does not aspire to be a tool for synthe-

sizing hard real-time systems.

3.1.2  GNU Pth threading library and timing operators

GNU Pth is a highly portable, POSIX-compatible, non-preemptible, priority-based thread-

ing library. Use of Pth had its implications on the implementation of Timed CSP in CSP++.

The most significant challenge posed by Pth threads was the fact that the library is

non-preemptible. This means that once a particular thread of execution gets control of the

CPU, it will only release it if a blocking situation occurs, such as input/output or waiting

for synchronization, or the thread will explicitly yield its control in a cooperative way. The

non-preemptive nature of Pth threads came greatly into play during implementation of the

interrupt operators.

To recall the semantics of interrupts, let us consider the following example:

HOUSE_CLEANING Δ phone_call → PHONE_CONVERSATION

Initially, as the execution begins, process HOUSE_CLEANING has control of the CPU.

At any given time a phone may ring, and house cleaning duties have to be immediately

abandoned in favour of PHONE_CONVERSATION. The non-preemptive nature of Pth

threads makes this requirement unimplementable in practice. With CSP++,

HOUSE_CLEANING will run to completion unless the process contains a blocking call

which would make it release control of the CPU and give phone_call a chance to run.

Consider these alternate scenarios:

HOUSE_CLEANING = clean_bathroom → wipe_dust → 

clean_dishes → SKIP
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PHONE_CONVERSATION = hello → ok → good_bye → SKIP

With Pth threads, HOUSE_CLEANING will run to completion, because there are no

blocking calls that would put it to sleep.

HOUSE_CLEANING’ = clean_bathroom  wipe_dust 

clean_dishes → SKIP

PHONE_CONVERSATION = hello → ok → good_bye → SKIP

In the second scenario, HOUSE_CLEANING’ blocks (sleeps) twice during its execution.

At those moments HOUSE_CLEANING’ will release control of the CPU and will give

phone_call a chance to happen. If phone_call were to happen between clean_bathroom

and wipe_dust, execution will continue with PHONE_CONVERSATION and will result

in the following system trace <clean_bathroom, phone_call, hello, ok, good_bye>. A

more detailed discussion on the implementation of the interrupt operators is presented later

in this chapter.

3.1.3  Untimed Timeout—a non-deterministic CSP operator

When considering what timed operators to implement in CSP++, it was also decided to

extend the tool with two untimed CSP operators, untimed timeout and untimed interrupt,

as their semantics are fairly close to their timed counterparts, minus the time.

Unfortunately, the untimed version of the timeout operator introduces non-deter-

minism to system design. For instance (the example is adapted from [Sch00]), 

OFFER = (cheap → SKIP)  (lapse → standard → SKIP) 

BUYER = cheap → SKIP

OFFER ||cheap BUYER

An offer is available at a special price for some time, after which the offer lapses and the
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price goes back to standard. A buyer tries to make a purchase at the special offer price, rep-

resented by synchronization of BUYER and OFFER on the cheap event. With timing

absent, there is no way to tell when the offer will lapse, making resolution of the timeout

situation an internal decision. Therefore, there is no way to tell whether at the time of syn-

chronization OFFER’s cheap event will be available and the transaction will complete

successfully, or the system will deadlock as BUYER tries to buy for cheap, while only

standard price is available.

Non-deterministic flow of control is normally undesirable in software synthesis,

hence, we did not want to implement the untimed timeout in its original form in CSP++,

but still believed it could be a useful operator if interpreted in a deterministic way. The deci-

sion was made to make the untimed timeout a polling operator. The CSP++ framework will

poll on the left hand side of the timeout operator to see if the process is ready to engage in

it right away, which will determine the flow of control. Considering the above example,

when process OFFER gets control of the CPU, the framework would check if OFFER’s

event was ready and able to engage in the cheap event. If so, cheap will be performed

leaving the following trace <cheap>; if not, the timeout will occur, giving the trace

<lapse, standard>. This change avoided introducing non-determinism into CSP++ while

keeping system design semantics unaltered.

3.2 CSP++ Changes
The first implementation step was the extension and modification of the CSP++’s front-

end, the cspt translator, which accepts a CSPm specification and creates a parse tree used

to generate the corresponding C++ objects. The translator is based on Flex (The Fast Lex-
47



ical Analyzer) and Bison, a general-purpose parser. 

Extending the translator was a two-step process: first, we had to add recognition of

the new Timed CSP operators and grammar rules, and, second, add the corresponding

classes to generate C++ code from parsed-out objects.

3.2.1  Overview of the translator

When given a CSPm specification, the Flex part of the translator first parses the specifica-

tion, splitting it into tokens, and then passes it to Bison, where the tokens are combined

using BNF-like grammar rules. Grammar rules either create new ParseNode objects,

pushing them onto an object-oriented parse tree, or add a token to an operand preparing to

create a new ParseNode object. Created objects will be of the ParseNode subclasses:

PNcop for complex operators, PNtok for simple tokens, and PNcid for complex identi-

fiers.

During the code generation stage, the translator goes through the created parse tree,

and executes prep() and gen() functions for every ParseNode object. prep() is

responsible for preparation of ParseNode objects for later generation, and may not be

needed by all ParseNode objects. gen() is responsible for actual C++ code generation.

Both functions can be overridden to fit particular needs of every ParseNode object.

The translation process is described in greater detail in [Gar00]. Table 3-1 shows

the BNF syntax for the CSPm operators currently supported by CSP++. It was updated in

[Dox05], and is now updated again with Timed CSP operators. Generated code for each

new operator is shown in tables starting from Section 3.2.3.
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3.2.2  Operator precedence rules

Special arrangements with Formal Systems, Ltd., made their FDR2 Flex and Bison files

available for our use. This allowed us to align cspt operator precedence rules to comply

with FDR2, thus further ensuring the compatibility of CSP++ with FDR2. Table 3-2 lists

the syntax and precedence of operators available in FDR2 and CSP++. Some of the CSPm

operators are not available in CSP++, including an additional unlisted category called “rep-

licated” operators. The latter are a shorthand way of expressing multiple similar instances 

Table 3-2. FDR2 and CSP++ operator precedence
strongest (top) to weakest (bottom)

Category Description FDR2
operators

Associativity CSP++
operators

Associativity

Application function application
renaming

f (0)
[[ <- ]] [[ <- ]]

Arithmetic unary minus
multiplication
addition

-
* / %
+ -

left
left

-
* /
+ -

left
left

Sequence catenation
length

^
#

Comparisons ordering
equality

< > <= >=
== !=

none
none

< > <= >=
== !=

none
none

Boolean negation
conjunction
disjunction

not
and
or

left
left
left

Sequential prefix
timed prefix
guard
sequence

->

&
;

right

none
left

->
-n->

;

right
right

left

Choice untimed timeout
interrupt
external choice
internal choice
timed timeout
timed interrupt

[ >
/\
[]
|~|

left
left
left
left

[ >
/\
[]

[ n >
/ n \

left
left
left

left
left

Parallel interface parallel
interleave

[ | | ] 
| | |

none
left

[ | | ]
| | |

none
left

Other conditional
local definition
lambda term

if then else
let within
\ @

none
none
none

if then else none
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of the same operator, e.g., multiple choices ‘[]’, several processes in parallel ‘[| |]’, or a

sequence ‘;’ of processes. They are all in the form:

operator variable : value-set @ process

Each instance is created by substituting values for a given variable from the set, so the

number of instances equals the size of the set. For example, this code would create the

sequence P(1); P(2); P(3):

;x:{1,2,3}@P(x)

Operators not implemented in CSP++ are either (a) not useful for synthesis, (b) can

be rewritten in terms of other implemented operators, or (c) require support for datatypes

and sets, which constitutes future work outside the scope of this thesis. Conversely, timed

prefix, timeout, and interrupt are not available in FDR2. [Dox05] provides more details on

implementation of CSPm operators in CSP++.

3.2.3  Untimed and Timed Timeout

The first operators we set out to implement were the untimed and timed timeouts. Let us

recall the functionality of timeouts presented in Chapter 2. Semantics of the timeout oper-

ators resembles that of choice. Two versions of the timeout operator exist, however, the

operator is most naturally timed. Consider this example,

P Q

Process P only has to begin executing before 30 time units elapse in order to resolve

the choice, i.e., only one of the two processes will get executed. As soon as P begins exe-

cuting, process Q gets disregarded and cannot interrupt P.

In choice situations, CSP++ enforces the requirement of prefixing processes with
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an exposed first event. Consider, this choice situation written in standard CSPm:

CHOICE = P [] Q

P = a -> b -> SKIP

Q = c -> d -> SKIP

The first event, a or b, to occur in either P or Q will resolve the choice. CSP++, however,

does not accept the above syntax, and the specification has to be rewritten like so:

CHOICE = a -> P’ [] c -> Q’

P’ = b -> SKIP

Q’ = d -> SKIP

Notice, the first events of P and Q were exposed and moved to CHOICE. This is to enable

the translator to unambiguously identify the events which resolve the choice. Without

explicitly exposing the first event, problems may arise with some definitions of P or Q.

Consider, the example below:

CHOICE = P’’ [] Q’’

P’’ = a -> L [] b -> M [] c -> K

Q’’ = (d -> SKIP) ||| (e -> SKIP)

Now P’’ has three potential first events, while Q’’ has two. Far more complicated exam-

ples can be envisioned, in which it may be quite problematic to identify all of the candidate

first events at translation time. The translation and execution of the choice operator are thus

made tractable by simply forcing the specifier to write out the first events.

For the same reason, we expose the first event of the process on the left hand side

of the timeout operator, like so:

a -> P [30> Q

In the above specification only the first event of process P must be exposed, but not Q. This
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is because process Q does not participate in a choice, i.e., there is no event of Q that we want

to try to execute when making the choice. If event a was ready to be executed, CSP++

simply chains the execution to process Q, and we do not have to worry if Q is a complex

combination of processes.

Consider the example above in Table 3-3. We want to try executing event a for 5

time units before abandoning the left hand side of the timeout operator and continuing as

process TIMEOUT. Now let us consider the generated C++ code in the right column of the

table. Agent::startDChoice(1) method is borrowed from the implementation of

the deterministic choice operator, with the exception that the CSP++ framework prepares

to engage in a 1-way choice rather than n-way choice. Event a is tried once, and the

myChoice member variable is set in the Agent class to the number of the successful

event. In our case we only try for one event, so myChoice would be set to zero in case of

a successful attempt at executing event a. Agent::whichTTChoice() will check the

myChoice variable, and, if its value is zero, the function will return zero as well, making

the if statement resolve the timeout in favour of the left hand side. However, if the initial

Table 3-3. Timed Timeout

CSP syntax Generated C++ Code

S = a -> REG [5>
TIMEOUT

AGENTPROC( S_ )

Agent::startDChoice( 1 );

a();

if (Agent::whichTTChoice(5*timeunit)== 0){

         CHAIN0( REG_ );

}

else {

         CHAIN0( TIMEOUT_ );
}

}
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attempt of a was unsuccessful—due to synchronization, for example—the whichT-

TChoice() method will put the current thread (process S) to sleep for 5 time units. Vari-

able timeunit contains the number of milliseconds in one time unit, and defaults to 1000

(=1 second) if not specified otherwise. (Refer to Appendix B for more information.) The

thread wakes due to any of the following conditions:

• Event a succeeded, thus resolving the choice in favour of the left hand side of the time-

out operator.

• 5 time units elapsed, and a event did not succeed, which would cause canceling further 

attempts of a and chaining to the TIMEOUT process.

• The process containing this timeout operator was interrupted due to being in the scope 

of an interrupt operator (see below for details). The immediate effect is to interrupt the 

left-hand side and abort the process.

Now let us focus on the untimed version of the timeout operator. As we already

mentioned in Section 3.1.3, untimed timeout is by nature a non-deterministic operator. For

software synthesis purposes, it did not make sense to implement non-determinism. Further-

more, there was no benefit in making the operator deterministic by copying the semantics

of deterministic choice, as the latter operator is already implemented in CSP++. Thus, the

decision was made to add determinism so as to provide extra functionality not available

with ‘[]’, but still within the formal definition of untimed timeout. As with the timed time-

out, we require the first event of P to be exposed, like so:

a -> P [> Q

First, we try event a. If it succeeds, we continue as process P without ever consid-

ering process Q. However, if event a does not succeed, then we abandon the left hand side,

and continue with process Q. The framework resolves the latter situation as “timed out.”
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The added functionality gives a designer the ability to check whether an event is ready

without committing to keeping it on offer, as with the deterministic choice, and, if not, con-

tinue with an alternative. This resembles a polling action, where the timeout window does

not depend on the first successful event of Q, but rather the attempt to execute the initial

event of P.

Let us consider implementation details of the untimed timeout operator presented

in Table 3-4.

Considering the example above, the idea for the untimed timeout operator is to poll

event a, and see if the environment is ready to engage in it at the time of polling.

Agent::startDChoice(1) prepares to engage in a 1-way choice with event a, just

as it would for timed timeout. The Agent::whichUTChoice() method then checks

the myChoice member variable, and, depending on its value, either returns zero signify-

ing successful execution of the exposed event (a), or cancels further attempts to synchro-

nize on the event. Unlike timed timeout’s Agent::whichTTChoice(), the thread does

not block. The if statement determines the subsequent flow of the program, either chain-

Table 3-4. Untimed Timeout

CSPm Syntax Generated C++ Code

S = a -> REG [> TIMEOUT AGENTPROC( S_ )

Agent::startDChoice( 1 );

a();

if (Agent::whichUTChoice()== 0){

         CHAIN0( REG_ );

}

else {

         CHAIN0( TIMEOUT_ );
}

}
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ing to process REG on the left hand side of the timeout operator, or chaining to the TIME-

OUT process.

3.2.4  Timed Prefix

Timed prefix is a special case of the prefix operator, which not only specifies the sequence

in which events should be performed, but also the amount of time that must pass after an

event, before the next event can be engaged in. For example, 

S = a  b → SKIP

The simple specification above states that process S performs event a, then waits

for 3 units of time before performing event b and successfully terminating. In practice, this

means that at least 3 units of time will pass between events a and b.

CSPm syntax does not support the timed prefix operator, so we tried to make it

resemble the prefix operator equipping it with an integer time value: -n->. Generated code

for the above sample is shown in Table 3-5.

In this example, process S will execute event a, then go to sleep for 3 units of time,

before attempting to execute event b. Now let us consider the generated C++ code. As the

execution begins, event a is performed, and we move on to the Agent::nap() method.

It invokes the task::timesleep() method that blocks the current S process by putting

Table 3-5. Timed Prefix

CSP syntax Generated C++ Code

S = a -3-> b -> SKIP AGENTPROC( S_ )

   a();

   Agent::nap(3*timeunit);

   b();

   END_AGENT;
}
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it to sleep for 3 time units. Timed prefix’s implementation only affects, or blocks, the CSP

process (represented by a Pth thread) that includes timed prefix in its specification. Note

that if included other processes, Agent::nap() would only block S’s execution, leaving

all other threads to carry on. Agent::nap() is interruptible and may throw an exception,

as described in the next section.

