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Abstract: Integrated Assessment Models (IAMs) require parameterization of both economic 
and climatic processes. The latter includes Equilibrium Climate Sensitivity (ECS), or the 
temperature response to doubling CO2 levels, and Ocean Heat Uptake (OHU) efficiency. ECS 
distributions in IAMs have been drawn from climate model runs that lack an empirical basis, 
and in Monte Carlo experiments may not be constrained to consistent OHU values. Empirical 
ECS estimates are now available, but have not yet been applied in IAMs. We incorporate a 
new estimate of the ECS distribution conditioned on observed OHU efficiency into two 
widely-used IAMs. The resulting Social Cost of Carbon (SCC) estimates are much lower than 
those from models based on simulated parameters. In the DICE model the average SCC falls 
by 30-50% depending on the discount rate, while in the FUND model the average SCC falls by 
over 80%. The span of estimates across discount rates also shrinks substantially.  
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1 INTRODUCTION 
Integrated Assessment Models (IAMs) emerged in the 1990s and have become central to the 

analysis of global climate policy, especially for estimating the social cost of carbon (SCC)1 or the 

marginal damages of an additional unit of carbon dioxide (CO2) emissions. A particularly influential 

application has been through the US InterAgency Working Group (IWG 2010, 2013) which 

estimated SCC rates for use in US climate and energy regulations. IAMs operate at a high level of 

abstraction and require extensive parameterization of both climatic and economic processes. 

Among the economic parameters, the most influential are the discount rate and the coefficients of 

the damages function (Marten 2011). A key climate parameter is equilibrium climate sensitivity 

(ECS), which represents the long term temperature change from doubling atmospheric CO2. It is 

either included explicitly or implicitly in the IAM functions determining temperature responses to 

CO2 accumulation.  

Optimal SCC estimates depend strongly on the damage function, which in turn is strongly 

influenced by the ECS parameter (e.g. Webster et al 2008, Ackerman et al. 2010, Wouter Botzen and 

van den Bergh 2012). ECS uncertainty has multiple dimensions, beginning with the wide range of 

point estimates within the major IAMs (van Vuuren et al. 2011). The interaction between ECS and 

ocean heat uptake (OHU) efficiency is an important but largely-overlooked source of uncertainty 

because it affects the time-to-equilibrium which affects SCC estimates via the role of discounting 

(Roe and Bauman 2013; see below). A number of authors have studied how quickly ECS uncertainty 

                                                             

1 Various reviews of IAMs exist, each highlighting or criticizing different aspects, such as Parson and 

Fisher-Vanden (1997), Stanton et al. (2009) and Pindyck (2013).  
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may be reduced over time via Bayesian learning as new information become available (Kelly and 

Kolstand 1999, Leach 2007). Interestingly, Webster et al (2008) find that learning is slowest in the 

low ECS case while Urban et al. (2014) find it slowest in the high ECS case, with the difference being 

due to the role of OHU efficiency.2     

IWG (2010, 2013) represented ECS uncertainty by modifying three standard IAMs3  to include a 

probability density function (PDF) parameterized to fit a range of estimates from climate modeling 

simulations, which then gave rise to a distribution of marginal damages. The choice of ECS 

distribution can strongly influence the average SCC if it has a large upper tail, which pulls up both 

the median and mean values. The IWG  used a PDF from a graph in Roe and Baker (2007, herein 

RB07) which does have a long upper tail. RB07 was an exploration of why uncertainties over ECS 

have not been reduced despite decades of effort, with the explanation centering on the amplified 

effect of uncertainties in the value of the climate feedback parameter f on final temperatures, due to 

its position in the denominator of the equation for ECS. To illustrate the point they fitted a curve to 

a small selection of ECS estimates published between 2003 and 2007, yielding an ECS curve that 

                                                             

2 The representation of uncertainty itself can introduce uncertainty. Crost and Traeger (2013) argue that 

averaging Monte Carlo runs of deterministic models rather than using a stochastic dynamic programming 

(SDP) framework yields inaccurate and potentially incoherent results. But Traeger (2014) finds that applying 

SDP in the DICE framework causes problems of dimensionality which necessitate introducing new 

simplifications elsewhere, including in the representation of OHU efficiency.   

