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Abstract

This paper studies the long-run effects of government spending and

taxation in an endogenous growth model with finite lived agents. Public

expenditures are classified according to their type: Type I expenditures

enter as inputs into the production function. Type II expenditures enter

as goods into the utility function. Mourmouras and Lee (1999)

demonstrated that when only Type I expenditures are incorporated into

the analysis, the tax rate that maximizes the welfare of the average

agent is invariant to life expectancy. It will be demonstrated that their

result no longer holds when their framework is extended to incorporate

Type II expenditures.
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1 Introduction

The empirical growth literature has found life expectancy to have a

positive and statistically significant impact on economic growth [for instance,

Barro and Sala-i-Martin (1995), Barro (1997) and Bhargava et al. (2001)].

The results of Barro and Sala-i-Martin (1995, pp. 432) suggest that an

increase in life expectancy of 13 years would increase a country’s growth rate

by 1.4 percentage points per year. Barro (1997) has also found life expectancy

to have a positive and statistically significant impact on the investment rate.

Several explanations have been suggested to account for the strong positive

relationships observed between life expectancy and economic performance.

First, life expectancy has been used as a proxy for health status, and better

health has been linked to economic productivity [see Bhargava et al. (2001)

for a review of the micro studies that show the benefits of better health on

productivity]. Second, Kalemli-Ozcan et al. (2000) have examined the role of

increased life expectancy in raising human capital investment during the

process of economic growth. Finally, Blanchard (1985) has demonstrated that

life expectancy affects consumption and savings decisions, and therefore

transitional growth. In the current paper an alternative theory is provided to

help explain the positive effect that life expectancy has on economic

performance. Specifically, it will be demonstrated that when life expectancy is

short, the government will favour high tax/slow growth policies.

This study builds primarily on the theoretical models of Barro (1990),

Mourmouras and Lee (1999) and Blanchard (1985). Barro (1990) developed a
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model in which government services affect the long-run performance of an

economy by entering as an input, along with private capital, into the

production function for final output. Here we can think of the public provision

of infrastructure such as roads, airports, harbors and sewer systems; or public

expenditures on law and order, education and R&D. Barro’s main theoretical

prediction is that increases in government expenditures on infrastructure are

associated with higher long-run growth rates; however, this rise in growth

rates is reversed after a point (the hump-shaped Barro curve), showing that

there is an optimum value for public investment. Mourmouras and Lee (1999)

extended Barro’s results by relaxing his assumption that agents have infinite

lifetimes. More specifically, Mourmouras and Lee combined the Barro (1990)

endogenous growth model with the Blanchard (1985) overlapping generations

model. Like Barro, government spending enters as an input into their

production function; and like Blanchard, their model is populated by

consumers with uncertain lifetimes. Within this framework Mourmouras and

Lee demonstrated that the income tax rate that maximizes social welfare and

economic growth is invariant to the life expectancy of the agents in the

economy.

The current paper contributes to the literature that links government

activities to growth by demonstrating that the Mourmouras and Lee result,

pertaining to optimal taxation, is sensitive to their assumption that

government tax revenue is used only to finance public infrastructure. An

alternative assumption, and one that is more realistic, is that government
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revenue may also be used to finance services that enter as a good directly into

the utility function. Here we can think of the public provision of social

programs, health care, museums, art galleries and parks. It will be

demonstrated that when households receive utility from government services

directly, the tax and expenditure policy that maximizes welfare depends on life

expectancy, and differs from the policy that maximizes economic growth. In

the model, when life expectancy is short, the government is less forward

looking, in the sense that the optimal policy leads to slow growth.

The literature that links government activity to economic growth extends

well beyond the few papers mentioned above. A description of some of the

more relevant papers will be provided in the remainder of this section. For

example, Rebelo (1991) studied the effects of government taxation on the

growth process using an infinite horizon endogenous growth model. However,

in his model he assumed that government spending is completely wasteful;

that is, it enters neither the utility function nor the production function.

