Bridging CSP and C++ with Selective Formalism
and Executable Specifications

W. B. Gardner
Dept. of Computing & Information Science, Univ. of Guelph, Guelph, Ontario, Canada
wbgardner@alum.mit.edu

Abstract

CSP (Communicating Sequential Processes) is a useful
algebraic notation for creating a hierarchical behavioural
specification for concurrent systems, due to its formal
interprocess synchronization and communication seman-
tics. CSP specifications are amenable to simulation and
formal verification by model-checking tools. To overcome
the drawback that CSP is neither a full-featured nor popu-
lar programming language, an approach called “selective
formalism” allows the use of CSP to be limited to specify-
ing the control portion of a system, while the rest of its
Sfunctionality is supplied in the form of C++ modules.
These are activated through association with abstract
events in the CSP specification. The target system is con-
structed using a framework called CSP++, which automat-
ically translates CSP specifications into C++, thereby
making CSP directly executable. Thus a bridge is built that
allows a formal method to be combined with a popular
programming language. It is believed that this methodol-
ogy can be extended to hardware/sofiware codesign.

1. Introduction

Concurrent systems present special design challenges
due to their complex interactions, both with their environ-
ment, as in the case of reactive real-time systems, and
internally in terms of synchronization and communication
among their constituent processes. This is the case whether
they are single-host systems, distributed systems, or
embedded systems with hardware and software compo-
nents. Formal methods have been advocated as a way to
verify system properties at the design stage [1], but indus-
try practitioners have not been eager to adopt abstruse
mathematical notations, uncommon programming lan-
guages, or additional costly engineering process steps [20].
Thus concurrent systems often continue to be designed and
tested on an ad hoc basis, particularly in North America.

To create a sort of “Third Way” between pure formalism
on the one hand, and unfettered informalism on the other,
this research proposes an approach dubbed selective for-
malism. Instead of forcing all design to be channelled

through the straitjacket of a formalism, formal design can
be selectively concentrated on critical parts of the system,
i.e., those which will benefit from modeling and verifying
the flow of control and communication. Non-critical com-
ponents written in a popular language can be integrated
alongside the formal model without breaking the formal-
ism. Compared to pure formal methods, selective formal-
ism can yield faster development and can facilitate reuse of
IP components. Compared to popular programming, selec-
tive formalism offers mathematical model-checking and
verifiable properties. It may attract practitioners who can-
not afford a wholesale adoption of formal methods.

Putting selective formalism into practice requires three
ingredients: (1) a suitable formal notation, ideally one with
verification tools readily available; (2) a popular program-
ming language; and (3) a framework for integrating these
two. This research! combines the process algebra CSP
(Communicating Sequential Processes) [15][16][22][23]
—selected for its formal model of interprocess synchroni-
zation and communication—along with C++. Integration is
achieved by automatically translating CSP specifications
into executable C++ code, and allowing user-coded C++
components to be plugged into what is in effect a CSP con-
trol backbone. Work is underway to enhance this frame-
work to support pluggable hardware IP components, which
will effectively extend the CSP backbone across the hard-
ware/software interface.

The following sections give an overview of this
approach. A small case study based on a simulated disk
server, and results of timing experiments, are presented at
the end.

2. The CSP++ Approach

This approach relies on two adaptations of the CSP for-
malism, to wit, making CSP specifications both executable
and extensible. The first adaptation comes through original
software tools that automatically synthesize C++ code
from a given CSP specification. The resulting software
retains the formal properties that may have been verified

IThis work is supported by research grants from NSERC (Natural Sci-
ence and Engineering Research Council) of Canada.

by simulation and verification tools such as FDR [11], and
can be executed on a platform that hosts C++ with a
POSIX-compliant operating system or kernel executive.
The run-time environment that emulates CSP process and
channel semantics is called CSP++ [13], and is described
in Section 2.3.

