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Abstract

I extend the canonical moral hazard model to allow the agent to face

endogenous and non-contractible uncertainty. The agent works for the

principal and simultaneously pursues private rewards. I establish condi-

tions under which the �rst-order approach remains valid. The model adds

to the literature on intrinsic versus extrinsic motivation. Speci�cally, to

induce higher e¤ort at work the contract may o¤er higher rewards but �at-

ter incentives. The contract change makes the agent reevaluate his �work-

life balance�. Larger employment rewards lessens the incentive to pursue

private rewards. The greater reliance on labor income then necessitates

weaker explicit incentives to induce high e¤ort.
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1 Introduction

The principal-agent model has been tremendously in�uential in economics. How-

ever, the canonical model essentially assumes that the principal-agent relationship

takes place in a perfect vacuum �there are no (non-contractible) outside random

disturbances. For instance, the only payo¤-relevant risk the agent faces is due to

the uncertainty embodied in the incentive scheme o¤ered by the principal.

In reality, however, it is easier to think of examples in which the agent faces

some non-contractible outside uncertainty than examples in which this is not the

case. Indeed, such uncertainty is often endogenous. That is, the agent pursues

a host of potentially rewarding activities that are not directly observable (nor

necessarily directly relevant) to the principal. Even seemingly mundane activities

may in reality entail signi�cant rewards. For instance, when the busy young

professional tolerates dinner with her parents, she may hope to join the �27

percent of those purchasing a home for the �rst time [who] received a cash gift

from relatives or friends to come up with a down payment.�1 When her older

brother moves his family closer to their parents at the cost of a longer commute,

he may be motivated by the fact that �by the time the average youngster reaches

school age, they will have been babysat by their grandparents for more than 5,610

hours.�2 The �rewards� the parents bestow upon their children are most likely

not observable to employers; they are non-contractible.

There are a plethora of other examples in which the agent directly receives a

reward from a third party. Although the waiter has an employment contract with

the restaurant owner, a signi�cant part of her income often comes in the form of

tips from the diner, despite the fact that there is no explicit contract between the

two (nor is there an explicit contract between the parents and o¤spring in the

previous paragraph). In other cases, the agent is in a formal contractual relation-

ship with more than one principal, a situation known as common agency. Thus,

developing an understanding of contracting with private rewards is a necessary

1The data is for the U.S, in 2013. See www.bloomberg.com/news/2014-09-19/mom-and-
dad-banks-step-up-aid-to-�rst-time-home-buyers.html

2The data is for the U.K. The estimated monetary value of this amount of child care
is £ 21,654.60. See http://www.dailymail.co.uk/femail/article-2263843/The-21-000-grandma-
Grandparents-babysitting-duties-reduce-cost-childcare-whopping-4-300-EVERY-YEAR.html
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�rst step towards analyzing common agency environments in which principals do

not have access to the same information.

Examples involving potentially large non-monetary rewards include the agent�s

health status as impacted by endogenous life-style choices, his social status in his

peer group, the quality of his match on the marriage market as a¤ected by his

search intensity, and so on. The satisfaction from mastering a second language,

or any other hobby, is another example. Even the agent�s �job-satisfaction�may

be endogenous, in�uenced by the enthusiasm with which he interacts with col-

leagues. Typically, uncertainty over the private rewards is fully resolved only

after the contract is signed. Hence, as private rewards and labor income interact

in his utility function, the agent is uncertain even of his own marginal utility of

labor income at the time of contracting.

The aim of this paper is to analyze the consequences of endogenous �private

rewards�on optimal contracting. The standard principal-agent model is amended

to allow the agent to work on two tasks. The �rst �task� captures the e¤ort

the agent expends working on behalf of the principal. This task produces a

contractible signal, as in the standard model. The second task describes the

e¤ort devoted to pursuing private rewards (which the principal may or may not

directly care about). This task does not produce a contractible signal. Thus, the

agent is multi-tasking, but the principal observes only the outcome of one task

before compensating the agent.3

The formal contract o¤ered by the principal combines with the promise of ex-

ternal rewards to form a mixed stew of incentives that ultimately determines how

hard the agent works on both tasks. Now, in a recent survey of behavioral con-

tract theory, K½oszegi (2014) singles out �the literature on the interaction between

extrinsic and intrinsic motivation [as] one of the most exciting and productive in

behavioral contract theory.�In this literature, intrinsic motivation refers to non-

monetary reasons why the agent would work hard on behalf of the principal. The

call for more research is accompanied by the observation that �unlike extrinsic

motivation, intrinsic motivation is a complex multifaceted phenomenon that is

poorly understood.� In the current paper, it is also the case that the contract

3In the following, the term �action�refers to the pair of e¤orts devoted to the two di¤erent
tasks. Conversely, a �task�describes one particular dimension of the action.
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does not capture all that is payo¤-relevant to the agent. Thus, one �facet� of

what looks like �intrinsic motivation�to the outsider may be that the agent has

to evaluate how rewards on the job interact with private rewards.

Indeed, the model can be interpreted as endogenizing the agent�s pursuit of

�work-life balance.� The standard single-task model essentially focuses on the

work dimension. In that model, the cost function may capture foregone leisure.

However, given the separability that is usually assumed, the value of �leisure�is

determined solely by e¤ort at work but is otherwise independent of the contract.

The current model, however, allows the agent to simultaneously invest in both

dimensions ��work�and �life��while recognizing that the contract may in�u-

ence both decisions. Stated di¤erently, in the standard model no consideration is

given to how exactly the agent spends his time when he is not working; leisure is

no more than a black-box residual. Here, in contrast, the agent can decide how

intensely or actively he utilizes his leisure time. If the agent is paid poorly at

work �rewards from labor are low �he may decide to seek rewards elsewhere,

by e.g. investing more heavily in a hobby. The implied multi-tasking turns out

to alter some key predictions of standard contract theory.

The dominant method for analyzing moral hazard is the �rst-order approach

(FOA). The FOA has been justi�ed in a class of multi-tasking problems only

very recently; see Kirkegaard (2014).4 In this paper, I build on this work to

extend the FOA to handle private rewards. Although rewards are assumed to be

stochastically independent, the model allows for interdependencies in two ways.

First, e¤ort costs may be non-separable in the two tasks. Second, rewards from

the two di¤erent sources may be substitutes in the agent�s utility function.

Thus, the �rst contribution of the paper is to present a tractable model of con-

tracting in the presence of private rewards. The second contribution �justifying

the FOA �is methodological in nature. That is, I provide a solution technique

that can be used in future research on contracting with private rewards. Third,

4Holmström and Milgrom (1991) present a fairly specialized multi-task model in which the
FOA is valid. Certain forms of private rewards can be accommodated. Likewise, Ábrahám et al
(2011) justify the FOA in a model with hidden savings. The agent privately earns a return on
his savings, but this is both deterministic and monetary. Detailed discussions of these papers
are in Section 6.1 and Section 3, respectively. Ligon and Thistle (2013) introduce exogenous
background risk into the standard model. In their setting, the agent�s action is one-dimensional
and can take only one of two values, thereby obviating the need for the FOA.
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the model is applied to provide a new perspective on intrinsic versus extrinsic

motivation. Speci�cally, contracts that may seem to have ��atter� incentives �

yielding a smaller return to a marginal increase in on-the-job e¤ort �may in-

duce the agent to work harder on the job. Although this �nding is at odds with

the conventional wisdom, K½oszegi (2014) reviews several �behavioral economics�

models in which results in this vein are obtained. Here, I identify a new mecha-

nism, centered on considerations of �work-life balance�, which is responsible for

the result. Additionally, the model identi�es a new source of economic rents for

the agent. Thus, unlike in the standard model, the agent may earn more than

his reservation utility. It is worth emphasizing that a popular competing model

of multi-tasking is not rich enough to produce these predictions (see below).

To illustrate the last two points it is useful to further specialize the model. In

themultiplicative model, the agent�s expected utility takes the formM(a1j!)N(a2)�
c(a1; a2), where ! denotes the contract, a1 e¤ort on the job, and a2 e¤ort in

pursuit of private rewards. Here, c is a cost function, while M(a1j!) describes
expected utility from labor income. In the standard model, a2 is essentially �xed

and N > 0 is an exogenous constant, but here it captures the expected impact

of private rewards. The example in Section 2 can be shown to have this form.

The multiplicative model applies if e.g. the private reward is monetary and the

agent�s preferences exhibits constant absolute risk aversion over total income.

It is not hard to see that the contract is determined entirely by the incentive

compatibility constraints. The participation constraint is redundant on the set of

implementable actions. Indeed, when the principal takes an interest in both tasks

(but typically not otherwise), it may be optimal to implement an action for which

the participation constraint is slack. Note that the agent�s rents are not due to

the outside rewards per se, but rather to the fact that they are private. After all,

if the outside rewards are contractible, the principal can e¤ectively appropriate

their monetary value by making the agent�s pay contingent on both signals.5

The comparative statics of the multiplicative model are rather tractable as

5There may be other reasons why the agent earns more than his reservation utility. This
may occur if the agent is protected by limited liability. Moreover, La¤ont and Martimort (2002,
Section 5.3) explains how the agent may earn rents when his utility function is non-separable
in income and e¤ort. In this case the participation constraint is not redundant �it is just not
optimal to make it binding. Here, I follow most of the literature by assuming separability.
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they rely primarily on incentive compatibility. Let !0 and !00 denote two di¤erent

contracts that induce the agent to deliver the same a1 e¤ort at work. It turns

out that M(a1j!00) > M(a1j!0) if and only if M 0(a1j!00) < M 0(a1j!0), where
M 0(a1j!) denotes the derivative of M with respect to a1. To an outsider who

fails to recognize that N is endogenous, it would thus seem that !00 delivers higher

�base utility� than !0 but weaker explicit or extrinsic incentives. Nevertheless,

the agent works just as hard with the latter contract. Thus, the outsider might

suspect that one of the behavioral models reviewed by K½oszegi (2014) are at play.