Reinhart (1999) extended Rebelo’s analysis by assuming that agents have

finite lifetimes; however, like Rebelo he assumed no role for government

spending. The idea that part of government spending is utility enhancing and

part is productivity enhancing within an endogenous growth framework is by

no means new. Barro (1990), Turnovsky and Fisher (1995), Turnovsky (1996),

and Bruce and Turnovsky (1999); all included both types of government

spending in their models, but they all assumed that agents live for infinite

period. Ghosh and Mourmouras (2002) extended Barro’s model to a two
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country environment with both types of government expenditures and finite

lived agents, but they assumed lump-sum taxation and only considered the

optimal provision of productive government services. In comparison, in the

current paper, government revenue is funded via a proportional income tax

and both types of government spending are determined endogenously. The

main result of the paper is its finding that both the income tax rate and the

optimal composition of government spending are sensitive to life expectancy.

The remainder of the paper is organized as follows: Section 2 provides a

description of the theoretical model. Section 3 discusses the implications of the

model for public policy. Section 4 provides some concluding remarks.

2 The Model

The artificial economy consists of three sectors: a household sector, a

production sector and a government sector. The household sector is modeled

by an overlapping generations framework developed by Blanchard (1985). The

production sector is modeled by an endogenous growth framework developed

by Barro (1990). An innovation in this paper is to expand the government

sector and household preferences; by allowing government expenditures to

consist of utility enhancing services, as well as productive services or

infrastructure.

Productive government services are assumed to have the characteristics of

a public good; that is, a unit of the service used by one firm does not preclude
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its use by other firms. Since the private provision of public goods is known to

be inefficient, a role exists for government provision. Utility enhancing

services, on the other hand, are assumed to be depletable. In other words, a

unit of the service consumed by one household detracts from the amount

remaining to be distributed to other households. Although utility enhancing

services, such as health care, could be provided efficiently by the private

sector; in the model and in many real economies these services are often

provided by the public sector. The justification for this is that it allows the

government to control their distribution.

2.1 Households

At any instant of time, a large cohort is born, whose size is normalized to

λ. Each agent faces a constant probability of death per unit of time, which is

also equal to λ. The probability that an agent born at time i ≤ t is alive at

time t is e−λ(t−i). The life expectancy for an agent of any age is∫∞
0
tλe−λtdt = 1/λ. As λ goes to zero, 1/λ goes to infinity, and we say that

households have infinite horizons.

It is assumed that new generations are not connected to old generations,

and therefore there is no bequest motive. Thus, households are born without

financial assets. In the absence of bequests, households contract actuarially

fair life insurance with annuities companies. A household with a wealth of a

will receive λa from an insurance company if its survives and pay a if it dies.

The representative household of the cohort born at time i receives utility

6



at time t by consuming a privately produced good, c (i, t), and a service

provided free by government, x (i, t).1 The utility function of the

representative household of cohort i is given by:

U (i, t) =

∫ ∞
t

u [c (i, v) , x (i, v)] e−(ρ+λ)(v−t)dv, (1)

where

u [c (i, v) , x (i, v)] =


(1−β)c(i,v)1−σ+βx(i,v)1−σ−1

1−σ for 0 ≤ σ < 1, σ > 1

(1− β) ln c (i, v) + β lnx (i, v) for σ = 1.

 (2)

Here ρ is the pure rate of time preference and ρ+ λ is the effective discount

rate.2 The period utility function (2) takes the constant elasticity of

substitution form, and has the property that the cross-partial derivatives are

both zero. Since the marginal utility from the private consumption good does

not depend on the amount of the government service that a household

receives, a household’s decision to consume or to save will be invariant to

x (i, t). This specification of preferences is convenient because it allows us to

avoid generational issues; such as, should the government devote its services to

the young or to the old members of society? Although studying the

implications of these distributional concerns for productive potential and

growth may represent an interesting area for future research, it is beyond the

scope of the current analysis.

Denote w (t) the age-independent real wage rate; r (t) the real interest

rate; and a (i, t) the financial wealth of an agent born at time i, as of time t.