3.2.5  Untimed and Timed Interrupt

Let us recall the interrupt operator functionality. Interrupt implies concurrency, and is most

naturally untimed. Consider this simple specification of the untimed interrupt,

P Δ e → Q

Process P starts its execution and tries to run to completion. If process P does com-

plete, event e and subsequently process Q will never run. However, if at any point during

P’s execution event e happens, any further progress of P must be cancelled, and the system

must continue with process Q. This is in contrast with the timeout operator, where P only

has to start its execution in order to resolve the choice situation. With interrupt, process P

must finish its execution before interrupt to avoid cancellation.

Interrupt operators proved to be the hardest to implement, partially due to the fact

that CSP++ was never designed to be interrupted, based, as it is, on non-preemptive GNU

Pth threads. This means that once a particular thread of execution gets control of the CPU,

it will only release it if a blocking situation occurs, such as input/output or sleeping on a

condition, or the thread will explicitly yield its control in a cooperative way. The solution

was to make every blocking method in the framework interruptible, i.e., return control to

the blocking method before the condition it is blocked on is fulfilled. For instance,
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LEFT /\ inter -> RIGHT

By convention we start with the right hand side of interrupt operator, i.e., we test to

see if the interrupting event can happen right away. We must be clear on what it means for

the interrupting event to happen. For the interrupting event to happen, it must be recorded

in the process’s trace by successfully returning from the appropriate function call corre-

sponding to every event. If the interrupt happens, then process LEFT is never even started.

However, event inter may not successfully return from its function call and be blocked

due to synchronization. This gives process LEFT a chance to run. Given the non-preemp-

tive GNU Pth scheduler, how can the interrupting event inter happen when process

LEFT is running? For interrupt to work, process LEFT must block at some points during

its execution, otherwise inter will never get a chance to run. 

Let us clarify what it means for process LEFT to be interrupted. Process LEFT may

spawn a large subprocess tree. For LEFT to be interrupted means that no further events can

execute anywhere in the subprocess tree, i.e., appear in the system’s execution trace after

the interrupt. Every process in LEFT’s subtree must terminate and join with any threads

that are waiting for it. Eventually, process LEFT will join with the threads it spawned and

will also terminate. This is in contrast with the interrupt in the computer sense, where if a

process is interrupted, the interrupt is serviced, and the scheduler goes right back to the

interrupted process to continue its further execution.

Note, that to implement S = P /\ e -> Q, a minimum, of two threads are

needed: one thread to run process P, and another thread to attempt to execute the interrupt-

ing event e. In CSP++, process S would already have its own thread of execution, so now

we were left with three possibilities:
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1. spawn a new thread for process P, and let the already running process S attempt event 

e.

2. spawn a new thread that attempts event e, and let process S continue as process P.

3. spawn two threads: one to execute process P and one to attempt event e, while the 

already running process S waits for either of the two threads to complete.

The second possibility of spawning a new process to try event e was not realistic,

as we would need to ensure the new spawned off process gets control of the CPU right away

to see if the interrupt can be performed. This would require manually blocking the running

process, starting a new thread that tries the interrupting event, and unblocking the thread

running process P to either abandon it, if the interrupt succeeded, or let it run, if the inter-

rupt did not succeed right away. The thread responsible for trying event e would have to

be started with higher priority than the rest of the threads to make sure it gets control of the

CPU to actually attempt e whenever the running P process blocks. This seemed like a very

messy solution that is hard to understand and implement.

The third possibility of spawning two new threads, one for process P and one for

event e, was more promising. However, we would be left with either an idle process S that

simply waits for one of the two newly created threads to finish, or a coordinating process

that regulates the execution of the two new threads, almost like a scheduler that gives con-

trol to the thread trying event e when thread P blocks, and switching back to P, if e is not

ready. This simply led to excessive overhead of unnecessary switching.

In the end, the first choice of spawning a new thread for process P and letting S try

event e featured the cleanest solution. It used the minimum number of threads avoiding

unnecessary overhead, and was fairly simple to implement when compared to the second

choice with messy code. The solution is described in detail later in the chapter.
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The initial design for the interrupt operator was focused around Pth thread cancel-

lation techniques. pth_cancel(tid) function call takes a thread id as a parameter and

cancels further execution of the thread at one of its cancellation points (blocking calls, such

as input/output). Unfortunately, after closer examination, it became apparent that such

thread cancellation method will not suit our needs. For example, if a process P registered

to participate in synchronization on an event a, but while waiting for the other participating

process Q to complete the synchronization, P was cancelled. Using pth_cancel()

method would not give the thread running process P a chance to unregister a from synchro-

nization. When Q would finally try to complete synchronization on event a, CSP++ would

fail issuing a segfault error because it would not be able to find the thread running P.

Therefore, Pth thread cancellation utilities were not useful for our purposes.

Further research yielded another solution to the interrupt problem. This time the

focus shifted from the interrupting process to the interrupted one to do its own clean-up and

then self-terminate. Recall that only blocked threads, i.e., threads that released control of

the CPU, can be interrupted. When a thread is under the scope of the interrupt operator and

enters a blocking function call, it needs to be explicitly woken up/alerted before the condi-

tion it is waiting for is fulfilled. Once the interrupted thread is woken up, it checks to see

the reason for its wake-up, whether the blocking condition was fulfilled or an interrupt

occurred. If it is indeed interrupted, the thread performs its own clean up, deallocating

memory, backing out of partially-synchronized events, and so on, at which point it needs

to short-circuit back to the Agent::run() method. Agent::run() controls the exe-

cution of every Agent and is the place where further execution can be abandoned. The

C++ exception mechanism proved to be effective for redirecting the control flow of the
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interrupted thread. Once the interrupted thread finishes cleaning up, it throws an exception

that is caught in Agent::run(), and the thread’s further execution is abandoned. This

was important because within the “AGENTPROC” function body generated for each CSPm

process, individual event executions—which are, in fact, invocations of methods—have no

status return to check whereby they could abort the function via, say, returning prematurely.

To add such apparatus would be a major change to the existing code generation methodol-

ogy. In contrast, throwing a C++ exception can be done from inside an invoked method,

and is a clean way to abort the method caller’s function. This also takes care of unwinding

the stack and invoking any associated destructors, thereby automatically freeing the

dynamic storage that is under control of stack variables such as FreeVar.

Let us review the particular points at which any given thread can be interrupted: The

only requirement for a thread to be interrupted is that it must block, releasing control of the

CPU. Table 3-6 lists all the functions in the CSP++ framework which can be interrupted.

There were other challenges encountered during interrupt implementation. The

problem of getting CPU control to an interrupting event has already been raised. When an

interrupt occurs, and the process under the scope of the interrupt operator has entered a

blocking function call, we need to make sure the parent process—which took over the right

side of the interrupt operator — gets control of the CPU during the first context switch in

order to finish executing the interrupting event. Maximizing the thread priority for the

parent process increases its chances of being executed next. We cannot guarantee which

thread is going to be dispatched on the next context switch, since this is done under the Pth

scheduler’s control, however, raising the priority of the parent thread is good enough

because we only want to “beat” the priority of the process which has to be interrupted, the
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one on the left hand side of the interrupt operator. Since the left hand process starts up with

a default priority of zero, raising its parent’s priority to the maximum of 5 will always win,

thus ensuring the parent’s ability to run once the child blocks. After the parent process fin-

ishes its handling of the interrupt — or when the left hand side completes without having

been interrupted — its priority is returned to the default level since it no longer needs spe-

cial treatment.

Table 3-6. Interruptible Methods in CSP++

Method Name Description Necessary clean-up
upon interrupt

Agent::whichDChoice() In deterministic choice situation, 
once all exposed events are tried 
initially and none succeed, this 
method attempts to re-execute the 
events, only to wake up when one 
happens

Cancel further attempts of re-exe-
cuting deterministic choice 
events.

Agent::whichTTChoice() In timed timeout situation, left 
hand side of the operator has a 
certain amount of time to engage 
in an external event, during which 
time the thread is put to sleep

Cancel further attempts at re-exe-
cuting the left hand side exposed 
event.

Agent::nap() Time delay between two succes-
sive events puts the current thread 
to sleep.

Abandon execution of the current 
routine, no clean up.

Agent::doSync() Event synchronization. If waiting for synchronization 
flag, abandon waiting. No further 
clean up.
If waiting for synchronization, 
return SR_INTERRUPTED status 
to caller, 
Action::execute() and 
Action::reexecute(), 
which unsynchronize further 
attempts at event synchronization.

Agent::startUI() Untimed interrupt. Sleeping while 
waiting for a wake up call due to 
left hand side completing or inter-
rupt event happening.

Cancel further attempts at execut-
ing the interrupt event.

Agent::startTI() Timed interrupt. Sleeping while 
waiting for a wake up call due to 
left hand side completing or time 
elapsing.

Abandon execution of the current 
method.
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It was also necessary to prevent an interrupt from happening once the left hand pro-

cess completed its execution, i.e., when there would be nothing to interrupt. For instance,

S = LEFT /\ inter -> RIGHT

If process LEFT completes its execution before event inter happens, then all attempts at

executing the interrupt should be canceled. On the other hand, if the inter event happens

before LEFT completes its execution, further progress of LEFT must be canceled. Hence,

process S has to be alerted when one of the two things described above happened. The

mechanism for alerting S when the inter event happens was already implemented in the

framework, but we still needed to add a mechanism for alerting the parent thread (S) when

its child (LEFT) completed its execution. Every CSP process is implemented as an object

of the Agent class, which in turn is a subclass of task subclassed from object, which

has a list of waiters associated with it. Every parent process would put itself on its child’s

waiters list to be alerted when the child completes its execution.

A way had to be devised to manage a nested interrupt environment. For example,

S = (LEFT /\ inter -> RIGHT) /\ inter_top -> TOP

LEFT’s execution can be interrupted by either inter or inter_top, while RIGHT can

only be interrupted by inter_top. A new EnvInt class that inherits from both Env

class and object (so it can be alerted/waited on) was defined. It points up the Agent’s

environment stack to its parent EnvInt, if any. A bool interrupted() method was

added to EnvInt class, which returns true or false depending on whether an interrupt took

place. The Agent class was outfitted with a new data member that points to an EnvInt

object just pushed on the environment stack, or has NULL value if it is not subject to inter-

rupt. When a new Agent object is created, it automatically copies this data member from
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its parent Agent, so as to replicate the enclosing interrupt environment, while avoiding the

need for a stack search. In addition, if the Agent is subject to an interrupt operator, it

“remembers” itself on all applicable EnvInt objects’ waiters lists. When an Agent

wakes up from sleep in a blocking function, it calls the isInterrupted() method to

find out whether or not its execution was canceled. If the Agent finds out it was inter-

rupted, it performs its clean up procedures described in Table 3-6, and throws an exception

that is caught in the Agent::run() method, which controls execution of every Agent.

When the exception is caught, Agent::run() stops further execution of the current

thread. This satisfies the CSP requirement for the interrupt operator that no more events of

the interrupted process appear in the execution trace.

Let us consider an untimed interrupt example in Table 3-7. First, looking at the left

column, when execution of process INT begins, event inter is tried. If inter succeeds

right away (which it does not in this case due to synchronization with SYNCER process,

which has not started yet), process LEFT does not even get a chance to run, and process

RIGHT follows the execution of inter. In this case inter does not happen at first, and

process LEFT gets a chance to execute, but it may be interrupted by inter which will

cause abandoning of the execution of LEFT and its subtree (interleaved combination of

processes LEFT1 and LEFT2) in favour of process RIGHT. LEFT1 and LEFT2 have

blocking delays of two time units represented by timed prefixes. Timed prefix is imple-

mented by the Agent::nap() method, one of the interruptible functions listed in

Table 3-6 and is the place were processes LEFT1 and LEFT2 could potentially be inter-

rupted. Process SYNCER is used to synchronize on event inter, effectively delaying its

execution in process INT until process SYNCER gets a chance to run. Without SYNCER,
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the framework will engage in event inter without ever starting process LEFT. However,

because process INT is the first to run (in CSP++, leftmost processes are always started

first), its offer to synchronize on inter cannot be fulfilled as SYNCER has not had a

chance to run yet, thus execution continues with process LEFT.

When the interrupt operator ‘/\’ is encountered in the CSP specification, the C++

code in the right column of Table 3-7 is generated. When execution begins,

Agent::startDChoice(1) attempts to execute inter event to see if the interrupt

can happen immediately, but fails due to inability to synchronize with SYNCER at this

Table 3-7. Untimed Interrupt

CSPm syntax Generated C++ Code

INT = LEFT /\ inter -> RIGHT

RIGHT = did_right -> SKIP

LEFT = LEFT1 ||| LEFT2

LEFT1 = b -2-> c -> SKIP

LEFT2 = d -2-> e -> SKIP

SYNCER = a -> inter -> SKIP

SYS = INT [|{|inter|}|] SYNCER

AGENTPROC( INT_ )

int choice_;

   Agent::startDChoice( 1 );

      inter();

   if ( Agent::whichUIChoice() == 0) {

      CHAIN0( RIGHT_ );

   }

   else {

      inter_r.interrupt();

      CHANGEPRIO(5);

      Agent* a1 = START0( LEFT_, 0 );

      choice_ = Agent::startUI(a1);

      CHANGEPRIO(0);

      WAIT( a1);

      Agent::popEnv(1);

      if(choice_ == 1) {

         CHAIN0( RIGHT_ );

      }

   }
   END_AGENT;
}
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point. Agent::whichUIChoice() sees that the initial attempt at inter failed, but

synchronizing on inter remains on offer. Agent::whichUIChoice() returns with

the appropriate status causing the program to enter the else clause. The interrupt()

method creates a new EnvInt object and pushes it on the Agent’s environment stack.

INT’s priority is raised to ensure it gets control on the next context switch. Since, the initial

attempt at inter failed, process LEFT is started by Agent* a1 = START0( LEFT_,

0 ) with a default thread priority of zero. At this point process LEFT is put in the ready

queue of the Pth scheduler to be dispatched after the next context switch.