3 The three IAMs are called DICE (Nordhaus 1993), FUND (Tol 1997) and PAGE (Hope 2006).  
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had a long upper tail even though there was no unbounded source of uncertainty in the underlying 

model.  

The reliance by IWG on RB07 is questionable for two reasons. First, as Roe and Bauman (2013) 

pointed out, the distribution in RB07 was not directly applicable in the context of IAM simulations 

because the wideness of the tails is a function of the time span to equilibrium, which depends 

heavily on the assumed OHU efficiency, and the time span associated with the fat upper tail is not 

relevant to SCC calculations. In the real world, CO2 doubling is not instantaneous, the transition to a 

new equilibrium state is exceedingly slow, and the oceans absorb huge amounts of heat along the 

way depending on OHU efficiency. In simplified climate models, time-to-equilibrium goes up with 

the square of ECS, so an upward adjustment of the ECS parameter outside the range consistent with 

the assumed OHU efficiency parameter can yield distorted present value damage estimates. In 

particular, the higher the ECS, the slower the adjustment process, making the fat upper tail of 

realized warming physically impossible for even a thousand years into the future (Roe and Bauman 

2013, p. 653). An ECS distribution applicable to the real world must therefore be conditioned on a 

realistic OHU efficiency estimate.  

Second, RB07 predated a large literature on empirical ECS estimation. As was common at the 

time, they fitted a distribution to a small number of simulated ECS distributions derived from 

climate models. It is only relatively recently that sufficiently long and detailed observational data 

sets have been produced to allow direct estimation of ECS using empirical energy balance models. A 

large number of studies have appeared since 2010 estimating ECS on long term climatic data (Otto 

et al. 2013, Ring et al. 2012, Aldrin et al. 2012, Lewis 2013, Lewis & Curry 2015, Schwartz 2012, 

Skeie et al 2014, Lewis 2016, etc.). This literature has consistently yielded median ECS values near 
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or even below the low end of the range taken from climate model studies. General circulation 

models (GCMs) historically yielded sensitivities in the range of 2.0 – 4.5 oC, and (based largely on 

GCMs) RB07 yields a central 90 percent range of 1.72 – 7.14 oC with a median of 3.0 oC and a mean 

of 3.5 oC (see comparison table in IWG 2010, p. 13). But the median of recent empirical estimates 

has generally been between 1.5 and 2.0 oC, with 95% uncertainty bounds below the RB07 average.  

This inconsistency has attracted growing attention in the climatology literature (Kummer and 

Kessler 2014, Marvel et al. 2015). It is also discussed in the documentation for Nordhaus’ DICE 

model4 where it is cited as a reason for a slight downward revision in the ECS parameter. However, 

that change was based on early evidence published prior to 2008, whereas all the studies discussed 

herein were published after 2010.  

For the most part, however, the inconsistency between empirical and model-simulated ECS 

estimates has been ignored in the climate economics literature. But, as we will show herein, it has 

potentially massive policy implications. We replicate the IWG’s SCC estimates using the EPA’s 

modified versions of two IAMs (FUND and DICE),5 then we re-do the calculations using an 

observational ECS distribution from a recent study (Lewis and Curry 2015, herein LC15) that 

controls for observed OHU efficiency, thereby yielding an empirically-constrained climate 

sensitivity distribution. The resulting SCC values drop dramatically compared to those reported in 

                                                             

4 See http://aida.wss.yale.edu/~nordhaus/homepage/documents/DICE_Manual_100413r1.pdf pp. 17-

18. 

5 We did not use a third model, PAGE, because its code is unavailable for independent usage.  

http://aida.wss.yale.edu/~nordhaus/homepage/documents/DICE_Manual_100413r1.pdf
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the IWG (2010, 2013). Using DICE with the model-based RB07 ECS distribution at a 3 percent 

discount rate yields a mean SCC for the year 2020 of $37.73, in line with the IWG estimates that 

currently guide US policymaking. Substituting the empirical ECS distribution from LC15 yields a 

mean 2020 SCC of $19.52, a drop of 48%.  The same exercise using FUND yields a mean SCC 

estimate of $19.33 based on RB07 and $3.33 based on the LC15 parameters—an 83% decline. 