The dynamic budget constraint is

da (i, t)

dt
= [r (t) + λ] a (i, t) + w (t)− c (i, t) . (3)
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Here r (t) a (i, t) denotes the interest payment on the household’s financial

wealth and λa (i, t) is the premium received from the insurance company. In

addition to the budget constrain, a transversality condition must be satisfied

to prevent households from accumulating debt indefinitely:

lim
v→∞

{
a (i, v) e−

∫ v
t
[r(u)+λ]du

}
= 0. (4)

The representative household of cohort i is endowed with perfect foresight

and maximizes lifetime utility subject to its budget constraint and the

transversality constraint. The optimization yields:

dc (i, v)

dv
= σ−1 [r (v)− ρ] c (i, v) . (5)

Integrating (3) and (5) and combining the results gives:

c (i, t) =
1

∆ (t)
[h (t) + a (i, t)] ; (6)

where

∆ (t) =

∫ ∞
t

exp

{
1

σ

∫ v

t

[(1− σ) [r (u) + λ]− (λ+ ρ) du]

}
dv, (7)

h (t) =

∫ ∞
t

w (v) exp

{
−
∫ v

t

[r (u) + λ] du

}
dv. (8)

Here ∆ (t)
−1

is interpreted as the propensity to consume out of wealth, h (t) is

the present discounted sum of human wealth, and h (t) + a (i, t) is total

wealth. The propensity to consume is a function of the sequence of future

interest rates, but is invariant to age, and therefore is the same for all agents.

Due to a constant probability of death, the size of a cohort declines

deterministically through time. This is true despite the fact that individual
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households are uncertain about their time of death. A cohort born at time i

has a size as of time t of λe−λ(t−i). Following Blanchard (1985), the household

sector can be aggregated by integrating over all currently alive generations.

For example, the size of the population at any time t is
∫ t
−∞ λe−λ(t−i)di = 1,

and aggregate consumption is
∫ t
−∞ c (i, t)λe−λ(t−i)di = C (t). Similarly, we

can obtain the laws of motion for aggregate consumption, human wealth,

H (t), and non-human wealth, A (t), by integrating equations (6), (8) and (3):

C (t) = ∆ (t)
−1

[H (t) +A (t)] , (9)

Ḣ (t) = [r (t) + λ]H (t)−W (t) , and (10)

Ȧ (t) = r (t)A (t) +W (t)− C (t) . (11)

Here W (t) denotes aggregate labor income at time t, and a dot (·) over a

variable indicates a time derivative. Differentiating (9) with respect to time

and then substituting in for Ḣ (t) and Ȧ (t) gives

Ċ (t) =
1

σ
[r (t)− ρ]C (t)−∆ (t)

−1
λA (t) . (12)

A comparison of equations (5) and (12) indicate that individual and

aggregate consumption grow at different rates. At the individual household

level, consumption growth is financed in part by the transfer that households

receive from the insurance companies. However, these transfers net out at the

aggregate level, and therefore equation (12) deducts the propensity to consume

out of the transfer from aggregate consumption growth. Heijdra and Ligthart

(2002) used the term Generational Turnover Effect (GTE) to explain the

differences in growth rates between the individual and aggregate variables in
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the Blanchard model. The GTE operates as follows: At each instant a new

generation is born and a cross-section of the existing population dies. Since

new born agents have no financial assets, their consumption is lower than

average consumption. As a result, the turnover of generations drags down

aggregate consumption growth.

2.2 Production

The production sector consists of a continuum of identical producers with

locations of the interval [0, 1]. Following Barro (1990), it is assumed that the

government purchases a portion of private output and then uses these

purchases to provide free public services to the private producers. The public

services are assumed to be complementary to labor and private capital.