For instance, Englmaier and Leider (2012) note that if the agent has reciprocal

preferences, the principal can �generate intrinsic motivation�by giving the agent

higher base utility. The agent reciprocates by maintaining high e¤ort even if

explicit incentives are weakened. In the simplest version of Bénabou and Tirole�s

(2003) model, the agent derives utility (a source of intrinsic motivation) if he

performs well on the job. However, the agent only has an imperfect signal about

the cost of e¤ort. If the principal knows that e¤ort is very costly, he may be

worried that the agent has received a bad signal. Consequently, he is more likely

to o¤er steeper explicit incentives to partially compensate, yet that may not be

enough to prevent the probability of high e¤ort from declining. Bénabou and

Tirole (2003) note that if these considerations are not taken into account, the

�outside observer might actually underestimate the power of these incentives

[and] conclude that rewards are negative reinforcers.�

Here, in contrast, the resolution to the puzzle is that the agent adjusts his

e¤ort at home when presented with !00 instead of !0. The higher rewards at work

leads the agent to work less hard at home. As labor income then plays a more

signi�cant role in the agent�s overall well-being, weaker incentives are su¢ cient

to induce him to work harder on the job. Interestingly, the optimal contract that

implements a �xed a1 depends on the principal�s preferences over a2.

Assume next that the principal does not care directly about a2 and let !0 and

!00 denote the optimal (i.e. cheapest) way of inducing a01 and a
00
1, respectively,

with a001 > a
0
1. I will show that if marginal costs do not increase too quickly, then

M(a001j!00) > M(a01j!0) whereas M 0(a001j!00) < M 0(a01j!0). While an outsider might
explain the former by appealing to higher e¤ort costs, the puzzle remains that the

agent�s utility appears to be less responsive to a marginal increase in e¤ort under
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!00. Again, the latter might be interpreted as indicating that explicit incentives

are weaker when the agent works harder. As before, however, this ignores that

the intensity with which the agent pursues private rewards has changed as well.

The most popular multi-tasking model is due to Holmström and Milgrom

(1987, 1991). Owing to the speci�c functional forms that are imposed it is of-

ten referred to as the Linear-Exponential-Normal (LEN) model. For instance,

contracts are restricted to be linear. Holmström and Milgrom (1991) examine

certain settings in which the agent receives (deterministic) private rewards from

pursuing tasks that do not yield contractible signals. While they discuss optimal

contract design in these settings, they stop short of discussing intrinsic versus

extrinsic motivation. In fact, it is arguably the case that the vast amount of

structure that makes the LEN model so famously tractable inherently limits its

suitability for studying some of the intricacies of private rewards. The slope of

the linear contract is uniquely characterized by the incentive constraint that a1
must be optimal for the agent. Given that this coe¢ cient is typically interpreted

as measuring the strength of incentives, the LEN model thus cannot deliver the

more nuanced explanation of intrinsic motivation identi�ed here. In fact, a2 is

uniquely determined by the a1 value the principal implements. Finally, the LEN

model is not rich enough to explain why the agent may earn economic rents.

Moreover, the LEN model overlooks some implications of common agency, as

described in a companion paper, Kirkegaard (2015). Indeed, Kirkegaard (2014)

documents that the LEN model�s predictions are not robust even when there are

no private rewards. Together, this trilogy of papers thus aims to contribute to

an understanding of multi-tasking outside the con�nes of the LEN model. The

two competing models of multi-tasking are brie�y contrasted in Section 6.

Section 2 provides an example. Sections 3 and 4 analyze the problem from

the agent�s and principal�s perspective, respectively, culminating in a justi�cation

of the FOA. Technical extensions are discussed in Section 5. Section 6 focuses

on intrinsic and extrinsic motivation in a particularly tractable version of the

model. It is also established that the agent may earn economic rents. This

section is largely self-contained. Section 7 compares and discusses the model�s

properties with those of the standard model. Section 8 concludes.
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2 An example

Actions and outcomes are continuous in the general model, but the following

example assumes binary outcomes. The agent exerts e¤ort a1 on the job and

a2 on pursuing private rewards. The former produces a failure with probability

p1(a1) and a success with probability 1�p1(a1). The contract, (w;w), speci�es pay
in the two cases. Independently, a2 yields a small private reward with probability

p2(a2) and a large reward with probability 1 � p2(a2). The agent�s utility is
m(w) if a small private reward is realized, where m(w) is a negative, increasing,

and concave function of labor income. For simplicity, the agent�s utility is zero

regardless of pay otherwise. Cost of e¤ort is c1a1+ c2a2, c1; c2 > 0, and expected

utility is

[m(w)� (m(w)�m(w)) p1(a1)] p2(a2)� c1a1 � c2a2:

Assume that p1(a1) and p2(a2) are strictly decreasing and strictly log-convex.

Then, p1(a1)p2(a2) is convex in (a1; a2). Hence, the agent�s problem is concave

wheneverm(w) � m(w). For any interior action that is to be induced, the agent�s
two �rst-order conditions determinem(w) andm(w) (assuming a solution exists),

m(w) =
c2

p02(a2)
+
c1 (1� p1(a1))
p01(a1)p2(a2)

, m(w) =
c2

p02(a2)
� c1p1(a1)

p01(a1)p2(a2)
;

with m(w) > m(w), since p01(a1) < 0. As long as the participation constraint is

satis�ed, a �xed a1 can be implemented with a range of contracts that induce

di¤erent a2. As p2(a2) is log-convex, (i) m(w) and m(w) are decreasing in a2
whereas (ii) m(w) � m(w) and m(w)=m(w) are increasing in a2. Thus, there
is an inverse relationship between (i) wage levels and (ii) �explicit incentives�,

holding a1 �xed. Note that a principal who does not directly care about a2 will

induce the highest feasible a2 value, forcing the participation constraint to bind.

However, if he derives large disutility from a2 it is better to induce a lower a2
and concede rents to the agent. Section 6 establishes that in the former case

m(w)� (m(w)�m(w)) p1(a1) is increasing in a1 but � (m(w)�m(w)) p01(a1) is
decreasing in a1. Hence, an outsider who thinks a2 is exogenous would conclude

that the agent�s utility from wages are higher, but explicit incentives weaker, the

harder he is induced to work.
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3 The agent�s problem

Before describing the model I brie�y preview some of the key steps to justifying

the FOA with private rewards. Kirkegaard�s (2014) multi-task justi�cations of

the FOA is a good starting point. In particular, one of his justi�cations apply to

environments in which the optimal contract turns out to be monotonic and such

that the outcomes of the two tasks are substitutes from the agent�s point of view.

That is, a marginal improvement in the performance of task 2 is worth less to the

agent if he performed extremely well on task 1. However, in Kirkegaard (2014)

the principal rewards both tasks. On the other hand, in the present setting it is

quite natural to assume that labor income and private rewards are substitutes.

That is, private rewards yields substitutability essentially for free. However, it

turns out to be substantially harder to establish monotonicity.

To establish monotonicity, a main challenge is to sign the multipliers of the

incentive compatibility constraints. This is accomplished by extending a classic

argument by Rogerson (1985), involving a doubly-relaxed maximization problem.

In essence, Rogerson (1985) shows that it is su¢ cient to prevent the agent from

working less hard than intended. In the present setting, however, there are two

tasks. As is perhaps intuitive, it turns out to be su¢ cient to simultaneously

prevent the agent from shirking on job and working too hard on the private task.

Thus, the following assumptions on the primitives (technology and prefer-

ences) are used to either establish monotonicity and substitutability or to prove

that the FOA is valid whenever the candidate contract takes such a form.

I consider a relatively simple model of a principal-agent relationship with en-

dogenous private rewards. The agent performs two �tasks�, a1 and a2, each of

which belong to a compact interval, ai 2 [ai; ai], i = 1; 2. The �rst task captures
the agent�s e¤ort on the job, as a result of which a contractible signal, x1, is

produced. The signal�s marginal distribution is G1(x1ja1). The second �task�
re�ects the agent�s pursuit of a private reward. The agent receives a (possi-

bly non-monetary) reward, x2, which is determined by the marginal distribution

function G2(x2ja2). Here, a2 could measure life-style choices and x2 the health
outcome. Assume xi belongs to a compact interval, [xi; xi], which is indepen-

dent of ai. Assume G1 and G2 are continuously di¤erentiable in both variables
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to the requisite degree. Let g1(x1ja1) and g2(x2ja2) denote the respective den-
sities. Assume gi(xijai) > 0 for all xi 2 [xi; xi] and all ai 2 [ai; ai].6 Note that
each marginal distribution depends only on one task.7 This property is further

strengthened by assuming that x1 and x2 are independent.

Assumption A1 (Independence): Outcomes are independent, i.e. given a1
and a2, the joint distribution is given by

F (x1; x2ja1; a2) = G1(x1ja1)G2(x2ja2): (1)

More structure is required on the components of the joint distribution func-

tion. Thus, de�ne li(xijai) = ln gi(xijai) and let liai(xijai) denote the likelihood-
ratio, i.e. the derivative of li(xijai) with respect to ai, i = 1; 2.

Assumption A2 (MLRP): The marginal distributions have the monotone like-

lihood ratio property, i.e. for all ai 2 [ai; ai] it holds that

@

@xi

�
liai(xijai)

�
=
@2 ln gi(xijai)
@ai@xi

� 0 for all xi 2 [xi; xi] ; (2)

with strict inequality on a subset of strictly positive measure, i = 1; 2.

Assumption A2 implies that Giai(xijai) < 0 for all xi 2 (xi; xi).8 The inter-
pretation is that when the agent works harder, bad outcomes are less likely. In

particular, if a0i > a
00
i thenG

i(xija0i) �rst order stochastically dominates Gi(xija0i).9

It is assumed that x1 and x2 are realized at the same time. In an important

paper, Rogerson (1985) justi�es the FOA in a one-signal, one-task model. He

6Throughout, all exogenous functions are assumed continously di¤erentiable to the requisite
degree. For brevity, statements to that e¤ect are omitted from the numbered assumptions.

7This is somewhat less restrictive than it appears at �rst glance. For instance, assume Gi
is a one-parameter distribution, and that a1 and a2 both in�uence the parameter. That is, Gi
can be written Gi(xijti(a1; a2)). In this case, the problem can simply be reformulated to make
t1 and t2 the two choice variables. However, the possibility that a1 and a2 in�uence di¤erent
parameters of one or both of the marginal distributions is ruled out.