Furthermore the probability of a negative SCC (implying CO2 emissions are a positive externality) 

jumps dramatically using an empirical ECS distribution. Using the FUND model, which allows for 

productivity gains in agricultural and forestry from higher temperatures and elevated CO2, under 

the RB07 parameterization at a 3% discount rate there is only about a ten percent chance of a 

negative SCC through 2050, but using the LC15 distribution, the probability of a negative SCC jumps 

to about 40%. Remarkably, in the FUND model, replacing simulated climate sensitivity values with 

an empirical distribution calls into question whether CO2 is even a negative externality. The lower 

SCC values also cluster more closely together across difference discount rates, diminishing the 

importance of this parameter. 

The paper proceeds as follows. Section 2 explains the roles of ECS and OHU parameterization in 

climate submodels, and reviews the empirical literature over the past half-decade.  Section 3 

presents SCC calculations using DICE and FUND, and Section 4 presents conclusions.  

2 IAM PARAMETERIZATION 
ECS is defined as the average increase in temperatures around the world as a result of CO2 

doubling, after the deep ocean has adjusted to the increased forcing. While data on historical 

temperatures and CO2 concentrations are available, it is not straightforward to estimate ECS 
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empirically. Rising levels of CO2 and other greenhouse gases must be translated into units of 

“radiative forcing” which maps their effect on radiation into a common measure by which the 

effects of all types of drivers of climate change on temperature change may be compared. The 

warming effect of CO2 and other greenhouse gases is partially offset by the potential cooling effect 

of aerosols which are sometimes released by the same processes responsible for CO2. However, 

compared to the warming effect of CO2, the direct and indirect aerosol cooling effects, and the 

related negative aerosol forcing, are much more uncertain and difficult to quantify, in part because 

of their interactions with cloud formation (IPCC 2013 ch. 8, Kiehl 2007, Schwartz et al 2007). Hence 

there is a range of possible forcing values consistent with the historical CO2 record, based on how 

strong the offsetting aerosol forcing is taken to be.  

If cooling by aerosol forcing is strongly negative, it will offset much of the positive, warming, 

forcing from greenhouse gases; if it is weak it will offset little of it. The net forcing, in turn, affects 

temperature according to the magnitude of ECS. Since the historical temperature record is fixed, 

there must be an offsetting relationship between ECS and estimated forcing: for a given 

temperature change, greater net historical forcing implies lower ECS and vice-versa. This inverse 

relationship is reflected across the suite of climate models. For instance, models that translate 

historical greenhouse gas and aerosol levels into a relatively strong positive forcing must have 

lower ECS, etc. (Kiehl 2007).  

The treatment within a model of OHU efficiency also affects the ECS that corresponds to 

observed warming. The higher OHU efficiency is, and thus the larger the amount of heat 

sequestered in the oceans over the past century, the more the historical climate record understates 

the total amount of warming that will ultimately occur (Roe and Bauman 2013). Consequently, 
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estimates of ECS for use in real-world policy simulations need to make use of information on 

aerosol forcing and OHU efficiency as well as CO2 and temperature records. The problem with 

inserting into IAMs an ECS distribution fitted to data generated by unconstrained climate models is 

that the range of values is not necessarily consistent with the scenario time span as represented in 

the IAM. The spread of model ECS measures taken in isolation may be misleading if applied in an 

IAM without simultaneously adjusting the IAM’s OHU efficiency estimates or, if the OHU parameters 

are held fixed, limiting the ECS values to a range consistent with those values.  

The latter approach is implicit when an empirical energy balance model is estimated using 

historical aerosol forcing and ocean heat content estimates to condition the ECS distribution. This is 

the approach taken in LC15. They used the 1750-2011 forcing and OHU estimates from the then-

most recent IPCC report (IPCC 2014), yielding a median ECS of 1.64 oC and a 5—95 % uncertainty 

range of 1.05 – 4.05 oC. This is in line with empirical estimates from Otto et al. (2013), Ring et al. 

