Muscle sympathetic activity in resting and exercising humans with and without heart failure

Catherine F. Notarius, Philip J. Millar, and John S. Floras

Abstract: The sympathetic nervous system is critical for coordinating the cardiovascular response to various types of physical exercise. In a number of disease states, including human heart failure with reduced ejection fraction (HFrEF), this regulation can be disturbed and adversely affect outcome. The purpose of this review is to describe sympathetic activity at rest and during exercise in both healthy humans and those with HFrEF and outline factors, which influence these responses. We focus predominately on studies that report direct measurements of efferent sympathetic nerve traffic to skeletal muscle (muscle sympathetic nerve activity; MSNA) using intraneural microneurographic recordings. Differences in MSNA discharge between subjects with and without HFrEF both at rest and during exercise and the influence of exercise training on the sympathetic response to exercise will be discussed. In contrast to healthy controls, MSNA increases during mild to moderate dynamic exercise in the presence of HFrEF. This increase may contribute to the exercise intolerance characteristic of HFrEF by limiting muscle blood flow and may be attenuated by exercise training. Future investigations are needed to clarify the neural afferent mechanisms that contribute to efferent sympathetic activation at rest and during exercise in HFrEF.

Key words: exercise, heart failure, HFrEF, microneurography, muscle sympathetic nerve activity, exercise training, peak oxygen uptake.

Introduction

The sympathetic nervous system plays an essential role in regulating and coordinating the reflex cardiovascular response to exercise in both health and disease (Mitchell 1990). A variety of methods are used to measure sympathetic nervous system activation in humans. These range from noninvasive techniques, such as spectral analysis of heart rate variability (Task Force of the European Society of Cardiology and North American Society of Pacing and Electrophysiology 1996; Notarius et al. 1999b), to quantification of plasma norepinephrine (NE) (Jensen et al. 1994), total NE spillover (Esler et al. 1988), or spillover across specific organs such as the heart, kidney, and skeletal muscle (Kingwell et al. 1995; DiNenno et al. 1999; Grassi and Esler 1999). By contrast, with microneurography, efferent sympathetic nervous discharge can be recorded directly from the innervation of blood vessels in skeletal muscle or skin (Valbo et al. 1979). Muscle sympathetic nerve activity (MSNA) is pulse synchronous and expressed as either number of bursts per minute (frequency) or multi-unit number of bursts per 100 heart beats (incidence) or total MSNA, which integrates burst amplitude (normalized burst area) (Valbo et al. 2004). Measurements of MSNA offer a more sensitive method of detecting and quantifying sudden changes in sympathetic nervous outflow than do plasma NE concentrations (Floras et al. 1986; Grassi et al. 2008). Further, unlike the determination of NE spillover, changes in MSNA appear immediately rather than after a lag time of minutes. Simultaneously acquired sympathetic nerve recordings to different muscle groups are congruent both at rest and when elevated in response to the application of lower body negative pressure, implying that a recording
from 1 location represents sympathetic outflow to muscle in general (Rea and Wallin 1989). Because MSNA represents the efferent limb of the skeletal muscle reflex arc, it is of particular interest to those investigating responses to physical exercise. Importantly, to do so requires a stationary limb.

Sympathovagal, or elevated sympathetic activity at rest, is a hallmark of untreated patients with heart failure because of reduced ejection fraction (HFrEF) (Leimbach et al. 1986). When present, it is associated with an adverse prognosis (Barretto et al. 2009). Abnormal sympathetic control may also contribute to the exercise intolerance observed in HFrEF. Our group was the first to report a relationship between the extent to which MSNA is increased in HFrEF patients and their level of exercise intolerance, independent of left ventricular ejection fraction (LVEF) (Notarius et al. 1999a, 2014).