Agent::startUI(a1) receives a pointer to the newly created thread for process

LEFT. The function (1) puts LEFT onto EnvInt object’s waiters list so that LEFT can be

alerted in case of interrupt, (2) “remembers” the INT process on LEFT’s waiters list so that

process INT can be informed if LEFT finishes its execution before the interrupt (making

INT cancel further interrupt attempts), and (3) puts the current thread to sleep to be woken

up either due to LEFT completing its execution or interrupt happening. Now, process LEFT

gets control of the CPU and starts the interleaved execution of LEFT1 and LEFT2, both of

which encounter blocking functions when executing delays of two time units. Processes

LEFT1 and LEFT2 lose control of the CPU. The Pth scheduler performs a context switch

and gives SYNCER a chance to run. At this point SYNCER completes synchronization with

INT on event inter, as inter has been “on offer” since first being tried. After SYNCER

completes its execution, CPU control is returned to INT as synchronization on inter is

completed and a wake up call to INT is issued. When woken up in startUI() method,

INT sets EnvInt object’s interrupt data member to true, and alerts LEFT1 and

LEFT2 to wake up giving up its control of the CPU. Upon wake-up, LEFT1 and LEFT2
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call EnvInt’s isInterrupted() method to find out that both of them were in fact

interrupted while sleeping in Agent::nap() methods. LEFT1 and LEFT2

Agent::nap() methods perform clean-up (see Table 3-6) and throw exceptions that

return control to Agent::run() method of their respective processes, at which point

their further execution is aborted. Control is once again returned to process INT.

Agent::startUI() method returns, setting choice_ variable to 1. At this point INT

process does not need special access to CPU control anymore, so we lower its priority back

to the default value of zero. The WAIT(a1) macro joins the current INT thread with the

aborted LEFT thread. Finally, INT’s execution is chained to process RIGHT.

When executing the above specification, CSP++ produces the trace <b, d, a,

inter, did_right>, satisfying the requirements for the interrupt operator.

Implementation of the timed interrupt follows the same logic as the untimed inter-

rupt with one exception: an interrupting event is no longer needed, as the interrupt happens

due to time elapsing.

It is no longer necessary to execute/re-execute the interrupting event, so startD-

Choice() and whichUIChoice() methods are not generated. If interrupt time was

specified to be zero in the specification, then we chain to the interrupting process right

away, never even considering process LEFT. Otherwise we follow the same logic as with

the untimed interrupt, except that the EnvInt object is set to “interrupted” when the spec-

ified time elapses. Nevertheless, let us examine the above timed interrupt example in more

detail.

First, consider the CSP specification in the left column of Table 3-8. Execution

begins with process S. Process S gives process LEFT two time units to execute. If two time
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units is enough for LEFT to finish its execution and terminate, process RIGHT will never

happen. However, if LEFT does not finish its routines in two time units, process RIGHT

will interrupt LEFT. Given two time units to execute, LEFT starts its execution by kicking

off interleaved execution of LEFT1 and LEFT2. LEFT1 performs event a and blocks for

four time units, while LEFT2 performs event c and also blocks for four time units. While

LEFT1 and LEFT2 remain block, two time units allocated for LEFT’s execution elapse

and process RIGHT cancels further execution of LEFT1 and LEFT2, performs

did_right and successfully terminates.

Now, let us examine how CSP++ handles the above specification illustrated by C++

Table 3-8. Timed Interrupt

CSP syntax Generated C++ Code

S = LEFT /2\ RIGHT

RIGHT = did_right -> SKIP

LEFT = LEFT1 ||| LEFT2

LEFT1 = a -4-> b -> SKIP

LEFT2 = c -4-> d -> SKIP

AGENTPROC( S_ )

int time = 2*timeunit;

   if ( ! time ) {

      CHAIN0( RIGHT_ );

   }

   else {

      inter_r.interrupt();

      CHANGEPRIO(5);

      Agent* a1 = START0( LEFT_, 0 );

      choice_ = Agent::startTI(a1, time);

      CHANGEPRIO(0);

      WAIT( a1);

      Agent::popEnv(1);

      if(choice_ == 1) {

         CHAIN0( RIGHT_ );

      }

   }
   END_AGENT;
}
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code in the right column of Table 3-8. When execution of AGENTPROC(S_) begins, inter-

rupt time is set to the appropriate time units. If the interrupt time was specified as zero, pro-

cess RIGHT would have taken over right away without ever giving LEFT a chance. In our

case, the interrupting time is two time units, so we enter the else clause. The inter-

rupt() method creates a new EnvInt object and pushes it on the Agent’s environment

stack. S’s priority is raised to ensure it gets control on the next context switch. Process

LEFT is started by Agent* a1 = START0( LEFT_, 0 ) with a default thread

priority of zero. At this point process LEFT is put in the ready queue of the Pth scheduler

to be dispatched after the next context switch. Agent::startTI(a1, time)

receives a pointer to the newly created thread for process LEFT and time allocated for

LEFT’s execution. The function (1) puts LEFT onto EnvInt object’s waiters list so that

LEFT can be alerted in case of interrupt, (2) “remembers” the S process on LEFT’s waiters

list so that process S can be informed if LEFT finishes its execution before the allocated

time (making S cancel further interrupt attempts), and (3) puts the current thread to sleep

to be woken up either due to LEFT completing its execution or two time units elapsing.

Now, process LEFT gets control of the CPU and starts interleaved execution of LEFT1 and

LEFT2, both of which encounter blocking functions when executing delays of four time

units. Processes LEFT1 and LEFT2 block, and lose control of the CPU. At this point two

time units elapse, and the Pth scheduler wakes up S in startTI() method. When woken

up, S sets EnvInt object’s interrupt data member to true, and alerts LEFT1 and

LEFT2 to wake up giving up its control of the CPU. Upon wake-up, LEFT1 and LEFT2

call EnvInt’s isInterrupted() method to find out that both of them were in fact

interrupted while sleeping in Agent::nap() methods. LEFT1 and LEFT2
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Agent::nap() methods perform clean-up (see Table 3-6) and throw exceptions that

return control to Agent::run() method of their respective processes, at which point

their further execution is aborted. Control is once again returned to process S.

Agent::startTI() method returns, setting choice_ variable to 1. At this point S

process does not need special access to CPU control anymore, so we lower its priority back

to the default value of zero. The WAIT(a1) macro joins the current S thread with the

aborted LEFT thread. Finally, S’s execution is chained to process RIGHT.

The above example will produce the following trace <a, c, did_right>, sat-

isfying the requirement for the timed interrupt.

3.3 Implementation restrictions and limitations
The following list presents current limitations of Timed CSP++:

• CSPm syntax only supports 2 of the 5 operators we set out to implement: untimed tim-

eout and untimed interrupt. To continue using FDR2 and ProBE, specifications written 

in Timed CSP would have to be lexically trimmed down, leaving out any timing infor-

mation. Timed interrupt, timed timeout, and timed prefix would have to be changed to 

their untimed counterparts, which is easy to do with a simple script. To fully explore the 

correctness of Timed CSP specifications one would have to use the HORAE tool, 

which, unfortunately, is not widely available at the moment.

• Compared to Timed CSP, the timeout operators in CSP++ force the user to expose the 

first event of the left hand side process. This is compatible with CSP++’s treatment of 

the choice operator.

• Compared to CSP, the untimed interrupt operator in CSP++ forces the user to expose 

the first event of the right-hand process. This means that the interrupting process cannot 

progress alongside the left hand side process, performing internal events, but rather 

begins its execution once the exposed interrupting event happens.
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User-coded functions do not have any special mechanism for blocking, beyond

using Pth-wrapped system calls that block only the calling thread rather than the entire Unix

process. This means that UCFs are not well-integrated with interrupts. A UCF-linked event

is currently not interruptible, and a UCF-linked event that blocks is not suitable to be an

interrupting event, because, unlike for non-UCF events, there is no “try/retry” mechanism

for UCFs. This is a comment on the general weakness of CSP++’s interface to UCFs, which

warrants further study. Changes to that interface were beyond the scope of this thesis.

With the addition of operators from Timed CSP, CSP++ is now suitable for soft

real-time systems’ synthesis. When a timed operator is encountered in a given specifica-

tion, CSP++ can guarantee that, at a minimum, the specified amount of time will pass before

the next action will be taken, and that, at least, the specified time will apply to timeouts and

interrupts.
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4VAC Automated Cleaner case 
study

The Disk Server Subsystem (DSS) [Gar00] and the Automated Teller Machine (ATM)

[Dox05] CSP++ case studies illustrated implementation of many CSP features as well as

the selective formalism approach incorporating UCFs. However, these case studies could

not feature any timing constructs. In this chapter, we will demonstrate the use of the new

CSP++ timing constructs with a new VAC Automated Cleaner (VAC) case study. 

Unfortunately, formal verification and state space exploration tools such as FDR2

and ProBE could not be used to verify the correctness of the specified VAC system as they

do not support Timed CSP. VAC can be stripped of any timing information, of course, and

FDR2 and ProBE can be applied. However, as we have seen from examples, sometimes the

added timing information can completely change a system’s behaviour, and the formally

verified untimed version of the same program will not guarantee the absence of deadlocks,

livelocks, or other race hazards in the timed counterpart. Therefore, it was important to find

a way to formally verify Timed CSP specifications. Fortunately, while undertaking this

research we came across such a tool. A team at the National University of Singapore School

of Computing has been working on HORAE [DZSH06], a tool similar to FDR2 used to

reason about Timed CSP specifications. The tool has not yet been released, so we can only

show how one can potentially verify Timed CSP specifications using HORAE in the future.

This chapter starts by describing the VAC case study, and then turns to formal ver-
75



ification. Since HORAE is not available to verify VAC, we can at least show how the new

timed operators in CSP++ make it possible to synthesize code for the HORAE examples

published so far. Finally, we discuss limitations of CSP++’s current interface to UCFs in

regard to fully exploiting the new functionality of timed operators, with suggestions for

future work.

4.1 VAC Design
VAC implements a simple robot-vacuum, which, if left in automatic mode, drives around

a room picking up dust and avoiding obstacles, but can also be controlled manually through

a remote. As was done with the ATM case study [Dox05], the VAC design can be divided

into two parts, or design models, a functional model and an environmental model. The

VAC specification consists of processes describing different physical parts of the system

that can be attributed to the functional model. Environmental entities providing stimuli to

VAC, such as a user and room layout can be attributed to the environmental model. The

environmental model is very useful during system design and testing stages, when provid-

ing physical input to the system may be too expensive or the right environment may simply

be unavailable. When the simulated system is ready to be implemented, the environmental

model can be removed from the design, and processes and channels described in the func-

tional model can interact directly with the physical environment. Figure 4-1 illustrates

VAC’s interaction with the environment. Time units are in seconds.

The VAC design includes one functional model, the VAC itself, and two environ-

mental models, a simulated room with dust in which VAC operates, and a user providing

extra input.
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Consider the functional model. Instead of focusing on complex robot AI that actu-

ally does detect and avoid obstacles while figuring out its path through the environment,

we tried to show how to use Timed CSP operators in combination and how these timed CSP

primitives contribute to the overall behaviour of the specified system. VAC specification

includes all new CSP operators added to CSP++ as part of this research. In the following

sections we will give detailed description of VAC and its parts, and illustrate integration of

the Timed CSP operators. We will also identify the events that can be linked to user-coded

Functions, which would perform physical work if the robot were to be implemented. First,

Figure 4-1. VAC Interaction with the Environment
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let us consider Figure 4-2 which visually portrays the overall design of VAC using State-

Charts. The visual representation of VAC gathers all interacting components in one place

and helps grasp the final goal before it is written in CSPm. The full CSPm specification is

listed in Appendix D.

The following statement says that the execution begins with the parallel execution

of the functional model (ROBOT(0)) with one environmental model (USER), and explic-

itly states all the events which the two models must synchronize on.

SYS = ROBOT(0)

[|{|turn_on, turn_off, manual, autom, forward,

backward, left, right, done, pickup, putdown|}|] USER

Figure 4-2. VAC Statechart
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Initially VAC is turned off and is only ready to respond to the turn_on event,

represented by ROBOT(0) = turn_on -> ROBOT(1). Once turned on and running,

the VAC can only operate for 20 time units—simulating a limited battery life—and at any

point can be picked up by the user causing an interrupt and suspension of all moving parts:

ROBOT(1) = RUNNING /20\ low_battery -> SHUTOFF 

RUNNING = WHICHOPMODE /\ pickup -> EMERGENCY_STOP 

VAC features two modes of operation: automatic, described by process

AUTOMATIC_MODE, and manual, described by process REMOTE_CONTROL:

WHICHOPMODE = (manual -> REMOTE_CONTROL) [>

((turn_off -> ROBOT(0)) [7> AUTOMATIC_MODE)

To trigger one or the other, the user can either select manual, which will cause the VAC

to accept further commands from the user in REMOTE_CONTROL, or leave the VAC to

wait 7 seconds for a possible turn_off, and then go into automatic mode.

The latter is controlled by LOGIC and synchronizes with simulated environment

(ROOM and DIRT):

AUTOMATIC_MODE  = ENVIRONMENT

[|{|aforward, abackward, aleft, aright, adone,

astop, dust|}|] LOGIC

ENVIRONMENT = ROOM ||| DIRT 

ROOM = aforward -1-> aleft -1-> aforward -1->

aright -1-> abackward -1-> adone -> SKIP 

DIRT = dust -1-> DIRT

ROOM and DIRT are running as independent interleaved processes, simulating obstacles

and dust particles in the room, respectively. These processes act as constraints on the
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choices in LOGIC via synchronizing events.

The LOGIC process controls the interleaved operation of MOVEMENT_CONTROL,

responsible for driving the robot around the room by synchronizing with directions pro-

vided from the environment (ROOM), and CLEANING_MECHANISM, which cleans dust by

synchronizing with the environmental process DIRT on event dust, or remains idle until

the done command is received, simulating successful termination of room cleaning:

LOGIC = MOVEMENT_CONTROL

[|{|adone|}|] CLEANING_MECHANISM

MOVEMENT_CONTROL =

(aforward -> L_forward -> R_forward ->

F_forward -1-> MOVEMENT_CONTROL) []

(abackward -> L_backward -> R_backward ->

F_backward -1-> MOVEMENT_CONTROL) []

(aleft -> L_backward -> R_forward ->

F_turn -1-> MOVEMENT_CONTROL) []

(aright -> L_forward -> R_backward ->

F_turn -1-> MOVEMENT_CONTROL) []

(astop -> L_stop -> R_stop -> F_stop ->

MOVEMENT_CONTROL) []

(adone -1-> SKIP)

CLEANING_MECHANISM = (adone -1-> SKIP) [>

((dust -> clean -1-> CLEANING_MECHANISM) [>

(idle -1-> CLEANING_MECHANISM))

VAC execution can be terminated in three ways:

• successful termination,

• user picking up the robot, triggering untimed interrupt, or

• low battery, triggered by the passage of time.
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Now, let us consider what events could be linked to user-coded Functions to provide

more functionality to the VAC. Appendix D provides, along with the full CSPm specifica-

tion of VAC, the generated C++ code and the ucfs.cc file, which includes functionality for

the abstract events listed in Table 4-1. The presented UCFs are only meant to provide proof

of concept for demonstration. When the generated C++ code is run and UCFs are triggered,

they only output strings to the console, which are meant to represent hardware functionality

of VAC.

The use of each of the new timed operators within VAC will now be highlighted in

the following subsections.

4.1.1  Timed prefix

Timed prefix is a special case of the prefix operator, which not only specifies the sequence

in which events should be performed, but also the amount of time that must pass between

finishing of one event and subsequent attempt to execute the next.