8To see this, recall �rst that the expected value of liai(xijai) is zero. Assumption A2 therefore
implies that liai(xijai) < 0 < liai(xijai). Since G

i
ai(xijai) = Giai(xijai) = 0, it follows that

Giai(xijai) =
R xi
xi
liai(zijai)g

i(xijai) < 0 for all xi 2 (xi; xi).
9The model would reduce to the standard single-task, one-signal model if G2(x2ja2) was

degenerate and independent of a2.
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assumes the distribution function satis�es MLRP and that it is convex in the

(one-dimensional) action. Rogerson (1985) refers to the latter as the convexity

of distribution function condition (CDFC). Kirkegaard (2014) extends the justi-

�cation of the FOA to allow multiple tasks and signals. He shows that a natural

extension of the CDFC is to assume that the distribution function is convex in

the (now many-dimensional) action. The same assumption is imposed here.

Assumption A3 (LOCC): F (x1; x2ja1; a2) satis�es the lower orthant convexity
condition;F (x1; x2ja1; a2) is weakly convex in (a1; a2) for all (x1; x2) and (a1; a2).

Assumption A3 necessitates that Gi is convex in ai, i = 1; 2. In fact, it implies

that Giaiai(xijai) > 0 for all xi 2 (xi; xi).10 A su¢ cient condition for LOCC is

that G1 and G2 are both log-convex. Kirkegaard (2014) lists several examples.

See also Ábrahám et al (2011), discussed in more detail at the end of this section.

Alternatively, �x some G1 that is strictly convex in a1, but not necessarily log-

convex. Then, there is always some �su¢ ciently convex�G2 function that ensures

that Assumption A3 is satis�ed. For example, a non-negative function h(z) is

said to be �-convex if h(z)�=� is convex, or h00(z)h(z)=h0(z)2 � 1 � � for all z.
Thus, a �-convex function is log-convex if and only if � � 0 (and convex if and
only if � � 1). It is easy to see that if G2(x2ja2) satis�es Assumption A2 and
is �-convex in a2 (for all x2) for some small enough � (i.e. � is negative, but

numerically large), then Assumption A3 is satis�ed.11 To reiterate, as long as

G1 satis�es a strict version of CDFC there are G2 functions that will permit the

FOA to be justi�ed even when allowing for private rewards.

Assumptions A1�A3 describes the �technology�. The next set of assumptions

describes the agent�s preferences. Given action (a1; a2), wage w, and private

reward x2, the agent�s utility is assumed to take the form

v(w; x2)� c(a1; a2);

10LOCC necessitates that Giaiai � 0 and G
1G2G1a1a1G

2
a2a2�

�
G1a1G

2
a2

�2 � 0. At any interior
(x1; x2), the last term is strictly positive, by A2. Thus, G1a1a1 > 0 and G

2
a2a2 > 0 are necessary.

11The inequality in the previous footnote can be written G1G1a1a1(G
2G2a2a2=

�
G2a2

�2
) ��

G1a1
�2 � 0, for interior (x1; x2). By �-convexity, the left hand side is greater than

G1G1a1a1 (1� �)�
�
G1a1

�2 � 0. Hence, the inequality is satis�ed if � is small enough.
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where v is a bene�t function and c a cost function. Both functions are assumed to

be continuously di¤erentiable in both their arguments to the requisite degree. The

function v(w; x2) is strictly increasing and strictly concave in both arguments,

vi > 0 > vii, i = 1; 2, where subscripts denote derivatives. The cost function

is likewise assumed to be strictly increasing. It is also assumed to be convex

in (a1; a2). While Assumption A1 imply that there is no stochastic interaction

between a1 and a2, the cost function allows interaction between tasks.

Note that if the private reward, x2, is income, then v(w; x2) could be written

v(w+x2), in which case it is automatic that v12 < 0. That is, employment income

and outside income are substitutes. Indeed, even when x2 is not income it is

natural to assume that w and x2 are strict substitutes. Thus, it will be assumed

that v12 < 0; the higher x2 is, the lower is the marginal utility of additional

employment income. I will also assume that a1 and a2 are weak substitutes in

the cost function, or c12 � 0. That is, the marginal cost of increasing a1 is higher
the higher a2 is. Assumption A4 summarizes these assumptions.

Assumption A4 (Substitutes): The agent�s Bernoulli utility is v(w; x2) �
c(a1; a2); v(w; x2) is strictly increasing and strictly concave in both w and x2,

while c(a1; a2) is strictly increasing and weakly convex in (a1; a2). The rewards

w and x2 are strict substitutes; v12(w; x2) < 0. The tasks are weak substitutes;

c12(a1; a2) � 0.

The principal speci�es a contract of the form w(x1). That is, the contract

details the wage to the agent if the veri�able signal is x1.12 Upon taking action

(a1; a2), the agent�s expected payo¤ is then

EU(a1; a2) =

Z Z
v(w(x1); x2)g

1(x1ja1)g2(x2ja2)dx1dx2 � c(a1; a2).

For notational simplicity, EU(a1; a2) suppresses the dependency on the contract.

Imagine the principal�s intention is to induce the agent to take action (a01; a
0
2).

For the agent to comply, EU(a1; a2) must be maximized at (a01; a
0
2). Assuming

12This ignores the possibility that the principal may ask the agent to report x2 and then
make the wage dependent upon both x1 and the report. It can easily be veri�ed that the
principal can never gain from such a scheme in the special version of the model in Section 6.
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the action is interior, this at the very least necessitates that expected utility is at

a stationary point at (a01; a
0
2), or EU1(a

0
1; a

0
2) = EU2(a

0
1; a

0
2) = 0. The FOA relies

on the latter conditions being not only necessary but also su¢ cient for utility

maximization. To this end, the typical approach is to establish that EU(a1; a2)

is concave, although Kirkegaard (2014) uses a somewhat di¤erent method.

If w(x1) is non-decreasing in x1, then, given Assumption A4, v(w(x1); x2) is

increasing in x1 and x2, and submodular in the two. Now, Kirkegaard (2014)

proves that if the agent faces such a reward function, then the FOA is valid if

LOCC (Assumption A3) is satis�ed as well.13 In fact, EU(a1; a2) is concave in

(a1; a2). To see this, note that after integration by parts with respect to x2,

EU(a1; a2) =

Z �
v(w(x1); x2)�

Z
v2(w(x1); x2)G

2(x2ja2)dx2
�
g1(x1ja1)dx1�c(a1; a2)

(3)

Assuming for simplicity that w(x1) is di¤erentiable (it will later be established

that the optimal contract is indeed di¤erentiable), another round of integrating

by parts, this time with respect to x1, yields

EU(a1; a2) = v(w(x1); x2)�
Z
v1(w(x1); x2)w

0(x1)G
1(x1ja1)dx1

+

Z Z
v12(w(x1); x2)w

0(x1)G
1(x1ja1)G2(x2ja2)dx1dx2

�
Z
v2(w(x1); x2)G

2(x2ja2)dx2 � c(a1; a2): (4)

Recall that v1; v2 > 0 � v12 while G1(x1ja1), G2(x2ja2), G1(x1ja1)G2(y2ja2), and
c(a1; a2) are all convex in (a1;a2). Thus, as long as w0(x1) � 0, EU(a1; a2) is the
sum of concave functions. The �rst Lemma records this fact.

Lemma 1 Assume w0(x1) � 0 for all x1 2 [x1; x1] and that Assumptions A1�A4
hold. Then, the agent�s expected utility, EU(a1; a2), is concave in (a1; a2).

13Kirkegaard (2014) uses insights from choice under uncertainty to explain the intuition
underlying this result. Jewitt (1988) and Conlon (2009) present two results with a similar
�avour in a model with two signals but a single task. Kirkegaard�s (2014) characterization
is more general, as it extends to more signals and more tasks. For instance, he identi�es the
appropriate generalization of submodularity when there are more than two signals.
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Unfortunately, it is far from trivial to establish that w(x1) is non-decreasing.

Thus, the following analysis is primarily devoted to that particular problem.

First, however, note that Lemma 1 implies that EU(a1; a2) must be con-

cave in a1 and concave in a2, whenever w0(x1) � 0. In fact, (3) implies that

EU22(a1; a2) < 0 as G2a2a2 > 0. The expression in (4) also makes it clear that the

last two parts of Assumption A4 pull in the same direction. In particular, the two

tasks are strict substitutes in the agent�s expected utility, or EU12(a1; a2) � 0,

whenever w0(x1) � 0. Indeed, if w0(x1) > 0 on a subset of positive measure, then
v12 < 0 and c12 � 0 imply that EU12(a1; a2) < 0.
To proceed, it is necessary to impose more speci�c assumptions on the agent�s

risk preferences over labor income, w. Thus, it will be assumed that the absolute

risk aversion with respect to w is decreasing in x2. In other words, the agent is

less sensitive to risk in labor income the higher the private reward is.

Assumption A5 (Decreasing absolute risk aversion): The agent�s ab-

solute risk aversion over labor income is decreasing in x2. That is, v1(w; x2) is

log-supermodular in (w; x2), or

@2 ln v1(w; x2)

@w@x2
� 0 for all w and all x2 2 [x2; x2] . (5)

Of course, (5) is equivalent to

@

@x2

�
�v11(w; x2)
v1(w; x2)

�
� 0:

For future reference, note that Assumption A2 (MLRP) is equivalent to the re-

quirement that gi(xijai) is log-supermodular in (xi; ai), i = 1; 2. Next, let

V (w; a2) =

Z
v(w; x2)g

2(x2ja2)dx2; (6)

such that the agent�s expected utility can be written as

EU(a1; a2) =

Z
V (w(x1); a2)g

1(x1ja1)dx1 � c(a1; a2):

13



Given (6), note that

V1(w; a2) =

Z
v1(w; x2)g

2(x2ja2)dx2 > 0, and

V12(w; a2) =

Z
v1(w; x2)g

2
a2
(x2ja2)dx2 < 0.