(2012), Aldrin et al. (2012) and Lewis (2013), but is in clear contrast to the customary IAM 

parameterization using RB07, since the central value in LC15 falls below the 5% lower bound of the 

ECS distribution used in IWG (2010, 2013). Not surprisingly, this implies that empirically 

unconstrained SCC estimates are skewed too high.  

One proposal for resolving the discrepancy between model-based and empirical ECS estimates 

is to use so-called “efficacies” to adjust forcing values for different feedback responses (Kummer 

and Dessler, 2014, Marvel et al. 2015). The underlying argument is that two different types of 

climate forcing agents, each with equivalent initial forcing, may still generate different eventual 

temperature impacts, particularly if they are not well-mixed and the spatial variation induces 

differing local feedbacks. Hansen (2005) introduced the term “efficacy” to capture this concept, 



[9] 

 

with the unit of measurement a ratio of overall temperature response to that of CO2. If a species of, 

say, greenhouse gas has an efficacy of 1.5 this means that if its atmospheric concentration were to 

increase by an amount corresponding to the same additional effective radiative forcing (ERF) as a 

doubling of CO2 levels, the eventual temperature response would be 1.5 times larger, due to the 

different feedback processes involved. Hansen (2005) found in GCM simulations that most 

efficacies were close to unity so the spatial and other variations did not matter much at the global 

level. Marvel et al. (2015) analyse simulated data from a different model (GISS-E2-R) and found that 

aggregate efficacy of forcings operating over the historical period was below one, due inter alia to 

aerosol forcing (which is negative) having a high efficacy. They argued that this meant empirical 

estimates of ECS were biased down. However, Marvel et al. mistakenly left out land-use forcing, and 

their revised uncertainty bounds are so wide that most single-forcing efficacies for ERF encompass 

unity (Marvel et al. 2016 Table S1), though the aggregate efficacy remained below unity.  More 

generally, Marvel et al. (2015) is a study of the behavior of a particular GCM, and it has not been 

established whether forcing efficacy differences among climate models translates into empirically-

relevant real-world effects. Otto et al. (2013), for instance, used forcing estimates that implicitly 

incorporated efficacy variations and they obtained an ECS distribution nearly identical to that in 

LC15.  

3 SCC CALCULATIONS USING EMPIRICAL PARAMETERS 
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We obtained the code for DICE and FUND6 as used for the IWG (2010, 2013) studies from the US 

Environmental Protection Agency. We first replicated the SCC estimates that would have been used 

in IWG (2013) from both the DICE and FUND models based on the RB07 ECS distribution. The 

damage paths are contingent on the emissions scenarios so five scenarios are used and the results 

are averaged.7 As we did not include the PAGE model in our work (due to the unavailability of the 

code) we cannot directly compare our results with the IWG tables since they are averaged over all 

three models. IWG (2013) Table A5 lists separate results for FUND and DICE for 2020 and we were 

able to check our results against those. Since the calculations are probabilistic it is not guaranteed 

that we will reproduce the exact SCC estimates as shown in IWG (2013), but our replication is quite 

close.  Table 1 shows the DICE and FUND SCC estimates for 2020 compared with our replications 

(“Repl”) for three discount rates. Apart from a slight under-estimation of the FUND results under 

the lower discount rates  the match is extremely good.  

3.1 DICE MODEL 
Table 2 shows the mean SCC estimates for four discount rates, applying the RB07 and LC15 ECS 

distribution to the DICE model. The final row shows the percentage change for the 2020 estimates 

(all years exhibit about the same percentage changes). Under the widely-used RB07 distribution, 

the SCC ranges from $3.88 to $89.26 depending on the discount rate and the future year. Under the 

                                                             

6 Model authors’ source code is available at http://www.econ.yale.edu/~nordhaus/homepage/  (DICE) 

and http://www.fund-model.org/ (FUND). We are grateful to the EPA for providing us with the MATLAB code 

they used which contains the modifications for the IWG analysis.  

