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Abstract: This paper makes two contributions to the economics of pollution policy. 
First, many studies have looked at the effects of emission taxes in the absence of 
regulations and vice versa, but the implications for optimal tax design when one is 
layered on top of the other have been ignored, even though the practice is 
commonly observed. I develop a model of multiple polluting sectors capable of 
providing a tractable characterization of this case. Second, numerical modeling has 
shown that tax interactions can yield a positive damage threshold below which any 
emission tax is welfare-reducing even if marginal damages are positive, but this has 
largely been ignored in both the theoretical and policy literatures. I show that a 
positive damage threshold occurs when the policy is not revenue-raising and/or the 
rest of the tax system is not optimized, but can also occur in a second-best context 
with optimal taxes and full revenue-recycling, a result not previously shown. 
Introducing a pollution tax when one firm is already subject to an emissions 
constraint yields a positive damage threshold that goes up, the more the regulation 
distorts the income tax base. Hence, under more general conditions than have 
previously been realized, pollution taxes are not guaranteed to raise welfare even 
when marginal damages are positive and revenues are fully recycled. 
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1 INTRODUCTION 
A large literature has shown that the classical Pigovian prescription of an emissions tax 𝜏 equal 

to the marginal damages (MD) of pollution emissions holds only under very limited conditions and 

otherwise must be modified to take into account interactions with the rest of the tax system and 

other real-world considerations. The variations are of the form 𝜏 = 𝑎𝑀𝐷 − 𝑏 where a and b are 

coefficients that depend on the characteristics of the rest of the economy. Sandmo (1975) analyzed 

a consumption-based externality in a second-best economy in which the government revenue 

requirement and the no lump-sum tax rule necessitates positive ad valorem commodity and income 

taxes. He showed that, after certain simplifications, 𝑏 = 0 and a equals the inverse of the marginal 

cost of public funds (MCPF). Bovenberg and Goulder (1996) derived the same result in a model 

where a polluting intermediate input is taxed. Numerous other authors have explored these issues 

under similar specifications with comparisons to Command-and Control (CAC) regulations or 

tradable quotas (Bovenberg & de Mooij 1994, Fullerton & Metcalfe 1997, Parry 1997, Parry et al. 

1999, Goulder 1998, Metcalfe 2003, Schöb 2003). A common finding is that the welfare gain from 

reducing a pollution externality is at least partly offset by welfare losses from increased distortions 

in the tax system so the pollution tax should be less than the Pigovian level (𝑎 < 1). Revenue-

raising instruments (taxes and auctioned permits) allow for reductions in other taxes, making non 

revenue-raising policies like tradable quotas and CAC regulations more costly by comparison.  

Theoretical treatments, such as Sandmo (1975), Bovenberg and Goulder (1996) and Schöb 

(2003), tend to yield results characterized by the combination (𝑎 < 1, 𝑏 = 0), in which the tax 

interaction and revenue-recycling effects go to zero when the emission tax is zero so that a small 

emission tax must improve welfare as long as 𝑀𝐷 > 0. Bovenberg and Goulder (1996) also 

presented numerical simulations of carbon taxes in the US economy and found cases where 𝑏 > 0, 
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implying the existence of a positive net distortion at the unregulated emission level, such that even 

if MD were positive but below the threshold value 𝑍 = 𝑏/𝑎 the optimal carbon tax would be zero. 

This arose in cases in which the rest of the tax system is assumed not to be optimal and/or the 

emissions policy is non-revenue raising, such as with tradable quotas. In these cases an optimal tax 

perturbation may involve increasing factor taxes and subsidizing the polluting good. Adding a non-

negativity constraint on the emissions tax then creates the discontinuity at the unregulated 

emissions level, which implies the first unit of abatement has a strictly positive welfare cost. The 

size of the threshold was policy-dependent, but in the case of tradable quotas was large enough to 

dwarf many estimates of the current social cost of carbon (SCC) (Inter-Agency Working Group 

2013), implying that any non-revenue raising carbon dioxide emission reduction policy is welfare-

reducing. Parry et al. (1999), Goulder (1998), and Goulder (2013) discussed this point further, 

emphasizing that it arises under non-revenue-raising policies because the tax interaction costs are 

not offset by benefits from revenue-recycling.  

The various outcomes are summarized in Figures 1 and 2. In Figure 1 the MD line is assumed to 

be horizontal, the line labeled 𝑀𝐴𝐶𝑝 denotes private marginal abatement costs, or marginal profits 

of emissions, and the horizontal intercept �̅� is the unregulated emissions level. The classical 

Pigovian emissions tax is 𝜏𝑃, and the associated optimal emissions level, where 𝑀𝐷 = 𝑀𝐴𝐶𝑃, is 

denoted by 𝐸𝑃 . The Sandmo rule is shown as the tax rate 𝜏1 = 𝑎𝑀𝐷 where 𝑎 = 𝑀𝐶𝑃𝐹−1 and the 

associated emissions level is 𝐸1. An alternative representation of this case would involve, instead of 

deflating the MD line, rotating the 𝑀𝐴𝐶𝑝 line up to 𝑀𝐴𝐶𝑠, which denotes social marginal abatement 

costs, namely 𝑀𝐴𝐶𝑝 plus the welfare costs of tax interaction effects net of revenue-recycling 

benefits. The rotation implies that the social costs of the policy go to zero as the emission fee goes 
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to zero. The optimal emissions level is where 𝑀𝐷 = 𝑀𝐴𝐶𝑠 which is at 𝐸1, and since firms respond to 

a tax according to 𝑀𝐴𝐶𝑝, the corresponding price is 𝜏1. 

Figure 2 illustrates the case if the rest of the tax system is non-optimal and/or the emissions 

policy is non-revenue raising. Then 𝑀𝐴𝐶𝑝 undergoes both a rotation and a translation out to the 

new 𝑀𝐴𝐶𝑠. If negative pollution taxes are ruled out then the maximum emissions level is �̅� and the 

first unit of emission reductions has a social cost of  𝑍 > 0. (Solving for the value of MD consistent 

with an optimal emissions tax of zero yields 𝑍 = 𝑏/𝑎.) As drawn, 𝑍 > 𝑀𝐷 so the emissions policy is 

unambiguously welfare-reducing even though MD is positive. If 𝑀𝐷 > 𝑍 policy is still warranted 

but the effect of the threshold on the gap between 𝑀𝐴𝐶𝑝 and 𝑀𝐴𝐶𝑠 needs to be taken into account.  

The first contribution of this paper is to develop and solve a general model of emission taxes 

that relaxes some of the separability and linearity assumptions of previous models while remaining 

tractable and reasonably transparent, yielding an expression for the optimal emission tax in the 

form 𝜏 = 𝑎𝑀𝐷 − 𝑏 where the signs and magnitudes of the coefficients can be traced to the 

underlying structure of the economy and the policy environment. Standard results from earlier 

literature are reproduced, and some additional insights are obtained. In general I find a<1 and the 

sign of b is ambiguous but likely greater than zero. If the emission policy is not revenue raising then 

the damage threshold Z is always positive—an important departure from the classical case as 

typically presented in introductory textbooks. Another important result shown herein is that even 

in a first-best setting in which the emission tax can fully fund the government, the optimal tax is less 

than MD because of price effects throughout the economy. The reason this has not been 

demonstrated in earlier treatments is discussed.  
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The model then allows us to look at an important case that has hitherto been overlooked in the 

second-best emissions tax literature. Many studies have compared the outcomes in tax-vs-CAC 

experiments, but have not looked at tax-plus-CAC. In real-world settings, however, especially 

regarding carbon taxes, layering emission charges on top of pre-existing regulations has been the 

rule rather than the exception. While a few commentators1 have pointed out that economic theory 

calls for a policy swap rather than a combination, many others explicitly call for carbon taxes to be 

used in combination with other regulatory measures (for example, Stavins 2010, Fankhauser 

2012).2 In practice the latter approach has been ubiquitous when emission pricing is introduced. 

For example, the Government of Canada recently announced3 a minimum national carbon price of 

ten dollars per tonne in 2018, rising to $50 per tonne by 2022, which provincial governments must 

implement either as a tax or a tradable permit system. But Canadian federal and provincial 

governments have already implemented numerous sectoral carbon regulations such as a phaseout 

of coal-fired electricity generation in Ontario, a hard cap on carbon dioxide emissions from the oil 

sands sector in Alberta, national ethanol blending requirements in gasoline, etc., none of which are 

targeted for repeal as a result of the introduction of the pricing requirement. Similarly, carbon 

permit trading systems in California, the European Union and elsewhere operate in addition to, not 

                                                             

1 For example Clemens and Green (2017), Taylor (2015). 

2 Fischer et al. (2017) look at a sectoral model of electricity where there are multiple distinct market 

failures, including knowledge spillovers and CO2 emissions, hence multiple policy instruments are required. 

This differs from the present case in which multiple instruments are applied on a single market failure.  

3 See Government of Canada website http://news.gc+.ca/web/article-en.do?nid=1132149 accessed May 

4, 2017. 

http://news.gc+.ca/web/article-en.do?nid=1132149
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instead of, motor vehicle fuel efficiency standards, renewable power requirements in electricity 

production and other regulations that aim to limit carbon dioxide emissions.  