 MOVEMENT_CONTROL and REMOTE_CONTROL processes illustrate the use of

Table 4-1. User-coded Functions in VAC

Specification event User-coded Functionality

turn_on, turn_off Interface to the POWER button on the VAC

pickup, put_down Interface to touch sensors which determine whether the VAC is 
on the ground or not

L_forward, L_backward, 
L_stop, R_forward, 
R_backward, R_stop, 
F_forward, F_backaward, 
F_turn, F_stop

Actual movement of the appropriate wheel in the correct direction

low_battery Interface to the VAC’s battery

clean Rotation of the cleaning drum and air suction control

stopping_all_moving_parts Mechanism that stops the rotation of the wheels, cleaning drum, 
and air suction
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the timed prefix operator.

In MOVEMENT_CONTROL on page 80, after the choice is made and appropriate

wheel actions are triggered, each recursive call to MOVEMENT_CONTROL or successful ter-

mination is delayed by one time unit. The one-unit delay suspends the process’s execution

and puts it to sleep, only to be woken up either after (at least) one time unit has elapsed or

due to an interrupt. It should be noted, that all time units represent minimum delays due to

thread non-preemption, that is, the thread will sleep, at a minimum, one time unit (if not

interrupted), but may sleep longer. The delays leading to thread suspension give interrupts

a chance to execute. Without delays, threads controlling interrupts would never get a

chance to execute, leading to difficulty in modeling interruptions in VAC’s execution.

The REMOTE_CONTROL process, which synchronizes with the user commands,

models VAC movement as directed by the user. REMOTE_CONTROL also features one-unit

time delays that are included for the same reason as in MOVEMENT_CONTROL.

4.1.2  Timeouts

VAC illustrates the use of timeout operators in two cases:

WHICHOPMODE = (manual -> REMOTE_CONTROL) [>

((turn_off -> ROBOT(0)) [7> AUTOMATIC_MODE)

After the user turns the VAC on, the system goes into the state where the subsequent mode

of operation will be decided. If the user wants to operate the robot manually then the

manual command will trigger the robot’s operation via REMOTE_CONTROL, however, if

no command follows, WHICHOPMODE will timeout giving the user other options. Essen-

tially, the polling operation is performed on the manual event to see if the user wanted to

do some manual operations, and if not, the system moves on to another choice situation
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under timed timeout. At this point the user has the option of turning the robot off or else, if

no command is received within seven time units, the robot will operate in

AUTOMATIC_MODE. 

The process describing the cleaning mechanism of VAC features two nested

untimed timeouts performing sequential polling operations:

CLEANING_MECHANISM = (adone -1-> SKIP) [>

((dust -> clean -1-> CLEANING_MECHANISM) [>

(idle -1-> CLEANING_MECHANISM))

At first, the process checks if adone command is received, triggering successful termina-

tion. If not, the robot checks for dust on the floor, cleans it and goes back to the original

state. If neither of the first two events occurred, the robot remains idle for one time unit

and goes back to the original state ready to perform the timeout checks again.

Untimed timeout adds additional expressive power to CSP++. Deterministic choice

‘[]’ has implicit priority as tests its operands from left to right, executing the first event

that can successfully be completed. If CLEANING_MECHANISM were rewritten using

deterministic choice, CSP++ would attempt to execute adone, dust, and then idle

events to see which one succeeds first. If none of the three events was successfully executed

during the first attempt, the thread will block until one of the events participating in deter-

ministic choice succeeds. With the timeout operator, we only have to try to execute the left

hand side event to see if it succeeds right away. If not, we timeout to the right hand side.

There are no additional attempts to execute the left hand side event. This polling operation

adds a new programming tool to CSP++, not available before.
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4.1.3  Interrupts

Interrupt operators are the most complex operators added to CSP++. VAC illustrates the

use of untimed and timed interrupts. Interrupts force already-running processes to abandon

their further execution from the point of the interrupt, while further flow of control is

defined by the interrupting process.

Untimed interrupt is illustrated in the following example:

RUNNING = WHICHOPMODE /\ pickup -> EMERGENCY_STOP

Say, the user turned the robot on and left it. After some time, when no more commands are

issued from the user, the robot will timeout in favour of automatic execution. At any point

in time, while the robot is performing its cleaning routines, the user may pick the robot up.

This presents a safety-critical situation as the robot has moving parts which may injure a

person. Hence, picking the working robot up at any point is the perfect scenario for using

the untimed interrupt. In the above specification, event pickup interrupts the running pro-

cess WHICHOPMODE and its subprocesses, chaining to EMERGENCY_STOP which simu-

lates the actual stopping of all moving parts.

The VAC specification also demonstrates the use of the timed interrupt operator to

simulate the robot’s battery life. All batteries last only so long, so we can use the timed

interrupt to specify how long the robot may perform its cleaning routines:

ROBOT(1) = RUNNING /20\ low_battery -> SHUTOFF

In this case, simple passage of time triggers the low battery interrupt. After the robot is

turned on, it only has 20 time units to perform its duties. After 20 time units, VAC’s exe-

cution will be interrupted and process SHUTOFF will get control, simulating a dead battery.
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4.1.4  VAC testing

The VAC case study was translated, compiled, and executed with a number of different

variations in the environment to mimic different execution paths in the attempt to discover

any deadlock situations. Unfortunately, formal verification of VAC is not possible at

present, as HORAE, the timed formal verification tool (described in the next section), was

not available for testing. Appendix D includes the complete CSP specification of VAC with

several environmental models available for immediate manual testing.

4.2 CSP++ and Formal Verification
Currently, there are two ways of verifying specifications written in CSP. FDR2 and ProBE

fully support the untimed CSP language, and have proven themselves as industry standards

when it comes to formal verification of CSP specifications. During this research CSP++

was extended with several new CSP primitives, two of which are untimed timeout and

untimed interrupt. The two operators are supported by FDR2 and ProBE. Hence, CSP spec-

ifications that include these operators can be verified by the commercial tools.

HORAE, a new tool being developed at the National University of Singapore, sup-

ports Timed CSP, however, it is still under development and has not been released. It uses

Constraint Logic Programming (CLP) to reason about Timed CSP. [DZSH06] references

some of the case studies and advantages, such as expressiveness, of using CLP as the under-

lying reasoning logic.

HORAE, shown in Figure 4-3, encompasses operational and denotational seman-

tics of Timed CSP encoded in CLP(R), the constraint solver, as separate modules. The two

modules are used to reason about different properties of Timed CSP. The denotational
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module (denoeng) captures the timed traces and timed failures of CSP and is used to check

the timewise refinement properties. The operational module (opereng) captures the “evolu-

tion relations and timed event transition relations of a process” [DZSH06] and is used to

verify variable bound properties. Both modules are responsible for checking the safety and

liveness of a given Timed CSP specification.

The front-end of HORAE includes a text editor used to build Timed CSP specifica-

tions in machine readable Timed CSP format represented by ASCII characters. HORAE

then converts Timed CSP specification files (.tcsp) into CLP syntax suitable for verification

with CLP(R). Table 4.1 presents HORAE syntax for Timed CSP operators (the full list of

HORAE supported operators can be found in Appendix C). The symbol d represents an

integer constant holding a time interval value.

HORAE syntax for timed operators resembles function calls, while we tried to

make our syntax look like CSPm syntax as closely as possible, especially to maintain com-

patibility with FDR2 for the untimed operators it does recognize. Even though differences

in syntax between HORAE and CSP++ are substantial, it is fairly easy to make specifica-

Figure 4-3. HORAE Design (from [DZSH06])

ro
86



tions written for CSP++ work with HORAE. A simple script can accomplish just that by

searching specifications written for CSP++ for syntax incompatible with HORAE and

restructuring it accordingly. Development of such a script was left for future work when

HORAE is finalized and released for general use. However, a general guide of how one

might use CSP++ and HORAE will consist of the following steps:

1. Write a Timed CSP specification

2. Run CSPtoHORAE script to convert the specification syntax accordingly

3. Run the converted specification through HORAE

4. Adjust the specification in case HORAE detects deadlocks, livelocks, or other 

race hazards

5. Repeat steps 3 and 4 until the specification is free of any undesired behavior

6. (Optional) The specification may be stripped of any timing information and run

through ProBE and FDR2 to gain additional information about system behaviour

Operator CSP syntax HORAE .tcsp syntax CSP++ syntax

Delay  
a b ->{d} a -d-> b

Untimed Timeout
Q1 Q2

not
supported Q1 [> Q2

Timed Timeout
Q1  Q2 |\{d} Q1 [d> Q2

Untimed Event Inter-
rupt Q1 Δ a → Q2 int(Q1, a, Q2) Q1 /\ a -> Q2

Timed Interrupt
Q1 Δd Q2 tint(Q1, d, Q2) Q1 /d\ Q2

Table 4-2. Timed CSP operators supported by HORAE and CSP++
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7. Generate C++ code from the specification by using CSP++

8. (Optional) Depending on the purpose of the generated system, it may be extended

with UCFs to perform specific tasks

Through e-mail correspondence with the HORAE team we were able to obtain

Timed CSP specification files that have been used to test the HORAE tool. These specifi-

cations described small, popular case studies:

• Dining Philosophers. A classic untimed deadlock example featuring N philosophers 

and N forks. All philosophers sit at a round table with forks placed between two neigh-

boring philosophers. Each philosopher needs two forks to eat.

• Timed Vending Machine. After inserting a coin, a user has 10 seconds to make a 

choice between coffee, tea, or request to release the coin. If the user does not make his 

choice in the allocated time, the vending machine times out and releases the inserted 

coin.

• Timed Railroad Crossing. The system is composed of three components: a train, a 

gate, and a controller. The gate is up and allows traffic to pass through the crossing if 

there is no train. The gate goes down if a train is approaching. The controller monitors 

the approach of trains and signals the gate to be lowered before the train enters the 

crossing. Timing information was specified as follows: the train needs 5 minutes to 

reach the crossing from the moment the controller spots it and 20 seconds to pass 

through the crossing; the controller needs 1 second from the moment a signal from train 

approaching or leaving is received to the moment it relays the appropriate message to 

the gate; the gate needs 100 seconds to raise or lower the bar.

After adjusting the syntax to fit CSP++ we ran these specifications through our

system to get executable versions. Running executable versions of the three case studies

produces execution traces, an ordered list of executed events. This gave us a chance to do

some comparison with HORAE’s claims described in [DHSZ06]:
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Dining Philosophers. Two variations of the problem were examined: 3 philoso-

phers and forks, and 4 philosophers and forks. HORAE was able to verify the following

properties: (1) both variations are not deadlock-free; (2) “No more than N+1/2 philosophers

can eat at the same time.” The authors probably overlooked a mistake in the formula, as it

is unclear what they meant:  or . However, both formulas are not correct,

because when N=3, only 1 philosopher can obtain two forks and eat, while when N=4, 2

philosophers can eat at the same time leading to  for all odd N and  for all even N;

(3) It is possible to have one philosopher eat all the time with the others starving. This case

only applies to N=3 problem, but not N=4. Unfortunately, the authors did not specify this

detail. The authors were also able to confirm the first and the third property with FDR2. We

were only able to confirm the deadlock property with FDR2. When running the N=3 exam-

ple through CSP++, the following trace was produced: <enter1, enter2, enter3,

pick11, pick22, pick33> leading to deadlock.

Timed Vending Machine. The following properties were verified: (1) the specifi-

cation is deadlock-free; (2) trace timewise refinement properties, i.e., whether timed exe-

cution traces were valid traces of the system; (3) whether there is a case such that coffee is

selected while tea is dispatched (assuming ‘no’, as the authors do not state the answer

explicitly). The authors also verified trace refinement properties in FDR2 dropping the

timed timeout operator and replacing it with deterministic choice.

Running this case study through CSP++ required the addition of one extra event not

present in the original specification. Consider the following HORAE code:

TVM = insert ->

((reqrelease -> release ->{3} TVM) []

N 1+
2

------------- N 1
2
---+

N 1–
2

------------- N
2
----
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(coffee ->{3} dispatchcoffee -> TVM) []

(tea ->{2} dispatchtea -> TVM)) |\{10}

(release -> TVM)

reqrelease, coffee, and tea are tried for up to 10 seconds to see which one succeeds

and determines the subsequent flow of control. Due to the three-way choice, the scope of

the timed timeout operator covers four possibilities. In contrast, the scope of the timed tim-

eout operator in CSP++ covers only two possible outcomes: left hand side of the operator

succeeds (only one exposed event can be tested with the timeout), or timeout occurs.

To overcome this, an extra event had to be inserted into the CSP++ specification:

TVM = insert ->

(choice ->

((reqrelease -> release ->{3} TVM) []

(coffee ->{3} dispatchcoffee -> TVM) []

(tea ->{2} dispatchtea -> TVM))) |\{10}

(release -> TVM))

This is as if pressing, say, ‘coffee’ caused two events: choice and coffee. This is a rea-

sonable modification that does not materially change the semantics of the specifcation.

Another approach is to substitute channel input, e.g., button?n, where n=1 for ‘release’,

2 for ‘coffee’, etc., in (button?x -> ...) [> (release -> TVM). When run

through CSP++, the test case was deadlock free producing valid traces of the system. This

showed that results obtained with CSP++ are compatible with those of HORAE. Expanding

the scope of the timeout operator is postponed for future work and may be address in sub-

sequent releases of CSP++.

Timed Railroad Crossing. The following properties were verified: (1) the specifi-
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cation is deadlock-free; (2) <trainnear, nearind, downcomm, down, con-

firm, entercrossing, leavecrossing, outind> is a legal trace of the

system; (3) the lowest time required for a train to pass through the crossing is 320 seconds.

The first two properties were also confirmed by FDR2, assuming that to verify the second

property, the authors removed all the timing information. When running this example

through CSP++, the following trace was obtained: <trainnear, nearind, down-

comm, down, confirm, entercrossing, leavecrossing, outind,

upcomm, up, confirm> which satisfies the safety requirement for the gate to be

down when a train is passing through the crossing.

The ability to execute these files via CSP++ shows that HORAE and CSP++ are

very much compatible, and hopefully we will be able to verify more complex examples in

HORAE in the near future. Full specifications of the three CSP case studies are presented

in Appendix A.

4.3 Timed Operators and UCFs
The strongest feature of CSP++ that sets it apart from other CSP-inspired projects is the

ability to decide exactly what part of a specified system needs to be formally specified, and

what part can be plugged in later as user-coded functions. The addition of timing operators

did not change the way UCFs can be used with CSP++, however, at the moment, there are

some limitations that programmers should be aware of when using UCFs and timing oper-

ators together.

