An Assessment of Barriers to Trade in Biofuels on Production and Consumption in Canada

Danny G. Le Roy
Amani E. Elobeid
and
K.K. Klein

February 9, 2008
Toronto, Ontario
Consumption Mandate in Canada

• Average renewable content
 • Gasoline: 5% by 2010.
 • Diesel: 2% by 2012.
Implications of Federal Mandate

<table>
<thead>
<tr>
<th></th>
<th>Projected Demand Created by Mandate</th>
<th>Current Production Capacity</th>
<th>Required Increase in Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethanol</td>
<td>3.1 billion litres</td>
<td>1.5 million litres</td>
<td>1.6 billion litres (↑ 107%)</td>
</tr>
<tr>
<td>(by 2010)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biodiesel</td>
<td>600 million litres</td>
<td>322 million litres</td>
<td>278 million litres (↑ 86%)</td>
</tr>
<tr>
<td>(by 2012)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Proposed Biodiesel Projects in Alberta

- Advanced Biodiesel Group, Irricana 20 million litres/yr
- BFUELS Canada Corp, Chin 24-40 million litres/yr
- Biostreet Canada Inc, Vegreville 175 million litres/yr
- CR Fuels, Strathmore 114 million litres/yr
- CR Fuels, Purple Springs 114 million litres/yr
- Canadian Bioenergy, Fort Saskatchewan 200 million litres/yr
- Cansource Biofuels Corp, Mayerthorpe 40 million litres/yr
- Dominion Biodiesel, Calgary 22 million litres/yr
- Alberta Ethanol & Biodiesel GP, Innisfail 378 million litres/yr
- Kyoto Fuels, Lethbridge 33 million litres/yr
- Western Biodiesel Inc., Aldersyde 19 million litres/yr
- Western Biofuels, Lavoy 227 million litres/yr

- TOTAL 1382 million litres/yr
Economic Research Problem - 1

• Producers of biofuel in Canada have a comparative disadvantage in production.
 – Lower opportunity costs in Brazil, Southeast Asia and in tropical regions.
 – Land
 – Labour
 – Capital
 – Feedstock
Tariffs stifle access to cheaper sources of supply.

<table>
<thead>
<tr>
<th>Tariff Item</th>
<th>Description</th>
<th>MFN Tariff</th>
<th>Applicable Preferential Tariffs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2207.20.11.00</td>
<td>Ethyl alcohol, specially denatured</td>
<td>4.92¢/litre</td>
<td>CCCT, LDCT, UST, MT, CT, CRT: free</td>
</tr>
<tr>
<td>2207.20.12.00</td>
<td>Ethyl alcohol, denatured</td>
<td>4.92¢/litre</td>
<td>CCCT, LDCT, UST, MT, CT, CRT: free</td>
</tr>
<tr>
<td>2207.20.29.00</td>
<td>Ethyl alcohol, not denatured</td>
<td>12.28¢/litre</td>
<td>CCCT, LDCT, UST, MT, CT, CRT: free</td>
</tr>
<tr>
<td>3824.90.90.99</td>
<td>Miscellaneous chemical products, other, other, other (biodiesel)</td>
<td>6.5%</td>
<td>CCCT, LDCT, UST, MT, MUST, CIAT, CT, CRT: free GPT: 3%</td>
</tr>
</tbody>
</table>
Economic Research Problem - 3

• What are the consequences of import barriers given the projected increase in demand for biofuels in Canada?
Hypotheses

With effective import barriers:

1. Biofuel prices will be higher in Canada than they would otherwise be.
 • Implications for quantities demanded and supplied

2. World biofuel prices will be lower than they would otherwise be.
 • Implications for quantities demanded and supplied
Overview

• Background
 – WTO Classification of Biofuels
 – Production and Trade in Canada

• Conceptual Framework

• Empirical Model

• Preliminary Results
WTO Classification of Biofuels - 1

- Beyond the scope of the paper, but contextually important:

- World Customs Organization lists biofuels as agricultural or chemical products, not as fuels.
 - No separate HS code for fuel ethanol
 - Specially denatured, denatured, other denatured
 - Undenatured
 - Many other products are listed with biodiesel in HS 3824.90.
 - Difficult to separate out biodiesel.
Issues:

1. WTO rules differ for agricultural and industrial goods
 → different rules for ethanol and biodiesel
 → tariff rates are higher on ethanol than biodiesel

2. Biofuels could be classified as environmental goods in the ongoing negotiations on Environmental Goods and Services
 → subject to faster liberalization