The second adaptation comes from allowing CSP’s
abstract named events (including those used as channels) to
be associated with arbitrary user-coded C++ functions.
They are invoked by CSP++ whenever a process engages
in the associated event. These functions can be employed
for a variety of purposes, especially for calculations and
data processing for which native CSP, which does not pre-
tend to be a full-featured programming language, is ill-
suited. The functions can make system calls and interface
with the external environment, but they must not engage in
interprocess communication or synchronization. That
would represent “going behind the back” of the CSP speci-
fication, and would potentially violate the system’s verified
properties.

The above strategy utilizes CSP for modeling the con-
trol structure of a system, and then extends the specifica-
tion by means of the user-coded functions which flesh out
its full functionality. As a side benefit, the total system is
modularized along the lines of the CSP events and their
associated C++ functions, which could in principle consti-
tute reusable IP components. Automatic synthesis of CSP
to C++ is key to making this scheme practical, since it
eliminates the Achilles heel of many formal methods as
distilled in this question: “After the formal specification
has been verified, how do we turn it into executable code?”
If the answer is, “Translate it by hand,” then there is a dan-
ger of losing formal properties and introducing errors in the
course of labourious manual refinement.

The sections below expand on the design flow, transla-
tor, and run-time framework created for CSP++.

2.1. CSP++ System Model and Design Flow

Using the CSP++ approach, a target software system
can be constructed in layers, as shown in Figure 1. The
CSP++ control layer is actually the CSP system specifica-
tion, translated into C++, and linked with the CSP++ run-
time framework. Triggered by CSP events, it will call on
user-coded functions, which in turn can access the hard-
ware directly, utilize operating system facilities via system
calls, and optionally access software packages such as a
database management system, graphical user interface tool
kit, math libraries, etc. Though not shown in Figure 1,
when this work is extended to hardware, it is envisioned
that some CSP processes can be allocated to VLSI, field-
programmable devices, or hardware portions of SOC. The
hardware-allocated processes will activate custom circuits

CSP++ control layer

event-associated

functions SW packages

OS facilities

host platform hardware components

Figure 1. Layered Target System Model

in an analogous manner to which user-coded functions are
activated in the software partition. A signalling protocol
will allow the semantics of CSP interprocess synchroniza-
tion and communication to take place across the hardware/
software interface.

The design flow for a software system is shown in Fig-
ure 2. A designer would start by capturing the desired sys-
tem behaviour in a CSP specification, relying on
verification tools to simulate and check the specification
until satisfied. For example, FDR can verify a CSP specifi-
cation for liveness” and for absence of deadlocks. There-
upon, the cspt translator (described in Section 2.2) will
convert the CSP statements into C++ source code that is
designed to be compiled with the header files of the CSP++
classes (see Section 2.3) and linked with user-coded func-
tions to load onto the target platform. Most likely, the latter
functions would form the bulk of the software to be writ-
ten, and could be delegated to conventional C++ program-
mers based on the role of these modules in the CSP
specification.

Figure 3 clarifies the method of integrating user code.
Side (b) is a blowup of the software components on side
(a). Some CSP named events (a2, a3, and cl) are used
solely for interprocess synchronization and communication
within the control layer. Other events (al, c2, and ¢3) are
associated with user-coded functions. These C++ functions
are invoked when a process tries to engage in the associ-
ated CSP event.

The translator and the CSP++ framework are described
in more detail below.

2Liveness is the guarantee that “something good will happen,” in the
sense that a process will engage, as intended, in events that are presented
in its environment. In CSP specifications, liveness is verified by analyzing
the refusals and failures of a process, which refer to sets of events offered
in the environment that the process can refuse to respond to indefinitely
[24].

user
mput

synthesis
steps

_> verification
tool
CSP++
translator

CSP++
source
code

simulate
& refine

user
source
code

event-associated
functions

\ 4 CSP++

C++ compiler & linker

run-time
library

synthesized i

SOFTWARE for TARGET SYSTEM

output

Figure 2. CSP++ Design Flow

2.2. cspt Translator

The CSP++ translator, called cspt, is written in C++
using flex and bison, and takes as input a machine-readable
form of Hoare’s CSP notation [16]. The input for cspt fol-
lows the syntax developed by M. Cheng [6] for use with
his model checker called cspl2. Its semantics match
Hoare’s CSP; only the notation has been adjusted to make