Previous analyses consider a competitive equilibrium with a second-best optimal tax system 

and a single unregulated polluting sector, then examine the welfare effects of perturbations in the 

pollution quantity or price. I begin with that analysis, but in light of the above examples I then look 

at how a pre-existing restriction on some (but not all) emissions affects the optimal direction of the 

emissions tax reform. The analytical models referred to above all contain only a single polluting 

sector, so none are capable of analyzing this case. I study an economy with two polluting firms 

when one of them is subject to a binding emission constraint and then an emission tax is 

introduced. As expected, welfare is unambiguously lower compared to the optimal tax case without 

partial regulations. The regulations create a positive damage threshold which rises with the 

stringency of the emission cap. This potentially changes the optimal direction of the pollution tax 

reform since if marginal damages are below the threshold the optimal tax becomes negative. In 

light of this result, and the extensive literature preceding it, some care needs to be taken in policy 

discussions around emission pricing, especially carbon taxes. Economic theory does not generally 

show that an optimal emissions tax should be set equal to marginal damages, or that pricing an 

uncontrolled externality will always raise social welfare. Such outcomes are only assured under 

restrictive conditions that are often not observed in real-world economies. Under more general 

conditions, marginal damages (or the Social Cost of Carbon (SCC) as it is called in climate policy) is 

never the correct rate to use for the optimal emission tax, and using it as such may or may not raise 

welfare even if marginal damages are positive and revenues are fully recycled. This point has 
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largely been overlooked not only in the academic literature but also in the popular and applied 

discussions of carbon pricing.4  

The next section outlines the structure of the model. The starting point of the analysis is a 

second-best economy in general competitive equilibrium with a labour tax, a positive government 

spending requirement and an unregulated pollution externality. I examine a directional tax reform 

using a pollution tax and characterize the welfare effects, then in Section 3 I identify the form of the 

optimal tax. Section 3 also contrasts it with non revenue-raising and sub-optimal cases. Section 4 

then looks at an alternative case in which the externality is partially regulated prior to introducing 

the emission tax. Section 5 presents a discussion and conclusions.  

2 MODEL SET-UP 
There are N identical households, two goods each produced by a separate firm, a labour market 

and a government. Household-specific consumption is denoted 𝑥𝑖, 𝑖 = (1,2), the corresponding 

prices are 𝑝𝑖 , and aggregate demand is denoted 𝑋𝑖 = 𝑁𝑥𝑖 . Households each have a time endowment 

t which can be allocated to labour l or leisure h, so the aggregate labour supply is 𝐿 = 𝑁𝑙, aggregate 

leisure is 𝐻 = 𝑁ℎ and the aggregate time endowment is 𝑇 = 𝑁𝑡. The before-tax nominal wage rate 

                                                             

4  For instance, Gregory Mankiw’s famous 2006 blog post  calling for higher gasoline taxes 

http://gregmankiw.blogspot.ca/2006/10/alternatives-to-pigou-club.html lists (and rejects) what he sees as 

the four reasons why an economist might oppose immediately raising externality taxes, ignoring the 

possibility of a positive damage threshold. Metcalfe and Weisbach (2009 pp. 11-13) assert that the optimal 

carbon tax should be set equal to MD, raising the issues of tax interactions only to dismiss them as second-

order and unimportant. 

http://gregmankiw.blogspot.ca/2006/10/alternatives-to-pigou-club.html
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is 𝜔 and the real wage is 𝑤 = 𝜔/𝜄(𝑝) where the denominator is a price index. We will set 𝜔 as the 

numeraire so it is constant and equal to unity but for notational clarity I retain it in the derivations.  

Similar to Fullerton and Metcalfe (1997) we consider emissions as a productive input. Each firm 

has a single unit of fixed capital 𝐾𝑖 equal to unity and a production function 𝐹𝑖(𝐿𝑖, 𝐸𝑖)𝐾𝑖 where the 

first argument denotes labour usage and the second denotes emissions, since the right to dispose of 

pollution in the environment is a productive input for the firm. Assume that 𝐹𝑖 has decreasing 

returns to scale in 𝐿𝑖 and 𝐸𝑖 . The profit function for firm i is 

   

  𝜋𝑖 = 𝑝𝑖𝐹𝑖(𝐿𝑖, 𝐸𝑖) − 𝜔𝐿𝑖 − 𝜏𝐸𝐸𝑖 (1) 

 

where 𝜏𝐸  is the tax on emissions, 𝐹𝐿
𝑖 > 0 and 𝐹𝐸

𝑖 > 0. The first-order conditions imply 

   

  𝐹𝐿
𝑖 = 𝜔/𝑝𝑖  (2) 

 

and  

 

  𝐹𝐸
𝑖 = 𝜏𝐸/𝑝𝑖. (3) 

 

Note that 
𝑑𝜋𝑖(𝐿𝑖

∗,𝐸𝑖
∗)

𝑑𝜏𝐸
= −𝐸𝑖  by the envelope theorem. Note also that (3) implies  

 

  𝜏𝐸 = 𝑝𝑖𝐹𝐸
𝑖  (4) 
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which is the private marginal abatement costs for firm i or, equivalently, the private marginal 

profits of emissions.  Decreasing returns to scale imply that profits are positive and represent the 

rate of return to capital for each firm. We assume shares in firms are distributed equally among all 

households.  

Firms pay the nominal wage but the household labour supply decision depends on the real 

wage w. We will assume that prices are initially normalized so that 𝜄(𝑝) = 𝜔 = 𝑤 = 1. The tax rate 

on household income is 𝜏𝑌 and net income is  

 

  𝑦′ = (
𝜋1+𝜋2

𝑁
+ 𝑤𝑡) (1 − 𝜏𝑌). (5) 

 

Note that ′ denotes a tax-inclusive term. The household budget constraint is  

 

  𝑝1𝑥1 + 𝑝2𝑥2 + 𝑤′ℎ = 𝑦′ (6) 

 

where 𝑤′ = 𝑤(1 − 𝜏𝑌). The corresponding national budget constraint (NBC) is 

 

  𝑝1𝑋1 + 𝑝2𝑋2 + 𝑤′𝐻 = 𝑌′ (7)  

 

where 𝑌′ = (𝜋1 + 𝜋2 + 𝑤𝑇)(1 − 𝜏𝑌).  

The government purchases some of the available production of good 2 and gives it to 

households in equal shares. It finances this through taxes on total emissions 𝐸 = 𝐸1 + 𝐸2 and on 

nominal profits and labour income. Hence the Government Budget Constraint (GBC) is 
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  𝑝2𝐺 = 𝜏𝑌𝐵 + 𝜏𝐸𝐸 (8)  

 

where the income tax base B equals 𝜋 + 𝜔𝐿 and 𝜋 = 𝜋1 + 𝜋2.  

Goods Market Equilibrium (GME) occurs where 𝑋1 = 𝐹1  and 𝑋2 + 𝐺 = 𝐹2 . Labour Market 

Equilibrium (LME) occurs where 𝐿1 + 𝐿2 = 𝑇 − 𝐻. I confirm in the Appendix that imposing LME 

and GME on the NBC implies the GBC holds; likewise any three implies the fourth.  

We assume that tax rates are adjusted to hold G constant. Consequently we are imposing a G-

neutrality condition, rather than a 𝑝2𝐺-neutrality condition, or in other words real revenue-

neutrality rather than nominal revenue-neutrality (as did Parry et al. 1999, in contrast to 

Bovenberg and Goulder 1996, Sandmo 1975 and others). Differentiating Equation (8) yields 

 

𝐺𝑑𝑝2 = 𝜏𝑌𝑑𝐵 + 𝐵𝑑𝜏𝑌 + 𝜏𝐸𝑑𝐸 + 𝐸𝑑𝜏𝐸 . 

 

This rearranges to the G-neutrality condition 

   

  
𝑑𝜏𝑌

𝑑𝜏𝐸
=

1

𝐵
(𝐺

𝑑𝑝2

𝑑𝜏𝐸
− 𝜏𝑌

𝑑𝐵

𝑑𝜏𝐸
− 𝜏𝐸

𝑑𝐸

𝑑𝜏𝐸
− 𝐸). (9) 

 

Since the emissions tax raises the cost of providing the public good and causes the income tax base 

and emissions to decline, the first three terms in the brackets must sum to a positive number. We 

will assume that we are operating in a region of the economy for which the new tax revenue 
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(represented by the fourth term) is sufficiently large as to make whole derivative negative, meaning 

that an increase in emission taxes permits a reduction in the income tax.  

Household utility is 𝑢(𝑥1, 𝑥2, ℎ) +
𝛼𝐺

𝑁
− 𝛿𝐸 where 𝛼 is the positive welfare weight on the public 

good G and 𝛿 is the marginal welfare cost of each unit of emissions. We will use the indirect utility 

function 𝑣(𝑝1, 𝑝2, 𝑤′, 𝑦′) to define the national social welfare function 

 

  𝑊 = 𝑁𝑣(𝑝1, 𝑝2, 𝑤′, 𝑦′) + 𝛼𝐺 − 𝛿𝑁𝐸. (10) 

 

The planner’s problem is to choose 𝜏𝐸  to maximize (10). Since G is assumed fixed and given, 𝜏𝑌 is 

then determined by equation (8).  