Productive government services, G (t), labor, L (t), and private capital, K (t),

enter as inputs into a Cobb-Douglas production function,

Y (t) = F [G (t) ,K (t)] = B [G (t)× L(t)]
1−α

K (t)
α
, (13)

where 0 < α < 1 and B is a constant.3 For a fixed G and L the economy faces

diminishing returns to the accumulation of aggregate capital. However, since

the production function specifies constant returns in G and K together; if G

rises with K, then diminishing returns will not set in. For this reason the

economy is capable of endogenous growth.4,5

The representative firm’s optimization problem is to choose an

employment sequence and an investment sequence to maximize it’s net present
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value,

J (t) =

∫ ∞
0

[
(1− τ)Y (t)− K̇ (t)− δK (t)− w (t)L(t)

]
× e−

∫ t
0
r(u)dudt, (14)

where τ is a proportional tax applied to aggregate output. The first-order

conditions equate the wage rate to the after-tax marginal product of labor and

the interest rate to the after-tax rate of return to capital:

w (t) = (1− τ) (1− α)BG (t)
1−α

L(t)−αK (t)
α
, (15)

r (t) = (1− τ)αB [G (t)× L(t)]
1−α

K (t)
α−1 − δ. (16)

2.3 Government

The government allocates a fraction, τX/τ , of its tax revenue to cover the

costs of providing utility enhancing services to consumers; and a fraction,

τG/τ , of its tax revenue to cover the costs of providing productive services to

firms. Each period the government must satisfy the following constraints:

τ = τX + τG, (17)

X (t) = τXY (t) , (18)

G (t) = τGY (t) . (19)

2.4 Equilibrium

In each time period there is a competitive equilibrium, which consists of

an allocation {c (i, t) , x (i, t) , h (t) , a (i, t)} for all living households of each

cohort i ≤ t; an allocation {Y (t) , L(t),K (t) , G (t)} for each firm; and a set of

prices {r (t) , w (t)}; such that:
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(i) the allocations received by the households solve their optimization

problems, given prices;

(ii) the allocations received by the firms solve their optimization problems,

given prices;

(iii) the government satisfies its budget constraints (17)− (19) and a

feasibility constraint,

∫ t

−∞
x (i, t)λe−λ(t−i)di = X (t) ; (20)

(iv) all markets clear:

L (t) = 1, (21)

K (t) = A (t) , (22)

C (t) + K̇ (t) +G (t) +X (t) = Y (t)− δK (t) . (23)

Equations (17)− (22) can be used to eliminate L(t), X (t) , G (t) and A (t)

from the production function (13), the law of motion for the interest rate (16),

the propensity to consume (7) and the differential equations (12) and (23):

Y (t) = B1/ατ
(1−α)/α
G K (t) , (24)

r (t) = (1− τ)αB1/ατ
(1−α)/α
G − δ = r, (25)

∆ (t)
−1

=
1

σ
[λ+ ρ+ (σ − 1) (r + λ)] = ∆−1, (26)

Ċ (t) =
1

σ
[r − ρ]C (t)−∆−1λK (t) , (27)

K̇ (t) =
[
(1− τ)B1/ατ

(1−α)/α
G − δ

]
K (t)− C (t) . (28)

12



2.5 The Steady-State

Denote the growth rate of the capital stock by γ (t) and the

consumption-capital ratio by C (t). Suppose that a steady-state exists in

which aggregate consumption grows at the same rate as the capital stock. The

locus of points that satisfy the steady-state condition and the law of motion

for aggregate consumption (27) are given by:

Ċ (t)

C(t)
= γ (t) =

1

σ
(r − ρ)−∆−1λC

−1
. (29)

This locus and the aggregate resource constraint are depicted in Figure 1.

Notice that there is a unique C/K and γ combination that satisfy the resource

constraint, the law of motion for consumption and the steady-state restriction.

Figure 1: The Steady-State (Insert Figure 1 here - see last page)

The arrows in Figure 1 indicate how the growth rate of the capital stock

and the consumption-capital ratio would change if the economy was not at the

steady-state. For example, suppose the economy starts with a

consumption-capital ratio less than the steady-state value. If this were the

case the capital stock would grow faster, and consumption slower, than the

steady-state growth rate. As a result, the consumption-capital ratio would fall

over time and growth rate of the capital stock would increase. At some point

the growth rate of the capital stock will reach a value large enough to violate

the transversality condition (4). This violation of the transversality condition

means that households are over saving: utility could be increased if
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consumption were increased at earlier dates. This implies that C (0) < C
∗

cannot be an equilibrium.