(a)

user
cspP source
specs code
/
/ \ 4 SW components ‘ \/
synthesized q event
CSP++ program < functions
A
~
v
HW components
TARGET SYSTEM

synthesized CSP++ program

it convenient for ASCII text file input. Work is underway
to realign cspt’s input syntax with the commercial model-
checker FDR, which uses an alternate machine-readable
form of CSP, in order to facilitate bringing “industrial
strength” verification tools to bear on realistic case studies.

cspt follows the rules set down in [13] and [12] for
translating each CSP construct into one or more C++ state-
ments. These consist of instantiations of classes and opera-

(b)

event functions

2]
,Ci/@

Pi CSP process Xj event-associated function

Frosas { ay eventsync

> ¢;channel /O

Figure 3. Integration of User Code

tions upon objects of the CSP++ object-oriented
application framework (OOAF). The translation of a given
CSP specification can be considered a customization of
that OOAF yielding a particular application. The customi-
zation is an executable C++ program that reflects the trans-
lated specification. Running the program (without
associated event functions) is equivalent to simulating the
specification, and a trace of executed events of synchroni-
zations and channel communication can be logged for
printing.

2.3. CSP++ Framework

CSP++ being an object-oriented application framework
[18][9][25] means it represents a packaging of OO technol-
ogy in a way that can be customized by users to create a
family of similar applications, in this case, C++ programs
which behave like their original CSP specifications. The
job of cspt is to automatically generate a customization to
match a CSP specification. Like most OOAFs, CSP++
incorporates in its classes some infrastructure needed by all
customizations, that is, the CSP computational model con-
sisting of concurrent processes—implemented as threads—
“barrier” style synchronization [17], and unidirectional
non-buffered channel communication. Classes have been
defined for CSP processes (called “agents” in Cheng’s ter-
minology), events (“actions”), and channels. The methods
of these classes implement their CSP-style behaviours.

The OO design and operation of the framework is
described in [13] and fully documented in [12]. Problems
solved include implementing concurrent multiparty syn-
chronization in the presence of the CSP external choice
operator (|), and proper binding of event names in the
dynamic execution environment. CSP allows hiding and
renaming of events throughout multiple differing instances
of parallel process composition, and this is fully imple-
mented in CSP++.

Briefly, multiparty synchronization is implemented by
associating each event with an array of flags, one for each
party. When a process attempts to synchronize on an event,
it sets its respective flag. If it finds that all flags are now
set, then synchronization has occurred; it wakes up the
other parties and they go their separate ways. But if any
flags remain unset, it sleeps on a condition variable, await-
ing wake up by the last party to synchronize. Upon syn-
chronization, if the event is a channel, then data is
transferred from the sending process to the receiver.

Binding of event names for the purpose of synchroniza-
tion and channel communication is performed with the
help of a branching environment stack, also called a pro-
cess descent tree. This tree “pushes” leaf nodes whenever
new processes are created (e.g., by the || parallel composi-
tion operator), and pops them off when a process termi-

nates. Whenever an event name is referenced in a process,
the tree is searched from the process’s node in the direction
of its ancestors until a definition for the event is found. The
definition may specify renaming of the event (in which
case the search continues up the tree looking for the new
name), hiding (which terminates the search), or synchroni-
zation. The flags described in the previous paragraph are
physically located in these synchronization nodes of the
process descent tree.

External choice, also known as deterministic choice, is
implemented by adding a try-then-back-out protocol to the
synchronization mechanism. If a process is specified in
terms of, say, three alternatives, a->P1 | b->P2 | c-
>P3, then each event, a, b, and c, is tried in turn. The first
one to synchronize will determine which process, P1, P2,
or P3, is executed. If none are prepared to synchronize,
then the choosing process sleeps until the first synchroniza-
tion occurs. Upon waking up, the pending synchronizations
on the other events are cancelled, and the process carries
on with the chosen alternative.

