
CSP++ : Software Synthesis from Formal Specifications
Bill Gardner, Alicia Gumtie, John Carter

School of Computer Science, University of Guelph

Tool available for free download:
http://www.uoguelph.ca/~gardnerw/csp++/

what it is:
• object-oriented application framework (OOAF) plus translator
• classes implement semantics of CSP primitives—processes, events, and channels
• cspt translator synthesizes C++ from CSP spec for compilation with OOAF library
• developers supply C++ user-coded functions (UCFs) to overload events in CSP control backbone
• latest version supports Timed CSP operators
• compatible with *NIX platforms with GNU g++ and Pth (portable threading library)

selective formalism:
• a compromise between full-formal and non-

formal development
• only apply formal methods where most

beneficial: modelling concurrency, common
source of problems (e.g., deadlocks)

• SW synthesis eliminates manual translation
from formal specs to source code

• minimal gurus required;
ordinary C++ developers still useful!

formal methods:
• using mathematically-based languages and

techniques to specify, model, implement,
and verify systems

• Advantage: code is provably correct
• Disadvantage: perceived difficulty and cost;

hard to find enough experts

CSP:
• Communicating Sequential Processes (Hoare)
• process-oriented, event-based formal algebra
• process defined as sequence of abstract events and/or

hierarchical composition (parallel or sequential) of other processes
• interprocess communication via message passing on channels (nonbuffered, unidirectional)
• synchronization occurs on events and channel I/O
• verify formal properties (deadlock, livelock, refinement) via third-party tools
• Timed CSP adds operators for delay, interrupt, timeout, suitable for soft real-time systems

Background

CSP++

example:

CSP process

UCF on
'button' event

CUSTOMER = coin!25 -> button -> item -> change -> CUSTOMER

 void button_ucf(ActionType t, ActionRef* a, Var* v, Lit* l) {
 cout << "The button was pushed!" << endl;
 }

 AGENTPROC(CUSTOMER_)
 coin() << 25;
 button();
 item();
 change();
 CHAIN0(CUSTOMER_);

synthesized C++!

CSP++ design flow: write CSP
spec

verify w/
FDR, ProBE

translate
w/ cspt

compile simulate
w/ CSP++

write C++
UCFs

executable
system

FDR and ProBE are verification tools from Formal Systems (Europe) Ltd.