Now suppose the economy starts with a consumption-capital ratio greater

than the steady-state value. If this were the case the capital stock would grow

slower, and consumption faster, than the steady-state growth rate. As a result,

the consumption-capital ratio would rise over time; and the growth rate of the

capital stock would fall over time, and would eventually become negative.

When the capital stock reaches zero; in order to satisfy the resource

constraint, consumption must also jump down to zero at this time. However,

this jump violates the Euler Equation (27) , and therefore C (0) > C
∗

cannot

be an equilibrium.

These results leave us with C (0) = C
∗

as the only possible equilibrium,

which implies that there are no transitional dynamics in this model. The

consumption and savings decisions of the agents put the economy immediately

in the steady-state.

An increase in life expectancy, that is a fall in λ, would make the Ċ/C = γ

locus flatter. As λ approaches zero, life expectancy approaches infinity, and

the locus approaches a horizontal line at γ (t) = (r − ρ) /σ. As life expectancy

increases, the propensity to save out of wealth
(
1−∆−1

)
rises; and this in turn

leads to a higher aggregate savings rate and a higher aggregate growth rate. In

the model, the propensity to save affects the long-run growth rate because the

aggregate production function (24) is linear in capital, and therefore at the

aggregate level capital does not have a diminishing marginal product.6
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3 Implications for Public Policy

This section investigates the implications of the model for public policy.

Figure 1 will be used to help identify the effects that taxes have on economic

growth and social welfare, and the role that finite horizons plays in the

determination of optimal tax policy. The economic implications of a change in

the tax rate will be shown to depend on how the proceeds of the tax are

allocated: (i) tax revenue could be used to finance utility enhancing services;

or (ii) it could be used to finance public infrastructure.

Case (i): If the tax rate is increased and the proceeds are used to finance

utility enhancing services (i.e. τX increases); then both the Ċ/C = γ locus and

the production function will shift down, resulting in a lower rate of economic

growth. The Ċ/C = γ locus shifts down because the higher tax rate lowers the

after-tax rate of return to capital, and therefore reduces the incentive to save

and to invest. The production function shifts down because the higher tax

rate reduces disposable output, and results in less goods available to be

allocated to capital investment. Despite the fact that the services provided by

government generate utility for the households, the financing of these services

has adverse effects on the rate of economic growth.

Case (ii): Now suppose that the additional revenue raised by increasing

the tax rate is used to finance public infrastructure (i.e. τG increases). Since

public infrastructure is complementary to private capital, additional

infrastructure raises the rate of return to capital and improves the production

possibilities of the economy. In this case the Ċ/C = γ locus and the
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production function both move in an ambiguous direction. The direction of

movement for both curves depends on the sign of the following function:

(1− α) (1− τX)− τG. (30)

If (30) is positive, then an increase in τG leads to an increase in both the

after-tax rate of return to capital and disposable output. A rise in the

after-tax rate of return to capital produces and upward shift of the Ċ/C = γ

locus, whereas a rise in disposable output produces an upward shift of the

production function. As a result, the growth rate increases. On the other

hand, if (30) is negative, then both curves shift down when τG rises, and

growth slows. Figure 2 plots the Barro Curve, which shows the relationship

between the expenditure share (τG = G/Y ) and the aggregate growth rate.

Figure 2: The Barro Curve (Insert Figure 2 here - see last page)