Here, V1(w; a2) describes the expected marginal utility of additional labor income

given the agent�s e¤ort on the private task is a2. Of course, V12(w; a2) captures

how this expectation changes with a2. Assumptions A2 and A4 together im-

plies that V12(w; a2) < 0. Evidently, V1(w; a2) is strictly decreasing in w, or

V11(w; a2) < 0. Moreover, the term under the integration sign in V1(w; a2) is,

by Assumptions A2 and A5, log-supermodular in (w; x2; a2). As described by

e.g. Athey (2002), log-supermodularity is preserved under integration. Thus,

V1(w; a2) is log-supermodular in (w; a2). That is, the agent�s decreasing absolute

risk aversion aggregates, or carries over to the expected utility in (6). Hence,

@

@a2

�
�V11(w; a2)
V1(w; a2)

�
� 0;

such that the agent is less sensitive to risk in labor income the better the distri-

bution of private rewards is. Equivalently,

@

@w

�
�V12(w; a2)
V1(w; a2)

�
� 0: (7)

The latter property is especially important. Technically, the assumption that

g2(x2ja2) is log�supermodular can be relaxed (although G2a2 � 0 is still required)
if the assumption that (5) holds is replaced by the assumption that (7) holds.

For instance, if x2 is income and v(w; x2) = �e�r(w+x2), r > 0, then the agent

exhibits constant absolute risk aversion in total income (and its components). In

this case, (7) is trivially satis�ed for any g2(x2ja2).
At this point, it is instructive to compare the present set-up with the literature

on hidden savings. Ábrahám et al (2011) consider a situation where the agent

works for the principal while simultaneously privately investing in a risk-free asset.

Performance on the job, x1, is thus the only source of uncertainty. Ábrahám et

al (2011) justify the FOA by assuming that the distribution of x1 is log-convex
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in e¤ort and that the agent has decreasing absolute risk aversion. These two

assumptions can be thought of as special cases of Assumptions A3 and A5 in the

current paper. Here, rewards are both uncertain and possibly non-monetary.

To complete the description of the agent�s problem, assume that the only

constraint other than incentive compatibility is a participation constraint. That

is, the agent must earn expected utility of at least u to sign the contract.

4 Contracts with private rewards

The previous section describes the problem from the agent�s point of view. Con-

sider now the principal�s problem. First, assume that the principal is risk neutral.

Let B(a1; a2) denote the principal�s direct bene�t of the agent�s action and as-

sume that it is continuously di¤erentiable. For instance, B(a1; a2) could be the

expected value of x1, given a1. As explained below, for technical reasons I assume

that B2(a1; a2) � 0, such that the principal prefers a2 to be as small as possible.
This assumption is of course satis�ed if B is independent of a2. In the more

specialized model in Section 6, it is possible to allow B2(a1; a2) > 0, however.

Finally, let E[wja1; a2] denote the expected wage costs if the agent is induced to
take action (a1; a2).

Assumption A6 (The principal�s preferences): The principal is risk neu-

tral, with expected utility B(a1; a2) � E[wja1; a2], where B2(a1; a2) � 0 for all

(a1; a2).

It is natural to assume that B(a1; a2) is increasing in a1. Indeed, Proposition

2 in Section 7.2 will establish that if it is optimal to implement an interior action,

then B1 > 0 at that point. However, B need not be globally increasing in a1.

The principal�s problem is to maximize B(a1; a2) less wage costs, subject to

individual rationality and incentive compatibility, or

max
a1;a2;w

B(a1; a2)�
Z
w(x1)g1(x1ja1)dx1

st: EU(a1; a2) � u
(a1; a2) 2 arg max

(a01;a
0
2)2[a1;a1]�[a2;a2]

EU(a01; a
0
2)
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Any action (if one exists) that solves the problem is henceforth referred to as a

second-best action.

It is important to realize that the contract indirectly determines not only how

hard the agent works for the principal, but also how hard he works on the private

task. From the agent�s point of view, the function v(w(x1); x2) is crucial to the

decision of how much e¤ort to devote to each task. It is immaterial that the

reward x2 happens to be not paid by the principal.

Assume the principal wishes to induce an interior action. Then, as mentioned

previously, it is necessary that EU achieves a stationary point at the targeted

action, or EU1(a1; a2) = 0 = EU2(a1; a2). These constraints are referred to as

the �local�incentive compatibility constraints. As in the existing FOA literature,

the main objective of this part of the paper is to establish conditions under which

the local constraints are in fact su¢ cient for �global�incentive compatibility.

Consider the following relaxed problem, so named because the incentive com-

patibility constraint in the original problem has been relaxed,

max
a1;a2;w

B(a1; a2)�
Z
w(x1)g1(x1ja1)dx1

st: EU(a1; a2) � u
EU1(a1; a2) = 0

EU2(a1; a2) = 0

The FOA is said to be valid if the solution to the relaxed problem also solves the

unrelaxed (original) problem.

Let � � 0 denote the multiplier to the participation constraint, and �1 and

�2 denote the multipliers to the two local incentive compatibility constraints in

the relaxed problem. Assuming interior wages, the optimal wage if x1 is observed

is implicitly characterized by the necessary �rst order condition,

V1(w; a2)
�
�+ �1l

1
a1
(x1ja1)

�
+ �2V12(w; a2) = 1 (8)

or

�+ �1l
1
a1
(x1ja1) =

1

V1(w; a2)
� �2

V12(w; a2)

V1(w; a2)
: (9)
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Qualitatively, the solution almost certainly depends on the sign of the two mul-

tipliers �1 and �2. Indeed, it is not even clear that there is a unique solution.

However, later arguments will establish that it is su¢ cient to focus on multipliers

for which �1 � 0 � �2. Then, the contract w(x1) is well-behaved.

Lemma 2 Given Assumptions A1-A6 and interior wages, w(x1) as de�ned in
(9) is unique whenever �1 � 0 � �2. Moreover, the solution is di¤erentiable,

with w0(x1) � 0 for all x1 2 [x1; x1]. If �1 > 0 � �2, then w0(x1) > 0 for a subset
of [x1; x1] of strictly positive measure.

Proof. Given �2 � 0, V11 < 0 and (7) imply that the right hand side of (9) is

strictly increasing in w. Thus, for each x1 there is at most one solution to (9),

w(x1). Di¤erentiability then follows automatically from the di¤erentiability of

all the components in (9). Since �1 � 0, Assumption A2 (MLRP) implies that

the left hand side is non-decreasing in x1. Hence, w(x1) is non-decreasing in x1.

The last part likewise follows from Assumption A2.

The next step utilizes Rogerson�s (1985) idea of considering a doubly-relaxed

problem. In Rogerson�s one-task model, the relaxed incentive compatibility con-

straint, EU1 = 0, is replaced with the even weaker constraint that EU1 � 0. In
the current multi-task model, the appropriate doubly-relaxed problem assumes

EU1 � 0 and EU2 � 0, respectively. The set of feasible contracts (i.e. the

constraint set) is obviously larger in the doubly-relaxed problem than in the re-

laxed problem. For interior actions, any contract that is incentive compatible

(i.e. feasible in the unrelaxed problem) is also feasible in both the relaxed and

doubly-relaxed problems. However, this does not hold for all incentive compati-

ble contracts that induce boundary actions. For this reason, extra care must be

taken in dealing with corner solutions.

Conveniently, �1 � 0 � �2 must hold in the doubly-relaxed problem. As in

Rogerson, assume there is a solution to the doubly-relaxed problem. In particular,

this requires the constraint set to be non-empty. Likewise, for simplicity, it will

be assumed that wages are interior. Rogerson impose assumptions directly on

the utility functions (see his assumption A3�A4 and A6�A7) to achieve this.

Assumption A7 (The doubly-relaxed problem): A solution to the doubly-

relaxed problem exists. Any solution involves only wages in the interior of the

17



domain of v(w; x2).

Any solution to the doubly-relaxed problem must take the form in (9). By

Lemma 2, any solution thus features non-decreasing wages. By Lemma 1, the

agent�s problem is concave. The contract is then incentive compatible if EU1 =

EU2 = 0 at the intended action. Of course, the latter holds if �1 > 0 > �2.

Let (a�1; a
�
2) denote an action that forms part of a solution to the double-relaxed

problem.

Lemma 3 Given Assumptions A1�A7, any solution to the doubly-relaxed prob-
lem is incentive compatible and thus feasible in the unrelaxed problem. Moreover,

if a�2 > a2 then it is also feasible in the relaxed problem, which it also solves.

Proof. Wages are constant if �1 = 0. Then, EU1 < 0, which violates the doubly-
relaxed constraints. Hence, �1 > 0 and so EU1(a

�
1; a

�
2) = 0. Now, if a

�
2 is interior

it must satisfy the �rst-order condition that

[B2(a1; a2) + �EU2(a
�
1; a

�
2) + �1EU12(a

�
1; a

�
2)] + �2EU22(a

�
1; a

�
2) = 0: (10)

By Assumption A6, B2(a1; a2) � 0. Following the argument described after

Lemma 1, it holds that EU12(a�1; a
�
2) < 0 given the properties of w(x1) described

in Lemma 2 when �1 > 0 � �2.14 Since �EU2(a�1; a�2) � 0, the term in the bracket
in (10) is thus strictly negative. As EU22(a�1; a

�
2) < 0, it is therefore necessary that

�2 < 0. Hence, EU2(a
�
1; a

�
2) = 0. A similar argument applies if a

�
2 = a2. Thus,

both incentive constraints are binding and, by concavity, the agent�s utility is

maximized at (a�1; a
�
2). That is, the contract is incentive compatible. If a

�
2 = a2,

it cannot be ruled out that EU2(a�1; a
�
2) < 0. Nevertheless, by concavity, such a

solution on the boundary is still incentive compatible. This completes the proof

of the �rst part of the Lemma. Finally, note that when a�2 > a2, the solution is

feasible in the relaxed problem. Since the constraint set is smaller in the relaxed

problem, the last part of the Lemma follows.

14Note that Assumption A4 rules out that v12 = c12 = 0. However, this case seems relatively
uninteresting, as it would imply that there is a �xed a2 which is optimal for the agent regardless
of the contract. In particular, the last term in (8) would disappear. It is then easy to show
that the FOA is valid if G1(x1ja1) satis�es CDFC.
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Lemma 3 is key to establishing the validity of the FOA. As explained after

Lemma 2, the possibility of a corner solution gives rise to some complications.

