BIOC*3560

Structure and Function in Biochemistry

Fall 2015

Instructors:

Dr. Marc Coppolino Dr. Rod Merrill

Rm. 2245 Science Complex Rm. 2250 Science Complex

Ext. 53031 Ext. 53806

E-mail: bioc356w@uoguelph.ca

Please do not send course related emails to the instructors' personal email addresses.

Lectures:

Mon., Wed., Fri., 9:30 a.m. - 10:20 a.m.; Alexander Hall 200

Please note: Electronic recording of classes is expressly forbidden without prior consent of the instructor. When recordings are permitted, they are solely for the use of the authorized student and may not be reproduced, or transmitted to others, without the express written consent of the instructor.

Office hours:

Dr. Coppolino: Monday, 1:00pm – 2:30pm; Thursday, 10:30am – 12:00pm Dr. Merrill: Monday, 1:00pm – 2:30pm; Thursday, 10:30am – 12:00pm

Other times can be arranged by appointment upon request.

Synopsis:

This is a course where biochemical structure and function are examined in an integrated fashion. An emphasis will be placed on the **regulation of protein function**. Topics covered include oxygen-binding proteins, regulatory enzymes, regulation of metabolism, membranes, membrane transport and biochemical signalling.

Prerequisite: BIOC*2580

Course Goals:

By the end of this course successful students will be able to:

- 1. Describe structure/function relationships of proteins at the amino acid level, and how this contributes to ligand-binding and enzyme activity.
- 2. Describe the regulation of proteins by post-translational modifications and allosteric effectors.
- Explain how regulatory enzymes are controlled in the regulation of pathways
 of carbohydrate and fatty acid metabolism in mammals. Explain the
 biochemical mechanisms that mediate signaling of these pathways at the
 tissue, organ and organismal level.
- Describe how proteins and lipids define the structure and function of biological membranes. Explain the ways in which substances can be transported across membranes and the energy requirements for such transport.
- 5. Describe the biochemical mechanisms by which signals are propagated across the membrane and within a cell.

Textbook:

<u>Recommended</u>: "Lehninger Principles of Biochemistry" by Nelson and Cox, 5th **or** 6th Edition, Freeman Publishers; available at the bookstore. Several copies of the 5th and 6th Editions are on reserve (2 hour loan) at the Library Reserve Desk.

Problem sets:

Periodically throughout the semester, problem sets will be posted. These exercises are for review/practice purposes; answers will be posted, no marks will be assigned.

Grade Assessment:

Midterm Examination: 40% Final Examination: 60%

Both exams are required. If the mid-term is not written due to an illness, the student is required to provide appropriate documentation. In this case, the final will be worth 100%.

Examination Schedule:

Midterm Examination: XXXXXXXX, XXXXXXXX XX, 2015, XX:XX-XX:XX XX (duration to be determined). Persons with a scheduled academic conflict should inform the instructor by e-mail, stating the conflicting course, by XXXXXXX X, 2014. Alternative midterm exams will be arranged where appropriate and possible.

Final Examination: XXXXXXXX, XXXXXXXX XX, 2015, XX:XX - XX:XX xx; location to be determined. The final exam is cumulative. Students who score a significantly higher grade on the Final Exam, compared with the midterm, may receive a higher weighting of the final exam (midterm: 25%, final: 75%), at our discretion. A significantly higher grade is one that is 25 percentage points higher.

Re-grading:

Midterm papers may be returned to us for correction of grading errors, only within one week of the return of the paper to the student. We may refuse to re-grade a paper at our discretion.

Exam aids:

No materials may be brought to the exam except for pencils, pens and an eraser. No calculators, electronic devices (including cell phones), pencil cases, purses, bags, tissue boxes or other containers may be present. All materials are subject to inspection.

Drop and Add:

Notification is **not** needed for dropping the course before the **DROP** deadline (40th class day; Friday, November 6, 2015). Program approval is only needed for drops and adds if your category is "Special" or "Provisional".

Course Evaluation:

As part of the faculty evaluation process in the Department of Molecular and Cellular Biology, students are reminded that written comments on instructors' teaching performance may be sent to the Chair, Department of Molecular and Cellular Biology, at any time. Such letters must be signed; a copy will be made available to the instructor **after** submission of the final grade.

Accessibility

The University of Guelph is committed to creating a barrier-free environment. Providing services for students is a shared responsibility among students, faculty and administrators. This relationship is based on respect of individual rights, the dignity of the individual and the University community's shared commitment to an open and supportive learning environment. Students requiring service or accommodation, whether due to an identified, ongoing disability or a short-term disability should contact the Centre for Students with Disabilities as soon as possible. For more information, contact CSD at 519csd@uoguelph.ca 824-4120 ext. 56208 or email or see the website: http://www.csd.uoguelph.ca/csd/

Academic Misconduct

The University of Guelph is committed to upholding the highest standards of academic integrity and it is the responsibility of all members of the University community – faculty, staff, and students – to be aware of what constitutes academic misconduct and to do as much as possible to prevent academic offences from occurring. University of Guelph students have the responsibility of abiding by the University's policy on academic misconduct regardless of their location of study; faculty, staff and students have the responsibility of supporting an environment that discourages misconduct. Students need to remain aware that instructors have access to and the right to use electronic and other means of detection.