3 EMISSION TAXES WITHOUT REGULATIONS 

3.1 DERIVATION OF OPTIMAL TAXES 
The first derivative of equation (10) with respect to 𝜏𝐸  is 

 

  
𝑑𝑊

𝑑𝜏𝐸
= 𝑁 (𝑣1

𝑑𝑝1

𝑑𝜏𝐸
+ 𝑣2

𝑑𝑝2

𝑑𝜏𝐸
+ 𝑣𝑤

𝑑𝑤′

𝑑𝜏𝐸
+ 𝑣𝑦

𝑑𝑦′

𝑑𝜏𝐸
) − 𝛿𝑁

𝑑𝐸

𝑑𝜏𝐸
 (11) 

 

where first derivatives of v are subscripted in order of the arguments. Divide equation (11) by 𝑣𝑦 

and apply Roy’s theorem to obtain 

 

  
𝑑𝑊

𝑑𝜏𝐸

1

𝑣𝑦
= −𝑋1

𝑑𝑝1

𝑑𝜏𝐸
− 𝑋2

𝑑𝑝2

𝑑𝜏𝐸
− 𝐻

𝑑𝑤′

𝑑𝜏𝐸
+

𝑑𝑌′

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸

𝑑𝜏𝐸
. (12) 
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Note that  
𝑑𝑌′

𝑑𝜏𝑒
= (1 − 𝜏𝑌)

𝑑𝜋

𝑑𝜏𝐸
− 𝜋

𝑑𝜏𝑌

𝑑𝜏𝐸
+ 𝐻

𝑑𝑤′

𝑑𝜏𝐸
+ 𝐿

𝑑𝑤′

𝑑𝜏𝐸
. In the Appendix I show that this expression 

combined with equations (9) and (12) yield 

 

  
𝑑𝑊

𝑑𝜏𝐸

1

𝑣𝑦
=

𝑑𝐸

𝑑𝜏𝐸
(𝜏𝐸 −

𝛿𝑁

𝑣𝑦
) − 𝑄 + 𝜏𝑌𝑅 (13) 

 

where 𝑄 = (𝐹1 𝑑𝑝1

𝑑𝜏𝐸
+ 𝐹2 𝑑𝑝2

𝑑𝜏𝐸
− 𝐿

𝑑𝑤

𝑑𝜏𝐸
)  and 𝑅 = (𝜔

𝑑𝐿

𝑑𝜏𝐸
− 𝐿

𝑑𝑤

𝑑𝜏𝐸
). We can decompose this expression 

into some standard components (compare with, e.g., Parry et al 1999, equation 2.13). The first term 

on the right hand side of equation (13) is the primary welfare effect of the emissions tax, 

represented by the change in emissions times the difference between the tax 𝜏𝐸  and 
𝛿𝑁

𝑣𝑦
, which is the 

marginal external cost of emissions, or MD. Q represents the tax interaction effect, namely the 

welfare losses accompanying the increases in prices and reduction in real wages that result from 

increased emissions taxes. Note 𝑄 > 0  because the emissions tax raises output prices and reduces 

the real wage rate. 𝜏𝑌𝑅 represents the marginal revenue-recycling benefit that arises via the labour 

market. It incorporates the change in the labour tax revenue at the margin due to an emission tax-

induced change in employment, as well as the tax component of the labour term in Q which nets 

against its cost to households. The first term has an ambiguous sign. Expand the derivative of L as 

follows: 

 

  
𝑑𝐿

𝑑𝜏𝐸
=

𝜕𝐿

𝜕𝜏𝐸
+

𝜕𝐿

𝜕𝑤

𝜕𝑤

𝜕𝜏𝐸
+

𝜕𝐿

𝜕𝜏𝑌

𝜕𝜏𝑌

𝜕𝜏𝐸
. (14) 
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An increase in 𝜏𝐸  has three distinct effects. The first term represents the combination of a 

substitution effect on the demand side of the labour market as the cost of E relative to L rises, and a 

scale effect as the increased operating cost of the firm causes input demands to decline. Although it 

is reasonable to suppose that a large-enough emissions tax will lead to decreased employment we 

are focusing on infinitesimal changes. A small increase in 𝜏𝐸  is like a small increase in the cost of 

one input relative to another and the substitution effect along the firm’s isoquant implies that  
𝜕𝐿

𝜕𝜏𝐸
>

0. The second term is negative since an increase in the emissions tax reduces real wages which 

reduces labour supply. The third term is positive since a decrease in 𝜏𝑌 increases the labour supply 

and we are assuming revenue recycling takes place (
𝜕𝜏𝑌

𝜕𝜏𝐸
< 0). We will adopt the assumption that at 

low levels of the tax the first and third terms dominate making the derivative in equation (14) 

positive. Since 
𝑑𝑤

𝑑𝜏𝐸
< 0 we conclude 𝑅 > 0.  

Equation (13) allows us to contrast the optimal policy that emerges in the present framework 

with that which emerges in other models that employ different assumptions. In the Sandmo (1975) 

framework, for instance, if the government revenue requirement is low enough to be fully satisfied 

by the externality tax, the optimal policy would entail a tax on the dirty good equal to marginal 

social damages and no other tax. That outcome does not emerge here, however. If we set 𝐺 =

𝜏𝐸𝐸/𝑝2 and 𝜏𝑌 = 0 then setting equation (13) equal to zero yields 

 

𝜏𝐸 =
𝛿𝑁

𝑣𝑦
+

𝑄

𝑑𝐸/𝑑𝜏𝐸
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which is strictly less than MD. The reason for the difference is that the model herein allows 

producer prices to change whereas in the Sandmo framework they are fully determined by fixed 

input-output coefficients. If prices were similarly fixed herein, Q would be zero and the classical 

solution would emerge. Otherwise, even if we can fully fund the government with the emissions tax, 

the tax interaction effect through prices means the classical Pigovian formula (𝜏𝐸 = 𝑀𝐷) never 

emerges as an optimal solution.  

If we imposed constant returns to scale, as in Fullerton and Metcalfe (1997), Parry et al. (1999), 

and others, some important differences would arise. The price derivatives would take the form 

𝑑𝑝𝑖

𝑑𝜏𝐸
=

𝐸𝑖

𝐹𝑖 (see derivation in the Appendix A, Parry et al. 1999) and profits would be identically zero. 

Hence the income tax base B would consist only of labour income, so the tax optimization problem 

would reduce to a choice of relative tax burdens on each of the two inputs to production. Since 

neither tax base would encompass the other there would be no unambiguous efficiency differences 

and the tax interaction and revenue recycling effects would follow from arbitrary assumptions 

about market demand elasticities. Parry et al. (1999) include three production inputs (labour, a 

clean good and a dirty good) so the labour tax has a broader base than that on the dirty good, which 

creates a difference in relative distortions independent of the market elasticities.  

We can derive the optimal emissions tax implied by the current model by rearranging the GBC 

(equation 8) to get an expression for 𝜏𝑌 and substituting it into equation (13), then solving for 

𝑑𝑊

𝑑𝜏𝐸

1

𝑣𝑦
= 0. In the Appendix I show that this yields an expression of the form 𝜏 = 𝑎𝑀𝐷 − 𝑏, namely 

 

  𝜏𝐸
∗ = 𝛾1𝑀𝐷 − 𝛾2 (𝑅

𝑝2𝐺

𝐵
− 𝑄)  (15) 



[15] 

 

 

where  

 

𝛾1 =

𝑑𝐸

𝑑𝜏𝐸
𝑑𝐸

𝑑𝜏
−

𝑅𝐸

𝐵

   

 

and 

 

𝛾2 =
1

𝑑𝐸

𝑑𝜏
−

𝑅𝐸

𝐵

 . 

 

Since 𝑅 > 0, 𝛾1 is positive and less than unity. Its interpretation as an inverse-MCPF term is 

somewhat more complex than in the case of a simple revenue-raising tax because a charge on 

marginal damages is justified independently of the need to fund government spending. We can 

interpret it more clearly by multiplying the top and bottom by 𝜏𝐸  to yield  

 

𝛾1 =
𝜏𝐸

𝑑𝐸

𝑑𝜏𝐸

𝜏𝐸
𝑑𝐸

𝑑𝜏
−𝜏𝐸

𝐸

𝐵
𝑅

 . 

 

The numerator is the change in emissions resulting from an increase in the emissions tax, evaluated 

at the private marginal profits of emissions, which is the direct loss in private welfare due to the 

emission tax increase. The denominator is the same term combined with a second term that 

represents the cost of funding government spending. From Equation (8), if government spending 
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were zero but marginal damages were positive (hence 𝜏𝐸 > 0) we could use the emission tax 

revenue to subsidize labour at the rate −𝜏𝐸𝐸/𝐵. This represents the opportunity cost of needing to 

fund G. The second term is therefore the total opportunity cost of government spending valued at 

the marginal revenue-recycling benefit (𝜏𝑌𝑅) per dollar of the income tax rate (𝜔𝑡𝑌). Consequently 

the denominator of  𝛾1 is the marginal (with respect to 𝜏𝐸 ) opportunity cost of financing 

government spending through 𝜏𝐸 , and the inverse of 𝛾1 is this amount relative to the direct 

economic cost of the emission tax increase. Thus 𝛾1 has an interpretation similar to the inverse-

MCPF weights found in previous models (Sandmo 1975, Bovenberg and Goulder 1996, Parry et al. 