7 The scenarios are called Image, Merge Optimistic, Message, MiniCAM, and 5th Scenario.  

http://www.econ.yale.edu/~nordhaus/homepage/
http://www.fund-model.org/
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LC15 parameter distributions the SCC ranges from $2.39 to $46.00. For the year 2020 the largest 

proportional drop—nearly 50 percent—is observed in the low discount rate case. The high 

discount rate case yields a drop of just under 40 percent.  

These reductions are primarily due to the LC15 distribution containing a smaller upper tail and 

therefore greater probability mass at lower temperatures. Table 3 shows the average standard 

deviations of the two sets of estimates.  The largest reduction, about 24 percent, again occurs at the 

lowest discount rate, compared to only seven percent at the highest discount rate. The LC15 

distribution provides uniformly more certainty for the SCC for all years and all discount rates.  

These results are in line with previous research performing similar computations by applying the 

Otto et al (2013) ECS distribution in the DICE model (Dayaratna and Kreutzer 2013). 

3.2 FUND MODEL 
Tables 4 and 5 present the same results as Tables 2 and 3, but for the FUND model. A number of 

differences are notable. The mean SCC estimates are lower under both parameterizations, and 

under the empirical LC15 coefficients they are, on average, mostly negative at 5 percent or higher 

discount rates out past 2030. A negative value implies that carbon dioxide emissions are a positive 

externality, so that an optimal policy would require subsidizing emissions. Also, in contrast to the 

DICE model, use of the LC15 coefficients increases the average standard deviation, indicating higher 

uncertainty compared to the RB case.8 The increased uncertainty includes a much larger lower tail, 

                                                             

8 ECS is the only stochastic parameter in DICE so the reduction in variance between RB07 and LC15 leads 

automatically to a corresponding reduction in the SCC variance. By contrast, dozens of parameters in FUND 
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implying a larger probability of a negative SCC. DICE is constrained to a single quadratic global 

damage function so damages cannot be negative regardless of temperature change. FUND allows 

the gains for regions that benefit from moderate warming to potentially outweigh the costs in other 

regions so some scenarios can yield negative net costs at the global level. Table 6 shows that, under 

the RB07 parameterization, at a 2.5 percent discount rate the probability of carbon dioxide 

emissions being a positive externality is only 7.1 percent in 2050. But using the LC15 parameters 

this probability jumps to over 35 percent.  

Figure 1 shows frequency histograms of SCC calculations for the Merge Optimistic scenario at 

2.5 percent discounting as of 2030. The height of each bar is equal to the probability of selecting an 

observation within that bin interval, and the height of all of the bars sums to 1.  The bin width for 

RB07 is 5, the bin width of LC15 is 3. Comparing the top and bottom panels we see that model 

simulation of ECS introduces uncertainty not found in observations by creating an extended upper 

tail.  

These results are in line with previous simulations using other ECS distributions that have 

smaller upper tails than RB07, namely Otto et al (2013) and Lewis (2013); see Dayaratna and 

Kreutzer (2014).   

Figure 2 summarizes the calculations by comparing the mean of DICE- and FUND-computed SCC 

values from 2010 to 2050 at a 3 percent discount rate using the simulated (black, upper line) and 

                                                                                                                                                                                                    

are stochastic so reduction in the mean and variance of ECS interacts in a more complex way with the rest of 

the model. The net effect, as shown is to increase the spread of SCC estimates.  
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the empirical (gray, lower line) ECS values. As of 2050 the empirically-constrained value ($18.87) is 

still below the 2010 value ($23.47) based on simulated ECS.   

4 DISCUSSION AND CONCLUSION 
Model-based ECS distributions are misleading for use in SCC calculations because they are not 

conditioned on OHU efficiency rates relevant to IAM timelines and because they are skewed high 

relative to the current empirical evidence. The model-observational discrepancy in ECS estimation 

is not attributable simply to a specific empirical methodology, as similar results have been found by 

Otto et al. (2013), Ring et al. (2012), Aldrin et al. (2012) and others using a variety of methods. Nor 

is it an artifact of selecting a specific estimation period, as LC15 showed their results were robust to 

numerous variations on the choice of base and final periods (LC15, Table 4).  