UCFs can happily co-exist with the timed prefix operator without any restrictions

or limitations, however, they do not yield to the semantics of timeouts and interrupts. Con-
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sider the following Timed CSP example:

ATM = read_PIN → OPTIONS return_card → SKIP

A user has 30 seconds to enter his PIN and receive other options, or the ATM will

return the card. If we decided to design an actual ATM using CSP++, it would be reason-

able to link read_PIN event to a UCF that actually reads the input from the ATM’s numeric

pad. Recall that performance of the first external event determines the flow of control in the

timeout situation. In the ATM scenario, execution of read_PIN within 30 seconds would

prevent the timeout from happening. Let us consider what “executing” an event means in

CSP++. read_PIN would have to return from the UCF before 30 seconds to avoid the tim-

eout. If read_PIN blocked waiting for the user’s input, and did not return within 30 sec-

onds, the desired flow of control would cause the timeout to happen and abort the UCF.

However, there is currently no mechanism in the framework to get control back from the

UCF.

Now let us consider a fragment of the VAC specification:

MOVEMENT_CONTROL = (aforward -> L_forward ->

R_forward -> F_forward -1-> MOVEMENT_CONTROL) [] 

...

(adone -1-> SKIP)

L_forward, R_foward and F_forward are good candidates for UCFs as they

are responsible for rotating the appropriate wheels in the desired direction. Recall that

MOVEMENT_CONTROL falls within the scope of an interrupting event, pickup. When

pickup happens, the desired behaviour would be to interrupt L_forward, R_forward

and F_forward within their UCFs and stop the rotation of wheels immediately. As with

timeout, there is yet no mechanism to do this in the framework’s interface to UCFs.
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Unfortunately, the two scenarios described above will not behave as expected due

to the fact that UCFs are not interruptible functions at the moment. To achieve the correct

behaviour of the timed operators and UCFs, additional research is needed to determine

proper ways of interrupting UCFs.
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5Performance Metrics

After the implementation of timed operators in CSP++, it was important to make perfor-

mance measurements to see how the new version of the tool compared to the previous

untimed release. We hypothesized that implementation of the interrupt operator in CSP++

had to add some overhead to the framework, since using exceptions forces the compiler to

generate information needed to carry out stack unwinding, destructor invocation, and so on.

In contrast, timeouts are simply a form of deterministic choice, as far as the framework is

concerned, with no additional overhead, while timed prefix does not burden specifications

that do not use it. Thus, it was worthwhile investigating what price all users would have to

pay for support of the timed operators in the new version of CSP++.

The performance comparison between untimed CSP++ (v4.2) and timed CSP++

(v5.0) was conducted in a controlled environment. All tests were performed on a 1.8 GHz

AMD Athlon(TM) XP 2500+ processor with 1.5 Gb of memory running Kubuntu 8.04 with

Linux kernel v2.6.24. The g++ compiler used during the tests was gcc-4.2.3 with -O2 opti-

mization, and the GNU Pth version 2.0.7.

Both versions of CSP++, v4.2 and v5.0, were compiled without -DACTWATCH

and -DMEMWATCH flags to avoid unnecessary output to the console, which would have

increased execution time significantly.

Once compiled into C++ code, CSP specifications were run without the tracing flag

“-t” or the idle check flag “-i”. The applications, however, were given the quick exit flag “-
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q”, which avoids printing a dump when the system executes STOP.

Each test was run twenty-one times with the average of the last twenty being used

for comparison. The first run was discarded to account for the effect of paging. Execution

times were obtained using linux ‘time’ command. The sum of the user and system times

was used for comparison. The largest standard deviation for any group of twenty runs was

0.12 seconds, while the average standard deviation for all of the tests was 0.06 seconds.

All tests were run using some variation of the Disk Server Subsystem (DSS) case

study developed by W.Gardner [Gar00], which has become a benchmark for measuring the

performance of CSP++. The DSS features a parallel composition of the disk server and a

number of clients sending requests to the disk server and receiving acknowledgements.

In this chapter we will examine three questions: (1) Did the addition of the timing

operators in CSP++ v5.0 impact its performance when compared to CSP++ v4.2? (2) Does

inclusion of an interrupt operator influence the performance of a given specification? (3)

Does the use of exceptions have an impact on the memory size of the compiled program?

5.1 Untimed and timed CSP++
To compare performance of the two versions of CSP++, variations of the DSS case study

were used as tests. Note that DSS does not utilize the new timed operators, so the compar-

ison is intended to reveal any increased burden on the execution time as a result of excep-

tions support in v5.0.

1. 2 interleaved clients performing 10,000 requests

C(1,n) = if n>0 then ds!1.100 -> ack.1 -> C(1, n-1)

else SKIP
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C(2,n) = if n>0 then ds!2.150 -> ack.2 -> C(2, n-1)

else SKIP

TEST(i) = ((C(1,i) ||| C(2,i));STOP

SYS = (DSS [|{|ds,ack|}|] TEST(5000)) \ {|dint, dio|}

2. 4 interleaved clients performing 20,000 requests

C(1,n) = if n> 0 then ds!1.100 -> ack.1 -> C(1,n-1)

else SKIP

...

C(4,n) = if n> 0 then ds!4.350 -> ack.4 -> C(4,n-1)

else SKIP

TEST(i) = ((((C(1,i) ||| C(2,i)) ||| C(3,i)) ||| C(4,i)); 

STOP

SYS = (DSS [|{|ds,ack|}|] TEST(5000)) \ {|dint, dio|}

3. 8 interleaved clients performing 40,000 requests

C(1) = if n> 0 then ds!1.100 -> ack.1 -> C(1,n-1)

else SKIP

...

C(8) = if n> 0 then ds!8.950 -> ack.8 -> C(8,n-1)

else SKIP

TEST(i) = ((((C(1,i) ||| C(2,i)) ...||| C(8,i));STOP

SYS = (DSS [|{|ds,ack|}|] TEST(5000)) \ {|dint, dio|}

C(i) represents client processes that send requests to the disk server. The disk

server, in return, sends an acknowledgment. There was no output to stdout in order to

cut execution time, and concentrate solely on the system’s performance.

Table 5-1. Performance of CSP++ v5.0 and v4.2

Test 1 Test 2 Test 3

v5.0 11.77 sec 33.92 sec 117.84 sec
v4.2 11.73 sec 33.49 sec 116.93 sec
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As we can observe from the test results, CSP++ v4.2 is slightly faster: by 0.04 sec-

onds in the first test, 0.42 seconds in the second test, and 0.91 seconds in the third test. Our

original hypothesis was that the difference in execution time was due to the use of C++

exception handling mechanism compiled into v5.0 of CSP++. However, the GNU gcc com-

piler manual states that “GCC will generate frame unwind information for all functions,

which can produce significant data size overhead, although it does not affect execution.”

Further investigation demonstrated that run times for CSPm specifications compiled with

and without the gcc -fno-exceptions flag produced no appreciable difference. Therefore,

the difference can be attributed mainly to the interrupt operator’s related actions performed

in the framework. In CSP++ v5.0, when a new Agent is created, its constructor checks to

see if it is within the scope of an interrupt operator. If it is, it copies its parent’s pointer to

the relevant EnvInt object, and if not, sets its pointer to NULL. Furthermore, every block-

ing function in the framework, upon wake up from sleep, checks to see if the wake up call

was due to interrupt. This marginal additional overhead in the framework is borne by all

specifications whether they use interrupts or not.

The test results show that the difference in time increases with the number of par-

allel processes and requests to the disk server. Each request to the disk server participates

in synchronization, falling under the category of blocking functions, which perform extra

checks not present in the untimed version of CSP++. Nonetheless, the net effect is very

slight.

5.2 Interrupts in specifications
It was also useful to investigate how much overhead inclusion of the interrupt operator adds
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to a given specification. For this experiment, the DSS case study included two client pro-

cesses performing 10000 disk requests:

1. The specification did not include the interrupt operator:

C(1,n) = if n>0 then ds!1.100 -> ack.1 -> C(1, n-1)

else SKIP

C(2,n) = if n>0 then ds!2.150 -> ack.2 -> C(2, n-1)

else SKIP

TEST(i) = ((C(1,i) ||| C(2,i));STOP

SYS = (DSS [|{|ds,ack|}|] TEST(5000)) \ {|dint, dio|}

2. The specification included the timed interrupt operator, but the timing was set so that the

specification had sufficient time to execute and successfully terminate before the interrupt:

C(1,n) = if n>0 then ds!1.100 -> ack.1 -> C(1, n-1)

else SKIP

C(2,n) = if n>0 then ds!2.150 -> ack.2 -> C(2, n-1)

else SKIP

TEST(i) = ((C(1,i) ||| C(2,i));STOP

INTER = (DSS [|{|ds,ack|}|] TEST(5000)) \ {|dint, dio|}

SYS = INTER /20\ (interrupted -> SKIP)

Table 5-2 presents results of the two tests. As can be seen the mere inclusion of the

interrupt operator increases execution time by 0.74 seconds. In this case, interleaved pro-

cesses C(1,i) and C(2,i) will find themselves within the scope of the interrupt operator,

meaning they will have to put themselves on the EnvInt object’s waiters list. Further-

Table 5-2. CSP++ v5.0 impact of interrupts

No interrupt 
operator

Interrupt does 
not happen

v5.0 11.77 sec 12.51 sec
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more, the startTI() function will be triggered, starting process INTER as a separate

thread of execution, and, upon wake up from sleep, checking whether the interrupt hap-

pened or INTER finished its execution successfully.

5.3 Memory cost of using exceptions
As shown above, exceptions did not add significant overhead to execution. Nevertheless,

the gcc manual stated that the use of exceptions may “significantly” increase data size. To

see exactly how much overhead the exceptions produced, we generated the DSS case study

(first version mentioned in section 5.1 with 2 interleaved processes and 10000 disk

requests) using three compiled versions of the CSP++ framework:

1. v4.2 compiled with gcc -fno-exceptions flag

2. v4.2 compiled with gcc -fexceptions flag

3. v5.0 compiled with gcc -fexceptions flag

Note that -fexceptions is the present default for gcc 4.

As can be seen from Table 5-3, the increase in size due to enabling exceptions in

version v4.2 is 2.8 KB, which amounts to a mere 1.1%. When we look at the results of v4.2

and v5.0, the difference is much greater and can be attributed to the addition of timed oper-

ators. This is reasonable since adding more features leads to greater framework size.

In conclusion, contrary to our expectations, the additional overhead attributable to

the support for the new timed operators is minimal.

Table 5-3. DSS executable sizes with and without exceptions

v4.2
-fno-exceptions

v4.2
-fexceptions

v5.0
-fexceptions

size (KB) 258.7 261.5 288.3
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6CSP++ and CSP libraries

Communicating Sequential Processes was never intended to be a programming language.

It does, however, provide the necessary features and constructs to describe the design of

concurrent systems, and, more importantly, formally verify their correctness. A number of

projects have been focusing on implementing the CSP formalism in a popular program-

ming language. Chapter 2 gave a brief survey of the existing projects. In this chapter we

will compare CSP++ with projects developed at the Computing Laboratory of the Univer-

sity of Kent, England, namely, C++CSP2 [Bro07a] and JCSP [WBM+07]. Unlike CSP++,

the two libraries do not feature automatic code generation, however, they implement a

range of CSP constructs aimed at easing concurrent programming, and can be compared to

CSP++’s back-end framework. The goal of this study was to see how a programmer may

use CSP++, JCSP and C++CSP2. It also gave us a chance to see if CSP++ was on-par with

other CSP-related programming tools, and consider possible directions for future CSP++

research and development.

C++CSP2 and JCSP share the same API and have similar structure, however, being

targeted toward two different programming languages, the libraries do have distinct fea-

tures. The review will focus on JCSP and provide examples in Java, however, features dis-

tinct to each project will be outlined. Appendix C includes CSP and CSP++ generated C++

code for all of the examples presented in this chapter.
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6.1 JCSP and C++CSP2 Features
JCSP is a Java class library implementing a range of ideas from Communicating Sequential

Processes and π-calculus [Mil99]. It was first developed by Paul Austin at the University

of Kent, England, in 1997. It has since been reworked and extended, and is currently at ver-

sion 1.1. JCSP was designed to provide an alternative concurrency model for Java. JCSP

does not provide a completely separate concurrency model, but rather builds on top of built-

in Java threads and monitors. [Wel98, Han99] examined Java’s built-in concurrency

model, and argued that, while the concept of monitors is easy to understand, it does not

scale well and does not guarantee livelock-free and starvation-free situations for synchro-

nizing processes (due to Java’s implementation of wait() and notify() methods).

JCSP was the forerunner of C++CSP library, thus they share the same API.

Working with JCSP or C++CSP2 does not require any familiarity with CSP, and

knowledge of the API would be sufficient to implement a project. However, if starting with

a formal CSP specification of a system, a programmer using JCSP or C++CSP2 would have

to be trained in CSP in order to hand translate the CSP specification into code linked to

these libraries, as there is no translator comparable to that of CSP++. JCSP and C++CSP2

are not synthesis tools like CSP++, thus, in order to use CSP alongside these libraries, hand-

translation of CSP specifications into code will be necessary.

In the following subsections we will inspect the implementation of CSP constructs

in the JCSP library. We will start the review by looking at CSP process composition, com-

munication, and synchronization. We will continue with choice situations and communica-

tion via alternative channels. Finally, we will conclude with the implementation of CSP

timing constructs.
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6.1.1  Processes

A CSP process can be viewed as a self-contained entity that encapsulates data structures

and algorithms that perform operations on these data structures. All communication

between processes—except for parameters passed when a process is invoked—is done

solely through channels (CSP primitives specifically designed for process communication).

Following these assumptions, each CSP process in JCSP is an object of a class implement-

ing the CSProcess interface. Actions performed by each object are defined in its run()

method, which is similar to Java’s approach.

Below is the general structure of a CSP process implemented in JCSP:

import org.jcsp.lang.*;
...  other imports
  
 class ProcessExample implements CSProcess {

...  private/protected shared synchronisation objects (channels, etc.)

...  private/protected state information

...  public constructors

...  public configuration/inspection methods (when not running)

...  private/protected support methods (part of a run)

...  public run method (the process starts here)
}

JCSP implements process-oriented design, which consists of concurrently execut-

ing processes communicating with each other through a set of synchronization objects.