When a CSP specification is translated, cspt expects the
user to define a top-level process called SYS representing
the system as a whole. As a CSP specification is hierarchi-
cal in nature, the SYS process, corresponding to the base of
the branching environment stack, likely flows via parallel
composition into concurrent processes that do the work of
the system. Execution ceases when all processes have ter-
minated normally (by executing SKIP), or one has invoked
the special STOP (deadlock) process, which by default
results in a process status dump.

C++ not being inherently a concurrent programming
language, multithreading is obtained via the POSIX thread
package. In an earlier version of CSP++, the AT&T task
(coroutines) library were utilized. Experience with porta-
bility of CSP++ is taken up in Section 3.3, and run-time
efficiency in Section 3.2.

3. Discussion

In this section, there is a review of related work in exe-
cutable specifications, followed by experimental results
using CSP++ for a modest case study. Portability of the
framework is also discussed.

3.1. Related Work

There are diverse approaches to incorporating elements
of formalism into a system design flow. One is to utilize
programming languages whose semantics are derived from
formal notations. The programming language occam has
been derived from CSP. [15] shows how to convert from
CSP to occam, but acknowledges that it is a “very special-
ized language intended for implementation on transputers.”

There is another well-developed derivative of CSP and
CCS, Calculus of Communicating Systems [21], called
LOTOS [19]. It is similar to occam in being a full-fea-
tured programming language. In addition to the process-
algebraic aspect, LOTOS also incorporates a data-algebraic
subset based on abstract data types, and it compiles to exe-
cutable code. The language has been standardized (ISO
8807), and is in use, particularly in Europe, for design of
distributed systems and protocols. In conjunction with
using LOTOS as a specification language for hardware/
software codesign [5], synthesis tools for translation of
LOTOS to C and VHDL have been created. As with
occam, LOTOS represents a different direction than this
work—that of utilizing a special programming language,
albeit one based on a design formalism. From a manage-
ment standpoint, it can be more practical to hire or train a
small number of formal practitioners to write the control
structure of a system, while the rest of the programmers
code in C++ as before, than to contemplate retraining
everyone to use an unusual language.

For Java programmers, the JavaPP (Java Plug & Play)
Project has created a set of classes called CJT, Communi-
cating Java Threads [14], which are designed to bring CSP-
style synchronization and communication to Java pro-
grams. Again, this represents a different goal, but does
open up an avenue for converting CSP to Java. It should be
noted that programs written in occam, LOTOS, and Java
(with CJT) are not directly verifiable. One would have to
write first in CSP, verify the specifications, and then hand
translate to the target language, which risks losing the veri-
fied properties.

Another approach is used by the EVES tool and the
Verdi language (ORA Canada) [8]. Verdi is an executable
specification: it is verifiable by EVES and is compilable,
but it requires adopting an uncommon language.

Code generation from CSP has been done to some
extent using the C language. The CCSP tool [2] provides a
limited facility for translating a subset of CSP into C, but it
does not directly support the key parallel composition
operator (||). Instead, each CSP process becomes a heavy-
weight UNIX process, and channels are implemented as
UNIX sockets. In contrast, the CSP++ approach supports
the full functionality of concurrent composition, and is
implemented using threads, thus making it practical for a
larger range of applications.

In terms of an input formalism for this research, the
goals require that the formalism be checkable and synthe-
sizeable. A few algebraic specification languages meet
these criteria, including CCS and ACP, Algebra of Com-
municating Processes [4]. The existence of the sophisti-
cated commercial tool, FDR, means that a path for
applying this research in industry can be followed up.