In this paper we will focus on the response of efferent muscle sympathetic nerve traffic to static and dynamic exercise in healthy subjects and patients with HFrEF. To frame this discussion we first will summarize known differences in resting MSNA between these 2 groups. Second, we will discuss sympathetic overactivity at rest in HFrEF and how it impacts exercise tolerance. Third, we will review the efferent sympathetic response to acute static and dynamic exercise in HFrEF and identify possible key mechanisms. In both healthy control and HFrEF cohorts, we will briefly evaluate the effect of exercise training on sympathetic activity. Finally, we will identify potential future research directions.

Sympathetic activity in healthy subjects

Rest

Age and sex are 2 major influences on resting sympathetic nerve activity in healthy subjects (Ng et al. 1993). Muscle sympathetic firing rates are generally low in young healthy adults (Floras and Hara 1993). Across all ages, MSNA is higher in men than women (Seals and Esler 2000). Interestingly, these age and sex differences in MSNA are not reflected in concurrent measurements of plasma NE concentrations (Seals and Esler 2000), underscoring the limitation of this indirect assay for between-subject comparisons of sympathetic activity.

Sympathetic outflow to arterial resistance vessels is greater in healthy older compared with younger men. This impacts vasoconstrictor tone; older men have higher vascular resistance and lower conductance, which is its inverse (Hart et al. 2009). There is a significant negative correlation between femoral blood flow or vascular conductance (flow/pressure) and MSNA burst frequency in men (Dinenno et al. 1999) but not women (Moreau et al. 2003). These observations belie the common assumption that reductions in vascular conductance always reflect sympathoexcitation (Seals and Esler 2000; Hart et al. 2009). We reported a similar dissociation between vascular resistance (pressure/flow) in the forearm and MSNA in middle-aged fit men, but a positive relationship between the 2 variables in similarly aged sedentary men (Notarius et al. 2012). In those experiments MSNA was increased reflexively by applying increasing levels of lower body negative pressure to reduce central venous pressure and unload gradually the arterial baroreceptors.

In addition to age, sex, and fitness, posture and body weight also can affect resting MSNA. MSNA is lower in young healthy subjects in the supine versus upright posture (Ray et al. 1993). This difference was explained by higher central venous pressure, implicating stimulation of cardiopulmonary baroreceptors as the responsible reflex sympathoinhibitory mechanism. Obesity also is associated with a marked sympathetic activation: MSNA of young normotensive obese individuals is approximately double that of their nonobese control counterparts even in the absence of coexisting sleep apnea (Grassi et al. 2014).

Repeat microneurographic recordings in a single healthy individual over time yield generally reproducible values (Valbo et al. 2004). However, even when the influence of these identified factors is accounted for, MSNA at rest can vary considerably between subjects, particularly in women (Hart et al. 2009). At the vascular level, an increased neurogenic stimulus to vasoconstriction may be offset by diminished alpha adrenoceptor responsiveness. For example, Charkoudian et al. (2006) reported that healthy young men and women with higher MSNA at rest had less vasoconstriction in response to both exogenous NE as well as NE release stimulated by intrabrachial tyramine, and concluded that such inter-individual variability in vascular adrenergic responsiveness could offset increased central sympathetic drive so as to maintain normal blood pressure regulation.

Whether this healthy equilibrium between the impact of alterations in resting MSNA and adrenergic responsiveness on vascular resistance is altered with age, posture, body mass, or in conditions such as hypertension and heart failure is an important subject for further research.

Exercise

In healthy subjects, sympathetic activity increases during dynamic exercise to redistribute blood flow to the working muscles and increase oxygen delivery (Mitchell 1990; Hasking et al. 1988). MSNA responses during exercise were first studied using a handgrip model. Sympathetic nerve activity was recorded from the peripheral (fibular) nerve of a stationary leg during either static or dynamic exercise of various intensities.