1999).  

The interpretation of 𝛾2 is also assisted by multiplying the top and bottom by 𝜏𝐸 .  Now the 

denominator is the same as that of 𝛾1 and the numerator is 𝜏𝐸 , so this coefficient is the (negative) 

inverse of the marginal cost of funding G using a tax on E, per dollar of the emissions tax. This 

weight applies directly to Q and, since it is negative, the combination would have a negative effect 

on the optimal emissions. The other term in the brackets would vanish if 𝐺 = 0. Hence the 

combined term captures the other aspect of the opportunity cost of funding G, namely a revenue-

raising requirement. A positive level of government spending requires the emission tax rate to be 

higher than would otherwise be the case, where the additional amount is the nominal cost of 

government spending per dollar of the income tax base, weighted by the marginal revenue 

recycling effect, and scaled down by 𝛾2.   

We need to sign the term in the brackets, 𝑅
𝑝2𝐺

𝐵
− 𝑄. Since emission taxes are not a large 

revenue source, it will be convenient to replace 𝑝2𝐺/𝐵 with the labour tax rate 𝜏𝑌 (though exact 

equivalence is not necessary for this argument). Thus we have the revenue-recycling effect times 
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the labour tax rate, 𝜏𝑌𝑅, minus the tax interaction effect Q. The output terms in Q add up to real GDP 

(𝐹1 + 𝐹2) weighted by the emission tax-induced price changes, which we will denote Fdp. We can 

thus expand out 𝜏𝑌𝑅 − 𝑄 = 𝜔𝜏𝑌
𝑑𝐿

𝑑𝜏𝐸
− 𝐹𝑑𝑝 + 𝐿

𝑑𝑤

𝑑𝜏𝐸
(1 − 𝜏𝑌). Suppose for a moment that 𝜏𝑌 = 1, so 

𝑅 − 𝑄 = 𝜔
𝑑𝐿

𝑑𝜏𝐸
− 𝐹𝑑𝑝. If we are starting at the unregulated emissions level (𝜏𝐸 = 0) and firms are 

operating at a profit maximizing point (𝜋′ = 0) the change in output and prices induced by the first 

unit of the emission tax will follow 𝑑𝜋 = 𝐹𝑑𝑝 + 𝑝𝑑𝐹 − 𝐸𝑑𝜏𝐸 − 𝜔𝑑𝐿 = 0 which implies 𝐹𝑑𝑝 =

−𝑝𝑑𝐹 + 𝐸𝑑𝜏𝐸 + 𝜔𝑑𝐿. Since each term on the right hand side is positive it must be that 𝐹𝑑𝑝 > 𝜔𝑑𝐿, 

making 𝑅 − 𝑄 negative. As 𝜏𝑌 drops below unity, 𝜏𝑌𝑅 gets smaller but Q remains unchanged, so 

𝜏𝑌𝑅 − 𝑄 remains negative. Thus the term in the brackets is likely (though not unambiguously) 

negative and since 𝛾2 < 0 the combined term will tend to reduce 𝜏𝐸 . 

Equation (15) can be rendered into the same terms as Figures 1 and 2 by noting that 𝑀𝐴𝐶𝑝 

corresponds to 𝜏𝐸  and the optimum occurs where 𝑀𝐴𝐶𝑠 = 𝑀𝐷, so rearranging yields 

 

  𝑀𝐴𝐶𝑠 =
1

𝛾1
𝑀𝐴𝐶𝑝 +

𝛾2

𝛾1
(𝑅

𝑝2𝐺

𝐵
− 𝑄)  

 

making clear the difference between the two can involve both a rotation and a translation.  

3.2 BENEFITS THRESHOLD 
If 𝑍 > 0  under a specific policy then there exists a positive marginal damage threshold below which 

the optimal emissions tax is zero, implying that the first unit of abatement from the unregulated 

emissions level has a discrete positive welfare cost. We can derive an expression for the threshold 

value by solving equation (15) for 𝛿𝑁/𝑣𝑦 assuming  𝜏𝐸 = 0. We obtain  
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  𝑍 =
(𝑅

𝑝2𝐺

𝐵
−𝑄)

𝑑𝐸/𝑑𝜏𝐸
. (16) 

 

For the reasons explained above the numerator is likely negative, and the denominator is definitely 

negative, so we expect 𝑍 > 0. The larger is 𝐹𝑑𝑝, meaning the larger the effect on prices of the 

emissions tax, and the smaller the increase in employment resulting from the emission tax, the 

greater the tendency for Z to be positive. Note that, unlike previous derivations cited above, this 

result occurs even in a second-best optimal setting with a revenue-raising instrument. Numerical 

simulations in Bovenberg and Goulder (1996) for the US economy found that Z is non-negative but 

the magnitude strongly depends on the form of the policy.  

 

Non-revenue raising policy 

Suppose that the policy is non revenue-raising, such as in the case of CAC or tradable quotas. Total 

emissions are restricted to �̂� which has an associated shadow price which we will call �̂�𝐸 , which 

corresponds to the marginal rental value to the firm of being allowed to increase emissions by one 

unit. We will assume this price is the same for each firm, as would happen under tradable quotas. 

Hence �̂�𝐸 = 𝑑𝜋/𝑑�̂�, corresponding to the firms’ private marginal abatement costs 𝑀𝐴𝐶𝑝. The 

planner’s problem can be re-stated as an optimization of W by choice of �̂�. In the Appendix I show 

that the solution occurs at 

 

  𝑀𝐴𝐶𝑝 = 𝑀𝐷 + �̂� − 𝜏𝑌�̂� (17) 
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where �̂� = 𝐹1 𝑑𝑝1

𝑑�̂�
+ 𝐹2 𝑑𝑝2

𝑑�̂�
− 𝐿

𝑑𝑤

𝑑�̂�
(1 − 𝜏𝑌) and �̂� = 𝜔

𝑑𝐿

𝑑�̂�
. Note the signs of derivatives here are 

different. There is now only one tax in the economy (𝜏𝑌), the derivative of �̂� with respect to 𝜏𝐸  does 

not appear and there is no weighting coefficient on MD. An increase in �̂� reduces costs for firms and 

raises real wages so �̂� < 0. Since an increase in allowed emissions (as opposed to a change in the 

relative cost of labour and emissions) raises employment we have �̂� > 0. Hence the solution occurs 

where 𝑀𝐴𝐶𝑝 < 𝑀𝐷.  

The benefits threshold is found by setting Equation (17) equal to zero and solving for MD, 

yielding �̂� = −�̂� + �̂�𝜏𝑌 . This is unambiguously positive, unlike in the revenue-raising case. 

Consequently, even if MD is positive, a reduction in emissions below the unregulated amount 

through a non-revenue raising policy is not guaranteed to improve welfare unless MD exceeds the 

threshold. Even when it does exceed the threshold the optimal emissions level occurs at 𝑀𝐴𝐶𝑠 =

𝑀𝐷, where 𝑀𝐴𝐶𝑠 = 𝑀𝐴𝐶𝑝 − �̂� + 𝜏𝑌�̂�, which raises the optimal emission level relative to the 

conventional textbook case of 𝑀𝐴𝐶𝑝 = 𝑀𝐷. 

 

Non-optimal tax system 

Suppose we use a pricing instrument but the rest of the tax system is sub-optimal. The 

motivation for this case comes from the numerical simulations in Bovenberg and Goulder (1996) in 

which the optimal pollution tax only corresponded to the Sandmo result (MD/MCPF) when the tax 

system was (second-best) optimized. Away from that point the optimal pollution tax was lower, and 

could go negative, although that was not an outcome shown in their theoretical model. It can be 

demonstrated in this context by returning to equation (13) but instead of setting it equal to zero, set 

it equal to some other value 𝜌: 
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𝑑𝑊

𝑑𝜏𝐸

1

𝑣𝑦
=

𝑑𝐸

𝑑𝜏𝐸
(𝜏𝐸 −

𝛿𝑁

𝑣𝑦
) − 𝑄 + 𝜏𝑌𝑅 = 𝜌. (18) 

 

The non-optimality we are interested in involves an overly-high income tax 𝜏𝑌, which under the 

GBC implies a lower emissions tax. The solution to equation (18) is 

 

  𝜏𝐸
𝜌

= 𝛾1𝑀𝐷 − 𝛾2 (𝑅
𝑝2𝐺

𝐵
− 𝑄) + 𝛾2𝜌 . (19) 

 

Comparing this to equation (15) we see that the difference between 𝜏𝐸
𝜌

 and 𝜏𝐸
∗  is the term 𝛾2𝜌. Since 

the welfare function is convex, 𝜏𝐸
𝜌

< 𝜏𝐸
∗  implies a positive value of 𝜌  (which implies 𝛾2𝜌 < 0) and 

vice-versa. The benefits threshold is now  

 

  𝑍𝜌 =  (
𝑑𝐸

𝑑𝜏𝐸
)

−1
(𝑅

𝑝2𝐺

𝐵
− 𝑄) −

𝜌

𝑑𝐸/𝑑𝜏𝐸
. (20) 

 

Since the second term is positive we have 𝑍𝜌 > 𝑍, or in other words when the tax system is not 

optimized such that labour is over-taxed, the benefits threshold is unambiguously raised. Even if 

the benefits threshold in the optimized case is zero, so that the first unit of emission reduction 

under an emission pricing policy is welfare-enhancing, the existence of a non-optimal labour tax is 

sufficient to change this such that a positive threshold for MD now must be exceeded for the first 

unit of emission reduction to be welfare-enhancing. The steeper is the MAC the smaller is 𝑑𝐸/𝑑𝜏𝐸  

and hence the larger is the benefits threshold. Even if sufficient forms of linearity and separability 
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are imposed on the model that 𝑄 = 𝑅 = 0,5 equation (20) would still yield a positive benefits 

threshold.  