The government can maximize growth by setting τX = 0 and

τ = τG = 1− α. However, the growth maximizing income tax rate is not

welfare maximizing. This is obvious from the utility function, which requires

households to receive positive amounts of the utility enhancing service in order

to generate utility. Suppose the objective of the government is to choose its

tax and expenditure policies to solve the following optimization problem:

max
τG,τX

U (t) =

∫ ∞
t

u [C(v), X(v)] e−(ρ+λ)(v−t)dv, (31)

subject to (2) , (24)− (28) , and the steady-state restriction that

Ċ(t)/C(t) = K̇(t)/K(t) = γ. In order to facilitate a comparison of the results
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of this study with those of Barro (1990) and Mourmouras and Lee (1999), it is

necessary to adopt the same objective function that they used. In their papers

and this paper the government must choose the income tax rate to maximize

the welfare of the representative (or average) household. In addition, in the

current paper the government must also determine the optimal composition of

its expenditures.7

As it turns out the value of τG that solves the government’s optimization

problem is equivalent to the value that maximizes growth, τ∗G = 1− α. This is

also the value that maximizes social welfare in Barro’s infinite horizon version

of this model and in Mourmouras and Lee’s finite horizon version with public

infrastructure but no utility enhancing services. These similarities occur

because the optimal policy rule arises out of the production externality effects

associated with public infrastructure, and not out of the consumption

externality effects associated with finite horizons or utility enhancing services.

Unfortunately, given the nonlinearity of the optimization problem, an

expression relating the optimal value of τX to life expectancy is more difficult

to derive from the first-order conditions. Instead the optimal value of τX will

be determined by calibrating parameter values and then iterating on the

utility function. Whenever possible parameter values will be borrowed from

the relevant literature. Following Barro (1990), ρ = 0.02, δ = 0.10 and

α = 0.75. A value for capital’s share parameter in this range is necessary to

generate a realistic income tax rate. The probability of death (λ) is set to

0.0133, and implies a life expectancy of 75 years. The micro evidence on the
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coefficient of relative risk aversion suggests that σ is between 1 and 2. As a

compromise a value of 1.5 was selected. It is assumed that the government

chooses its expenditure shares optimally; that is, to solve (31). As such, τG is

set to 0.25. The value of τX is set to 0.15, and this implies an income tax rate

(τ) of 40 percent. The share parameter in the utility function (β) is set to

0.6391. For this value the expenditure share going to utility enhancing services

(τX = 0.15) is optimal. Finally, the technology parameter in the production

function (B) is set to 0.6512. For this value the aggregate variables in the

benchmark parameterization of the model grow at an annual rate of 2 percent.

Figure 3: Social Welfare Maximizing Expenditure Share, τX = X/Y

(Insert Figure 3 here - see last page)

An analysis of the sensitivity of τ∗X to life expectancy (1/λ) is depicted in

Figure 3. Notice that if life expectancy deteriorates, then τ∗X rises. In the

model, the government determines the optimal value of τX by equating the

marginal benefits of utility enhancing services to the marginal costs. The

provision of utility enhancing services is costly in part because their

production requires the use of the economy’s scarce resources, and in part

because these services are financed from a distortionary income tax system.

An increase in τX , for example, would reduces the after-tax rate of return to

capital, and would lead to a fall in the propensity to save out of wealth and a

fall in the growth rate. However, if an economy has a relatively low life

expectancy, then the costs associated with slow grow are relatively low, and
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therefore the optimal value of τX will be relatively high.

4 Conclusion

In the model there are two channels through which an increase in life

expectancy affects the rate of economic growth. First, a rise in life expectancy

has a direct and positive effect on the propensity to save out of wealth; and

since capital has a constant marginal product at the aggregate level, a higher

propensity to save leads to a higher rate of growth. Second, life expectancy

indirectly affects the propensity to save, and therefore the growth rate,

through the tax system. For example, if life expectancy improves, then the

costs associated with slow growth rise. As a result, the optimal policy action

calls for the government to reduce the distortionary effects of taxation, by

reducing the expenditure share for utility enhancing services, τX . A fall in τX

raises the after-tax rate of return to capital, which in turn raises the

willingness to save and the growth rate.

The results of this paper demonstrate that in order to determine the full

effect that life expectancy has on the rate of economic growth, it is also

necessary to determine the effect that life expectancy has on the composition

of government spending. Figure 4 shows the response of the aggregate growth

rate to a change in life expectancy assuming: (i) the income tax rate is fixed,

or (ii) the government changes the income tax rate optimally in response to a

change in life expectancy. As indicated above, the growth rate is more
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sensitive to changes in life expectancy if the government follows an optimal tax

policy rule.