3.2. Experimental Results

[13] introduced a small disk server case study, whose
CSP specification (in cspl2 syntax) is given in Figure 4.
Lines with “%” denote comments. This is the actual source
input to the cspt translator. The case study has been run
under the original SunOS implementation of CSP++, and
with the current Linux and Solaris ports.

The disk server DSS is defined as a composition of two
pairs of processes: the scheduler and request queue, which
are synchronized on queue events, and the controller and
(simulated) disk, synchronized on controller signals (chan-
nels dio and dint). The scheduler, DSched, communicates
with the controller via channels dci and dco. DSched is
specified as a state machine, cycling through the states idle,
busy, and check, responding to requests on channel ds and
sending acknowledgements. The request queue, DQueue,
uses a subscripted process, DQ(i), to keep track of the
number of requests queued, and a two-cell buffer. The
BUFF process demonstrates event renaming and hiding.

In order to put CSP++ into perspective as a tool for code
generation, and get a reasonable idea of its efficiency, the
same disk server model was created using a commercial
Statechart synthesis product with a comparable objective to
CSP++: ObjecTime Developer, a design automation pack-
age for embedded systems, now part of Rational Rose
RealTime. Using the disk server case study as a baseline,
repetitions were introduced to inflate its execution time to a
significantly measurable level. These test cases are laid out
in Table 1, along with the average execution time obtained
on a 400 MHz Pentium IT with 128Mb of memory, running
Red Hat Linux 6.2. The g++ compiler used was ecgs-
2.91.66, with -O2 optimization. Each test was run five
times, and the timings averaged.

C (1) and C(2) are the two simulated disk client pro-
cesses. SYS is the top-level system specification that
CSP++ begins to run. The first case introduces a Test
process to drive the repetitions. Since Linux deals with
POSIX threads directly in the kernel, there is a substantial
system time component in the total execution time: 41%.
In contrast, when this same test was run on a Solaris sys-
tem, where the POSIX threads are mostly managed in user
space, system time dropped to under 1%.

It was observed that in test (1), 20,000 processes are
being created and destroyed as the Test process loops
composing the clients in C (1) | | |[C(2). In test (2), the
10,000-cycle loop is moved from the Test process down
into the clients themselves. A new syncC action is intro-
duced in order to synchronize the disk requests in pairs, to
avoid overflowing the primitive two-cell disk request
queue. Now, C (1) and C(2) are created only once each.
One would expect the thread management overhead to
decrease accordingly, and indeed the results show a dra-

DQueue: disk request queue (with 2-cell buffer)
eng!<item>enqueue item
deqg dequeue item, followed by:

next?_x next item returned, or

00 o° o° 0P o°

empty empty queue indication
CELL ::= left?_x -> shift -> right!_x ->CELL.
BUFF ::= (((CELL#{right=comm}) || (CELL#{left=comm}))"{comm})\{comm}.
DQueue ::= ((DQ(0) || BUFF)~{left, right, shift})\{left, right, shift}.
DQ(_i) ::= eng?_x -> (left!_x -> shift-> DQ(_1i+1))

| deg -> ((if _i=0 then empty -> DQ(0))
+ fix X.(right?_y -> (next!_y -> DQ(_i-1))
| shift -> X)).
DCtrl: disk controller
deci!start(_cl, _blk)start operation on block <_blk> for client <_cl>

o of o°

dco?fini(_cl, _blk)operation finished
DCtrl ::= deci?start(_ i, _blk)-> dio!_blk-> dint -> dco!fini(_1i, _blk) -> DCtrl.

Disk: disk drive (simulated)
dio!_blk perform disk i/o on block _blk

o of o°

dint disk interrupt signalled
Disk ::= dio?_blk -> dint ->Disk.
% DSched: disk scheduler
% ds!reqg(_cl, _blk)client <_cl> requests operation on block <_blk>
% ack(_cl) client’s operation finished
DSched ::= DS_idle.
DS_idle ::= ds?reqg(_cl, _blk) -> dcil!start(_cl, _blk) -> DS_busy.
DS_busy ::= dco?fini(_cl, _blk) -> (ack(_cl) -> DS_check)

| ds?reg(_cl, _blk) -> eng!reqg(_cl, _blk) -> DS _busy.