Thus, following the literature, assume the second-best action is interior. Then,

the solution to the unrelaxed problem must satisfy EU1 = EU2 = 0, which

implies that it is feasible in the doubly-relaxed problem. By Lemma 3, however,

the solution to the doubly-relaxed problem is in turn feasible in the unrelaxed

problem. Hence, the solutions to the unrelaxed and doubly-relaxed problems

coincide. Finally, Lemma 3 implies that as the solution to the doubly-relaxed

problem involves an interior action, the relaxed problem identi�es the exact same

solution.

Theorem 1 Assume any second-best action (a1; a2) is interior. Then, given

Assumptions A1�A7, the FOA is valid.

It is perhaps natural to question the assumption that it is optimal to induce

the agent to work on the private task (a2 is interior). However, note that

EU2(a1; a2) =

Z �Z
v(w(x1); x2)g

2
a2
(x2ja2)dx2

�
g1(x1ja1)dx1 � c2(a1; a2):

The inner integral is strictly positive regardless of the contract. Thus, if c2(a1; a2) =

0, then EU2(a1; a2) > 0 for any contract. In this case, it is impossible to persuade

the agent to not pursue private rewards. Moreover, it is established in Section 6

that an interior a2 is optimal in the multiplicative model.

5 Extension: Relaxing LOCC

The stringency of Rogerson�s CDFC is the main source of criticism of the FOA in

the standard model. As mentioned earlier, Assumption A3 (LOCC) generalizes

CDFC to allow multi-tasking. In this section, I consider two possible ways of

relaxing Assumption A3. The �rst requires mild assumptions on the marginal

utility of labor income. The second extension requires more speci�c structure on

the functional form of v(w; x2).
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5.1 Supermodular marginal utility

Jewitt (1988) was �rst to relax the CDFC. In the one-signal, one-task case, he

replaces the CDFC assumption with the assumption thatZ x1

x1

G1(y1ja1)dy1 (11)

is convex in a1 for all x1. Jewitt (1988) shows that this condition is su¢ cient to

justify the FOA provided that the agent�s utility is increasing and concave in x1.

Concavity must thus be established. In Jewitt�s setting, this turns out to require

that the likelihood ratio is increasing and concave. Kirkegaard (2014) proves that

this type of justi�cation of the FOA can be extended to many signals and many

tasks, as long as the tasks are independent. In the case with two signals and two

tasks, the appropriate assumption is that the antiderivative of F (x1; x2ja1; a2) is
weakly convex in (a1; a2), as described in the next assumption. Kirkegaard (2014)

terms this condition the cumulative lower orthant convexity condition (CLOCC).

Assumption A3�(CLOCC): F (x1; x2ja1; a2) satis�es the cumulative lower or-
thant convexity condition (CLOCC), i.e.Z x1

x1

Z x2

x2

G1(y1ja1)G2(y2ja2)dy2dy1 =
Z x1

x1

G1(y1ja1)dy1
Z x2

x2

G2(y2ja2)dy2 (12)

is weakly convex in (a1; a2) for all (x1; x2) and all (a1; a2).

Unfortunately, it is not possible to sign the second derivative of v(w(x1); x2)

with respect to x1 in general. The next subsection considers a special case where

it can be done, and where CLOCC may serve to justify the FOA.

However, it is straightforward to sign the second derivative of v(w(x1); x2)

with respect to x2. In fact, by assumption, the agent�s utility is concave in x2.

This observation opens the door for a simpler relaxation of Assumption A3. In

particular, I will exploit that v(w(x1); x2) is increasing in x1 and increasing and

concave in x2. Thus, a hybrid of LOCC and CLOCC is called for.

Assumption A3��(HOCC): F (x1; x2ja1; a2) satis�es the hybrid orthant convex-
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ity condition (HOCC), i.e.

G1(x1ja1)
Z x2

x2

G2(y2ja2)dy2 (13)

is weakly convex in (a1; a2) for all (x1; x2) and all (a1; a2).

Assumptions A3, A3�, and A3�can be ordered according to how restrictive

they are. Speci�cally, Assumption A3 (LOCC) implies A3�(HOCC), which in

turn implies A3�(CLOCC). As was the case for Assumption A3, Assumptions

A3�and A3�both imply that each term in (12) and (13), respectively, must be

strictly convex in ai for interior xi. As before, HOCC is satis�ed if e.g. the

two terms are log-convex in a1 and a2, respectively. Although HOCC is weaker

than LOCC, it is easy to see that it remains the case that EU(a1; a2) is strictly

concave in a2, or EU22(a1; a2) < 0, regardless of the contract. Formally, this can

be established by using integration by parts twice and invoking the assumption

that v22 < 0. Likewise, as before, EU(a1; a2) is concave in a1 whenever the

contract is monotonic. While the agent�s expected utility is thus concave in each

task, it remains to show that it is jointly concave in (a1; a2).

As explained in Kirkegaard (2014), multi-signal justi�cations of the FOA that

rely on LOCC or CLOCC also require one to sign certain cross-partial derivatives.

For instance, recall that v12 < 0 was invoked to prove Lemma 1. Given HOCC,

it turns out to be su¢ cient to add the mild assumption that v122 � 0. In other
words, the price of weakening Assumption A3 by replacing it with Assumption

A3� is that v122 � 0 must be assumed. However, note that if x2 is income,

then v122 � 0 is implied by Assumption A5. In this case, then, there is no cost
of replacing A3 by A3�. More generally, in view of Assumption 5, v122 � 0 is

satis�ed if e.g. v2(w; x2) is log-supermodular in (w; x2), i.e. if the agent�s risk

aversion with respect to the private rewards is decreasing with labor income.

Assumption A8 (Supermodular marginal utility): The agent�s marginal

utility of the private reward is supermodular. That is, v2(w; x2) is supermodular

in (w; x2), or v122(w; x2) � 0.

Theorem 2 proves that the FOA remains valid once LOCC is replaced by
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HOCC, provided that Assumption A8 is imposed as well.

Theorem 2 Assume any second-best action (a1; a2) is interior. Then, given

Assumptions A1,A2,A3�, and A4�A8, the FOA is valid.

Proof. The argument that w(x1) is increasing in x1 remains unchanged as As-
sumption A3 is replaced by A3�. Using integration by parts repeatedly yields

EU(a1; a2) = v(w(x1); x2)� v2(w(x1); x2)
Z
G2(x2ja2)dx2

+

Z
v22(w(x1); x2)

Z x2

x2

G2(y2ja2)dy2dx2

�
Z
v1(w(x1); x2)w

0(x1)G
1(x1ja1)dx1

+

Z
v12(w(x1); x2)w

0(x1)

�Z
G2(x2ja2)dx2G1(x1ja1)

�
dx1

�
Z Z

v122(w(x1); x2)w
0(x1)

 Z x2

x2

G2(y2ja2)dy2G1(x1ja1)
!
dx2dx1

�c(a1; a2):

By assumption, v1; v2 > 0 > v12; v22 and v112 � 0. Thus, by Assumption A3�,

EU(a1; a2) is the sum of functions that are concave in (a1; a2). Hence, the agent�s

utility is concave. The theorem now follows by the same arguments that estab-

lished Theorem 1.

5.2 Multiplicative rewards

A particularly tractable type of utility function is introduced and analyzed next.

From a technical perspective, the convenient functional form makes it possible

to further relax Assumption A3. More importantly, in economics terms it is

signi�cant that the added structure allows further insights into the properties of

the optimal contract. These implications are pursued in the next section.

Assume that the reward function is multiplicative, or that

v(w; x2) = �m(w)n(x2); (14)
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where m and n are strictly negative functions that are strictly increasing and

strictly concave on their domain. Note that Assumptions A5 and A9 are trivially

satis�ed, as is the part of Assumption A4 that pertains to v(w; x2). An obvious

example that satis�es (14) is m(w) = �e�rw and n(x2) = �e�rx2, for any r > 0.
Then, v(w; x2) = �e�r(w+x2). Here, x2 can be interpreted as income, and the
agent exhibits constant absolute risk aversion (CARA). The example in Section

2 �ts (14) as well, with n(x2) taking the value �1 or 0.
Letting ! summarize the contract w(x1), x1 2 [x1; x1], de�ne

M(a1j!) =

Z
m(w(x1))g

1(x1ja1)dx1 < 0 (15)

N(a2) = �
Z
n(x2)g

2(x2ja2)dx2 > 0; (16)

such that

EU(a1; a2) =M(a1j!)N(a2)� c(a1; a2):

Assumptions A3, A3�and A3�all imply that the expectation of n(x2) is strictly

concave in a2. By Assumption A2, the expectation is also strictly increasing in

a2. Hence, N(a2) is positive, strictly decreasing, and strictly concave.

In this multiplicative case, (9) can be written in a much simpler form,

(�N(a2) + �2N
0(a2)) + (�1N(a2)) l

1
a1
(x1ja1) =

1

m0(w)
; (17)

or, by renaming the terms in the parentheses,

b�+ b�l1a1(x1ja1) = 1

m0(w)

precisely as in the usual model with no private rewards. Standard methods can

now be used to prove that �1 > 0 (or b� > 0). Speci�cally, given MLRP, the

contract would be non-increasing if �1 � 0, thus implying that EU1 < 0 in

violation of the incentive-compatibility constraints. In other words, given only

that a1 > a1, it must hold that �1 > 0 such that the optimal contract is non-

decreasing in x1 regardless of which (a1; a2) the principal seeks to implement.

Note that as long as wages are interior, this argument applies to all (a1; a2) pairs
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with a1 > a1, not only the pair that turns out to be optimal. Note also that it is

not necessary to sign �2. Thus, there is no need to consider the doubly-relaxed

problem, and thus no need to invoke Lemma 3, which is the only place where the

assumptions that B2(a1; a2) � 0 and c12(a1; a2) � 0 are utilized. Thus, in the

multiplicative model, part of Assumptions A4 and A6 can be relaxed. As only

the relaxed problem is considered, Assumption A7 is modi�ed as well.

Assumption A6�(The principal�s preferences): The principal is risk neu-

tral, with expected utility B(a1; a2)� E[wja1; a2].