The muscle metaboreflex is the primary sympathoexcitatory mechanism elicited by static exercise (Mark et al. 1985; Hansen et al. 1994). Its potency is revealed by the post-handgrip ischemia manoeuvre. This traps within the forearm the metabolites released by muscle contraction, prolonging stimulation of type III and IV muscle afferents. This manoeuvre was designed to eliminate any confounding influence of both central volitional effects and the mechanical effect of muscle contraction (muscle mecha-noreflex) on MSNA (Mark et al. 1985). MSNA is increased during the second minute of static handgrip at an intensity of 30% or greater of maximum voluntary contraction (MVC) whereas dynamic handgrip shows no such elevation in MSNA unless flow is diminished by vascular occlusion during exercise (Victor et al. 1987). This is considered analogous to the low flow state evident in HFrEF patients. Thus, sympathetic responses are intensity- and exercise mode-dependent, with the muscle metaboreflex active during both dynamic and static handgrip (Hansen et al. 1994; Mark et al. 1985), and maintained during post-handgrip ischemia (Victor et al. 1987). However, data by others who observed an early increase in MSNA during dynamic handgrip and a prompt return to baseline during postexercise ischemia emphasize an important contribution of the muscle mechanoreflex to the net MSNA response (Batman et al. 1994).

A more recent study by Stickland et al. (2008), involving healthy young subjects, demonstrated that the increase in MSNA in response to dynamic handgrip exercise at 50% MVC could be reduced when the subject was breathing 100% oxygen, whereas there was no effect at rest, suggesting that the arterial chemoreflex contributes importantly to the sympathoexcitatory response to dynamic handgrip (Stickland et al. 2008). In a subsequent study using a different exercise mode, changes in blood flow and conductance with leg exercise during hyperoxia followed a similar time course as the previous reductions in MSNA (Stickland et al. 2011). A leg extension model, engaging a much larger muscle mass than the forearm, was developed to study blood flow responses during 2- or 1-legged exercise. This made it possible to measure MSNA in the contralateral leg during single-leg extension under both dynamic (isotonic) or static (isometric) conditions (Andersen et al. 1985). Using this model, Ray and colleagues found a decrease in MSNA with upright mild-intensity exercise (20, 30, and 40 W), rather than the increase anticipated from previous static and
dynamic handgrip data. This decrease was greatest at the lowest work rate (Ray et al. 1993). Ray et al. also measured MSNA during a 30 W work rate while recording central venous pressure (CVP) and compared supine with upright posture. In the upright posture, resting CVP was lower compared with supine yet increased during exercise because of central translocation of blood from the mechanical pumping effect of rhythmic muscle contractions with exercise. There was a drop in CVP and no change in MSNA with subjects that were in the supine position, but an increase in CVP and a fall in MSNA when they were upright. The latter effect was attributed to stimulation of sympathoinhibitory cardio pulmonary baroreceptors by the former (Ray et al. 1993).

Concurrently, Saito and Mano (1991) demonstrated that the mode of leg exercise affects the MSNA response. They compared 1-legged cycling at up to 30% of peak oxygen uptake (\(V\dot{O}_{2\text{peak}} \)) to 1-legged static leg extension and measured MSNA in the tibial nerve of the contralateral resting leg. They showed a work rate-related decrease in MSNA during mild exercise up to 25 W but not at 50 W, whereas MSNA significantly increased during static leg exercise performed at 20% MVC (Saito and Mano 1991). Subsequent experiments involving MSNA recorded from the median nerve of the arm during bilateral cycling showed a drop in burst frequency at work rates less than 40% of \(V\dot{O}_{2\text{peak}} \) but an increase at rates of 60% and 74% \(V\dot{O}_{2\text{peak}} \) (Saito et al. 1993).

Using the same model, this group (Katayama et al. 2011) and others (Ichinose et al. 2008) confirmed that sympathetic nerve traffic in the median nerve of the arm is diminished at both absolute and relative mild to moderate work rates, but increased during heavy or exhaustive leg cycling (Ichinose et al. 2008). An increase in MSNA at 40% of \(V\dot{O}_{2\text{peak}} \) occurred only when subjects were breathing a hypoxic gas mixture of 12.7% oxygen. These findings may have implications for those HFpEF patients with compromised oxygen delivery during exercise (Esposito et al. 2010). The literature regarding MSNA responses to exercise in healthy subjects is summarized in Table 1.