4 EMISSION TAXES UNDER PRE-EXISTING REGULATIONS 
We now turn to the case in which pre-existing command-and-control regulations cover some, 

but not all, emissions. The outcome under this case is denoted with ~.  Suppose that firm 2 is 

required to reduce emissions to a fixed target level �̃�2 which is below the level associated with any 

proposed emissions tax rate.6 The shadow price associated with the emissions constraint is denoted 

�̃�𝐸 , which must lie above the emissions tax rate 𝜏𝐸  by assumption. Both firms pay the tax but only 

firm 1 freely chooses its emissions level. Consequently the first order conditions remain the same 

for firm 1, but for firm 2 only that related to labour remains the same. The profit function for firm 2 

is now 

 

  𝜋2 = 𝑝2𝐹2(𝐿2, �̃�2) − 𝜔𝐿2 − 𝜏𝐸�̃�2. 

 

The emissions charge is a lump-sum fee for firm 2, but the regulation restricts the production 

function so it results in an upward shift of its supply curve, by an amount exceeding what would 

have been experienced under the emission tax. The price charged under the regulation is denoted 

                                                             

5 For example, this outcome could be obtained by assuming Leontief production technology and a fixed 

labour supply.  

6 If �̃�2 exceeded this level then the constraint would not bind and we would simply be back to the case of 

a uniform emissions tax across both sectors. 
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�̃�2 and is strictly greater than 𝑝2. Firm 2 profits �̃�2 are also lower than in the previous case. The 

regulation does not change the relative price of the inputs instead it forces down output and 

profitability so it has a negative effect on labour demand, leading to �̃�2 < 𝐿2. Since profits are 

reduced and consumer prices are increased we expect �̃�′ < 𝑦′. These changes make it unambiguous 

that 𝑣(𝑝1, �̃�2, �̃�′, �̃�′) < 𝑣(𝑝1, 𝑝2, 𝑤′, 𝑦′) . Also the tax base shrinks, i.e. �̃� < 𝐵 . The regulation 

increases 𝑝2 therefore �̃�′ < 𝜔 even when the emission tax is zero. This implies, in turn, that the 

nominal tax base at the initial point �̃� = 𝜔�̃� + �̃� > �̃��̃� + �̃� ≡ �̃�𝑟 where the r subscript denotes the 

real tax base, or the purchasing power of the nominal tax base. Denote the ratio 𝑟 ≡ �̃�𝑟/�̃� < 1 as 

the fractional shrinkage in the real tax base due to the emission regulation, or alternatively the 

inverse of the effective real increase in the income tax rate.  

Denote the total level of emissions in this case as �̃� = 𝐸1 + �̃�2. Since the restriction binds on 

firm 2, �̃� < 𝐸. Because both firms pay the emissions tax we have 
𝑑�̃�

𝑑𝜏
= −𝐸1 − �̃�2. The NBC is 𝑝1𝑋1 +

�̃�2𝑋2 + �̃�′𝐻 = (𝜋1 + �̃�2 + �̃�𝑇)(1 − 𝜏𝑌). The GBC is 𝜏𝐸�̃� + 𝜏𝑌�̃� = �̃�2𝐺. Since the emissions level is 

fixed for firm 2, 
𝑑�̃�2

𝑑𝜏𝐸
= 0 and the G-neutrality condition is written 

 

  −�̃�
𝑑𝜏𝑌

𝑑𝜏𝐸
= 𝜏𝐸

𝑑𝐸1

𝑑𝜏𝐸
+ �̃� + 𝜏𝑌

𝑑�̃�

𝑑𝜏𝐸
. 

 

The derivative of W with respect to 𝜏𝐸   looks like Equation (12) with 𝐸1 replacing E: 

 

  
𝑑𝑊

𝑑𝜏𝐸

1

𝑣𝑦
= −𝑋1

𝑑𝑝1

𝑑𝜏𝐸
− 𝐻

𝑑�̃�′

𝑑𝜏𝐸
+

𝑑�̃�′

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸1

𝑑𝜏𝐸
. 
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The form of 
𝑑�̃�′

𝑑𝜏𝐸
 is unchanged from before and the derivation proceeds in the same way. In the 

Appendix I show that the optimal tax rate is now 

 

  �̃�𝐸 = �̃�1
𝛿𝑁

𝑣𝑌
− �̃�2  (

�̃�2𝐺

�̃�
�̃� − �̃� − �̃�(1 − 𝑟))  (21) 

 

where  

  �̃�1 =

𝑑𝐸1
𝑑𝜏𝐸

𝑟
𝑑𝐸1
𝑑𝜏𝐸

−
�̃��̃�

�̃�

 , 

  �̃�2 =
1

𝑟
𝑑𝐸1
𝑑𝜏𝐸

−
�̃��̃�

�̃�

 , 

  �̃� = (𝐹1 𝑑𝑝1

𝑑𝜏𝐸
− 𝐿

𝑑�̃�

𝑑𝜏𝐸
)  

and 

  �̃� = (𝑟𝜔
𝑑�̃�

𝑑𝜏𝐸
− �̃�

𝑑�̃�

𝑑𝜏𝐸
+ �̃�(1 − 𝑟)). 

 

It is not possible to compare 𝑅𝐸/𝐵 to �̃��̃�/�̃� since the changes to the individual terms go in 

different directions or are ambiguous. However we can examine the new damage threshold 

 

  �̃� = (
1

𝑑𝐸1
𝑑𝜏𝐸

) (
�̃�2𝐺

�̃�
�̃� − �̃� − �̃�(1 − 𝑟))  (22) 
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as follows. Since emission taxes are a relatively small component of government revenue we denote 

�̃�2𝐺/�̃� as approximately equal to the labour tax rate �̃�𝑌 (though again the argument doesn’t require 

exactness). Then  

 

  �̃�𝑌�̃� − �̃� − �̃�(1 − 𝑟) = {𝑟�̃�𝑌𝜔
𝑑𝐿1

𝑑𝜏𝐸
− 𝐹1 𝑑𝑝1

𝑑𝜏𝐸
} + {𝐿

𝑑�̃�

𝑑𝜏𝐸
(1 − �̃�𝑌)} + {�̃�(𝑟 − 1)(1 − �̃�𝑌)}. 

 

If 𝑟 = 1, meaning the regulation on sector 2 does not shrink the real tax base, this reduces to the 

bracketed expression in equation (15). For the reasons spelled out in the previous section 

regarding the sign of 𝑅
𝑝2𝐺

𝐵
− 𝑄 the term in the first set of curly braces would likely be negative even 

without 𝑟�̃�𝑌  multiplying into the labour derivative, but since 𝑟�̃�𝑌 < 1 it makes the term even larger 

negative. The other two terms in curly braces are also unambiguously negative. Hence �̃� is strictly 

positive.   

The distortion of the partial emission regulation operates through the parameter r. Its effect on 

the damage threshold is 

 

  
𝑑�̃�

𝑑𝑟
= (

1
𝑑𝐸1
𝑑𝜏𝐸

) (�̃�𝑌
𝑑�̃�

𝑑𝑟
+ �̃�) 

  = (
1

𝑑𝐸1
𝑑𝜏𝐸

) (�̃�𝑌 (𝜔
𝑑�̃�

𝑑𝜏𝐸
− �̃�) + �̃�) 

  = (
1

𝑑𝐸1
𝑑𝜏𝐸

) (�̃�𝑌𝜔
𝑑�̃�

𝑑𝜏𝐸
+ �̃�(1 − �̃�𝑌)) < 0. 

 



[25] 

 

A reduction in r (an increase in the distorting effect of the partial emission regulation) thus 

raises the damage threshold �̃�, making it less likely that the first unit of an emissions tax will be 

welfare-improving.  

5 DISCUSSION AND CONCLUSIONS 
This paper has examined the design of an optimal emission tax in an economy where pollution 

generates positive marginal damages. Previous literature has shown the optimal emission fee is of 

the form 𝜏𝐸 = 𝑎𝑀𝐷 − 𝑏 where 𝑎 < 1 is a commonly-derived result and 𝑏 > 0 is possible but not 

guaranteed, and often excluded by construction. The model developed herein is somewhat more 

general than that of earlier literature. For instance there are two polluting sectors rather than one, 

production exhibits decreasing returns to scale and separability between leisure and goods is not 

imposed. One novel result is that even in a first-best world where the government budget can be 

fully funded with an emissions tax, 𝑎 < 1 due to the welfare costs of increased prices. In line with 

earlier results I show that when the pollution policy is non revenue-raising and/or the rest of the 

tax system is not optimized, the damage threshold Z is strictly positive implying that the first unit of 

abatement has a non-zero cost.  