CSProcess public constructors handle installation of the synchronization objects into the

process’s private/protected fields. set() and get() methods may be invoked to change

the configuration of any process, however, this can only be done in between run()s and

only by a single process, usually the parent process, otherwise, unpredictable behaviour

may arise when a process’s state is changed by anything other than channel communication

or synchronization.
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Consider a very simple countdown process written in CSP. Process COUNT-

DOWN performs event a.i (i=10..1) 10 times, then event blast_off, and successfully ter-

minates:

COUNTDOWN(n) = if n > 0

then a.n → COUNTDOWN(n-1)

else blast_off → SKIP

COUNTDOWN(10)

This example incorporates the CSP concept of “looping” via recursion, and produces the

trace <a.10, a.9, ..., a.1, blast_off>. When written in JCSP, the above example will look

like this: 

public class Countdown implements CSProcess {

final private Integer N;
  

public Countdown (final int n) {
this.N = new Integer (n);

}

public void run () {
while (N > 0) {

System.out.println(N);
N--;

}
System.out.println(“blast_off“);

}
}

And the program driver, which starts the execution:

class CountdownTest {
 

public static void main (String[] args) {
Countdown test = new Countdown (10);
test.run();

}
}

It prints 10, 9, ..., 1 on successive lines and then blast_off, equivalent to the trace.
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C++CSP2 follows a similar library structure. Every executing process is typically

subclassed from CSProcess. The actual work of every process is included in the pro-

tected void run() function. Each CSProcess is allocated on the heap by the pro-

grammer. C++CSP2 manages deletion of processes once they finish running. C++CSP2

warns against manual deletion of CSProcesses or their allocation on the stack, which

may cause memory leaks.

6.1.2  Process Composition

Concurrent execution of processes is achieved through the use of the Parallel class. An

array of CSProcesses can be passed to the Parallel constructor. The constructor, in

turn, returns an instance of CSProcess that represents the parallel composition of its pro-

cess arguments. Execution of Parallel CSProcess terminates when all of its compo-

nent processes finish their runs. CSProcesses can be added to parallel execution either

by supplying instances of CSProcesses as arguments to the Parallel constructor or

by use of the addProcess() method. If an attempt is made to add a process while Par-

allel is executing the run() method, the additional processes will be added after the

completion of the current run() but before its next invocation, if the parallel composition

is to be run again.

Let us expand the COUNTDOWN example presented in the previous section. This

time we create two processes, each of which performs a countdown completely separately

from the other process. Such composition would correspond to the CSP concept of inter-

leaving, where process run in parallel but do not communicate or synchronize on any

events:
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ROCKET1 = COUNTDOWN(10)

ROCKET2 = COUNTDOWN(10)

ROCKET1 ||| ROCKET2

The JCSP implementation of processes COUNTDOWN will be as before, however, the

driver will undergo some changes:

class CountdownTest {
 

public static void main (String[] args) {
Countdown rocket1 = new Countdown (10);
Countdown rocket2 = new Countdown (10);
new Parallel (rocket1, rocket2).run();

}
}

Alternatively, to produce sequential composition of the above processes—

ROCKET1; ROCKET2—where rocket1 is launched first and rocket2 second, the

Parallel instance would simply be changed to Sequence:

class CountdownTest {
 

public static void main (String[] args) {
Countdown rocket1 = new Countdown (10);
Countdown rocket2 = new Countdown (10);
new Sequence (rocket1, rocket2).run();

}
}

Process composition follows the same rules and similar syntax in C++CSP2. Its

major difference is the ability of a programmer to decide whether to run Parallel pro-

cesses in one user-level thread or different user-level threads to take advantage of multi-

core and multiprocessor systems. This is discussed in more detail later in the chapter.

6.1.3  Channel communication

As mentioned earlier, a CSProcess can communicate with other CSPprocesses solely

through the use of synchronization objects, and not by calling each other’s public methods.

This follows the idea of CSP channels. Recall that a CSP channel is a unidirectional non-
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buffered fully-synchronized means of communication between processes. 

In JCSP, the Channel class implements CSP channel semantics. It is a factory

with static methods for different kinds of channels capable of passing different types of

objects. JCSP provides the traditional CSP non-buffered fully synchronizing channels as

well as a number of buffered channels [WBM+07]. All channel types can be summarized

into four categories: One2OneChannel connecting one writing process with one reading

process; Any2OneChannel can have multiple writers, but only one reader;

One2AnyChannel supports one writer and a one reader, but the reader can be any pro-

cess from a list; and Any2AnyChannel, where multiple writers share the channel with

multiple readers, however, at any one time, the communication still occurs between one

writer and one reader. A full list of the types of channels available in JCSP can be found at

[AW].

After a new instance of a channel is created, the appropriate channel ends are passed

to corresponding CSProcesses. Having references to specific channel ends prevents a

reader process from writing to a channel, and a writer from reading. Channel ends mirror

similar concepts in the occam-pi language, and the authors of JCSP argue that they intro-

duce increased safety into process communication [WBM+07].

Consider a simple process communication example. Process WRITER outputs 2 to

channel a, while process READER reads the contents of the channel into variable x.

WRITER = a!2 → SKIP

READER = a?x → SKIP

READER ||a WRITER

JCSP implementation of the above scenario will look like this:
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public class Writer implements CSProcess {

final private ChannelOutput out;
  

public Writer (final ChannelOutput out) {
this.out = out;

}
  

public void run () {
out.write(2);

}
}

public class Reader implements CSProcess {
final private Integer N;
final private ChannelInput in;

  
public Writer (final ChannelInput in) {

this.in = in;
}

  
public void run () {

N = in.read();
}

}

class Driver {

public static void main (String[] args) {

final One2OneChannel a = Channel.one2One ();
 

new Parallel ( new Writer (a.out()), 
new Reader (a.in()) ). run();

}
}

The driver first creates a simple One2OneChannel. Then it creates two processes and

passes each one the appropriate channel end. Finally, it creates a Parallel instance to run

the processes.

More complex channel synchronization can include multiple writers and a single

reader, single writer and multiple readers, or even multiple writers and multiple readers. In

JCSP this is accomplished through the use of shared channels. Synchronization still occurs

only between pairs of processes, a single reader and a single writer, though multiple readers
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and/or writers may share the channel by taking turns. Shared channel users take turns on a

first-come-first-served basis, which should not be confused with broadcasting, where data

from a single writer may be read by numerous readers.

JCSP includes two major types of channels, all of which support one2one,

any2one, any2any, and other interfaces:

• Object Channels capable of passing any Java Objects. ChannelInt class has 

become deprecated and Object Channel should be used, however, its remains are still 

seen when constructing choice situations with the Alternative class (described fur-

ther in the chapter).

• CALL Channels provide mechanisms for client-server communication, where the cli-

ent “calls” the server and, upon accept, invokes one of the methods provided by the 

server’s interface.

C++CSP2 follows the same design of channel communication with minor differ-

ences in syntax.

6.1.4  Process Synchronization

When several processes need to synchronize on a particular event, JCSP employs the con-

cept of barriers, which is implicit in CSP synchronization. A process participating in event

synchronization cannot cross the barrier until all processes participating in the synchroni-

zation arrive at the barrier and cross it together. A process arriving at the synchronization

point before other processes will simply block, awaiting wake up when all synchronizing

processes arrive. Once a process reaches the synchronization point, or the barrier, it cannot

back off and is committed to synchronizing. Consider a CSP example of four abstract pro-

cesses synchronizing on event a:

PROC(i) = at.i → a → over.i → SKIP
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((PROC(1) ||a PROC(2)) ||a PROC(3)) ||a PROC(4)

A valid trace would be <at.1, at.2, at.3, at.4, a, over.1, over.2, over.3, over.4>, or with 

any permutation among the at’s and over’s.

JCSP implementation of the above specification will be the following:

public class Process implements CSProcess {

private final Barrier a;
 

public Process (int id, Barrier a) {
this.id = id;
this.a = a;

}
 

public void run () {
System.out.println ("Proc " + id + " at the barrier");
a.sync ();
System.out.println ("Proc " + id + " over the barrier");

}
}

public class Driver {
 

public static void main (String[] args) {
 

final int nProcs = 4;
final Barrier a = new Barrier (nProcs);
final Proc[] procs = new Proc[nProcs];

for (int i = 0; i < procs.length; i++) {
procs[i] = new Process (i, a);

}
 

new Parallel (procs).run ();
}

}

C++CSP2 implements similar design of barriers to handle process synchronization.

6.1.5  Choice

In CSP, there are two types of choice: deterministic (external) and non-deterministic (inter-

nal). We will focus on deterministic choice since it is more useful in software design. Con-

sider a simple CSP process below:
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P = a → SKIP b → SKIP

Q = a → SKIP

P ||a,b Q

Process P is offering to engage in either event a or b, however, process Q can only perform

event a. Since P and Q are synchronized on both events, Q’s performance of a determines

P’s execution as well.

JCSP’s Alternative class implements CSP semantics of choice. In essence it

offers several events for synchronization with other CSProcesses, and waits until one of

the offers is taken by the synchronizing CSProcess. Events that are offered by a CSPro-

cess in a choice situation are known as Guards in JCSP, as they guard the process’s exe-

cution beyond the choice. If the choice is not made by a synchronizing party, Guards will

not let the CSProcess proceed on its own.

The Alternative constructor takes an array of guards, events offered for syn-

chronization, and returns as object. When the running process desires to make the choice,

it calls select() on the Alternative object, which returns the index of the chosen

guard. There are six types of guards that Alternative can handle, or six types of events

that a CSProcess can offer in a choice situation:

• AltingChannelInput: object channel input. Ready if unread data is pending in the 

channel.

• AltingChannelInputInt: integer channel input. Ready if unread data is pending 

in the channel.

• AltingChannelAccept: CALL channel accept. Ready if an unaccepted call is 

pending on the channel. 
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• AltingBarrier: barrier synchronization. Ready if all enrolled processes are offer-

ing to synchronize.

• CSTimer: timeout. Ready if the timeout has expired (timeout values are absolute time 

values, not delays).

• Skip: skip. Always ready. 

Each of the Alting* types of guard have to be created in the driver class, because they

are essentially “global” to the program. The Alting* objects are passed as parameters to

the processes that need to use them in constructing an Alternative.

JCSP implements different ways of resolving the choice situation in cases where

more than one guard is ready:

• select, already mentioned, makes an arbitrary choice between guards, if more than 

one is ready.

• priSelect: if more than one of the guards is ready, it chooses the first one in the list. 

• fairSelect If more than one of the guards is ready, the chosen guard is assigned a 

priority, so that on the next iteration of fairSelect with the Alternative, it has 

the lowest priority. This ensures that no guard is serviced more than once before all 

guards are serviced. 

Note that each select method will block, suspending the calling thread, until one of

the guards becomes ready and the choice situation can be resolved, whereupon it returns

the index of the chosen guard.

After reviewing Alternative features, let us consider the JCSP implementation

of the CSP scenario presented at the beginning of this section. This simple choice is an

application for the AltingBarrier type of guard:

public class P implements CSProcess {
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private final AltingBarrier a;
private final AltingBarrier b;

 
public Process (AltingBarrier a, AltingBarrier b) {

this.a = a;
this.b = b;

}
 

public void run () {
final Alternative choice = 

new Alternative (new Guard [] {a, b});

final int index = choice.select();

if(!index) {
a.sync();
System.out.println(“Synced on event a“);

}
else {

b.sync();
System.out.println(“Synced on event b”);

}
}

}

public class Q implements CSProcess {

private final AltingBarrier a;

public Process (AltingBarrier a) {
this.a = a;

}
 

public void run () {
a.sync();
System.out.println(“Synced on event a“);

}

}

public class Driver {
 

public static void main (String[] args) {

final AltingBarrier a = new AltingBarrier (2);
final AltingBarrier b = new AltingBarrier (2);

 
P p = new P(a, b);
Q q = new q(a);

 
new Parallel (p, q).run ();

}
}
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Note that two AltingBarrier guards—one for event a and one for event b—are cre-

ated in Driver for use in P and Q, each barrier accommodating two parties (P and Q) as given

by the constructor parameter (2). The guard objects are passed to P and Q when they are

created. P, who does the choice, uses them to create an Alternative and then calls

select() on it. Q, who does not do a choice, simply calls sync() on its barrier to signal

its arrival. After P decides which event is ready, it still must call sync() to complete the

synchronization. After that, both P and Q may proceed independently (here, they simply

terminate).

The program given above illustrates an interesting point. Implementing a trivial

CSP specification involves a high ratio of complex JCSP code. Synthesized CSP++ code

will have a comparable number of lines of C++, however, all that code is automatically gen-

erated, thus eliminating possibilities for human programming errors. If the CSP specifica-

tion is correct, then the synthesized code is “correct by construction.”

Alternative allows implementation of a polling action similar to the one of the

untimed timeout in CSP++. We want to see if processes are ready to synchronize on an

event or channel right away. If not, an alternative action can be taken. In JCSP this can be

accomplished by using priSelect between an event and a skip guard (placed in the

guard array after the event to signify lower priority). Below is the implementation of such

a scenario, where we poll against three channels to see if there is any data pending in them.

If not, the program “times out” in favour of something else:

public class Polling implements CSProcess {
 

private final AltingChannelInput in0;
private final AltingChannelInput in1;
private final AltingChannelInput in2;
private final ChannelOutput out;
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public Polling (final AltingChannelInput in0, 

final AltingChannelInput in1,
                   final AltingChannelInput in2, 

final ChannelOutput out) {
this.in0 = in0;
this.in1 = in1;
this.in2 = in2;
this.out = out;

}
 

public void run() {
 

final Skip skip = new Skip ();
final Guard[] guards = {in0, in1, in2, skip};
final Alternative alt = new Alternative (guards);

switch (alt.priSelect ()) {
case 0:
...  process data pending on channel in0 ...
break;

         case 1:
           ...  process data pending on channel in1 ...
         break;
         case 2:
           ...  process data pending on channel in2 ...
         break;
         case 3:
           ...  nothing available for the above ...
           ...  so get on with something else for a while ...

break;
}

}
}

C++CSP2 does not provide any additional features or differ significantly in its

implementation of choice constructs.

6.1.6  Timing Constructs

Some of the CSP timing constructs seamlessly integrate into JCSP library. For example, the

timed prefix operator in Timed CSP specifies the amount of time that has to pass between

the finish of one event and attempt of the next. This operator was not mentioned explicitly

in the API documentation, however, was included in several examples. Consider JCSP

code below, that corresponds to 
114



DelayExecution = a  b → SKIP 

in CSP (considering one-second granularity for time units):

public class DelayExecution implements CSProcess {

private final Barrier a;
 

public Process () {
}

 
public void run () {

final CSTimer tim = new CSTimer();
System.out.println ("executing abstract event a");
tim.sleep(5000); //sleeping for 5 seconds
System.out.println ("executing abstract event b");

}
}

The CSTimer class in JCSP provides the necessary timing constructs. In the example

above sleep() method simply puts the current thread of execution to sleep for a specified

amount of time, and has the same semantics as java.lang.Thread.sleep.

More complex cases including CSTimer may be constructed. Consider the follow-

ing Timed CSP specification involving a timed timeout:

TIMEOUT = a → SKIP  tout → SKIP

We can implement the specification in JCSP using the Alternative class and the

priSelect() method.

public class TIMEOUT implements CSProcess {

private final AltingBarrier a;
 

public Process (AltingBarrier a) {
this.a = a;

}
 

public void run () {
final CSTimer tim = new CSTimer();
tim.setAlarm(tim.read() + 30000);
final Guard[] guards = {tim, a};
final Alternative alt = new Alternative (guards);
final int index = alt.priSelect();
if(index)
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System.out.println(“Handling event a”);
else

System.out.println(“Timeout: 30 secs elapsed”);
}

}

In the example above Alternative priSelect() method has to be used

while the CSTimer instance can be placed in the guard array before or after the other

event. CSTimer placement in the guard array will determine which event is favoured upon

thread wake up if both were ready. In the example above the timeout will be favoured. 