3. The Brazilian government recently proposed that ethanol be reclassified as a fuel.
 → do biofuel subsides provide actionable benefits to producers of agricultural feedstock?
World Production of Ethanol 1975-2007

Source: Steenblick, 2007
Production in Canada

Ethanol

<table>
<thead>
<tr>
<th>Plant Name</th>
<th>City</th>
<th>Province</th>
<th>Feedstock</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permolex</td>
<td>Red Deer</td>
<td>AB</td>
<td>Wheat</td>
<td>40,000,000 L</td>
</tr>
<tr>
<td>Husky Energy</td>
<td>Lloydminster</td>
<td>SK</td>
<td>Wheat</td>
<td>130,000,000 L</td>
</tr>
<tr>
<td>Terra Grain Fuels*</td>
<td>Belle Plaine</td>
<td>SK</td>
<td>Wheat</td>
<td>150,000,000 L</td>
</tr>
<tr>
<td>Poundmaker</td>
<td>Lanigan</td>
<td>SK</td>
<td>Wheat</td>
<td>12,000,000 L</td>
</tr>
<tr>
<td>NorAmera Bioenergy</td>
<td>Weyburn</td>
<td>SK</td>
<td>Wheat</td>
<td>25,000,000 L</td>
</tr>
<tr>
<td>Husky Energy</td>
<td>Minnedosa</td>
<td>MB</td>
<td>Wheat</td>
<td>130,000,000 L</td>
</tr>
<tr>
<td>Canadian Bioenergy</td>
<td>Sturgeon</td>
<td>AB</td>
<td>Canola</td>
<td>225,000,000 L</td>
</tr>
<tr>
<td>Logen</td>
<td>Ottawa</td>
<td>ON</td>
<td>Wheat Straw</td>
<td>2,000,000 L</td>
</tr>
<tr>
<td>IGPC*</td>
<td>Aylmer</td>
<td>ON</td>
<td>Corn</td>
<td>150,000,000 L</td>
</tr>
<tr>
<td>Greenfield Ethanol*</td>
<td>Hensall</td>
<td>ON</td>
<td>Corn</td>
<td>200,000,000 L</td>
</tr>
<tr>
<td>Greenfield Ethanol</td>
<td>Tiverton</td>
<td>ON</td>
<td>Corn</td>
<td>26,000,000 L</td>
</tr>
<tr>
<td>Greenfield Ethanol</td>
<td>Chatham</td>
<td>ON</td>
<td>Corn</td>
<td>150,000,000 L</td>
</tr>
<tr>
<td>Greenfield Ethanol*</td>
<td>Johnstown</td>
<td>ON</td>
<td>Corn</td>
<td>200,000,000 L</td>
</tr>
<tr>
<td>Greenfield Ethanol</td>
<td>Varennes</td>
<td>QC</td>
<td>Corn</td>
<td>120,000,000 L</td>
</tr>
<tr>
<td>Collingwood Ethanol*</td>
<td>Collingwood</td>
<td>ON</td>
<td>Corn</td>
<td>50,000,000 L</td>
</tr>
<tr>
<td>Suncor Energy</td>
<td>St. Clair</td>
<td>ON</td>
<td>Corn</td>
<td>200,000,000 L</td>
</tr>
</tbody>
</table>

Source: Canadian Renewable Fuels Association
Ethanol Imported into Canada (millions of litres)
Canada Fuel Ethanol Imports

<table>
<thead>
<tr>
<th>Major Sources</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brazil</td>
<td>Québec</td>
</tr>
<tr>
<td>United States</td>
<td>Ontario, Saskatchewan, Alberta, Manitoba,</td>
</tr>
<tr>
<td></td>
<td>British Columbia, Québec</td>
</tr>
</tbody>
</table>

Minor sources: Austria, Ireland, Italy, Japan, United Kingdom
Exports of Denatured Ethyl Alcohol, any strength (millions of litres)
Denatured Ethyl Alcohol Exports

<table>
<thead>
<tr>
<th>Major Sources</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ontario</td>
<td>Georgia, Russian Federation, USA, Ukraine, Japan, Iran, Haiti, Greece, Turkey, Israel, India, Germany</td>
</tr>
<tr>
<td>Alberta</td>
<td>USA, South Africa, Iran, France</td>
</tr>
<tr>
<td>Saskatchewan</td>
<td>USA</td>
</tr>
</tbody>
</table>
Conceptual Framework
FAPRI Modeling System

Model Interactions
Trade, Prices, and Physical Flows

- Macroeconomic Variables
- Policy Parameters

International Dairy
International Livestock
International Grains
U.S. Dairy
U.S. Livestock
U.S. Crops
International Oilsseeds
International Sugar
International Rice

Ethanol
Conceptual Framework - 2

• **International ethanol model:**
 – Multi-market partial equilibrium

 – Complete country models for
 • U.S., Brazil, China, India, and EU-25
 • Net trade equations are set up for **Canada**, Japan, South Korea, and ROW.