Please note: Whether or not a student intended to commit academic misconduct is not relevant for a finding of guilt. Hurried or careless submission of assignments does not excuse students from responsibility for verifying the academic integrity of their work before submitting it. Students who are in any doubt as to whether an action on their part could be construed as an academic offence should consult with a faculty member or faculty advisor.

The Academic Misconduct Policy is detailed in the Undergraduate Calendar: http://www.uoguelph.ca/registrar/calendars/undergraduate/current/c08/c08-amisconduct.shtml

BIOC*3560 - Fall 2015

Assigned Reading

Chapter and page numbers below are from **Lehninger Principles of Biochemistry 5**th and **6**th **Editions**. We will be using figures mainly from the 6th Ed.; however, the material covered by the course is similar in both, and purchase of the 6th Ed. is <u>not required</u>.

Part A - Regulation of Protein Function (Chapters 5, 6 and 12)

	6 th Ed.	5 th Ed.
The Oxygen-binding Proteins		
Protein-ligand Interactions I	157-158	153-154
Myoglobin Structure/Function	158-159	154-155
Protein-ligand Interactions II	159-163	155-158
Hemoglobin	163-167	158-162
Cooperative Ligand Binding, Hill Equation	167-169	162-165
Hemoglobin and O ₂ /H ⁺ /CO ₂ Transport	169-172 +	165-169 +
	Box 5-1	Box 5-1
Protein Interactions Modulated by Chemical Energy	179-181	175-176
	182-184	178-179
Regulatory Enzymes		
Review Enzyme Function	189-203	183-198
Regulatory Enzymes:	226-228	220-222
Enzyme Regulation by Reversible Covalent Modification	228-229	223-224
Phosphorylation		
glycogen phosphorylase, glycogen synthase:	229-231	224-226
Modulation by Proteolytic Cleavage:	231-232	226-228
chymotrypsin	214-218	205-209
caspases	492-494	477-478
Complex Regulation of Enzyme Activity	235-236	227
cyclin-dependent kinases	484-488	469-473

Research article: Faustova, Loog and Jarv. Probing L-Pyruvate Kinase Regulatory Phosphorylation Site by Mutagenesis (2012) *The Protein Journal* 31, 592-597.

Part B - Regulation and Integration of Carbohydrate Metabolism (Chapters 14, 15)

	6 th Ed.	5 th Ed.
Carbohydrate Metabolism		
Regulation of Metabolic Pathways	501-504	485-488
Review of Glycolysis	543-555	527-539
Gluconeogenesis	568-575	551-558
Pentose Phosphate Pathway	575-580	558-563
Reciprocal Regulation of Glycolysis and Gluconeogenesis	601-608	582-590
Glycogen Metabolism	612-619	594-601
Coordinated Regulation of Glycogen Synthesis		
and Breakdown	620-627	602-609

Part C - Regulation and Integration of Lipid Metabolism (Chapters 17, 21, 23)

<u>Lipid Metabolism</u>		
Fatty Acid Catabolism	667-672	647-652
Mobilization and Oxidation of Fatty Acids	672-682	652-661
Ketone Bodies	686-688	666-668
Fatty Acid Biosynthesis	833-848	805-820
Triacylglycerol Metabolism	848-850	820-822
Integration of Metabolism		
Tissue-specific Metabolism	939-951	912-922
Hormonal Regulation of Fuel Metabolism	623-627	605-609
	951-959	922-929
Diabetes	959-960	929-930

Part D – Membranes, Transport and Biosignalling (Chapters 10-12)

	6 th Ed.	5 th Ed.
Membranes and Transport		
Review of Lipids	357-362	343-349
Membrane Lipids	362-370	349-357
Membrane Structure and Function	385-389	371-374
Membrane Proteins	389-395	374-381
Membrane Dynamics and Fusion	395-402	381-389
Transport Across Membranes; ATPase Ion Pumps	402-420	389-406
Ion Selectivity	420-427	406-413
Biochemical Signaling		
Introduction to Biosignaling	433-437	419-423
	Box 12-1	Box 12-1
Gated Ion Channels; Synaptic Transmission	410-470	449-455
Receptor Enzymes	453-459	439-445
G Protein-coupled Receptors and 2 nd Messengers	437-447	423-432
Steroid Hormone Receptors	471-472	456-457
	1182-1184	1143-1144