We incorporated the Lewis and Curry (2015) ECS distribution, which is conditioned on updated 

forcings and OHU data, into the DICE and FUND models. This reduces the estimated Social Cost of 

Carbon in both, regardless of discount rates. Using a 3 percent discount rate and the RB07 ECS 

distribution, DICE yields an average SCC ranging from about $30 to $60 between now and 2050, but 

this falls in half to the $15 to $30 range using the LC15 ECS estimate. The corresponding average 

SCC in FUND falls from the $17 to $27 range to the $3 to $5 range. Moreover FUND, which takes 

more explicit account of potential regional benefits from CO2 fertilization and increased agricultural 

productivity, yields a substantial (about 40 percent) probability of a negative SCC through the first 

half of the 21st century, putting into question whether CO2 is even a net social cost or benefit. 

A further way in which use of empirically-constrained parameters reduces uncertainty is the 

shrinking of the SCC range across discount rates. In the DICE model under the RB07 
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parameterization, the mean SCC estimates span about $50 as of 2010 depending on choice of 

discount rate, with the span rising to about $80 as of 2050. This span shrinks to the $20 to $40 

range under the LC15 parameterization. Using the FUND model, the uncertainty range associated 

with the choice of discount rate is  from about $30 to $40 under the RB07 parameterization, falling 

to $4 to $8 range under the LC15 parameterization. Thus, use of well-constrained empirical 

parameters makes a substantial contribution also to reducing uncertainty associated with the 

choice of discount rate.  
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6 TABLES 
 

 

 2.5%  3.0%  5.0% 
 IWG Repl  IWG Repl  IWG Repl 
DICE $57 $57  $38 $38  $12 $12 
FUND $36 $33  $21 $19  $3 $3 

Table 1: Replication of IWG (2013) SCC estimates for DICE and FUND models for 2020, under three 
discount rate assumptions. Replications done herein denoted “Repl”.  
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 Mean Social Cost of Carbon – DICE Model 

 Using Simulated ECS  Using Empirical ECS 

Discount rates 2.50% 3.00% 5.00% 7.00%  2.50% 3.00% 5.00% 7.00% 

2010 $46.87 $29.96 $8.62 $3.88  $23.72 $15.50 $4.91 $2.39 

2020 $57.34 $37.73 $11.85 $5.66  $29.07 $19.52 $6.70 $3.43 

2030 $67.13 $45.18 $15.04 $7.43  $34.20 $23.45 $8.48 $4.47 

2040 $77.82 $53.45 $18.74 $9.53  $39.86 $27.84 $10.56 $5.71 

2050 $89.26 $62.38 $22.90 $11.94  $46.00 $32.65 $12.90 $7.13 
 
% Chg at 2020     

 
-49.3% -48.3% -43.5% -39.3% 

Table 2: Mean Social Cost of Carbon estimates by year under four discount rates from the DICE 
Model, for both the simulated (RB07) and empirical (LC15) ECS distributions. Last row shows the 
percent change as of 2020.  
 

 

 Average Standard Deviation – DICE Model 

 Using Simulated ECS  Using Empirical ECS 

Discount rates 2.50% 3.00% 5.00% 7.00%  2.50% 3.00% 5.00% 7.00% 

2010 $25.73 $14.88 $3.28 $1.15  $19.34 $11.36 $2.72 $1.09 

2020 $31.29 $18.74 $4.59 $1.75  $23.74 $14.32 $3.78 $1.62 

2030 $36.64 $22.62 $6.00 $2.41  $27.97 $17.17 $4.83 $2.17 

2040 $42.22 $27.00 $7.79 $3.25  $32.61 $20.26 $6.06 $2.86 

2050 $47.71 $31.00 $9.82 $4.25  $37.51 $23.64 $7.50 $3.64 
 
% Chg at 2020     

 
-24.2% -23.6% -17.6% -7.4% 

Table 3: Average standard deviation of SCC estimates by year under four discount rates from the 
DICE Model, for both the simulated (RB07) and empirical (LC15) ECS distributions.  Last row shows 
the percent change as of 2020.   
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 Mean Social Cost of Carbon – FUND Model 