DS_check ::= deq -> (empty -> DS_idle

| next?reg(_cl, _blk) -> dci!start(_cl, _blk) -> DS_busy).

oe

DSS: disk server subsystem
DSS ::= (
|| (DCtrl || Disk)~{dio,dint}

(DSched || DQueue) ~{enqg, deq, next, empty}
) ~{dci,dco}.

Figure 4. CSP Specification for Disk Server

matic drop in execution time. Interestingly, the proportion
of system time vs. total is about the same as before (44%).

The purpose of test (3) was to see whether pairwise syn-
chronization was really required. It was not, though remov-
ing the extra syncC action has hardly any appreciable
effect on the timing. Tests (2) and (3) seem to be the “best
case” timing that can be obtained for 10,000 repetitions
(20,000 simulated disk accesses) by simple process
restructuring.

Test (4) cuts the repetitions of test (1) in half to see

whether the time for looping is scaling linearly, as one
would hope. The results, almost exactly one-half of (1),
shows that this is the case.

The model built using ObjecTime Developer 5.2.1 mir-
rored the CSP specification. (Since the CSP model was
originally created from a StateChart diagram, it was a sim-
ple matter to revert to the diagram for use with ObjecTime.
However, it was noted that inputting the textual CSP speci-
fications was far faster than drawing the equivalent graphi-
cal StateChart using ObjecTime.) The tool was used to

Test Case Description

User System Total
Secs. Secs. Secs.

(1) 20,000 disk accesses in 20,000 process creations

6.33 4.45 10.78

->C(1,_n-1)) + SKIP.
C(2,_n) ::=

->C(2,_n-1)) + SKIP.

C(l) ::= ds!reqg(l,100)->ack(1l)->SKIP.
C(2) ::= ds!reqg(2,150)->ack(2)->SKIP.
Test (1) ::=
(if _i>0 then ((C(1)|||C(2)); Test(_i-1))) + STOP.
SYS ::= (DSS||Test(10000))~{ds,ack(l),ack(2)}.
(2) 20,000 disk accesses, synchronized in pairs, in 2 process creations 1.60 1.25 2.85
C(l,_n) ::=

(if _n>0 then ds!'reqg(1l,100)->ack(1l)->syncC

(if _n>0 then ds!reqg(2,150)->ack(2)->syncC

Test(_i) ::= (C(1,_1)]||c(2,_1))"{syncC}; STOP.

SYS ::= (DSS||Test(10000))~{ds,ack(l),ack(2)}.

(3) 20,000 disk accesses; same as (2) but syncC removed from clients 1.65 1.24 2.89
Test (_i) ::= (C(1,_1i)|]||c(2,_1)); STOP.

(4) 10,000 disk accesses; same as (1) with Test (5000) 3.20 2.16 5.36

Table 1: Timing test results

generate C++ code to run under control of the ObjecTime
real-time executive (Micro Run Time System Release
5.21.C.00). It was compiled using Microsoft Visual C++ 6,
and executed in a DOS window under NT4. The hardware
platform was identical to that used for the CSP++ time tri-
als under Linux.

In order to set up a test case comparable to those above,
the test harness behaviour in the outermost block triggered
the clients 10,000 times, thus resulting in 20,000 disk
requests, as in the CSP++ version. Timing data was
obtained by calling the ANSI C clock() function to return
the elapsed CPU time at the start and end of model execu-
tion. The difference of start and end times of five runs was
averaged to get the result of 3.76 CPU seconds.

A key inference coming from the timing data concerns
the overhead inherent in the CSP++ OOAF as it is cur-
rently implemented. The helpful breakout of user versus
system times in Linux shows clearly that the framework’s
overhead—consisting of thread creation, thread schedul-
ing, mutex locking and unlocking, and condition variable
waiting and signalling—is at least 40%. This is therefore a
ripe area to target for optimization.