In sum, MSNA during exercise in healthy subjects varies according to type and intensity of exercise as well as the amount of active muscle mass. In contrast to static exercise, mild to moderate dynamic exercise yields a drop in MSNA with increases above baseline only at intensities exceeding 40% of \(V\dot{O}_{2\text{peak}} \). MSNA responses under specific exercise conditions are based on the net response of the individual afferent reflexes recruited and the involvement of feed-forward central command.

Exercise training

In healthy sedentary subjects, 6 weeks of high-intensity endurance exercise training had no effect on resting MSNA, but the anticipated drop in MSNA burst frequency during moderate-intensity 1-legged cycling became markedly attenuated by the third minute of exercise (Ray 1999). The absence of any change in resting MSNA after endurance training is a consistent finding in the literature (Carter and Ray 2015) and is compatible with cross-sectional data reporting no difference in resting MSNA between trained and untrained young (Seals 1991; Svedenhag et al. 1984), middle-aged, or older healthy subjects (Sheldahl et al. 1994; Notarius et al. 2012). In contrast, elite endurance athletes exhibited an increase in resting MSNA compared with sedentary individuals who were matched for adiposity (Alvarez et al. 2005). This observation highlights the importance of considering the potential confounding influence of body mass when comparing trained and untrained subjects. Others have also showed a decrease in MSNA during both isometric (Somers et al. 1992) and nonfatiguing dynamic handgrip (Sinoway et al. 1996) following unilateral forearm endurance training.

In contrast, the response to resistance training is less consistent. Saito and colleagues found that MSNA actually increased following 4 weeks of maximal handgrip training, although it reverted to baseline after 4 weeks of detraining (Saito et al. 2009). This result is consistent with cross-sectional data showing higher MSNA at rest in bodybuilders compared with sedentary controls (Sinoway et al. 1992). However, others have reported no change at rest either following isometric handgrip training (Ray and Carrasco 2000) or whole-body resistance training (Carter et al. 2003). Also, 4 weeks of submaximal intensity static handgrip training had no effect on the magnitude of increase in MSNA during handgrip (Saito et al. 2009).

Thus, endurance exercise training in healthy subjects lowers MSNA during exercise, but from the limited and discordant data...
activity; V˙O₂peak In the presence of HFrEF, HFrEF, heart failure with reduced ejection fraction; MSNA, muscle sympathetic nerve activity; V˙O₂peak, peak oxygen uptake. Each multifibre MSNA nerve burst is marked.

available it is less certain whether resistance exercise training achieves similar effects.

Sympathetic activity in heart failure

Rest

In many treated heart failure patients with relatively preserved exercise capacity, MSNA when measured at rest is similar to that of age- and sex-matched healthy controls (Notarius et al. 2001). However, the majority of patients with HFrEF have elevated resting sympathetic activity. This is now recognized to be an independent predictor of premature mortality (Barretto et al. 2009; Cohn et al. 1984; Kaye et al. 1995; Petersson et al. 2005). The magnitude and time course of elevated sympathetic outflow across all vascular beds is not uniform but organ-specific (Rundqvist et al. 1997). An initial elevation in cardiac NE spillover precedes a later doubling of skeletal muscle, total body, and renal NE spillover (Rundqvist et al. 1997). The relative increase in cardiac NE spillover exceeds that of renal NE spillover (Hasking et al. 1986). Importantly, the magnitude of such sympathoexcitation is independent of the degree of LVEF impairment (Ferguson et al. 1990; Notarius et al. 1999a, 2001).