Unfortunately, JCSP does not provide interrupt facilities which map directly to

CSP, where, for example, the initial event of process A interrupts process B and no further

events from B or its subprocesses show up in the execution trace. However, in JCSP it is

possible to use Alternative and CSTimer to come up with interesting examples that

do resemble interrupting behaviour, but are far from CSP semantics of the interrupt.

The example below reads in data from the input channels for a user-defined amount

of time. Once the time elapses the process abandons reading from the input channels and

goes to do something else. This resembles Timed CSP’s timed interrupt to some extent,

when a process is given so much time to perform its duties, and if it does not complete in

time its execution is interrupted in favour of another process. In the example below, how-

ever, the process does complete each channel input on every iteration; the interrupt is only

serviced before the next channel input iteration.

public class FairPlexTime implements CSProcess {
 

private final AltingChannelInput[] in;
private final ChannelOutput out;
private final long timeout;

 
public FairPlexTime (final AltingChannelInput[] in, 

final ChannelOutput out,
final long timeout) {

this.in = in;
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this.out = out;
this.timeout = timeout;

}
 

public void run () {
final Guard[] guards = new Guard[in.length + 1];
System.arraycopy (in, 0, guards, 0, in.length);

 
final CSTimer tim = new CSTimer ();
final int timerIndex = in.length;
guards[timerIndex] = tim;

 
final Alternative alt = new Alternative (guards);

 
boolean running = true;
tim.setAlarm (tim.read () + timeout);
while (running) {

final int index = alt.fairSelect ();
if (index == timerIndex) {

running = false;
} else {

out.write (in[index].read ());
}

}
}

}

Even though the example above is not a true interrupt, it does provide the programmer with

a useful timing tool.

C++CSP2 treats timing constructs in the same way as JCSP.

6.2 CSP++ vs. JCSP and C++CSP: Pros And Cons
Now that the reader has some familiarity with CSP++ as well as JCSP and C++CSP2, we

can analyze some of the advantages and disadvantages of these different approaches to

implementing CSP constructs alongside a popular programming language. Moreover, we

can see if CSP++ can benefit from some of the design decisions present in JCSP and

C++CSP2. The areas discussed below are the underlying threading mechanism, possibili-

ties for formal verification, and support for networking.
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6.2.1  Threading Libraries

Communicating Sequential Processes was specifically designed to describe concurrent sys-

tems. A threading mechanism must be used to simulate concurrency. CSP++, JCSP, and

C++CSP2 are all based on different threading models, and each offers its own advantages.

The JCSP project runs on top of Java Virtual Machine (Sun’s distribution of JVM

on most operating systems) and uses kernel-space threads. Kernel-space threads usually

rely on thread preemption for context switches that are performed by the operating system

kernel without the application’s knowledge. Kernel-space threads perform context

switches slower than user-space threads, however, they have a big advantage of benefitting

from multi-core and multiprocessor systems by potentially scheduling each executing

thread on a separate processor (provided that the number of cores or processors outnumbers

threads in the ready queue).

CSP++ uses the non-preemptive user-space threading library, GNU Pth. Being

implemented completely in user space, Pth performs context switches much faster than

kernel-space threading mechanisms. Another advantage of Pth in particular, is the fact that

it does not require any platform-dependant assembly manipulation, which leads to high

portability. The biggest drawback of user-space threading libraries, however, is their inabil-

ity to benefit from multi-core and multiprocessor systems.

C++CSP was originally based on user-space threading libraries, but Version 2

moved to a home-brewed hybrid model, a mixture of user-space and kernel-space threading

mechanisms, to benefit from both worlds. Multiple kernel-space threads may be running in

parallel, while each kernel-space thread may contain multiple user-space threads.

C++CSP2 implements a C++CSP-kernel in each kernel-space thread. C++CSP-kernel
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maintains a run queue and a timeout queue. Each CSProcess uses one user-space thread,

and each user-space thread always resides in the same kernel-space thread.

In a multi-core or multiprocessor system, C++CSP2 gives a programmer the ability

to choose how to run CSProcesses: in the same kernel-space thread or in different kernel-

space threads. By default all CSProcesses are run in a new kernel-space thread, however,

process composition structures like RunInThisThread, InParallelOneThread,

and InSequenceOneThread allow the programmer to force a CSProcess to be run

in the same kernel-space thread. Of course, the ability to benefit from multi-core and mul-

tiprocessor systems came with a cost — assembly hacking in Windows and Linux environ-

ments to tailor C++CSP2 versions specifically to each operating system.

6.2.2  Formal Verification

Besides providing useful constructs and assumptions when reasoning about concurrent sys-

tems, CSP has a built-in formal verification model that allows a system designer to formally

verify the correctness of his or her design. Automated tools such as FDR2 and ProBE help

the system designer explore the state space of their designs as well as verify them against

deadlocks, livelocks, and other race hazards. CSP++, JCSP and C++CSP2 differ signifi-

cantly in the way formal design verification is done.

What sets CSP++ apart from JCSP and C++CSP2 is the fact that the system design

can be formally verified before the CSP++ tool is utilized and the corresponding C++ code

is generated, and afterwards, to confirm that the implementation refines the design. What

makes this possible is the fact that CSP++ is a software synthesis tool. A system architect

starts by making a system design in CSP. The design is run through ProBE and FDR2 tools
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until the designer is confident that the system is free of deadlocks, livelocks, etc. The design

is then synthesized using CSP++, and C++ code is generated with synchronizations and

channel communications already in place. user-coded functions may be linked to abstract

CSP events. If user-coded functions do not interfere with process synchronization and com-

munication produced by CSP++, the generated code will correspond to the original CSP

design in that it will be free of deadlocks, livelocks, and other race conditions. This can be

checked by running the execution trace produced by the generated C++ code through FDR2

to see if it refines the original CSP specification.

JCSP’s implementation of channels and Alternative has been formally verified

and the results described in detail in [WM00]. C++CSP2 also refers to this verification

study to prove the correctness of its implementation, as the libraries share the same API and

design. Unfortunately, the fact that the library implemented these constructs correctly does

not prove that a programmer writing a system with JCSP and C++CSP2 will not make mis-

takes setting up channel communication or event synchronization. Consider this example

in C++CSP2 [Bro07b]:

class NumberSwapper : public CSProcess
    {
    private:
        csp::Chanin<int> in;
        csp::Chanout<int> out;
    protected:
        void run()
        {
            int n = 0;
            while (true)
            {
                out << n;
                in >> n;
            } 
        }
    public:
        NumberSwapper(const Chanin<int>& _in,const Chanout<int>& _out)
            :   in(_in),out(_out)
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        }
    };

And a driver program that composes two NumberSwappers in parallel:

One2OneChannel<int> c,d;
    Run(InParallel(
        ( new NumberSwapper( c.writer(), d.reader() ) )
        ( new NumberSwapper( d.writer(), c.reader() ) )
    );

The outcome of this program is a deadlock. Both NumberSwappers are trying to

write to a channel at the same time. Even though the channels they are using are different,

reading from those channels never occurs, as each instance is waiting for the data to be read

from each channel, so channel synchronization never occurs. C++CSP2 provides some

error detection mechanism in the form of DeadlockError exception thrown in the

driver program. The exception is thrown when all CSProcesses are blocked within the

C++CSP2 system, i.e., unresolved synchronization or channel communication. According

to C++CSP2 documentation [Bro07b] the DeadlockError is fatal and unrecoverable.

However, having at least some exception handling does ease the debugging process. It

should be noted that only C++CSP2 provides this type of exception handling; JCSP does

not.

In CSP++ such deadlock situation can only occur if the system designer did not suf-

ficiently check the CSP specification with FDR2 (or if UCFs erroneously interfered with

synchronization already set up by CSP++). Nevertheless, to battle such situations, CSP++

provides a way to detect deadlock situations. When executing a synthesized C++ program,

an optional CSP++ command line flag (“-i”, which stands for “idle”) starts an idler task,

which periodically checks the status of all non-terminated CSP++ processes. If all non-ter-
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minated tasks remain idle not making any progress, the program is terminated and a task

status dump is performed [Gar00].

6.2.3  Networking

JCSP .net [AW] and C++CSP v1 [BW03, Bro07a] have built-in networking solutions in the

sense that channel communication can be set up through sockets across networked comput-

ers. A driver program, which starts the execution, keeps track of IP addresses and ports of

communicating processes. As long as correct channel ends are handled correctly, network

channels do not change overall system behaviour.

CSP++ does not provide any explicit networking support at the moment, but UCFs

are free to utilize socket communication, as demonstrated in the ATM case study [DG05].

6.2.4  General Thoughts

CSP++, JCSP and C++CSP2 are all based on CSP and provide useful concurrency tools and

constructs in popular programming languages, but, in the end, are different projects tar-

geted toward different end users.

CSP++ can be regarded as a higher-level tool when compared to JCSP and

C++CSP2, as it encompasses overall system design. It does require knowledge of CSP, and

thus is more suitable for use by system architects, who will develop an overall system

design and formally verify its correctness. Once the CSP specification is sufficiently veri-

fied and the system “skeleton” is synthesized with CSP++, user-coded functions can be

added to form the body of the developed system. UCFs do not require any knowledge of

CSP and may be coded by ordinary programmers who simply implement algorithms in C++

and link them to the skeleton.
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JCSP and C++CSP2 provide a rich arsenal of programming tools, although, not all

of them adhere to CSP ideas, such as buffered channels, for instance. This is not a bad thing,

but a CSP designer should be aware of this. These two projects have powerful features,

such as networking support, Windows and Linux versions, as well as support for multi-core

and multiprocessor architectures. JCSP and C++CSP2 do not require any CSP knowledge

(although it was extremely useful when trying to understand their API) and may be targeted

at casual programmers who are looking for alternative concurrency models. Unfortunately,

the final design of programs written in JCSP or C++CSP2 cannot be automatically verified,

so a programmer should be extremely careful when setting up channel communication or

synchronization to avoid deadlock, or worse yet, livelock and other race conditions (as

there is no exception detection mechanism for these cases).

Finally, when working with JCSP or C++CSP2 libraries, the programmer is respon-

sible for creating and connecting static objects that mirror concurrent execution before the

modelled system is run, i.e., set up parallel or sequential execution, work out synchroniza-

tion and communication mechanisms, etc. In contrast, objects involving choice are con-

structed and evaluated during run()s, not beforehand. Thus, different JCSP objects

require separate treatment by the programmer, depending on which category they belong

to. This may quickly lead to messy and error-prone programming.
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7Conclusions and Future Work

In this thesis, we presented an updated CSP++ that was enhanced with the Timed CSP oper-

ators and their untimed counterparts. The cspt translator and the object-oriented application

framework of CSP++ were extended to handle the newly-added operators. We demon-

strated the new features of CSP++ by walking through the implementation details and pre-

senting a new VAC case study. Although VAC is not directly verifiable at the moment, we

showed the possibilities of future integration with HORAE. We compared CSP++ with

JCSP and C++CSP2 to confirm that our tool is on-par with other CSP-inspired libraries. In

the following sections we will summarize our results and present possible research direc-

tions for future work.

7.1 Conclusions
Extending CSP++ with Timed CSP operators enabled us to create a more powerful soft-

ware synthesis tool suitable for soft real-time applications. Newly-added operators allowed

us to synthesize a larger subset of the CSP language. More complex formal specifications

can now be constructed and synthesized. We showed that often timing information can be

an integral part of a software system. Now programmers can benefit from the use of time-

outs, interrupts, and delays when designing a system with CSP++. We presented the VAC

case study which combines all the newly added operators within one specification and

shows the expressive power of our tool. 
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The addition of timing did not change CSP++’s integration with the commercial

formal verification tools such as FDR2 and ProBE. On the contrary, in addition to all the

previously available CSPm operators, we extended CSP++ with two more, the untimed

timeout and the untimed interrupt. CSP programmers can remain confident in their formal

specifications, while having more tools to operate with.

Unfortunately, FDR2 and ProBE cannot verify all the operators added to CSP++.

Formal specifications that include timed interrupt, timed timeout, and timed prefix cannot

be verified with these tools. Fortunately, we have found an additional tool capable of rea-

soning about timed specifications. Though HORAE is not complete, we were able to show

that our tools are compatible. Despite minor changes in syntax, CSP++ was able to synthe-

size the correct code for three small case studies provided by the HORAE team: Dining Phi-

losophers, Timed Vending Machine, and Timed Railroad Crossing.

We conducted a review of competing CSP-inspired libraries, JCSP and C++CSP2.

The review enabled us to gain more confidence in our tool, as JCSP and C++CSP2 are two

of the most developed CSP tools. CSP++, using UCFs, is capable of describing a similar

range of problems as the two libraries. We also argued that using our tool allows for fewer

possibilities for errors in an implementation, given a correct specification, as CSP++ takes

advantage of direct formal verification of CSP specifications and automatic code genera-

tion. Nevertheless, the comparison gave us a chance to see what areas of CSP++ need more

work.

7.2 Future Work
A number of interesting research opportunities still remain in CSP++:
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Support for more data types. To make CSP++ a more useful programming tool it

is necessary to add support of additional data types. At present, CSP++ is able to handle

integers in channel communication and parameterized processes. However, integer support

is not sufficient to model complex problems. In light of object-oriented design of CSP++,

it would be of great benefit to support strings and abstract objects. This limitation became

more evident when comparing CSP++ with JCSP and C++CSP2, which are able to take

advantage of object communication.

Addition of more data types would require significant changes to the cspt translator

and the object-oriented framework. Additionally, FDR2 does not support strings or objects.

Therefore, implementation of additional data types would require much research to keep

specifications used for synthesis with CSP++ directly verifiable in FDR2. The HORAE

team did not report on any support beyond integers, making the problem spill over to the

timing world.

New threading library. CSP++ is currently built on top of non-preemptive GNU

Pth threading libraries. There are many advantages to using Pth, however, its slow speed

and unsuitability for embedded systems have raised concerns. These issues were already

addressed in [Dox05]. Also, recent explosion in the number of cores fitted onto one CPU

and their relatively inexpensive availability raises the question of multi-core support in

CSP++. Concerns raised by Pth alongside the inability to take advantage of numerous cores

press the issue of changing CSP++’s reliance on Pth. The big question is whether to attempt

to find another third-party threading library suitable for our needs and try to port CSP++ to

it, or attempt to develop an in-house threading library.