The purpose of the ObjecTime comparison is to show
whether the CSP++ execution times are reasonable in light
of state-of-the-art code generation tools. As a matter of
fact, they compare quite favourably with the ObjecTime
results. ObjecTime ran faster than test (1), but when the
huge amount of gratuitous process creation was cut out in

tests (2) and (3), the CSP++ program finished first. Consid-
ering that ObjecTime is an expensive commercial tool,
having had years to optimize its real-time executive, the
result obtained by the initial version of CSP++ running
under generic desktop PC Linux is encouraging.

3.3. Portability

The original implementation of CSP++ was on SunOS
with CSP processes mapped to nonpreemptible coroutines.
The current version uses Linux with Pthreads (preemptible
kernel level threads). CSP-to-C++ translation methodology
was stable across the port, and no changes were required to
the application code (i.e., the CSP specification of the case
study).

The introduction of thread preemption made it neces-
sary to institute a locking discipline for shared data struc-
tures. These changes were absorbed within the OOAF
classes, and no changes were necessitated to the translation
algorithms, which illustrates a significant degree of porta-
bility from the OOAF approach.

Though more trouble to program, the preemptive model
gives user-coded functions the freedom to block with
impunity, say for I/O, without causing scheduling of the
entire CSP++ system to freeze. This is a major advantage
over the coroutines “many-to-one” scheduling model.

Having achieved success with the Linux port, the new
version was recompiled, still using g++, on a Sun worksta-

tion under Solaris, which also supports Pthreads. This
worked immediately. In contrast, the coroutines-to-
LinuxThreads port revealed the boundary between OS-
dependent and OS-independent code, and as hoped, the
boundary fell, to an overwhelming extent, at the border
between the framework classes and their parent classes in
the third-party task library.

4. Future Work

As it stands currently, the initial work on CSP++ has
several weaknesses:

1. It is based on the original definition of CSP, which does
not include timing and interrupts, thus it is impractical
to apply to any system that requires taking notice of tim-
ing constraints (e.g., timeouts) in its specifications.

2. The machine-readable form of CSP accepted by the cur-
rent translator is not compatible with the form utilized
by the most capable commercial verification tool, FDR.

3. The framework exhibits considerable inefficiency at run
time, due to carrying out dynamic binding on every
event named in a CSP specification, regardless of
whether this generality is needed or not.

4. The interface between CSP specifications and user-
coded C++ modules is still too elementary, and does not
allow those modules to easily participate in the impor-
tant CSP choice operation.

Planned future work to remedy these weaknesses
include investigating the correct way to incorporate timing
and interrupts into the existing OOAF and CSP translator
without breaking the formalism. There are formal models
of timed CSP [7], and one occam -based tool has imple-
mented timing [3]. Conducting static analysis of CSP spec-
ifications in order to carry out compile-time event binding
will be explored. Bringing the CSP input syntax into con-
formity with FDR will open up avenues of collaboration
and facilitate the creation of benchmarks and case studies
for experimental and evaluation purposes.

Under the heading of hardware/software codesign, the
OOAF software synthesis approach will be applied to hard-
ware synthesis, using HDL source code for output and
field-programmable gate arrays as an experimental plat-
form. CSP specifications can then be partitioned into soft-
ware- and hardware-targeted portions, with the cspt
translator automatically synthesizing the hardware/soft-
ware interface. It may be possible to create facilities for
exploring architectural alternatives at a system level, based
on a CSP specification and a library of existing and simu-
lated software and hardware components.

5. Conclusion

Formal specification is normally an “all or nothing”
design technique. By allowing selective use of CSP, a rela-
tively approachable formal method, for the parts of a sys-
tem where verification is important, we make a formal
methodology more attractive and less onerous for practitio-
ners. The CSP++ framework becomes a bridge between a
formal method and the popular programming language
C++.

