Heart disease has been an issue in human civilization for centuries, and is the leading cause of death worldwide. One commonly inherited heart disease is known as hypertrophic cardiomyopathy, or HCM. It is typified by a thickening of the left ventricular muscle, and can cause sudden cardiac death especially among young athletes. Although no definitive single cause has been discovered, there have been many genes implicated in the pathogenesis of HCM. This includes the gene encoding α-cardiac actin, known as ACTC1, an integral part of cardiac muscle tissue. To date, 12 mutations in ACTC1 have been linked to HCM, encoding variant proteins that contribute to the disease state. Of these, the ACTC variants A295S and A331P are of particular interest for their proposed interaction with the regulatory protein tropomyosin. Recombinant protein variants will be tested to determine their binding affinity with tropomyosin using a fluorescence-based assay, their influence on the enzymatic activity of myosin using an ATPase assay, and their effect on filament velocity and movement in an in vitro motility assay. This research aims to investigate the altered interactions of these ACTC variants with tropomyosin and other sarcomeric proteins in a biologically relevant system. The information generated will provide a better understanding of how HCM develops for individuals with these variant proteins, and may eventually lead to the development of more personalized treatments for individuals with this disease.