An Analysis of the Effect of Milk Compositional Standard On the Profitability of Ontario Dairy Farms

Shashini Ratnasena
Getu Hailu

University of Guelph
Department of Food, Agricultural & Resource Economics
AAEA-CAES-WAEA Joint Annual Meeting 25-27 July 2010, Denver, Colorado
What is the focus?

- Fluid milk at farm level, joint products of Solid non-fat (SNF) and butterfat (BF)
- Initially payments on all milk solids - increased production of SNF
- Structural Surplus of Skimmed Milk Powder
- Solid Non Fat (SNF) : Butterfat (BF) ratio standard & component price change
Structural Surplus of Skimmed Milk Powder produced in Canada from dairy years 1990/91 to 2007/08

- Pricing of milk based on BF content
- First application of Multiple Component Pricing
- Price shift
- Second stage of MCP
- Export limits by WTO
- 1.5% allowance of MSQ

Source: Coyle (2005)
Research Question

Do the SNF:BF ratio regulation and the price shift influence the profitability of Ontario dairy farms?
Key Literature

• Output quality-oriented standards and profitability

 Helfand (1988)
 - Different forms of standards. Standard on pollution per unit of output results decrease profits.

 Hatcher (2007)
 - Ratio standards make a difference to the optimal decision rules derived for a profit-maximizing firm.

 More (2009)
 - Milk quality standard has a range of economic consequences which may affect farm profitability.
Conceptual Framework of Farm Profit Maximization

\[\max \pi = (p_1 - m)y_1 + (p_2 + m)y_2 - w_1x_1 - w_2x_2 \]

\[\text{s.t. } f_2(y_1, x_{12}, x_{22}, z) \leq \bar{y}_2 \]

\[f_1(y_2, x_{11}, x_{21}, z) \leq \theta_R \ \bar{y}_2 \]

where,
\[x_1, x_2 = \text{inputs} \quad w_1, w_2 = \text{input prices} \quad z = \text{farm characteristics} \]
\[p_1, p_2 = \text{protein price, BF price} \quad m = \text{price shift from protein to BF} \]
\[f_2(y_1, x_{12}, x_{22}, z) = \text{BF prod. function} \quad f_1(y_2, x_{11}, x_{12}, z) = \text{protein prod. function} \]
\[\bar{y}_2 = \text{BF production under quota} \quad \theta_R = \text{SNF:BF ratio standard} \]
Effect of SNF:BF ratio standard on profit

\[\frac{\partial \pi^*}{\partial \theta_R} = \begin{cases} \lambda_2 \bar{y}_2 & \text{if } \lambda_2 > 0 \\ 0 & \text{if } \lambda_2 = 0 \end{cases} \]

\[\text{.....(1)} \]

Effect of component price change on profit

\[\frac{\partial \pi^*}{\partial m} = \begin{cases} \bar{y}_2 - y_1 > 0 & \text{if } \bar{y}_2 - y_1 > 0 \\ \bar{y}_2 - y_1 < 0 & \text{if } \bar{y}_2 - y_1 < 0 \end{cases} \]

\[\text{.....(2)} \]
Empirical Framework

Estimation of a regression model to test the effect of SNF: BF ratio standard and the component price change on dairy farm profitability

\[\pi_{it} = \beta_0 + \beta_1 \text{STANDARD}_{it} + \beta_2 \text{PS}_{it} \\
+ \beta_{fc} \text{Farm Characteristics} + \beta_{fo} \text{Farm Operator Characteristics} \\
+ \beta_{tsc} \text{Technology} + \beta_{tr} \text{Trend}_{it} + u_{it} \]

\[\pi = TR - TC \]
Data

- Data sources:
 - Ontario Dairy Farm Accounting Project (ODFAP)
 - Physical, financial and technical data
 - Rotating Panel data: 1996-2008, 60-80 farms per year
 - Dairy Farmers of Ontario, Statistics Canada
<table>
<thead>
<tr>
<th>Description of Variables</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy returns to management ($)</td>
<td>Direct revenue dairy-direct expenses dairy-allocation of indirect and overhead expenses-labour allocation expenditure</td>
</tr>
</tbody>
</table>
| SNF:BF ratio standard | 1= After imposition of the standard (i.e. ≥ 2005)
0= Before imposition of the standard (i.e. <2005) |
| Component price change | 1= After the component price change (i.e. ≥2004)
0= Before the component price change (i.e. <2004) |
Results

Dairy returns to management regression model

Policies

<table>
<thead>
<tr>
<th>Variable</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNF:BF ratio standard</td>
<td>-248 NS</td>
<td>7663 NS</td>
<td>-</td>
</tr>
<tr>
<td>Component price change</td>
<td>21175***</td>
<td>-</td>
<td>21093***</td>
</tr>
</tbody>
</table>

*** Statistically Significant at 1% significance level, NS – Not Significant
SNF:BF ratios of the sample of Ontario dairy farms over the period from 1996 to 2008

Source: ODFAP data, Calculations using SPSS
Actual SNF:BF ratios of the sample of Ontario dairy farms over the period from 2004 to 2008

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><2.15</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>2.15-2.19</td>
<td>7</td>
<td>10</td>
<td>9</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>2.20-2.24</td>
<td>16</td>
<td>11</td>
<td>10</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>2.25-2.29</td>
<td>24</td>
<td>21</td>
<td>23</td>
<td>15</td>
<td>19</td>
</tr>
<tr>
<td>2.30-2.34</td>
<td>19</td>
<td>22</td>
<td>31</td>
<td>39</td>
<td>46</td>
</tr>
<tr>
<td><2.34</td>
<td>69</td>
<td>68</td>
<td>75</td>
<td>78</td>
<td>94</td>
</tr>
<tr>
<td>>2.35</td>
<td>31</td>
<td>32</td>
<td>25</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>2.35-2.5</td>
<td>25</td>
<td>29</td>
<td>23</td>
<td>21</td>
<td>5</td>
</tr>
<tr>
<td>>2.5</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Source: ODFAP data 2004-2008
SNF:BF ratios of the sample of Ontario dairy farms over the period from 1996 to 2008

Source: ODFAP data 1996-2008
Mann-Whitney-Wilcoxon test statistics

P-value = 0.702

Kolmogorov-Smirnov (K-S) test statistics

P-value = 0.014
Conclusions

- SNF: BF ratio standard may not have a significant impact on farm profits.
 - Restrictive vs preventive policy

- Component price shift from protein to butterfat (approx. $3.00), increases profits

- The effectiveness of SNF to BF ratio standard in overcoming the problem of structural surplus of SMP

 “One of the challenges for the future”
 (CDC, 2009)
Acknowledgements
Thank you