I then consider the case in which emissions are partially regulated prior to the emission tax 

being introduced. While absent from previous analyses, it is ubiquitous in practice. The partial 

regulation reduces the welfare of the starting equilibrium relative to the pure pricing case. The 

stringency of the regulation affects consumer purchasing power, parameterized herein as a ratio r 

between the real and nominal values of the income tax base. The damage threshold is larger as a 

result of the partial regulation, implying that marginal damages need to be higher in order for the 
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first dollar of the pollution tax to yield a welfare improvement. The more stringent the pre-existing 

regulation, the higher is the damage threshold.  

These findings have direct implications on the many ongoing debates about climate policy. At a 

time when carbon taxes and emission pricing have risen very high in public discussions it is 

unfortunate how little work has been done to identify the conditions that give rise to a damage 

threshold and how little empirical information has been generated about its magnitude. Parry et al. 

(1999) provided a rudimentary estimate, placing it at around US$18 per tonne of carbon, which 

would be about $25 in 2017 dollars. Bovenberg and Goulder (1996) used a large-scale general 

equilibrium model of the economy and estimated the threshold for non revenue-raising policies 

(like tradable quotas) was about US$55, which would exceed $75 per tonne in 2017 dollars. 

Mainstream estimates of the SCC are below this latter amount (Interagency Working Group 2013)7 

making problematic the US Administration’s (now-rescinded) instructions to use the SCC as a 

criterion for determining the benefits of new regulations. Though empirical evidence is scant, in 

light of the few estimates that do exist the threshold issue cannot be dismissed as a mere second-

order subtlety (as in Metcalfe and Weisbach 2009) but should be the focus of new empirical work.  

There is likewise no empirical evidence regarding the effect on the threshold of the partial 

regulations implemented since Bovenberg and Goulder (1996) and Parry et al. (1999). The results 

herein show, however, that they have likely raised it.  

The analysis presented above, and the literature on which it is based, raises important 

questions about the optimal design of climate policy. Even if the SCC is as high as recent estimates 

                                                             

7 They may even be below the Parry et al. threshold estimate: see Dayaratna et al. (2017) 
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suggest, neither regulatory nor price-based policies are likely to be welfare-enhancing if the 

implementation occurs under conditions that currently appear to hold in developed economies. It 

also illustrates that standard treatments of optimal emission policy design in introductory 

environmental economics textbooks, which assume an equivalence between private and social 

marginal abatement costs, are materially inaccurate. Real-world divergences between these two 

measures change the analysis in fundamental ways.  
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FIGURE 1: The classical Pigovian tax 𝜏𝑃 and the Sandmo result 𝜏1.  
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FIGURE 2: The classical Pigovian tax 𝜏𝑃 and the damage threshold Z.  
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8 APPENDIX  
 

NBC+LME+GME implies GBC.  

 Equations (7), (5) and (1) and the numeraire condition imply  

 𝑝1𝑋1 + 𝑝2𝑋2 + 𝜔𝐻 = (𝑝1𝐹1 − 𝜔𝐿1 − 𝜏𝐸𝐸1 + 𝑝2𝐹2 − 𝜔𝐿2 − 𝜏𝐸𝐸2 + 𝜔𝐿 + 𝜔𝐻) − 𝜏𝑦(𝜋 + 𝜔𝑇).   

Applying LME and GME yields  

𝑝1𝑋1 + 𝑝2𝑋2 + 𝜔𝐻 − 𝜏𝑌𝜔𝐻 = (𝑝1𝐹1 − 𝜔𝐿1 + 𝑝2𝑋2 + 𝑝2𝐺 − 𝜔𝐿2 − 𝜏𝐸𝐸 + 𝜔𝐿 + 𝜔𝐻) − 𝜏𝑦(𝜋 + 𝜔𝑇) 

which in turn implies 

  −𝜏𝑌𝜔𝐻 = 𝑝2𝐺 − 𝜏𝐸𝐸 − 𝜏𝑌𝜋 − 𝜏𝑌𝜔𝐻 − 𝜏𝑌𝜔𝐿  

which rearranges to 𝜏𝐸𝐸 + 𝜏𝑌(𝜋 + 𝜔𝐿) = 𝑝2𝐺. ∎ 

 

Derivation of Equation (13) 

Recall equation (12): 

  
𝑑𝑊

𝑑𝜏𝐸

1

𝑣𝑦
= −𝑋1

𝑑𝑝1

𝑑𝜏𝐸
− 𝑋2

𝑑𝑝2

𝑑𝜏𝐸
− 𝐻

𝑑𝑤′

𝑑𝜏𝐸
+

𝑑𝑌′

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸

𝑑𝜏𝐸
.  

Substitute in  
𝑑𝑌′

𝑑𝜏𝑒
= (1 − 𝜏𝑌)

𝑑𝜋

𝑑𝜏𝐸
− 𝜋

𝑑𝜏𝑌

𝑑𝜏𝐸
+ 𝐻

𝑑𝑤′

𝑑𝜏𝐸
+ 𝐿

𝑑𝑤′

𝑑𝜏𝐸
 to obtain  

  
𝑑𝑊

𝑑𝜏𝐸

1

𝑣𝑦
= −𝑋1

𝑑𝑝1

𝑑𝜏𝐸
− 𝑋2

𝑑𝑝2

𝑑𝜏𝐸
− 𝐻

𝑑𝑤′

𝑑𝜏𝐸
+ 𝐻

𝑑𝑤′

𝑑𝜏𝐸
+ 𝐿

𝑑𝑤′

𝑑𝜏𝐸
+ (1 − 𝜏𝑌)

𝑑𝜋

𝑑𝜏𝐸
− 𝜋

𝑑𝜏𝑌

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸

𝑑𝜏𝐸
 

= −𝑋1
𝑑𝑝1

𝑑𝜏𝐸
− 𝑋2

𝑑𝑝2

𝑑𝜏𝐸
+ 𝐿 (

𝑑𝑤

𝑑𝜏𝐸
− 𝜏𝑌

𝑑𝑤

𝑑𝜏𝐸
− 𝑤

𝑑𝜏𝑌

𝑑𝜏𝐸
) + (1 − 𝜏𝑌)

𝑑𝜋

𝑑𝜏𝐸
− 𝜋

𝑑𝜏𝑌

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸

𝑑𝜏𝐸
  

= −𝑋1
𝑑𝑝1

𝑑𝜏𝐸
− 𝑋2

𝑑𝑝2

𝑑𝜏𝐸
+ 𝐿

𝑑𝑤

𝑑𝜏𝐸
− 𝜏𝑌𝐿

𝑑𝑤

𝑑𝜏𝐸
−

𝑑𝜏𝑌

𝑑𝜏𝐸
(𝜋 + 𝑤𝐿) + (1 − 𝜏𝑌)

𝑑𝜋

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸

𝑑𝜏𝐸
 . 

Note that at the initial point 𝑤 = 𝜔 so  𝜋 + 𝑤𝐿 = 𝐵, and  
𝑑𝐵

𝑑𝜏𝐸
=

𝑑𝜋

𝑑𝜏𝐸
+ 𝜔

𝑑𝐿

𝑑𝜏𝐸
. Use these and equation 

(9)  
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𝑑𝜏𝑌

𝑑𝜏𝐸
=

1

𝐵
(𝐺

𝑑𝑝2

𝑑𝜏𝐸
− 𝜏𝑌

𝑑𝐵

𝑑𝜏𝐸
− 𝜏𝐸

𝑑𝐸

𝑑𝜏𝐸
− 𝐸)  

to obtain 

𝑑𝑊

𝑑𝜏𝐸

1

𝑣𝑦
= −𝑋1

𝑑𝑝1

𝑑𝜏𝐸
− 𝑋2

𝑑𝑝2

𝑑𝜏𝐸
+ 𝐿

𝑑𝑤

𝑑𝜏𝐸
− 𝜏𝑌𝐿

𝑑𝑤

𝑑𝜏𝐸
− 𝐵 ×

1

𝐵
(𝐺

𝑑𝑝2

𝑑𝜏𝐸
− 𝜏𝑌 (

𝑑𝜋

𝑑𝜏𝐸
+ 𝜔

𝑑𝐿

𝑑𝜏𝐸
) − 𝜏𝐸

𝑑𝐸

𝑑𝜏𝐸
− 𝐸) +

(1 − 𝜏𝑌)
𝑑𝜋

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸

𝑑𝜏𝐸
  

= −𝑋1
𝑑𝑝1

𝑑𝜏𝐸
− 𝑋2

𝑑𝑝2

𝑑𝜏𝐸
+ 𝐿

𝑑𝑤

𝑑𝜏𝐸
− 𝜏𝑌𝐿

𝑑𝑤

𝑑𝜏𝐸
− 𝐺

𝑑𝑝2

𝑑𝜏𝐸
+ 𝜏𝑌 (

𝑑𝜋

𝑑𝜏𝐸
+ 𝜔

𝑑𝐿

𝑑𝜏𝐸
) + 𝜏𝐸

𝑑𝐸

𝑑𝜏𝐸
+ 𝐸 +

𝑑𝜋

𝑑𝜏𝐸
− 𝜏𝑌

𝑑𝜋

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸

𝑑𝜏𝐸
 . 

