Potential Net Benefits of Adopting Bt Cotton in Pakistan

By
Hina Nazli, Rakhal Sarker, Karl Meilke, and David Orden

Presentation at the Canadian Agricultural Economics Society’s 2011 - CAES-WAEA Joint Annual Meeting, Banff, Alberta
June 29-July 1, 2011
Background

• The cotton crop is highly susceptible to several pests, insects and mites during the entire growing season.

• Evidence indicates that Bt cotton reduces pesticide expenditure, improves yield

• Bt technology is IPR protected, commercial adoption is conditional on a per acre fee (technology fee) paid to the owners of the gene – high seed price

• Among the top four cotton producers in the world, Pakistan is the only country which is yet to commercially adopt Bt cotton.

• The cultivation of Bt cotton, although unapproved and unregulated, increased rapidly after 2005 in Pakistan (PARC, 2008)
Background

• The government of Pakistan has been negotiating with Monsanto since May 2008 to allow the commercial production and distribution of the latest GM cotton seed in the regulated market.

• These negotiations have remained inconclusive due to a disagreement over the size of the technology fee.

• The government of Pakistan argues that the technology fee demanded by Monsanto is too high and that it will transfer the entire benefit of this technology to the innovator and not to cotton growers of Pakistan.
Research Gap and Objectives

• Strong perception that buying Bt technology by paying technology fee will not benefit farmers (GoPunjab, 2009)
 – Lack of empirical research on estimates of the potential benefits and expected costs of adopting Bt cotton

• Research question
 – What might be the size and distribution of potential benefits among farmers, cotton consumers, seed companies, and technology innovators?

• Objectives
 – Measure the potential welfare implications of commercial adoption of Bt cotton among different stakeholders
Analytical Framework

• Economic surplus model – perfectly competitive input market

• IPR protection – violation of the assumption of perfectly competitive input market

• Adjusted Economic Surplus Model (Falck-Zepeda et al., 2000)

\[
\Delta TS_t = \Delta PS_t + \Delta CS_t + MB_t
\]

\[
MB_t = SB_t + IB_t
\]

• Five hypothetical scenarios are developed and simulated

• The component of risk is incorporated by applying probability distributions for selected parameters
Five Hypothetical Scenarios

1. Adoption of unapproved Bt varieties (the current situation)

2. Commercial adoption of varieties developed domestically in Pakistan

3. Commercial adoption of Bt hybrid seed imported from India

4. Commercial adoption of latest Bt technology

5. Irregular adoption of the latest Bt technology
Data: Assumptions and Probability Distributions

<table>
<thead>
<tr>
<th>Variables</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
<th>Scenario 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield gain (%)</td>
<td>Δ(0, 0.10, 0.20)</td>
<td>Δ(0, 0.15, 0.25)</td>
<td>Δ(0, 0.22, 0.35)</td>
<td>Δ(0, 0.30, 0.40)</td>
</tr>
<tr>
<td>Decline in Pest expenditure (%)</td>
<td>Δ(0, 0.07, 0.15)</td>
<td>Δ(0, 0.10, 0.15)</td>
<td>Δ(0, 0.13, 0.30)</td>
<td>Δ(0, 0.20, 0.35)</td>
</tr>
<tr>
<td>Seed premium (US$/hectare)</td>
<td>Δ(5, 10, 20)</td>
<td>Δ(6, 8, 10)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Technology fee</td>
<td>-</td>
<td>-</td>
<td>Δ(33, 40, 53)</td>
<td>Δ(27, 32, 42)</td>
</tr>
<tr>
<td>Adoption rate (%)</td>
<td>Δ(0.50, 0.60, 0.70)</td>
<td>Δ(0.50, 0.65, 0.80)</td>
<td>Δ(0.50, 0.70, 0.90)</td>
<td>Δ(0.50, 0.70, 0.90)</td>
</tr>
<tr>
<td>Supply elasticity</td>
<td>Δ(0.3, 1, 1.5)</td>
<td>Δ(0.3, 1, 1.5)</td>
<td>Δ(0.3, 1, 1.5)</td>
<td>Δ(0.3, 1, 1.5)</td>
</tr>
<tr>
<td>Diffusion path (yrs)</td>
<td>17</td>
<td>21</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>R&D cost (US$)</td>
<td>150,000</td>
<td>200,000</td>
<td>90,000</td>
<td>1,200,000</td>
</tr>
</tbody>
</table>