Most HFrEF patients have exercise intolerance, as evidenced by reduced predicted VO₂peak relative to healthy controls (Pina et al. 2003). Lower VO₂peak also has been identified as an important marker of poor outcome (Stelken et al. 1996) independent of the extent of left ventricular dysfunction (Franciosa et al. 1981; Cohn et al. 1993). Figure 1 depicts representative MSNA recordings from 2 healthy subjects, 1 older (upper left panel) and 2 HFrEF patients of similar age but with different exercise capacities. This figure demonstrates the variability in resting MSNA observed normally in healthy subjects (most likely age-related), as well as the relationship between exercise capacity and resting MSNA in HFrEF subjects. MSNA burst frequency is elevated markedly in the HFrEF patient with poor exercise tolerance, compared with the relatively normal values present in the HFrEF patient with preserved exercise capacity (Fig. 1, right panels).

Our group was the first to report a link between VO₂peak and resting MSNA in HFrEF (in contrast to age-matched healthy control subjects), raising the hypothesis of a peripheral neurogenic limit to exercise tolerance in this patient population (Notarius et al. 1999a). We subsequently demonstrated that the inverse relationship in HFrEF patients was specific to skeletal muscle in that VO₂peak and cardiac NE spillover showed no such association (Notarius et al. 2002). Patients with an ischemic cardiomyopathy (ICM) etiology have a significantly higher mean MSNA burst frequency compared with those of nonischemic or dilated etiology; although both are higher than mean values for age-matched healthy subjects (Notarius et al. 2007). This could reflect, consistent with our previous work (Notarius et al. 2001), the generally lower values for VO₂peak of ICM patients (Notarius et al. 2007), or represent a reflex sympathoexcitatory response to chronic myocardial ischemia (Floras 2009).

To explain the elevated sympathetic activity present in most HFrEF patients, we and others have proposed several reflex mechanisms involving either augmentation of existing sympathoexcitatory and/or reduced sympathoinhibitory influences (Azevedo et al. 2000; Dibner-Dunlap et al. 1996; Floras 2001; Floras and Ponikowski 2015; Millar et al. 2015; Notarius et al. 2001; Schultz et al. 2007). The assumption of a heart failure-induced impairment in arterial baroreflex inhibition was disproved by our discovery of muscle sympathetic alternans, which demonstrated that the arterial baroreceptor control of MSNA was preserved in HFrEF patients (Ando et al. 1997b; Floras 2001). By contrast there is strong evidence for impaired cardiopulmonary baroreflex inhibitory modulation of MSNA (Dibner-Dunlap et al. 1996). However, in some individuals paradoxical vasodilation can occur when the cardiopulmonary baroreceptors are unloaded experimentally by lower body negative pressure (Notarius et al. 2009). Our group has previously identified a cardiac-specific sympathoexcitatory reflex related to increased filling pressure in HFrEF (Azevedo et al. 2000) and recently published evidence supporting an augmented excitatory cardiopulmonary–MSNA reflex response to increased
preload, which incorporates 2 distinct single-unit populations with differing firing properties (Millar et al. 2013, 2015). There is also increasing evidence to support overactivity of the muscle metaboreflex (Notarius and Floras 2007; Notarius et al. 2001; Piepoli and Coats 2007) and arterial chemoreflex (Despas et al. 2012) at rest in patients with HFrEF compared with age-matched controls. Coexisting sleep apnea in HFrEF patients also augments their daytime MSNA, independent of HFrEF etiology (Spaak et al. 2005), but can be inhibited when such patients are treated with nocturnal continuous positive airway pressure (Usui et al. 2005). This supports the concept, recently reviewed by Abboud and Kumar (2014), that persistent daytime elevation of MSNA can result from neuromodulatory changes in chronic chemoreceptor sensitivity and in central neural modulation of sympathetic outflow, and that such changes are reversible if obstructive sleep apnea is abolished.