Use  
𝑑𝜋

𝑑𝜏𝐸
= −𝐸 and collect terms to reduce this to: 

= −𝑋1
𝑑𝑝1

𝑑𝜏𝐸
− (𝑋2 + 𝐺)

𝑑𝑝2

𝑑𝜏𝐸
+ 𝐿

𝑑𝑤

𝑑𝜏𝐸
+ 𝜏𝑌 (𝜔

𝑑𝐿

𝑑𝜏𝐸
− 𝐿

𝑑𝑤

𝑑𝜏𝐸
) + 𝜏𝐸

𝑑𝐸

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸

𝑑𝜏𝐸
 . 

Use GME to reduce this to  
𝑑𝑊

𝑑𝜏𝐸

1

𝑣𝑦
= −𝐹1 𝑑𝑝1

𝑑𝜏𝐸
− 𝐹2 𝑑𝑝2

𝑑𝜏𝐸
+ 𝐿

𝑑𝑤

𝑑𝜏𝐸
+ 𝜏𝑌 (𝜔

𝑑𝐿

𝑑𝜏𝐸
− 𝐿

𝑑𝑤

𝑑𝜏𝐸
) + 𝜏𝐸

𝑑𝐸

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸

𝑑𝜏𝐸
 . 

The rest follows immediately. ∎ 

 

Derivation of Equation (15) 

Rearrange 
𝑑𝑊

𝑑𝜏𝐸

1

𝑣𝑦
= −𝐹1 𝑑𝑝1

𝑑𝜏𝐸
− 𝐹2 𝑑𝑝2

𝑑𝜏𝐸
+ 𝐿

𝑑𝑤

𝑑𝜏𝐸
+ 𝜏𝑌(𝜔

𝑑𝐿

𝑑𝜏𝐸
− 𝐿

𝑑𝑤

𝑑𝜏𝐸
)𝜏𝐸

𝑑𝐸

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸

𝑑𝜏𝐸
= 0 to get  

𝜏𝐸 =
𝛿𝑁

𝑣𝑌
+

𝑄

𝑑𝐸/𝑑𝜏𝐸
−

𝜏𝑌𝑅

𝑑𝐸/𝑑𝜏𝐸
. 

Using equation (8) we have 𝜏𝑌𝑅 = (
𝑝2𝐺

𝐵
−

𝜏𝐸𝐸

𝐵
) 𝑅. Making the substitution and rearranging yields 

  𝜏𝐸 =
𝛿𝑁

𝑣𝑌
+

1
𝑑𝐸

𝑑𝜏𝐸

 𝑄 −
𝑅

𝑑𝐸

𝑑𝜏𝐸

 ( 
𝑝2𝐺

𝐵
− 𝜏𝐸

𝐸

𝐵
)  

  𝜏𝐸 (1 −
𝑅

𝑑𝐸

𝑑𝜏𝐸

𝐸

𝐵
) =

𝛿𝑁

𝑣𝑌
+

1
𝑑𝐸

𝑑𝜏𝐸

 𝑄 −
𝑅

𝑑𝐸

𝑑𝜏𝐸

 ( 
𝑝2𝐺

𝐵
)  
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  𝜏𝐸 = (1 −
𝑅

𝑑𝐸

𝑑𝜏𝐸

𝐸

𝐵
)

−1

 
𝛿𝑁

𝑣𝑌
+

1

𝑑𝐸

𝑑𝜏𝐸
(1−

𝑅
𝑑𝐸

𝑑𝜏𝐸

𝐸

𝐵
)

 𝑄 −
𝑅

𝑑𝐸

𝑑𝜏𝐸
(1−

𝑅
𝑑𝐸

𝑑𝜏𝐸

𝐸

𝐵
)

 ( 
𝑝2𝐺

𝐵
)  

  𝜏𝐸 =

𝑑𝐸

𝑑𝜏𝐸
𝑑𝐸

𝑑𝜏𝐸
−

𝑅𝐸

𝐵

 
𝛿𝑁

𝑣𝑌
+

1
𝑑𝐸

𝑑𝜏𝐸
−

𝑅𝐸

𝐵

 𝑄 −
𝑅

𝑑𝐸

𝑑𝜏𝐸
−

𝑅𝐸

𝐵

 ( 
𝑝2𝐺

𝐵
)  

 

which corresponds to equation (15). ∎ 

 

Derivation of Equation (17) 

The derivative of W with respect to the emissions constraint yields  

  
𝑑𝑊

𝑑�̂�

1

𝑣𝑦
 = −𝑋1

𝑑𝑝1

𝑑�̂�
− 𝑋2

𝑑𝑝2

𝑑�̂�
− 𝐻

𝑑𝑤′

𝑑�̂�
+

𝑑𝑌′

𝑑�̂�
−

𝛿𝑁

𝑣𝑦
.  

Since the policy does not raise revenue the GBC is 𝑝2𝐺 = 𝜏𝑌𝐵 which implies −𝐵
𝑑𝜏𝑌

𝑑�̂�
= (−𝐺

𝑑𝑝2

𝑑�̂�
+

𝜏𝑌
𝑑𝜋

𝑑�̂�
+ 𝜏𝑌𝜔

𝑑𝐿

𝑑�̂�
). Also note that 

𝑑𝑌′

𝑑�̂�
=

𝑑𝜋

𝑑�̂�
(1 − 𝜏𝑌) − 𝜋

𝑑𝜏𝑌

𝑑�̂�
+ 𝑇

𝑑𝑤′

𝑑�̂�
. Combining these yields: 

𝑑𝑊

𝑑�̂�

1

𝑣𝑦
 = −𝑋1

𝑑𝑝1

𝑑�̂�
− 𝑋2

𝑑𝑝2

𝑑�̂�
− 𝐻

𝑑𝑤′

𝑑�̂�
+ 𝐻

𝑑𝑤′

𝑑�̂�
+

𝑑𝜋

𝑑�̂�
(1 − 𝜏𝑌) − 𝜋

𝑑𝜏𝑌

𝑑�̂�
+ 𝐿

𝑑𝑤′

𝑑�̂�
−

𝛿𝑁

𝑣𝑦
 

⇒  
𝑑𝑊

𝑑�̂�

1

𝑣𝑦
 = −𝑋1

𝑑𝑝1

𝑑�̂�
− 𝑋2

𝑑𝑝2

𝑑�̂�
−𝜏𝑌

𝑑𝜋

𝑑�̂�
− 𝜋

𝑑𝜏𝑌

𝑑�̂�
+ 𝐿

𝑑𝑤

𝑑�̂�
− 𝐿𝜏𝑌

𝑑𝑤

𝑑�̂�
− 𝐿𝑤

𝑑𝜏𝑌

𝑑�̂�
+ (

𝑑𝜋

𝑑�̂�
−

𝛿𝑁

𝑣𝑦
) 

 = −𝑋1

𝑑𝑝1

𝑑�̂�
− 𝑋2

𝑑𝑝2

𝑑�̂�
+ (

𝑑𝜋

𝑑�̂�
−

𝛿𝑁

𝑣𝑦
) − 𝐵

𝑑𝜏𝑌

𝑑�̂�
+ 𝐿

𝑑𝑤

𝑑�̂�
(1 − 𝜏𝑌) − 𝜏𝑌

𝑑𝜋

𝑑�̂�
 

= −𝑋1

𝑑𝑝1

𝑑�̂�
− 𝑋2

𝑑𝑝2

𝑑�̂�
+ (

𝑑𝜋

𝑑�̂�
−

𝛿𝑁

𝑣𝑦
) − 𝐺

𝑑𝑝2

𝑑�̂�
+ 𝜏𝑌𝜔

𝑑𝐿

𝑑�̂�
+ 𝐿

𝑑𝑤

𝑑�̂�
(1 − 𝜏𝑌) 

= −𝐹1
𝑑𝑝1

𝑑�̂�
− 𝐹2

𝑑𝑝2

𝑑�̂�
+ 𝐿

𝑑𝑤

𝑑�̂�
+ 𝜏𝑌 (𝜔

𝑑𝐿

𝑑�̂�
− 𝐿

𝑑𝑤

𝑑�̂�
) + (

𝑑𝜋

𝑑�̂�
−

𝛿𝑁

𝑣𝑦
) 

which yields Equation (17) when set equal to zero. ∎ 
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Derivation of Equation (21) 

Variables modified to take account of the change in their initial values due to the partial regulation 

are denoted with ~. The derivative of W with respect to the emissions constraint yields  

  
𝑑𝑊

𝑑𝜏𝐸

1

𝑣𝑦
 = −𝑋1

𝑑𝑝1

𝑑𝜏𝐸
− 𝐻

𝑑�̃�′

𝑑𝜏𝐸
+

𝑑�̃�′

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸1

𝑑𝜏𝐸
.  