Better UCF integration. Currently, UCFs cannot be used for interprocess synchro-
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nization (this is by design), cannot be timed out or interrupted, and can only participate in

deterministic choice in a limited fashion (due to no callback mechanism if the choice does

not immediately succeed or fail). Further research is needed in order to relax or remove

these restrictions while ensuring that UCFs do not break the formally verified control back-

bone synthesized by CSP++. If Pth continues as the thread library of choice, these problems

may be solved by its ability to issue system calls that only block the current thread, while

allowing early return due to timeout or signals. These features of its API have not been used

by CSP++ to date, but may prove helpful in improving the capabilities of UCFs.
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Appendix A: Timed CSP Case Studies

Dining Philosophers

HORAE syntax:

PHIL1 =  enter1 -> ((pick11 -> pick12 -> eat1 -> put11 -> put12 -> leave1 -> PHIL1) 
[]

       (pick12 -> pick11 -> eat1 -> put12 -> put11 -> leave1 -> PHIL1))

PHIL2 =  enter2 -> ((pick22 -> pick23 -> eat2 -> put22 -> put23 -> leave2 -> PHIL2)
[]

       (pick23 -> pick22 -> eat2 -> put23 -> put22 -> leave2 -> PHIL2))

PHIL3 =  enter3 -> ((pick33 -> pick31 -> eat3 -> put33 -> put31 -> leave3 -> PHIL3)
[]

       (pick31 -> pick33 -> eat3 -> put31 -> put33 -> leave3 -> PHIL3))

CHOP1 = (pick11 -> put11 -> CHOP1) [] (pick31 -> put31 -> CHOP1)

CHOP2 = (pick22 -> put22 -> CHOP1) [] (pick12 -> put12 -> CHOP2)

CHOP3 = (pick33 -> put33 -> CHOP1) [] (pick23 -> put23 -> CHOP3)

PHILS = (PHIL1 |||  PHIL2) ||| PHIL3

CHOPS = (CHOP1 |||  CHOP2) ||| CHOP3

DINING = PHIS 
[|{pick11,pick12,put11, put12, pick22, pick23,put22,put23, pick33, pick31,put31, 
put33}|] 

CHOPS

CSP++ syntax:

...

SYS = PHIS 
[|{pick11,pick12,put11, put12, pick22, pick23,put22,put23, pick33, pick31,put31, 
put33}|]

CHOPS
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Timed Vending Machine

HORAE Syntax:

TVM = insert -> 
((reqrelease -> release ->{3} TVM)

       [](coffee ->{3} dispatchcoffee -> TVM)
       [](tea ->{2} dispatchtea -> TVM))
       |\{10}(relese -> TVM)

TVM2 = insert -> 
((reqrelease -> release ->{3} TVM2)

       [](coffee ->{3} dispatchcoffee -> TVM2)
       [](tea ->{2} dispatchtea -> Skip))
 

TVM3 = insert -> 
((reqrelease -> release ->{3} TVM3)

       [](coffee ->{3} dispatchcoffee -> TVM3)
       [](tea ->{2} dispatchtea -> TVM3))
       |\{10}(relese -> Skip)

User = insert -> coffee -> tea -> Stop

Sys = TVM [|{insert, coffee, tea}|] User

CSP++ Syntax:

TVM = insert -> ((makechoice -> 
((reqrelease -> release -3-> TVM) []  
(coffee -3-> dispatchcoffee -> TVM) []  
(tea -2-> dispatchtea -> TVM)))[10>  
(release -> TVM))

TVM2 = insert -> 
((reqrelease -> release -3-> TVM2)[]
 (coffee -3-> dispatchcoffee -> TVM2)[]
 (tea -2-> dispatchtea -> SKIP)) 
 
TVM3 = insert -> ((makechoice -> 
((reqrelease -> release -3-> TVM3) []  
(coffee -3-> dispatchcoffee -> TVM3) []  
(tea -2-> dispatchtea -> TVM3)))[10>  
(release -> SKIP))

--USER = insert -> SKIP
--USER = insert -> makechoice -> coffee -> SKIP 
--USER = insert -> makechoice -> tea -> SKIP
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--USER = insert -> makechoice -> reqrelease -> SKIP
--USER = insert -> SKIP
--USER = insert -> coffee -> SKIP
--USER = insert -> tea -> SKIP
--USER = insert -> reqrelease -> SKIP
--SYS = TVM [|{insert, coffee, tea, reqrelease, makechoice}|] USER
--SYS = TVM2 [|{insert, coffee, tea, reqrelease, makechoice}|] USER
SYS = TVM3 [|{insert, coffee, tea, reqrelease, makechoice}|] USER

Timed Railroad Crossing

HORAE Syntax:

Train = trainnear -> nearind ->{300} entercrossing ->{20} leavecrossing -
> outind -> Train

Controller = (nearind ->{1} downcommand -> confirm -> Controller) [] 
(outind ->{1} upcommand -> confirm -> Controller)

Gate =  (downcommand ->{100} down -> confirm -> Gate) [] (upcommand ->{100} 
up -> confirm -> Gate)

Crossing = Controller || Gate

System = Train || Crossing

CSP++ Syntax:

TRAIN = trainnear -> nearind -300-> entercrossing -20->
leavecrossing -> outind -> TRAIN

CONTROLLER = (nearind -1-> downcommand -> confirm -> CONTROLLER)
[] (outind -1-> upcommand -> confirm -> CONTROLLER)

GATE =  (downcommand -100-> down -> confirm -> GATE) [] 
(upcommand -100-> up -> confirm -> GATE)

CROSSING = CONTROLLER [|{|downcommand, upcommand, confirm|}|] GATE

SYS = TRAIN [|{|nearind, outind|}|] CROSSING
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Appendix B: CSP++ Time Units

Currently CSP++ supports milliseconds, seconds, and minutes as specification time units

for synthesis purposes. The time units can be specified by using the pragma key word.

pragma is a part of FDR2 and ProBe syntax used to invoke special commands that are not

part of the CSPm specification per se. Since any pragma that is unrecognized is simply

ignored during the verification process, it appeared to be very useful for our needs. Below

is an example of a simple CSPm specification that uses this pragma:

pragma timeunit m

channel a, b, c

SYS = a -5-> b -2-> c -> SKIP

pragma timeunit supports ms for milliseconds, s for seconds and m for minutes.

Note that the ability of the underlying scheduler to accurately delay small amounts

of milliseconds depends on the timing arrangements in the CPU and operating system.

Without the pragma, time units default to seconds.

Say a given specification calls for minutes as time units. However, during routine

testing of the generated code it may take a long time to step though the whole program. To

solve the problem, CSP++ also supports command line flags, -ms for milliseconds, -s for

seconds, and -m for minutes, that take precedence over the specification time units. For

example, say the above specification was synthesized with CSP++ and the execution code

was contained in file called test. Running ./test -s would cause the program to be
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executed with seconds for time units. Note, that command line flags do not change the spec-

ification permanently, and are simply used to speed up the debugging or routine simulation.

CSP specification and command line time units apply to the whole specification. A

timeout, for example, cannot have different time units than timed prefix in the same spec-

ification. However, if the need for different time units arises, a programmer can use the

smallest time unit as default, while multiplying larger time units accordingly. For example,

if the specification calls for seconds and minutes, consider this:

pragma timeunit s

channel a, b, c, d

P = a -5-> b -> SKIP

Q = c -> SKIP [120> T

T = d -> SKIP

SYS = P ||| Q

Timed prefix in process P will be executed as 5 seconds, however, timed timeout in process

Q will be executed as 120 seconds, which corresponds to 2 minutes.

When cspt would generate C++ code for the above specification, the statement

int timeunit = 1000; 

will be included, which sets the time granularity to 1000 milliseconds or one second. Each

time variable supplied as an argument to timed CSP++ functions will be multiplied by

timeunit to set time units accordingly.
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Appendix C: HORAE supported 
operators

Operator CSP syntax HORAE .tcsp syntax CSP++ syntax

Delay  
a b a->{d} b a -d-> b

Untimed Timeout
Q1 Q2 Not supported Q1 [> Q2

Timed Timeout
Q1  Q2 Q1 |\{d} Q2 Q1 [d> Q2

Interrupt
PΔQ P/\Q Not supporteda

Untimed Event Inter-
rupt Q1 Δ a → Q2 int(Q1, a, Q2) Q1 /\ a -> Q2

Timed Interrupt
Q1 Δd Q2 tint(Q1, d, Q2) Q1 /d\ Q2

Deadlock
STOP STOP STOP

Successful termina-
tion SKIP SKIP SKIP

Sequential Composi-
tion P;Q P;Q P;Q

Interleaving
P ||| Q P | | | Q P | | | Q

Prefixing
a → P a -> P a -> P

External (determinis-
tic) choice P � Q P [] Q P [] Q

Internal (non-deter-
ministic) choice P Q P |~| Q Not supported
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Wait
Wait d WAIT(d) Not supported

Timed Event prefix
a@u a@u Not supported

RUN
RUNA RUN(A) Not supported

CHAOS
CHAOSA CHAOS(A) Not supported

Channel Input
c?m:Tb c?m:T c?m:T

Channel Output
c!v c!v c!v

Recursion
N=Pc N=P N=P

Mutual Recursion
Ni = Pi

d N=P N=P

Event Hiding
P\Ae P\A P\A

Forward Rename
f (P) P[[a <- b]] P[[a <- b]]

Prefix Choice
x:A → P(x) x:A@a -> P(x) Not supported

a. operators designated as “Not Supported” in the rightmost column do not limit CSP++. 
These operators can either be replaced by the combination of others or they may not be use-
ful in software synthesis.
b. T defines the channel type.
c. N is the process name, and P is its body which may consist of named events.
Example: N = a -> b -> N. Process N performs events ‘a’ and ‘b’ in a loop.
d. N and P are process names. Example: ON = turn_off -> OFF; OFF = turn_on -> ON
e. P is the process name and A is the set of events removed from P’s interface and made 
internal to the process.

Operator CSP syntax HORAE .tcsp syntax CSP++ syntax
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Appendix D: VAC CSP Specification 
and User-coded Functions

Timed CSP Specification:

channel forward, backward, left, right, done
channel manual, turn_on, turn_off, pickup
channel aforward, abackward, aleft, aright, adone

channel L_forward, L_backward, L_stop
channel R_forward, R_backward, R_stop
channel F_forward, F_backward, F_turn, F_stop

channel stopping_all_moving_parts, low_battery, going_to_base, good_bye

MOVEMENT_CONTROL = (aforward -> L_forward -> R_forward -> F_forward -1-> 
MOVEMENT_CONTROL) []

(abackward -> L_backward -> R_backward -> F_backward -1-> 
MOVEMENT_CONTROL) []

(aleft -> L_backward -> R_forward -> F_turn -1-> 
MOVEMENT_CONTROL) []

(aright -> L_forward -> R_backward -> F_turn  -1-> 
MOVEMENT_CONTROL) []

(astop -> L_stop -> R_stop -> F_stop -> MOVEMENT_CONTROL)[]
(adone -1-> SKIP) 

REMOTE_CONTROL = 
(forward -> L_forward -> R_forward -> F_forward -1-> REMOTE_CONTROL)

[]
(backward -> L_backward -> R_backward -> F_backward -1-> REMOTE_CONTROL)

[]
(left   -> L_backward -> R_forward -> F_turn  -1-> REMOTE_CONTROL) 

[]
(right  -> L_forward -> R_backward -> F_turn  -1-> REMOTE_CONTROL) 

[]
(done  -1-> SKIP)

CLEANING_MECHANISM = (adone -1-> SKIP) [> 
((dust -> clean -1-> CLEANING_MECHANISM) [> 
(idle -1-> CLEANING_MECHANISM))
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AUTOMATIC_MODE  = ENVIRONMENT 
[|{|aforward, abackward, aleft, aright, adone, astop, dust|}|]

LOGIC

LOGIC = MOVEMENT_CONTROL [|{|adone|}|] CLEANING_MECHANISM

EMERGENCY_STOP = stopping_all_moving_parts -> CONTINUE
CONTINUE = (putdown -> SKIP) [> SHUTOFF
SHUTOFF = good_bye -> STOP

ROBOT(0) = turn_on -> ROBOT(1)

ROBOT(1) = RUNNING /20\ low_battery -> SHUTOFF
RUNNING = WHICHOPMODE /\ pickup -> EMERGENCY_STOP
WHICHOPMODE = (manual -> REMOTE_CONTROL) [> ((turn_off -> ROBOT(0)) [7> 
AUTOMATIC_MODE)

-------------------ENVIRONMENTAL MODEL---------------------------
ENVIRONMENT = ROOM ||| DIRT

ROOM = aforward -1-> aleft -1-> aforward -1-> aright -1-> abackward -1-> 
adone -> SKIP

DIRT = dust -1-> dust -2-> SKIP

--ROOM = aforward -1-> aleft -1-> aforward -1-> aright -1-> abackward -1-
> ROOM 
--DIRT = dust -1-> DIRT

USER = turn_on -10-> pickup -> putdown -> SKIP
--USER = turn_on -> pickup -> SKIP
--USER = turn_on -> manual -> SKIP
--USER = turn_on -> manual -> forward -> done -> SKIP
--USER = turn_on -> manual -> forward -1-> left -> right -1-> pickup -> 
SKIP
--USER = SKIP
--USER = turn_on -> turn_off -> SKIP
--USER = turn_on -> SKIP

SYS = ROBOT(0) 
[|{|turn_on, turn_off, manual, autom, forward, backward, left, right, 
done, pickup, putdown|}|] 

USER
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ucfs.cc

#include "Lit.h"
#include "Action.h"

using namespace ucsp;

void turn_on_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- VAC is powered on -- \n";
}

void turn_off_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- VAC is powered off -- \n";
}

void pickup_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- SENSORS: VAC has been picked up -- \n";
}

void put_down_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- SENSORS: VAC has been put down -- \n";
}

void low_battery_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- SENSORS: VAC's battery is low -- \n";
}

void clean_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- Cleanind drum on. Air sucktion on. Cleaning... -- \n";
}

void stopping_all_moving_parts_atomic( ActionType t, ActionRef* a, Var* 
v, Lit* l )
{

cout << "\n-- EMERGENCY STOP! Stopping wheels! Stopping cleaning 
drum! Stopping air sucktion! -- \n";
}

void L_forward_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- LEFT wheel is rotating forward -- \n";
}

void L_backward_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{
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cout << "\n-- LEFT wheel is rotating backward -- \n";
}

void L_stop_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- LEFT wheel is stopped -- \n";
}

void R_forward_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- RIGHT wheel is rotating forward -- \n";
}

void R_backward_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- RIGHT wheel is rotating backward -- \n";
}

void R_stop_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- RIGHT wheel is stopped -- \n";
}

void F_forward_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- FRONT wheel is rotating forward -- \n";
}

void F_backward_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- FRONT wheel is rotating backward -- \n";
}

void F_stop_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- FRONT wheel is stopped -- \n";
}

void F_turn_atomic( ActionType t, ActionRef* a, Var* v, Lit* l )
{

cout << "\n-- turning the FRONT wheel -- \n";
}
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