Are there agglomeration effects in dairy production?: An empirical examination of Ontario’s dairy farms

Getu Hailu and Brady Deaton,
Food, Agricultural & Resource Economics,
University of Guelph

Monday, July 26, 2010 4:00 PM in room: Tower Court A
Agglomeration Defined

- The increase in total factor productivity attributable to one or more of the following:
 - Knowledge spillovers;
 - A local pool of skilled labor;
 - Enhanced supplier linkages
- All of the above are generally expected to be enhanced by the number of firms and their spatial concentration.

of Farms by County (2004-2005)

Source: DFO
Production function

\[y = A \cdot f(x_1, x_2) \]

\(y \) = output
\(x_i \) = inputs
\(A \) = productivity

\(u \) depends on farm and local characteristics

\[A = g(z, e) \]

\(Z \) = farm characteristics
(e.g., farm size)

\(e \) = local characteristics
(e.g., farm density/cluster)
Ontario: Quota Fixes Output For Farm

TIE = BA/OA
TE = OB/OA
AE = OC/OB
EE = OC/OA
Empirical Model

- **Input Distance function (Shephard)- SFA**

\[d^I_i (y, x) = \sup_{\lambda} \{ \lambda : (x / \lambda) \in L(y) \} \]

- \(\lambda \): is the scalar “distance” by which the input vector can be deflated

- proportional input-saving with output held fixed.
Empirical Model

- Input Distance function (Shephard)- SFA

\[
\ln d_i^I = \beta_0 + \sum_{k=1}^{K} \beta_k \ln x_{ki} + \sum_{m=1}^{M} \alpha_m \ln q_{mi} + \nu_i \quad \sum_{k=1}^{K} \beta_k = 1
\]

\[
-\ln x_K = \beta_0 + \sum_{k=1}^{K-1} \beta_k \ln (x_{ki} / x_{Ki}) + \sum_{m=1}^{M} \alpha_m \ln q_{mi} + \nu_i - u_i
\]

\[
u_i \equiv \ln d_i^I \equiv \lambda
\]

\[u_{it} \sim N^+(\mu_{it}, \sigma_{it}^2)\]

\[\mu_{it} = z_{it} \delta\]

\[\sigma_{it}^2 = \exp(z_{it} \gamma)\]
Key Variables defined

- Agglomeration measure (county)
 - The numbers of licensed dairy farms in a county (DFO)
 - Area of class 1 agricultural land (GIS - 1983) in ha.
 - Density = #farms / 100 ha of class 1
Proximity and Endowment

- Proximity to urban areas (GIS - township):
 - Calculated from the centroid of each municipality to the boundary of the nearest urban area
 - Calculated based on 2006 GIS maps.

- Natural endowment (county)
 - % of class 1 soil
Data and Variables

- **Production (ODFAP): 2000-2008**
 - Milk in hectoliters (3.6% butter content)
 - Labor (hours), capital ($), feed ($), energy ($), other inputs ($)
 - Technology: milking system (1/0), feeding system (1/0), breed (1/0)

- **Farm and farmer characteristics**
 - Farm size (number of cows)
 - Education (1/0)
 - Age the operator (year)
 - Location (1/0): six regions
Distribution of Technical Efficiency of Ontario Dairy Farms

Kernel density estimate
Normal density

Kernel = epanechnikov, bandwidth = 0.0321

~70%
Results

\[\text{TIE} = \frac{BA}{OA} \]

Approximately 30%
Proximity to urban centre vs. \(E(u|e) \)
The inefficiency $E(u_i|e)$ and $V(u_i)$ Model

| Variables | $E(u_i|e)$ | $V(u_i)$ |
|---------------------------------|----------------|--------------|
| $\ln[\text{Density (#/100ha)}]$ | -0.031** | 0.205*** |
| Distance (in km) | -0.020*** | -0.045** |
| $\ln[\# \text{ of farms /county}]$ | -0.020 | -0.542*** |
| $\ln[\text{Farm Size (#)}]$ | 0.039 | -0.760*** |
| Education (1/0) | 0.012 | -0.272 |
| Operator’s Age | 0.002* | -0.039*** |
| Farm Age | 0.005*** | -0.022*** |
| Corporation | 0.029 | 0.142 |
| Record keeping | 0.120*** | -0.578* |
| Debt-to-asset ratio | -0.123** | 0.151 |

*** $p < 0.01$; ** $p < 0.05$; * $p < 0.10$
Average Marginal Effects (elasticities)

<table>
<thead>
<tr>
<th>Variables</th>
<th>$\partial E(u_i) / \partial z_i$</th>
<th>$\partial V(u_i) / \partial z_i$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (#/100ha)</td>
<td>-0.019</td>
<td>0.003</td>
</tr>
<tr>
<td>Distance (in km)</td>
<td>-0.017</td>
<td>-0.002</td>
</tr>
</tbody>
</table>
Marginal Effect ($\partial E(u_i) / \partial z_i$) of ln(Density)
<table>
<thead>
<tr>
<th>Variables</th>
<th>Tech. effects</th>
<th>Eff. Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density (#/100ha)</td>
<td>-0.030</td>
<td>-0.019</td>
</tr>
<tr>
<td>Distance (in km)</td>
<td>-0.009</td>
<td>-0.017</td>
</tr>
<tr>
<td>% of Class 1 Soil</td>
<td>-0.002</td>
<td>--</td>
</tr>
</tbody>
</table>
- Measurement of agglomeration variable
- Negative externalities
 - Environmental
 - Animal diseases
- Economic (cost) efficiency estimation
- Total factor productivity (TFP)