Substitute in  
𝑑�̃�′

𝑑𝜏𝑒
= (1 − 𝜏𝑌)

𝑑�̃�

𝑑𝜏𝐸
− �̃�

𝑑𝜏𝑌

𝑑𝜏𝐸
+ 𝐻

𝑑�̃�′

𝑑𝜏𝐸
+ �̃�

𝑑�̃�′

𝑑𝜏𝐸
 to obtain  

  
𝑑𝑊

𝑑𝜏𝐸

1

𝑣𝑦
= −𝑋1

𝑑𝑝1

𝑑𝜏𝐸
− 𝐻

𝑑�̃�′

𝑑𝜏𝐸
+ 𝐻

𝑑�̃�′

𝑑𝜏𝐸
+ �̃�

𝑑�̃�′

𝑑𝜏𝐸
+ (1 − 𝜏𝑌)

𝑑�̃�

𝑑𝜏𝐸
− �̃�

𝑑𝜏𝑌

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸1

𝑑𝜏𝐸
 

= −𝑋1
𝑑𝑝1

𝑑𝜏𝐸
+ �̃� (

𝑑�̃�

𝑑𝜏𝐸
− 𝜏𝑌

𝑑�̃�

𝑑𝜏𝐸
− �̃�

𝑑𝜏𝑌

𝑑𝜏𝐸
) + (1 − 𝜏𝑌)

𝑑�̃�

𝑑𝜏𝐸
− �̃�

𝑑𝜏𝑌

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸1

𝑑𝜏𝐸
  

= −𝑋1
𝑑𝑝1

𝑑𝜏𝐸
+ �̃�

𝑑�̃�

𝑑𝜏𝐸
− 𝜏𝑌�̃�

𝑑�̃�

𝑑𝜏𝐸
−

𝑑𝜏𝑌

𝑑𝜏𝐸
(�̃� + �̃��̃�) + (1 − 𝜏𝑌)

𝑑�̃�

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸1

𝑑𝜏𝐸
 . 

Using 𝑟 = �̃�𝑟/�̃� we have 

 
𝑑𝑊

𝑑𝜏𝐸

1

𝑣𝑦
= −𝑋1

𝑑𝑝1

𝑑𝜏𝐸
+ �̃�

𝑑�̃�

𝑑𝜏𝐸
− 𝜏𝑌�̃�

𝑑�̃�

𝑑𝜏𝐸
−

𝑑𝜏𝑌

𝑑𝜏𝐸
(𝑟�̃�) + (1 − 𝜏𝑌)

𝑑�̃�

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸1

𝑑𝜏𝐸
 . 

Following similar steps as before while noting that �̃�2 does not change in response to the emission 

tax, we have −�̃�
𝑑𝜏𝑌

𝑑𝜏𝐸
= 𝜏𝑌

𝑑�̃�

𝑑𝜏𝐸
+ 𝜏𝐸

𝑑𝐸1

𝑑𝜏𝐸
+ �̃� and 

𝑑�̃�

𝑑𝜏𝐸
=

𝑑�̃�

𝑑𝜏𝐸
+ 𝜔

𝑑�̃�

𝑑𝜏𝐸
. Substitute these in to obtain  

𝑑𝑊

𝑑𝜏𝐸

1

𝑣𝑦
= −𝑋1

𝑑𝑝1

𝑑𝜏𝐸
+ �̃�

𝑑�̃�

𝑑𝜏𝐸
− 𝜏𝑌�̃�

𝑑�̃�

𝑑𝜏𝐸
+ 𝑟(𝜏𝐸

𝑑𝐸1

𝑑𝜏𝐸
+ �̃� + 𝜏𝑌 (𝜔

𝑑�̃�

𝑑𝜏𝐸
+

𝑑�̃�

𝑑𝜏𝐸
)) + (1 − 𝜏𝑌)

𝑑�̃�

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸1

𝑑𝜏𝐸
  

 = −𝑋1
𝑑𝑝1

𝑑𝜏𝐸
+ �̃�

𝑑�̃�

𝑑𝜏𝐸
− 𝜏𝑌�̃�

𝑑�̃�

𝑑𝜏𝐸
+ 𝑟𝜏𝐸

𝑑𝐸1

𝑑𝜏𝐸
+ 𝑟�̃� + 𝑟𝜏𝑌𝜔

𝑑�̃�

𝑑𝜏𝐸
+ 𝑟𝜏𝑌

𝑑�̃�

𝑑𝜏𝐸
+

𝑑�̃�

𝑑𝜏𝐸
− 𝜏𝑌

𝑑�̃�

𝑑𝜏𝐸
−

𝛿𝑁

𝑣𝑦

𝑑𝐸

𝑑𝜏𝐸
  

= −𝑋1
𝑑𝑝1

𝑑𝜏𝐸
+ �̃�

𝑑�̃�

𝑑𝜏𝐸
+ (𝑟𝜏𝐸 −

𝛿𝑁

𝑣𝑦
)

𝑑𝐸1

𝑑𝜏𝐸
+ (𝑟�̃� +

𝑑�̃�

𝑑𝜏𝐸
) + 𝜏𝑌

𝑑�̃�

𝑑𝜏𝐸
(𝑟 − 1) + 𝜏𝑌 (𝑟𝜔

𝑑�̃�

𝑑𝜏𝐸
− �̃�

𝑑�̃�

𝑑𝜏𝐸
)  

= −�̃� + (𝑟𝜏𝐸 −
𝛿𝑁

𝑣𝑦
)

𝑑𝐸1

𝑑𝜏𝐸
+ �̃�(𝑟 − 1) + 𝜏𝑌

𝑑�̃�

𝑑𝜏𝐸
(𝑟 − 1) + 𝜏𝑌 (𝑟𝜔

𝑑�̃�

𝑑𝜏𝐸
− �̃�

𝑑�̃�

𝑑𝜏𝐸
)  

= −�̃� +
𝑑𝐸1

𝑑𝜏𝐸
(𝑟𝜏𝐸 −

𝛿𝑁

𝑣𝑦
) + �̃�(𝑟 − 1)(1 − 𝜏𝑌) + 𝜏𝑌 (𝑟𝜔

𝑑�̃�

𝑑𝜏𝐸
− �̃�

𝑑�̃�

𝑑𝜏𝐸
)  
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= −�̃� +
𝑑𝐸1

𝑑𝜏𝐸
(𝑟𝜏𝐸 −

𝛿𝑁

𝑣𝑦
) + �̃�(𝑟 − 1) + 𝜏𝑌 (𝑟𝜔

𝑑�̃�

𝑑𝜏𝐸
− �̃�

𝑑�̃�

𝑑𝜏𝐸
+ �̃�(1 − 𝑟)).  

Denote �̃� = (𝑟𝜔
𝑑�̃�

𝑑𝜏𝐸
− �̃�

𝑑�̃�

𝑑𝜏𝐸
+ �̃�(1 − 𝑟)). Use 𝜏𝑌 =

�̃�2𝐺

�̃�
−

𝜏𝐸�̃�

�̃�
 and set the above to zero to solve for 

the optimal value of 𝜏𝐸: 

  𝜏𝐸 =
1

𝑟

𝛿𝑁

𝑣𝑌
+

1

𝑟
𝑑𝐸1
𝑑𝜏𝐸

 �̃� −
1

𝑟
𝑑𝐸1
𝑑𝜏𝐸

�̃�(𝑟 − 1) − (
�̃�2𝐺

�̃�
−

𝜏𝐸�̃�

�̃�
 ) �̃�

1

𝑟
𝑑𝐸1
𝑑𝜏𝐸

  

  =
1

𝑟

𝛿𝑁

𝑣𝑌
+

1

𝑟
𝑑𝐸1
𝑑𝜏𝐸

 �̃� −
1

𝑟
𝑑𝐸1
𝑑𝜏𝐸

�̃�(𝑟 − 1) −
�̃�2𝐺

�̃�
�̃�

1

𝑟
𝑑𝐸1
𝑑𝜏𝐸

+
𝜏𝐸�̃��̃�

�̃�

1

𝑟
𝑑𝐸1
𝑑𝜏𝐸

  

  𝜏𝐸 (1 −
�̃��̃�/�̃�

𝑟
𝑑𝐸1
𝑑𝜏𝐸

) =
1

𝑟

𝛿𝑁

𝑣𝑌
+

1

𝑟
𝑑𝐸1
𝑑𝜏𝐸

 �̃� −
1

𝑟
𝑑𝐸1
𝑑𝜏𝐸

�̃�(𝑟 − 1) −
�̃�2𝐺

�̃�
�̃�

1

𝑟
𝑑𝐸1
𝑑𝜏𝐸

  

  𝜏𝐸 = (

𝑑𝐸

𝑑𝜏𝐸

𝑟
𝑑𝐸1
𝑑𝜏𝐸

−
�̃��̃�

�̃�

)
𝛿𝑁

𝑣𝑌
− (

1

𝑟
𝑑𝐸1
𝑑𝜏𝐸

−
�̃��̃�

�̃�

) (
�̃�2𝐺

�̃�
�̃� − �̃� − �̃�(1 − 𝑟))  

which corresponds to equation (21). ∎ 

 