Assumption A7�(The relaxed problem): A solution to the relaxed probelm

exists. Any solution involves only wages in the interior of the domain of v(w; x2).

Jewitt�s (1988) proof that m(w(x1)) may be concave applies to the current

setting as well. He proves that this property holds if l1a1(x1ja1) is increasing and
concave and

d

dw

�
�m00(w)

m0(w)3

�
� 0: (18)

The latter condition is satis�ed ifm(w) = �e�rw, r > 0, as in the CARA example.
Note that if m(w(x1)) is increasing and concave in x1, then so is v(w(x1); x2). It

is for this reason that Assumption A3�will prove to be su¢ cient to justify the

FOA. However, to use Jewitt�s argument, it is evidently necessary to strengthen

Assumptions A2 and parts of A4. Recall that c12(a1; a2) � 0 is no longer required.

Assumption A2�(Concave likelihood-ratio): The marginal distributions

satisfy Assumption A2 (MLRP). Moreover, l1a1(x1ja1) is weakly concave in x1 for
all x1 2 [x1; x1].

Assumption A4�(Multiplicative rewards): The agent�s Bernoulli utility

is �m(w)n(x2) � c(a1; a2). Costs, c(a1; a2), are strictly increasing and weakly
convex in (a1; a2). Moreover, m and n are strictly negative functions that are

strictly increasing and strictly concave on their domain. Finally, m satis�es (18).

The FOA can now be justi�ed in the multiplicative model.

Theorem 3 Assume any second-best action (a1; a2) is interior. Then, given

Assumptions A1,A2�,A3�,A4�, A6�, and A7�, the FOA is valid.
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Proof. Starting from the expression of EU(a1; a2) derived in Theorem 2, another
round of integration by parts leads to a new expression that depends only on the

terms in Assumption A3�(rather than A3�as in Theorem 2). Concavity then

obtains if the derivatives of u(x1; x2) = v(w(x1); x2) have the correct sign. It is

required that u1; u2 � 0 � u11; u12; u22 and u112; u122 � 0 � u1122. Assumptions
A2 and A4 together implies that u11 � 0 (as m(w(x1)) is concave in x1). Given
the multiplicative nature of u, it then follows that the second set of inequalities

is also satis�ed. Thus, the agent�s utility is concave.

6 Intrinsic and extrinsic motivation

The multiplicative model in Section 5.2 can be used to illustrate some key prop-

erties of the optimal contract. Incidentally, the current section does not require a

thorough understanding of the preceding material on how to justify the FOA.15

Thus, assume that v(w; x2) takes the form in (14). The set of implementable

actions is characterized �rst. To begin, �x some interior action that the principal

might like to induce. Then, M(a1j!) and M 0(a1j!) are characterized completely
by the local incentive compatibility constraints that EU1 = EU2 = 0, with

M 0(a1j!) =
c1(a1; a2)

N(a2)
, M(a1j!) =

c2(a1; a2)

N 0(a2)
; (19)

where M 0(a1j!) denotes the derivative of M(a1j!) with respect to a1, holding
�xed the contract. An outside observer who does not realize that a2 is endoge-

nous might reasonably interpret M(a1j!) as measuring the agent�s �base utility�
at work and M 0(a1j!) as measuring the intensity of the explicit or extrinsic in-
centives. Of course, these are local measures as they are evaluated at the a1 value

induced by the contract !.

For ease of exposition, assume that for any interior action there exists a con-

tract satisfying (19). Assume also that c12(a1; a2) � 0.
Fixing an interior action, N(a2) and c(a1; a2) are exogenous while M(a1j!)

15However, it is important to recall (i) the information structure and (ii) the basics of
the multiplicative model. The former is described in the paragraph before Assumption A1 in
Section 2. The latter is described in the �rst three paragraphs of Section 4.2.
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is determined by incentive compatibility. Thus, the agent�s utility is already

determined. Consequently, there may be actions for which the participation

constraint is slack or redundant and others for which it is violated. Given (19),

the participation constraint is satis�ed if and only if

c2(a1; a2)

N 0(a2)
N(a2)� c(a1; a2) � u (20)

when a2 is interior. Simple di¤erentiation shows that the left hand side is strictly

decreasing in a2. Assuming (20) is satis�ed at a2, de�ne

t(a1) = max

�
a2 2 [a2; a2] j

c2(a1; a2)

N 0(a2)
N(a2)� c(a1; a2) � u

�
as the threshold value of a2 such that (20) holds for all a2 below that value. Let

t(a1) = a2 if (20) is violated at a2.

If t(a1) is interior, (20) is satis�ed if and only if a2 2 [a2; t(a1)]. In other
words, only a2 levels at or below the threshold t(a1) can be implemented. If

t(a1) = a2, no interior a2 can be implemented at all. Finally, if t(a1) = a2,

then only a2 can be implemented.
16 As this case is less interesting, it will be

ignored in the remainder. Assuming then that t(a1) > a2, (20) must be slack for

any a2 2 (a2; t(a1)), implying that the agent earns more than reservation utility.
However, the participation constraint binds at a2 = t(a1), even if t(a1) = a2.17

Since (20) is also strictly decreasing in a1, t(a1) is decreasing in a1, with

t0(a1) < 0 if t(a1) is interior. Hence, the larger a1 is, the smaller is the set

of implementable a2 values. This completes the description of the feasible set

of actions, illustrated as the shaded area in Figure 1. Note that the agent�s

expected utility is increasing towards the south-west.18 As explained in the next

subsection, a key reason the current model delivers richer predictions than the

16At a2, the incentive compatibility constraint that EU2 � 0 is equivalent to M(a1j!) �
c2(a1;a2)
N 0(a2)

. Thus, even if (20) is violated at a2, M(a1j!) can be increased to induce participation
without violating incentive compatibility. Hence, a2 is implementable as long as c2(a1; a2) > 0.

17At a2, the incentive compatibility constraint that EU2 � 0 is equivalent to M(a1j!) �
c2(a1;a2)
N 0(a2)

. Thus, M(a1j!) can be lowered to make the participation constraint bind.
18Recall that the contract must change in order to implement a di¤erent action. Thus, the

contracts are not the same across di¤erent points in the �gure.
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Figure 1: The feasible set and some comparative statics.

LEN model is that the feasible set in the latter is simply a curve. That is, for

each a1 there is a unique implementable a2 value in the LEN model.

It is interesting to analyze how the properties of the contract depends on

which action in the feasible set is implemented. For brevity, I examine interior

actions only. Consider �rst how the contract depends on a2. Keeping (19) in

mind, note that

@

@a2

�
c1(a1; a2)

N(a2)

�
=

c12(a1; a2)N(a2)� c1(a1; a2)N 0(a2)

N(a2)2
> 0

@

@a2

�
c2(a1; a2)

N 0(a2)

�
=

c22(a1; a2)N
0(a2)� c2(a1; a2)N 00(a2)

N 0(a2)2
< 0

since N(a2); N 00(a2) > 0 > N 0(a2). Holding a1 �xed, it follows that M(a1j!)
and M 0(a1j!) are inversely related, as described in the introduction. That is,
let !0 and !00 denote two contracts that induce the same a1 but di¤erent a2
like a02 and a

00
2, respectively, with a

00
2 > a02. Then, M(a1j!0) > M(a1j!00) and

M 0(a1j!0) < M 0(a1j!00). The aforementioned outsider would thus conclude that !0

delivers higher �base utility�than !00 but weaker explicit incentives. Nevertheless,

the agent works equally hard on the job with either contract. Intuitively, higher

�base utility�at work makes private rewards less important, thus lessening the
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agent�s incentives to pursue such rewards. Labor income then contributes more

signi�cantly to the agent�s overall utility, which is why weaker explicit incentives

are required to induce the same e¤ort on the job.

Consider next the contract�s dependence upon a1. Here,

@

@a1

�
c1(a1; a2)

N(a2)

�
=

c11(a1; a2)

N(a2)
� 0

@

@a1

�
c2(a1; a2)

N 0(a2)

�
=

c12(a1; a2)

N 0(a2)
� 0:

Holding a2 �xed but varying a1, it is once again the case that the agent�s base

utility from work is inversely related to the steepness of the incentives. Let

!0 and !00 denote two contracts that induce a �xed a2 but di¤erent a1 such

as a01 and a
00
1, respectively, with a

00
1 > a01. Then, M(a01j!0) � M(a001j!00) and

M 0(a01j!0) �M 0(a001j!00). The latter is intuitive; steeper incentives are required to
make the agent work harder on the job, other things equal. The �rst property

is perhaps more surprising at �rst blush; the agent�s reward at work is lower

when he is induced to work harder. Contrary to the standard model, however,

the agent�s utility is not pegged down by the participation constraint. Instead, it

is determined by incentive compatibility. When a1 increases, the marginal cost

of the private task, c2, increases as well. To maintain unchanged incentives to

pursue private rewards, these must be made more important in the agent�s utility.

Thus, the reward from work must decrease.

In summary, M(a1j!) is decreasing in both a1 and a2 while M 0(a1j!) is in-
creasing in both (recall that ! changes with the action to be implemented). See

Figure 1. The costs of inducing di¤erent feasible actions is studied next.

Fix a feasible (a1; a2) pair, and let C(a1; a2) denote the implementation costs.

Let C(a1; a2) = 1 if a2 is not implementable, i.e. if c2(a1; a2) = 0. If a2 is

implementable, the incentive compatibility constraint that EU2 � 0 reduces to

M(a1) � c2(a1;a2)

N 0(a2)
. If the inequality is strict, the principal can reduce m(w(x1))

by the same amount in every state without a¤ecting the EU1 = 0 constraint.

Since this would reduce implementation costs, the conclusion must be that the

optimal contract satis�es EU2 = 0. From (20), the participation constraint is

slack. Stated di¤erently, as long as a1 is interior and a2 2 [a2; t(a1)), the relevant
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constraints are that EU1 = 0 and EU2 = 0. It can now be shown that C(a1; a2)

is decreasing in a2 on [a2; t(a1)] if

@

@a2

�
c2(a1; a2)

c1(a1; a2)

N(a2)

N 0(a2)

�
� 0 (21)

for all (a1; a2). This is a relatively mild assumption. It is satis�ed if c12 is small

and N(a2) is log-convex, the latter of which is ensured if G2(x2ja2) or its anti-
derivative (the counterpart to (11)) is log-convex in a2. Recall that Assumptions

A3, A3�, and A3�are satis�ed if both G1 and G2 have that property.