In summary, elevated MSNA at rest in HFrEF patients is related to the extent of exercise intolerance and is independent of the severity of left ventricular dysfunction. Each of ischemic etiology, elevated cardiac preload, and the presence of sleep apnea can contribute to increases in resting MSNA in this population. This elevated sympathetic activity at rest reflects the integration of central neural changes, impaired sympathoinhibitory reflex afferents in response to reduced stroke volume, and excessive sympathoexcitatory compensatory reflex output to the brainstem. The relative importance of each factor can vary from patient to patient and remains an active area of investigation.

Exercise

The most commonly applied exercise paradigm to study MSNA in HFrEF has been handgrip. MSNA is elevated during static handgrip (usually performed at 30% MVC) compared with age-matched controls (Sterns et al. 1991; Murai et al. 2009). This increase has been attributed in part to the increased probability of multiple firing of single sympathetic fibers (Murai et al. 2009).

The functional consequences of augmented sympathetic responses during exercise include exaggerated peripheral neurogenic vasoconstriction (Crisafulli et al. 2007) and impaired vasodilatation (Alves et al. 2007). We hypothesize that in such afterload sensitive patients, exaggerated vasoconstriction in response to muscle metaboreflex activation during dynamic handgrip exercise supports blood pressure but limits muscle perfusion and thus exercise tolerance. This contrasts with healthy subjects who rely more on increases in cardiac output to elevate blood pressure during exercise. In a dog model of heart failure, metaboreflex activation resulted in a vasoconstriction-mediated rather than a flow-mediated increase in blood pressure (Hammond et al. 2000). Alves et al. (2007) reported that in contrast to healthy control subjects, patients with advanced heart failure exhibited a blunted reflex vasodilatory response to static handgrip. This was reversed by an intra-arterial infusion of the alpha blocker, phentolamine. Similarly, phentolamine infusion increased muscle vasodilatation during mental stress in HFrEF patients (Santos et al. 2005) and reversed paradoxical vasoconstriction observed during hypoxia (Alves et al. 2012). Thus, sympathoexcitation can functionally exacerbate vasoconstriction and impair vasodilatation in HFrEF.

We have recorded MSNA during 2 min of both static and mild, moderate, and intense levels of dynamic handgrip in HFrEF and age-matched control subjects. To isolate the muscle metaboreflex, handgrip was followed immediately by postexercise circulatory arrest. MSNA increased in response to handgrip exercise in HFrEF compared with age-matched healthy subjects. The magnitude of this increase differed with exercise mode, intensity, and the patients’ baseline fitness level (Notarius et al. 2001). HFrEF patients had an increase in MSNA at a lower threshold than healthy controls during dynamic and static handgrip. This difference was maintained during post-handgrip ischemia but following only static handgrip and the highest intensity of dynamic handgrip (50% MVC). These findings support a role for the muscle metaboreflex in eliciting sympathoexcitation at these levels of exercise (Notarius et al. 2001) and are consistent with previous observations, made both during and following exhaustive dynamic handgrip at 25% MVC (Silber et al. 1998). Others have reported that MSNA returns to baseline during post-handgrip ischemia after static handgrip (Sterns et al. 1991) and lower intensity dynamic handgrip (20% MVC), but is increased during passive exercise, and concluded that it is rather muscle mechanoreflex activation that augments MSNA in HFrEF during low-intensity exercise (Middlekauff et al. 2004; Middlekauff and Sinoway 2007). Importantly, our protocol did not elicit an immediate exercise-induced increase in MSNA. MSNA rose only during the second minute of handgrip, consistent with a primary role for the metaboreflex, particularly during dynamic handgrip in HFrEF (Notarius et al. 2001; Notarius and Floras 2007). Differences between studies with respect to subjects’ posture during exercise or their comorbidities, especially diabetes, could explain these discordant results.