Area (million hectares) = 3,032,
Cost of production (US$/hectare) = 570.12
Yield of raw cotton (kg/hectare) ~ N(1962, 204)
Price of raw cotton (Rs/40kg) ~ N(1034, 226)
Results: Potential Benefits and Expected Costs:
Mean values of 10,000 iterations – 5 Scenarios

Note: Open economy case
Results: Potential Benefits and Expected Costs: Impact of Technology Fee on Economic Surplus

Country can save 428 million, 19 million/year, but losing 141 million/year
Results: Potential Benefits and Expected Costs:
Low Effectiveness and Benefits and Costs of Bt Cotton
Adoption under Scenario 4

Yield gain=U(0, 0.2)
Pesticide exp decline=U(0, 0.1)
Conclusions

• The commercial adoption of Bt cotton can bring substantial benefits

• Producer surplus is much higher than the benefits to seed companies and innovators

• Fluctuating adoption rate can reduce the economic benefits

• Latest Bt technology is not a viable option if its effectiveness is low
Policy Implications

• Domestically produced Bt cotton varieties should be released in a regularized seed market and latest Bt technology should be acquired

• But consider the effectiveness of Bt technology before making a decision of paying a technology fee
Thank You
Economic Surplus Model

Cost saving at initial quantity =
I_0aQ_1

Economic gains:
$abc = Q_0abQ_1 - Q_0cbQ_1$

$Q_0abQ_1 = \text{increment in consumption}$

$Q_0cbQ_1 = \text{total cost of increment to production}$

$\Delta CS = P_0abP_1$

$\Delta PS = P_1bI_1 - P_0aI_0$

$\Delta TS = I_0abI_1$
Let
\[K = \frac{(P_0 - d)}{P_0} = \frac{k}{P_0} \]

\[\zeta = -\left(\frac{P_1 - P_0}{P_0}\right) = \frac{\theta_z k}{\theta_z + \theta_d} \]
Measuring ΔPS

$\Delta PS = P_1 b l_1 - P_0 a l_0$

$= P_1 b c d + d c l_1 - P_0 a l_0$

dcl$_1 = P_0 a l_0$

$\Delta PS = P_1 b c d = P_1 e c d + e b c$

$P_1 e c d = (P_1 - d)Q_0$

$e b c = 0.5*(P_1 - d)(Q_1 - Q_0)$

$P_1 - d = (P_0 - d) - (P_0 - P_1)$

$= k - P_0 Z$

$= k P_0 - P_0 Z = P_0(K-Z)$

$\Delta PS = P_0(K-Z)Q_0 + 0.5* P_0(K-Z)(Q_1 - Q_0)$

$\Delta PS = P_0Q_0 (K-Z)[1 + 0.5*(Q_1 - Q_0)/Q_0]$

$\Delta PS = P_0Q_0 (K-Z)[1 + 0.5*e_d*Z]$
Change in Economic Surplus

• $\Delta PS = P_0 Q_0 (K-Z)[1 + 0.5* e_d * Z]$
• $\Delta CS = P_0 Q_0 Z[1 + 0.5* e_d * Z]$
• $\Delta TS = K P_0 Q_0 [1 + 0.5* e_d * Z]$

• How to measure K

$$K_t = \left[\frac{E(Y)}{e_t} - \frac{E(C)}{1 + E(Y)}\right]^{\mu A_t(1 - \beta_t)}$$
Adoption Profile

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5
The Probability of Negative Economic Surplus is Zero