Proposition 1 Assume utility from rewards are multiplicative, (21) holds, and

that the assumptions in one of Theorems 1, 2, or 3 hold. Assume wages are

interior regardless of which feasible (a1; a2) pair the principal seeks to implement.

Then, for any a1 2 (a1; a1) for which t(a1) > a2, C(a1; a2) is strictly decreasing
in a2 on [a2; t(a1)].

Proof. In the Appendix.
As before, let B(a1; a2) denote the principal�s direct utility from the action.

Assume, for now, that B2 = 0. Proposition 1 then signi�es that for any (interior)

a1, the optimal a2 to induce is on the boundary of the feasible set, a2 = t(a1).

The same conclusion of course holds if B2 � 0. Consequently, the participation
constraint is binding regardless of which a1 the principal seeks to implement.

Since t(a1) is decreasing it follows that if the principal desires the agent to work

harder on the job, then it is optimal to simultaneously induce the agent to work

less hard in the pursuit of private rewards.

Given a1 is to be implemented, the agent�s total costs is thus c(a1; t(a1)). To

proceed, assume that t(a1) is interior. Although a1 and t(a1) move in opposite

directions, (21) implies that

@c(a1; t(a1))

@a1
� 0: (22)

That is, the agent�s total cost of e¤ort increases when he is induced to work

harder, even though he works less intensively on the other task.19

19From (21), t0(a1) � � c1(a1;t(a1))
c2(a1;t(a1))

which in turn yields (22).
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Compare two a1 levels, a001 and a
0
1, with a

00
1 > a01. Let !

00 and !0 denote the

contract that implements a001 and a
0
1, respectively, as cheaply as possible. Since

the participation constraint binds in either case, but costs are higher when a001 is

implemented, it follows that utility from both types of rewards must be greater

under a001 than under a
0
1. That is,

M(a001j!00)N(t(a001)) �M(a01j!0)N(t(a01)):

However, since t(a001) < t(a01), the agent�s private returns are worth less when

a1 = a001. Hence, he must be compensated with higher rewards at work. Thus,

perhpas unsurprisingly, M(a001j!00) > M(a01j!0). Now, to induce an interior a1
along with a2 = t(a1) it is necessary that EU1 = 0, or

M 0(a1j!) =
c1(a1; t(a1))

N(t(a1))
:

To illustrate the main point in the simplest possible way, assume that marginal

costs, c1(a1; a2), are constant. Then,

M 0(a001j!00) =
c1

N(t(a001))
<

c1
N(t(a01))

=M 0(a01j!0):

Hence, an outsider who fails to take into account that a2 is endogenous would

conclude that the marginal return to extra e¤ort is lower the harder the agent

is induced to work.20 In other words, it looks as if the agent works harder when

given weaker explicit incentives. Corollary 1 summarizes.

Corollary 1 Assume (21) holds and that c1(a1; a2) is constant. Let !00 and !0

denote the cost-minimizing contract that implements a001 and a
0
1, respectively, with

a001 > a01. Assume a1 and t(a1) are interior for a1 = a01; a
00
1. Then, M(a

00
1j!00) >

M(a01j!0) and M 0(a001j!00) < M 0(a01j!0).

Consider now the possibility that the principal cares directly about a2 as well,

with B2 < 0. Since cost minimization is then no longer the only concern relevant

20However, if c1 is su¢ ciently steep, the conclusion thatM 0(a001 j!00) > M 0(a01j!0) is obtained.
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to which a2 to induce, the second-best action may now move into the interior of

the feasible set.21 Hence, the participation constraint may be slack.

Corollary 2 The agent may earn economic rents if B2 < 0.

The agent accrues rent due to what can be thought of as �incomplete�con-

tracting as x2 is non-veri�able. Although Corollary 2 might seem less surprising

in this light, it is interesting to note that the participation constraint is always

binding in the popular LEN model, even when allowing for private rewards. The

next subsection contrasts the model in the current paper with the LEN model.

There are many situations in which the non-contractible uncertainty is payo¤

relevant to both the agent and the principal, as assumed in Corollary 2. For

example, Holmström and Milgrom (1991) point out that a �contractor�s perfor-

mance (such as courtesy, attention to detail, or helpful advice) are unmeasurable

but are enhanced by attention [...] spent on that activity�.22 Another example

they give is when one wants to motivate �teachers to teach both basic skills and

higher-order thinking skills, but [...] higher-order thinking skills cannot be mea-

sured�. Likewise, consider a salesman who represents several companies and who

invests e¤ort ai into understanding �rm i�s product line. The quantity of �rm i�s

products that he manages to sell depends not only on ai but also on aj, i.e. on

how well he presents competing products.23 A similar story might hold for real

estate agents.

6.1 Comparison with the LEN model

The Linear-Exponential-Normal model is due to Holmström and Milgrom (1987,

1991). The agent is assumed to exhibit constant absolute risk aversion. Impor-

tantly, costs are assumed to be monetary. Thus, the agent�s Bernoulli utility is
21Note that as long as t(a1) is interior, wage costs are continuous on [a2; t(a1)] when a2 is

implementable (and on (a2; t(a1)] otherwise); see the proof of Proposition 1. Then, the principal
would prefer to induce some a2 < t(a1) if B2(a1; t(a1)) is su¢ ciently small (i.e. negative).

22Giving helpful advice may be time-consuming and thus carry with it the opportunity cost
of giving up time that could be spent pursuing private rewards.

23Although �rm i�s signal (the volume of sales) depends on aj , the model does accommodate
some such settings as described in footnote 7. For instance, let ti(a1; a2) = 2ai � aj be a
parameter in the distribution of x1, with a1; a2 2 R. Thinking of t1 and t2 as the choice variables
(such that ai = (2ti+ tj)=3), the cost function is C(t1; t2) = c((2t1+ t2)=3; (2t2+ t1)=3). It can
be veri�ed that C(t1; t2) is convex if c(a1; a2) is convex.
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u(w; a1; a2) = �e�r(w�c(a1;a2)) when he is paid w and his action is (a1; a2). Sig-
nals are assumed to be jointly normally distributed. In one interpretation of the

model, the agent�s action reduces to picking the means of these signals (the co-

variance matrix is beyond control). Finally, contracts are restricted to be linear in

the signals. Holmström and Milgrom (1987) develop a dynamic micro-foundation

for this static model which applies in some cases.

Assume there are two signals, x1 and x2. Given a contract w(x1; x2) = � +

�1x1 + �2x2, the agent�s certainty equivalent can be shown to equal

CE(a1; a2j�; �1; �2) = � + �1a1 + �2a2 � c(a1; a2) + k(�1; �2); (23)

where ai is the mean of xi, which is controlled by the agent, and where k(�1; �2)

depends on the terms in the covariance matrix but not on a1 and a2. Private

rewards that are monetary and stochastic can be incorporated by letting x2 be

non-contractible and letting �2 > 0 be an exogenous constant that measures how

rewarding the activity is. On the other hand, deterministic but non-monetary

private rewards can be modelled by �xing �2 = 0 and assuming that c(a1; a2) is U-

shaped in a2. Holmström and Milgrom (1991) utilize the latter model. However,

given the additive nature of the certainty equivalent in the LEN model, the two

models are essentially isomorphic as one may simply think of C(a1; a2) = �2a2�
c(a1; a2) as a cost function that incorporates private rewards. Thus, assume from

now on that �2 is a non-negative exogenous constant (possibly zero). Assume that

c is weakly convex such that the �rst order conditions are su¢ cient to identify an

interior maximum of the CE. Assume that c2 = �2 somewhere in the interior,

and that c12 > 0. The case where c12 < 0 yields analogous results.

Clearly, � does not in�uence incentives at all, beyond participation. One

conceptual advantage of the LEN model is that there is a simple measure of the

strength of incentives, namely �1, whereas I had to resort to usingM 0(a1j!) in the
multiplicative model. On the other hand, the principal has only one instrument

at his disposal when attempting to induce some (a1; a2) pair in the LEN model.

To complete the analysis of the LENmodel, assume for simplicity that c11c22�
c212 > 0 and c12 > 0.24 Then, there is a unique (a1; a2) pair which satis�es the

24Holmström and Milgrom (1991, Section 3) consider a version of the model where the cost
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�rst order conditions for any �xed (�1; �2). Moreover, a1 is strictly increasing in

�1, while a2 is strictly decreasing in �1.25 Two important conclusions follow:

1. for any a1 the principal might want to induce, there is exactly one imple-

mentable a2 value, and

2. there is a unique �1 coe¢ cient that implements that particular a1 value

(and its a2 companion).

The �rst property does not generally hold in the current paper. This is of

course particularly signi�cant when the principal has preferences over a2 as well.

In this case, the agent may earn economic rent in the multiplicative model, but

never in the LEN model where � is adjusted to absorb all the rent. Note also

that in the LEN model, a1 and a2 are competing in the sense that they must

necessarily move in opposite directions. In contrast, the multiplicative model

signi�es that there are environments in which the principal has greater freedom

to in�uence all dimensions of the agent�s action. In particular, it is conceivable

that a change in B(a1; a2) will lead the principal to induce the agent to work

less hard on both tasks, something that is impossible in the LEN model. In fact,

combining the two properties of the LEN model reveals that for any desired a1,

there is a unique (linear) contract that can be rationalized ��1 is determined by

incentive compatibility, � by the participation constraint. In the multiplicative

model, however, the optimal contract that implements a given a1 depends on the

principal�s preferences over a2.

The second property in particular is pertinent to the discussion of intrinsic

and extrinsic motivation. Speci�cally, the LEN model can not reproduce the

result that the same a1 can be implemented with di¤erent contracts that vary

in the strength of extrinsic incentives, at least when these are measured by the

coe¢ cient �1. An important insight of the multiplicative model is that the agent�s

e¤ort on the job is generally not only determined by the steepness of the contract;

there is an o¤setting level e¤ect.

function takes the form c(a1 + a2), in which case c11c22 � c212 = 0. The two main properties of
the LEN model identi�ed below also hold with this speci�cation.