 – Composed of behavioral equations for production, consumption, ending stocks, and net trade.
Conceptual Framework - 3

- The model solves for world ethanol prices by equating ES and ED across countries.

- In the country models, including **Canada**:
 - Demand for ethanol is derived from a refiner’s cost function for blended gasoline.
 - The proportion of ethanol in blended fuel ↑ as the ethanol price ↓ to capture substitution effects.

- The relationship between quantity supplied of ethanol and price is estimated with consideration to:
 - Feedstock (**corn** and **wheat**)
 - Prices of dry-mill ethanol co-products (**DDGs**)
 - Production subsidies
Conceptual Framework - 4

• The U.S. ethanol model is incorporated within the U.S. crops model
 – includes behavioral equations that determine crop planted acreage, domestic feed, food and industrial uses, trade, and ending stocks.

• The model solves for the set of prices that brings annual supply and demand into balance in all markets.
Conceptual Framework - 5

• Brazilian anhydrous ethanol price as the world ethanol price,
 – Assume Brazil is the major exporter of ethanol.

• Domestic prices for ethanol in each country is linked to world price through exchange rates and other price policy wedges.
Empirical Model – 1

• Calibrated on 2006 data, generates a 10-year baseline to 2016.

• Current policies maintained
 – Tax credits
 • US: ethanol $0.135/litre; biodiesel $0.264/litre
 – Tariffs
 • US: ethanol tariff of $0.143/litre
Empirical Model – 2

• Data for ethanol supply and utilization:

• Macroeconomic data:
 – International Monetary Fund and Global Insight.

• Canadian data:
 – Agriculture Canada, Statistics Canada, USDA’s Foreign Agricultural Service Attaché Reports.
Empirical Model - 3

• **Two scenarios:**

 1. Impact of an increase in Canadian ethanol demand to 10% of domestic liquid fuel consumption by 2011 (i.e., doubling the present mandate), **with a trade response.**

 2. Impact of an increase in Canadian ethanol demand to 10% of domestic liquid fuel consumption by 2011 (i.e., doubling the present mandate), **without a trade response.**
Preliminary Results - 1

Share of Ethanol Fuel Consumption

Ratio

Baseline Scenario
Impact on World Ethanol Price - Trade Response Scenario
Preliminary Results - 2

Impact on Canadian Ethanol Market by 2016

Trade Response Scenario

<table>
<thead>
<tr>
<th></th>
<th>Production</th>
<th>Consumption</th>
<th>Net Imports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>450</td>
<td>600</td>
<td>200</td>
</tr>
<tr>
<td>Scenario 1</td>
<td>500</td>
<td>800</td>
<td>200</td>
</tr>
</tbody>
</table>

Legend:
- Blue: Baseline
- Purple: Scenario 1

Units:
- Production, Consumption, Net Imports: Million gallons
Impact on Brazilian Ethanol Market by 2016

Trade Response Scenario

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Scenario 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production</td>
<td>6000</td>
<td>7000</td>
</tr>
<tr>
<td>Consumption</td>
<td>3000 mill</td>
<td>5000</td>
</tr>
<tr>
<td>Net Exports</td>
<td>2000</td>
<td>1000</td>
</tr>
</tbody>
</table>
Impact on Canadian Ethanol Market by 2016

No Trade Response Scenario

<table>
<thead>
<tr>
<th>Million Gallons</th>
<th>Production</th>
<th>Consumption</th>
<th>Net Imports</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>400</td>
<td>600</td>
<td>100</td>
</tr>
<tr>
<td>Scenario 2</td>
<td>800</td>
<td>900</td>
<td>200</td>
</tr>
</tbody>
</table>

Preliminary Results - 4
Concluding Remarks

• Need to improve the mouse trap
 – With trade
 • Ethanol prices in Canada = prices in the US
 • But, prices increase by about US$0.10/gallon
 – This seems large.
 – w/o trade,
 • ethanol prices in Canada NOT solved endogenously.
 • A 10% ethanol blend requirement will be costly and have an important welfare effects.