 Using Simulated ECS  Using Empirical ECS 

Discount rates 2.50% 3.00% 5.00% 7.00%  2.50% 3.00% 5.00% 7.00% 

2010 $29.69 $16.98 $1.87 -$0.53  $5.25 $2.78 -$0.65 -$1.12 

2020 $32.90 $19.33 $2.54 -$0.37  $5.86 $3.33 -$0.47 -$1.10 

2030 $36.16 $21.78 $3.31 -$0.13  $6.45 $3.90 -$0.19 -$1.01 

2040 $39.53 $24.36 $4.21 $0.19  $7.02 $4.49 -$0.18 -$0.82 

2050 $42.98 $27.06 $5.25 $0.63  $7.53 $5.09 $0.64 -$0.53 
 
% Chg at 2020     

 
-82.2% -82.8% -118.5% -197.3%* 

Table 4: Mean Social Cost of Carbon estimates by year under four discount rates from the FUND 
Model, for both the simulated (RB07) and empirical (LC15) ECS distributions. Last row shows the 
percent change as of 2020. * Change from -$0.37 to -$1.10 is, arithmetically, a positive number, but 
is shown here as negative to indicate that it is a change to a larger negative magnitude. 

 

 

 Average Standard Deviation – FUND Model 

 Using Simulated ECS  Using Empirical ECS 

Discount rates 2.50% 3.00% 5.00% 7.00%  2.50% 3.00% 5.00% 7.00% 

2010 $64.24 $31.45 $5.19 $2.24  $67.60 $42.54 $8.07 $2.52 

2020 $32.90 $35.68 $6.28 $2.79  $80.17 $52.61 $11.27 $3.51 

2030 $36.16 $40.24 $7.48 $3.40  $93.86 $64.26 $15.69 $5.02 

2040 $39.53 $45.14 $8.78 $4.05  $108.03 $77.23 $21.75 $7.37 

2050 $42.98 $50.31 $10.22 $4.76  $121.20 $90.55 $29.76 $11.04 
 
% Chg at 2020     

 
+143.7% +47.4% +71.2% +25.8% 

Table 5: Average standard deviation of SCC estimates by year under four discount rates from the 
FUND Model, for both the simulated (RB07) and empirical (LC15) ECS distributions. Last row 
shows the percent change as of 2020.   
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 Probability of Negative Social Cost of Carbon – FUND Model 

 Using Simulated ECS  Using Empirical ECS 

Discount rates 2.50% 3.00% 5.00% 7.00%  2.50% 3.00% 5.00% 7.00% 

2010 0.087 0.121 0.372 0.642  0.416 0.450 0.601 0.730 

2020 0.084 0.115 0.344 0.601  0.402 0.432 0.570 0.690 

2030 0.080 0.108 0.312 0.555  0.388 0.414 0.536 0.646 

2040 0.075 0.101 0.282 0.507  0.371 0.394 0.496 0.597 

2050 0.071 0.093 0.251 0.455  0.354 0.372 0.456 0.542 
Table 6: Probability of a negative Social Cost of Carbon under four discount rates in the FUND 
Model. 
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7 FIGURES 
 

 

 
Figure 1. Frequency histograms of SCC computations in FUND under different ECS distributional 
assumptions. Top panel: Using MERGE ‘Optimistic’ scenario with 2.5 percent discount rate, as of 
2030, SCC rate on horizontal axis and number of times observed on vertical axis, ECS follows Roe-
Baker (2007) distribution. Bottom panel: same but ECS follows Lewis-Curry (2015) distribution.  
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Figure 2. Social Cost of Carbon Estimates, 2010 – 2050, average of DICE and FUND models applying 
a 3 percent discount rate. Top (black) line using simulated ECS parameter distribution. Bottom 
(gray) line using empirical ECS parameter distribution.  
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