Figure 4: The Relationship Between Life Expectancy and Growth Under

Fixed and Optimal Tax Policies (Insert Figure 4 here - see last page)
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Notes

1. It is assumed that government expenditures enter the utility function as

a flow, and not a stock. However, a valid augment could be made in

favour of either specification. For example, government expenditures

that are used to fund a symphony orchestra would represent a flow

variable, because if the funding stopped then the orchestra would

breakup and there would be no capital remaining. Another example of

government spending on utility enhancing services is a public park. A

park could be considered a stock or a flow variable. If the value of the

land is the best determinant of the park’s value to households, then it

would be appropriate to enter the park as a stock variable. On the other

hand, if it is the maintenance cost of the park that generates the utility,

then it should enter as a flow.

2. The effect of having a positive probability of death is to increase the

household’s effective discount rate. This result was obtained by Yaari

(1965).

3. In the endogenous growth literature government expenditures have

entered the production function as both a flow [see, for example: Barro

(1990), Turnovsky (1996), and Mourmouras and Lee (1999)] and a stock

[see, for example: Futagami, Morita and Shibata (1993), and Turnovsky

(1997)]. Although entering government infrastructure as a stock is

arguably more plausible, it is the less common procedure. The
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introduction of infrastructure as a stock variable would generate

transitional dynamics, which are not present in the model when

infrastructure enters as a flow variable. These transitional dynamics

would complicate the calculations and thus obscure the basic message of

the paper - that the optimal income tax rate and the composition of

government spending are sensitive to life expectancy.

4. There is a large amount of empirical literature which has found physical

infrastructure to be an important determinant of economic growth. The

articles most often cited are Aschauer (1989) and Easterly and Rebelo

(1993). For a more recent study, see Canning (1999). For a review of the

literature on the contribution of infrastructure to aggregate output and

growth, see Gramlich (1994) or Poot (2000).

5. Although there is empirical evidence linking infrastructure expenditures

to economic growth, these expenditures alone have not been found to be

sufficient to generate endogenous growth. Ghosh and Mourmouras (2002)

attempt to correct this problem in their model by introducing knowledge

spillover effects from the capital stock à la Romer (1986). In their paper,

both the spillover effects from the capital stock and public infrastructure

expenditures combine to generate endogenous growth. The knowledge

spillover effects from capital accumulation could be added to the current

paper as well. However, the response of government to a change in life

expectancy would be qualitatively the same with or without them, and

therefore they have been left out. There is another good reason for not

22



adding knowledge spillovers to the model. As it is specified now, the

production side of the model is identical to the setup of the model in the

Mourmouras and Lee (1999) paper. Therefore, the two papers can be

compared to isolate the effects that utility enhancing government

services have on the government’s optimal tax and expenditure policy.

6. In the Neoclassical growth model the length of time that the propensity

to save out of wealth affects the growth rate depends on how fast

diminishing returns sets in. For a more detailed discussion of the

dynamics of an economy with an aggregate production function that is

linear in capital, see Barro and Sala-i-Martin (Chapter 4, 1995).

7. Calvo and Obstfeld (1988) also analyzed optimal fiscal policy in a model

with finite lived heterogenous agents. However, in their paper the private

consumption good enters as the only argument in the utility function.

They solved a planning problem of optimally allocating consumption

over time and optimally distributing consumption at each moment

among those alive. In comparison, in the current paper, the government

must decide on its fiscal policy taking as given the market distribution of

the private consumption good.
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Figure 1: The Steady-State 
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 Figure 2: The Barro Curve. Parameter values are: 02.0=ρ , 0133.0=λ , 5.1=σ , 

6391.0=β , 1.0=δ , 75.0=α , 6512.0=B  and 15.0=Xτ . 
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 Figure 3: Social Welfare Maximizing Expenditure Share, YXX /=τ  
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Figure 4: The Relationship Between Life Expectancy and Growth Under Fixed and 
Optimal Tax Policies 
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