Although it is a pragmatic model, handgrip is not representative of the bulk of real-life day to day physical activity, which usually engages much larger muscle mass. However, at present there are limited data available concerning the effects of leg exercise on sympathetic activity in HFrEF. Total body NE spillover is elevated in HFrEF compared with control subjects during both bilateral cycling and 1-legged dynamic leg extension exercise modes (Eaposito et al. 2010). Infusion of clonidine, a centrally and peripherally acting alpha-2 receptor agonist, lowers cardiac NE and plasma NE concentrations and increases leg blood flow during dynamic exercise in HFrEF (Azevedo et al. 1999; Lang et al. 1997). However, in a comparative study, patients with HFrEF experienced less sympathoinhibition with clonidine compared with healthy controls, suggesting decreased central alpha-2 adrenergic sensitivity in HFrEF (Lang et al. 1997). This may result in less prejunctional alpha-2-mediated inhibition of NE release both centrally and at the peripheral sympathetic nerve terminal, providing an additional mechanism for greater neurogenic vasoconstriction in HFrEF. There may also be upregulation of arterial alpha-1 adrenoceptors with increased vasoconstrictor sensitivity, as has been demonstrated in a paced canine model of HFrEF (Forster et al. 1989; Forster and Armstrong 1990). However, in human heart failure the transduction of neural input into vascular responses, quantified as the gain of the cross-spectral transfer function between oscillations in MSNA and oscillations in blood pressure, is attenuated relative to healthy-matched control subjects (Ando et al. 1997).

These altered patterns of sympathetic response in HFrEF during submaximal dynamic handgrip exercise and peak leg exercise led us to measure MSNA in 1 leg in HFrEF patients while the contralateral leg performed mild- and moderate-intensity dynamic cycling exercise. Similar to what we had observed previously at rest, we found an inverse relationship between MSNA burst frequency during moderate submaximal leg cycling exercise and VO2peak in subjects with and without HFrEF, independent of resting MSNA (Notarius et al. 2014) (Fig. 2). This link between MSNA during dynamic exercise and peak exercise capacity gives further support to the concept of a neurogenic limit to exercise in HFrEF. This relationship was not observed by others during static handgrip exercise (Kuniyoshi et al. 2014). Further, we hypothesized that in contrast to the drop in MSNA observed previously in young healthy control subjects during dynamic 1-legged cycling (Ray et al. 1993), MSNA would increase in patients with HFrEF. Indeed, we found divergent MSNA responses to both 2 min of mild (unloaded) and moderate (50% of VO2peak) 1-legged cycling, in HFrEF compared with age-matched control subjects. Despite having similar heart rate responses MSNA burst frequency increased during both intensities of exercise in HFrEF patients but fell in control subjects (Notarius et al. 2015) (Fig. 3). These recent results provided the first direct evidence of increased sympathetic outflow to the calf muscle during dynamic leg exercise in HFrEF and were linked to reduced exercise capacity.
The current literature regarding MSNA responses to exercise in HFrEF cohorts is summarized in Table 2. In sum, MSNA during hand-grip exercise in HFrEF is activated by a lower intensity threshold compared with age-matched control subjects, whereas the exercise-induced response to mild and moderate dynamic leg cycling is qualitatively different from healthy controls. The functional consequence of such sympathoexcitation is likely peripheral vasoconstriction, which could directly impact exercise tolerance by limiting skeletal muscle blood flow in HFrEF. The precise mechanism for the divergent MSNA responses to dynamic leg exercise requires further investigation but is likely to involve recruitment of sympathoexcitatory reflexes (muscle metabo- and mechano-, cardiopulmonary baro- and arterial chemoreceptor reflexes).