25An exception (which violates the above assumptions) occurs when c(a1; a2) = c(a1)+ a2.
Here, the agent�s choice of a2 is independent of the contract whenever  6= �2. If  = �2, the
agent is indi¤erent between all values of a2.
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7 Discussion

In the standard single-task model, �1 > 0 implies that the principal is better o¤

if the agent (by mistake) works marginally higher than a�1 on the job. The same

is true with private rewards, though it takes slightly more e¤ort to establish it.

Proposition 2 Assume the second-best action is in the interior. Then, given
Assumptions A1�A8, the principal is (weakly) better o¤ if the agent works mar-

ginally harder than a�1, or

B1(a
�
1; a

�
2)�

Z
w(x1)g

1
a1
(x1ja�1)dx1 � 0: (24)

Proof. Given EU1(a�1; a
�
2) = 0, the adjoint equation for a1 reduces to

B1(a
�
1; a

�
2)�

Z
w(x1)g

1
a1
(x1ja�1)dx1 + �1EU11(a�1; a�2) + �2EU12(a�1; a�2) = 0: (25)

Now, substitute (10) into (25), to get�
B1(a

�
1; a

�
2)�

Z
w(x1)g

1
a1
(x1ja�1)dx1

�
+�1

EU11(a
�
1; a

�
2)EU22(a

�
1; a

�
2)� EU12(a�1; a�2)2

EU22(a�1; a
�
2)

= 0:

Recall that EU22(a�1; a
�
2) < 0. Since EU(a1; a2) is concave the numerator must be

non-negative. Then, (24) follows from �1 > 0.

Since the optimal contract is monotonic, the last term on the left hand side

in (24) is strictly positive; wage costs are higher when the agent works harder

on task a1. Hence, (24) necessitates that B1(a�1; a
�
2) > 0. That is, (a

�
1; a

�
2) can be

optimal only if the principal�s bene�t function is increasing in a1 at that point.

Although it is intuitive that �2 < 0, it is instructive to consider a thought

experiment where x2 can be contracted upon. For simplicity, think of x2 as outside

income. Then, the principal can simply appropriate the private rewards. This

is now a more or less standard moral hazard problem, in which case Kirkegaard

(2014) shows that both multipliers are strictly positive. Hence, with private

rewards, the negative multiplier is not due to the outside rewards as such, but

rather due entirely to the assumption that the rewards are secret. Recall that a

similar observation explains why the participation constraint may be slack.
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8 Conclusion

The current paper extends the canonical principal-agent model to allow the agent

to pursue private, stochastic, and possibly non-monetary rewards.

From a technical point of view, a justi�cation of the �rst-order approach

(FOA) in this setting necessitates an understanding of the basic moral hazard

problem with multi-tasking. However, multi-tasking has been largely ignored

in the literature until very recently (the LEN model being an exception). The

justi�cation of the FOA presented here thus builds upon Kirkegaard�s (2014)

analysis. As explained there, the main technical cost of allowing multi-tasking

is that outcomes from di¤erent tasks must be stochastically independent. With

this restriction in place, however, the current paper establishes additional condi-

tions under which Kirkegaard�s (2014) justi�cations extends to private rewards.

Once the required assumptions on the technology have been made to handle

multi-tasking, as identi�ed in Kirkegaard (2014), the economically signi�cant as-

sumptions are that the agent perceives outcomes and tasks to be substitutes and

that his absolute risk aversion over labor income is decreasing in the private re-

ward. It should be stressed that these assumptions appear to be rather mild. In

other words, the costs of permitting private rewards are low.

The model of private rewards presented here is fairly simple, and thus ab-

stracts away from a few potentially important complications. As just mentioned,

a key assumption is that rewards are independent. However, it is not inconceiv-

able that for example the gifts parents bestow on their children depend on the job

held by the latter. Strictly speaking, the model does not allow the distribution

of private rewards to be a direct function of the contract. However, the distri-

bution could depend on the type of profession the agent is employed in, much

in the same way that the outside option is likely to be a function of the agent�s

profession or level of education.

Although there are thus several directions in which the technical results could

conceivably be extended in future research, the current model already identi�es

important economic insights. Conceptually, �unpacking� leisure by recognizing

that rewards earned while not on the job are also endogenous reveals that the

principal manipulates the agent�s �work-life balance�through his contract design.
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Low base utility at work may entice the agent to focus more on pursuing private

rewards and so steeper incentives on the job are required to compete for the

agent�s attention. Conversely, higher base utility at work reduces the incentive

to pursue outside rewards. To an outside observer, the agent may now appear

more �intrinsically motivated� as he can be induced to work hard on the job

with �atter extrinsic incentives. In this respect, the model contributes to the

behavioral contract theory literature by o¤ering another perspective on intrinsic

versus extrinsic motivation.

Space limitations prevent a fuller exploration of the model�s potential to shed

light on other economic phenomena. One question left for future research is

whether di¤erences in the emphasis placed on private rewards by observably dif-

ferent groups, like men and women, may explain why such groups are sometimes

compensated in di¤erent ways despite only slight, if any, di¤erences in perfor-

mance. Having justi�ed the FOA provides a method for researchers to explore

this and other questions in the future. The multiplicative model in particular is

quite tractable, yet richer than the LEN model. Finally, understanding contract-

ing under private rewards represents a necessary �rst step in a longer-horizon

endeavour to analyze common agency under various informational assumptions.

Kirkegaard (2015) explores some �rst implications of the model in this regard.
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Appendix

Proof of Proposition 1. Fix an implementable (a1; a2) pair where the partic-

ipation constraint is slack, or a2 2 [a2; t(a1)). Formulate the cost-minimization
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problem that derives the cheapest contract that induces (a1; a2) subject only to

the incentive compatibility constraints that EU1 = EU2 = 0, i.e.

max
w

�
�
Z
w(x1)g1(x1ja1)dx1

�
(26)

st: EUi(a1; a2) = 0, i = 1; 2:

By assumption, the optimal contract involves only interior wages. As established

in Section 5.2, the contract is monotonic and the multiplier to the �rst constraint

is strictly positive, �1 > 0, even if (a1; a2) is not a second-best action (see the para-

graph before Assumption A6�). Given the assumptions in any of Theorems 1�3,

the agent�s expected utility is thus concave. Thus, the local incentive compatibil-

ity constraints are su¢ cient. Stated di¤erently, in the multiplicative model the

above problem correctly identi�es the cheapest contract that implements (a1; a2),

even if (a1; a2) is not second-best. Hence, (26) identi�es �C(a1; a2).
The Envelope Theorem implies that a marginal change in a2 causes�C(a1; a2)

to change by �1EU12+�2EU22, where EU12; EU22 < 0 and �1 > 0 > �2.
26 Thus,

wage costs decrease if �1 is small compared to �2. Intuitively, since a1 and a2 are

substitutes, an increase in a2 makes it harder to satisfy the incentive compatibility

constraint that EU1 � 0. On the other hand, the constraint that EU2 � 0 is

easier to satisfy, since the agent�s problem is concave in a2.

Next, Jewitt�s (1988) famously elegant proof that �1c1 > 0 in the standard

single-task model is modi�ed to establish that

�1c1(a1; a2) + �2c2(a1; a2) < 0

in the multiplicative model, whenever the participation constraint is slack. This

inequality bounds �1 relative to �2. Since EU1 = 0, M
0(a1)N(a2)� c1(a1; a2) = 0

or Z
m(w(x1))�1l

1
a1
(x1ja1)g1(x1ja1)dx1N(a2) = �1c1(a1; a2):

Borrowing a trick from Jewitt (1988), solve (17) for �1l
1
a1
, keeping in mind that

26As mentioned, �1 > 0. Since the participation constraint is slack and thus ignored, � = 0.
Then, (17) would be violated for some x1 unless �2 < 0.
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now � = 0. Rewriting the above yieldsZ
m(w(x1))

�
1

m0(w(x1))
� �2N 0(a2)

�
g1(x1ja1)dx1 = �1c1(a1; a2):

Since EU2 = 0, or N 0(a2) =
c2(a1;a2)
M(a1)

,

Z
m(w(x1))

m0(w(x1))
g1(x1ja1)dx1 = �1c1(a1; a2) + �2

Z
m(w(x1))

c2(a1; a2)

M(a1)
g1(x1ja1)dx1

= �1c1(a1; a2) + �2c2(a1; a2).

Since m is negative and increasing, the left hand side is negative. In summary,

�2c2(a1; a2) < ��1c1(a1; a2) < 0.

By the Envelope Theorem, a small increase in a2 reduces costs by

�1EU12 + �2EU22 = �1 [M
0(a1)N

0(a2)� c12] + �2 [M(a1)N 00(a2)� c22]

= �1

�
c1

N(a2)
N 0(a2)� c12

�
+ �2

�
c2

N 0(a2)
N 00(a2)� c22

�
= �1c1

�
N 0(a2)

N(a2)
� c12
c1

�
+ �2c2

�
N 00(a2)

N 0(a2)
� c22
c2

�
> �1c1

�
N 0(a2)

N(a2)
� c12
c1

�
� �1c1

�
N 00(a2)

N 0(a2)
� c22
c2

�
= �1c1(a1; a2)

N 0(a2)

N(a2)

c2(a1; a2)

c1(a1; a2)

@

@a2

�
c2(a1; a2)

c1(a1; a2)

N(a2)

N 0(a2)

�
> 0;

where the second equality uses EU1 = EU2 = 0. The �rst inequality uses the

bound on �2c2 derived earlier, combined with the fact that the term in the last

bracket is negative. The second inequality invokes (21). Thus, costs are strictly

decreasing on a2 2 [a2; t(a1)). The solution to the stated cost-minimization prob-
lem is continuous in a2, and hence a2 = t(a1) is the cheapest way of inducing a1
on [a2; t(a1)]. Incidentally, the solution to the stated cost-minimization problem

may even over-estimate the cost at a2 = t(a1). The reason is that if t(a1) = a2,

the constraint that EU2 = 0 can be replaced by the weaker EU2 � 0. In other
words, implementation costs need not be continuous at t(a1).
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