Exercise training

Neural adaptations following a single bout of exercise might anticipate the response to exercise training (Floras et al. 1989). Almost 20 years ago, our group compared MSNA after moderate intensity treadmill exercise in young HFrEF patients with dilated cardiomyopathy to that of age-matched controls. Despite marked peripheral vasodilation postexercise, we found no reflex increase in MSNA in either group, suggesting acute arterial baroreceptor reflex resetting. Further, stroke volume and systolic blood pressure were higher postexercise in HFrEF patients (consistent with the failing ventricle’s response to afterload reduction) but not in controls. These findings suggested that by lowering peripheral resistance and increasing stroke volume, exercise training might be an important nonpharmacological therapy for HFrEF patients (Hara and Floras 1996).

The specific effect of exercise training on resting and exercise MSNA in HFrEF patients has received limited attention. In a series of studies, 4 months of exercise training (25–40 min of cycling exercise plus warm up and cool down, 3 times per week at a heart rate of 10% less than anaerobic threshold) in patients with HFrEF normalized resting MSNA and reduced forearm vascular resistance (Roveda et al. 2003; Fraga et al. 2007). This response was independent of both age (Antunes-Correa et al. 2012) and sex (Antunes-Correa et al. 2010). However, only 1 study by Soares-Miranda et al., also from this group, recorded MSNA during exercise (Soares-Miranda et al. 2011). They compared MSNA and forearm vascular resistance responses during static handgrip in age-matched controls and 2 HFrEF groups, 1 untrained and the other before and after 4 months of dynamic exercise training. Elevated MSNA during...
static handgrip in the untrained HFrEF group was normalized by exercise training. The authors attributed this drop to the reduction in baseline MSNA. Such a reduction has important implications for improving outcomes in this patient population. However, whether this training response occurs during dynamic leg exercise in HFrEF, which is a more clinically relevant intervention, is unknown. This remains a fertile area for investigation.

Future directions

Evidence of elevated MSNA, both at rest and during dynamic leg exercise in HFrEF, in contrast to healthy control subjects, now sets the stage for future studies to elucidate the mechanisms responsible for such sympathoexcitation. Diminished sympathoinhibitory mechanisms, such as the cardiopulmonary baroreflex and enhanced excitatory reflexes such as the muscle metaboreflex, mechanoreflex, and arterial chemoreceptor, must be systematically evaluated with respect to their role in the augmented sympathetic response to dynamic leg exercise in HFrEF patients. Whether patients with heart failure with preserved ejection fraction (HFpEF) also exhibit a similar MSNA response during this type of exercise is also an open question. The functional significance of sympathoexcitation during dynamic leg exercise on blood flow in HFrEF and the relationship between changes in MSNA and VO2peak and the effects of exercise training on related mechanisms remain to be established. In healthy men and women the independent effect of aging on the MSNA response during dynamic leg cycling has yet to be addressed definitively.

Conclusions

In summary, sympathetic activity at rest, evaluated directly by microneurography, varies widely between young and older healthy subjects and HFrEF patients. MSNA responses to exercise are a function of exercise type, intensity, and posture. In the HFrEF population, baseline fitness level, etiology of HFrEF, and presence of sleep apnea also influence sympathetic nerve firing rates. The inverse relationship between exercise capacity and changes in MSNA during cycling in middle-aged subjects with and without HFrEF supports a potential role for exercise training in reducing sympathoexcitation in those at most risk. The contributions of altered sympathoinhibitory (cardiopulmonary baroreflex) or exaggerated sympathoexcitatory (muscle metaboreflex and mechanoreflex, arterial chemoreflex, cardiopulmonary baroreflex) reflexes during exercise in human HFrEF remain to be elucidated. This represents an important avenue for future research to identify more effective targeted exercise interventions and therapies.

Conflict of interest statement

The authors declare that there are no perceived conflicts of interest.

Acknowledgements

The studies reviewed were supported by Operating Grant NA6298 from the Heart and Stroke Foundation of Canada. Dr. Millar was the recipient of a Heart and Stroke Foundation of Canada Fellowship and a Canadian Institutes of Health Research Post-Doctoral Fellowship. Dr. Floras holds the Canada Research Chair in Integrative Cardiovascular Biology.

References