CSP++ is available on the Wiley CD-ROM [10] (origi-
nal SunOS coroutines version of framework, lacking cspt
translator). The latest version (LinuxThreads with cspt
translator) can be downloaded from the author’s website
<http://www.cis.uoguelph.ca/~wgardner>.

6. References

[1] V.S. Alagar and K. Periyasamy. Specification of Sofiware
Systems. Springer-Verlag, 1998.

[2] B. Arrowsmith and B. McMillin. How to program in CCSP.
Technical Report CSC 94-20, Department of Computer
Science, University of Missouri-Rolla, August 1994.

[3] A.Balboni, W. Fornaciari, and D. Sciuto. Partitioning and
exploration strategies in the TOSCA co-design flow. In Proc.
Fourth International Workshop on Hardware/Software
Codesign, pages 62—69, Pittsburgh, March 1996.

[4] J.A. Bergstra and J.W. Klop. Algebra of Communicating
Processes with abstraction. Theoretical Computer Science,
37(1):77-121, May 1985.

[5] C.Carreras, J.C. Lopez, M.L. Lopez, C. Delgado-Kloos,
N. Martinez, and L. Sanchez. A co-design methodology
based on formal specification and high-level estimation. In
Proc. Fourth International Workshop on Hardware/Software
Codesign, pages 28-35, Pittsburgh, March 1996.

[6] Mantis H.M. Cheng. Communicating Sequential Processes: a
synopsis. Dept. of Computer Science, Univ. of Victoria,
Canada, April 1994.

[7] J. Davies and S. Schneider. A brief history of timed CSP.
Technical Report PRG-96, Programming Research Group,
Oxford University, April 1992.

[8] EVES web site, ORA Canada. http://www.ora.on.ca/
eves.html [as of 2/7/03].

[9] Mohamed E. Fayad and Douglas C. Schmidt. Object-oriented
application frameworks. Communications of the ACM,
40(10):32-38, October 1997.

[10] M. Fayad, D. Schmidt, and R.Johnson, editors.
Implementing Application Frameworks: Object-Oriented
Frameworks at Work. John Wiley & Sons, 1999.

[11] FDR web site, Formal Systems (Europe) Limited. http://
www.fsel.com [as of 2/6/03].

[12] William Gardner. CSP++: An Object-Oriented Application
Framework for Software Synthesis from CSP Specifications.
Ph.D. dissertation, Dept. of Computer Science, Univ. of
Victoria, Canada, 2000. http://www.cis.uoguelph.ca/
~wgardner/, Research link.

[13] William B. Gardner and Micaela Serra. CSP++: A
Framework for Executable Specifications, chapter9. In
Fayad et al. [10], 1999.

[14] G. Hilderink, J. Broenink, W. Vervoort, and A. Bakkers.
Communicating Java Threads. In Proc. of the 20th World
Occam and Transputer User Group Technical Meeting, pages
48-76, Enschede, The Netherlands, 1997.

[15] Michael G. Hinchey and Stephen A. Jarvis. Concurrent
Systems: Formal Development in CSP. McGraw-Hill Book
Company, 1995.

[16] C. A.R. Hoare. Communicating Sequential Processes.
Prentice Hall, 1985.

[17] Bil Lewis and Daniel J. Berg. Multithreaded Programming
with Pthreads. Sun Microsystems Press, Prentice Hall, 1998.

[18] Ted Lewis, editor. Object-Oriented Application Frameworks.
Manning Publications Co., Greenwich, CT, 1995.

[19] L. Logrippo, M. Faci, and M. Haj-Hussein. An introduction
to LOTOS: Learning by examples. Computer Networks and
ISDN Systems, 23:325-342, 1992.

[20] Luqi and Joseph A. Goguen. Formal methods: Promises and
problems. /[EEE Software, 14(1):73-85, January 1997.

[21] R. Milner. Communication and Concurrency. Prentice Hall,
1995.

[22] A. W. Roscoe. Model-checking CSP. In A. W. Roscoe,
editor, A Classical Mind: Essays in Honour of C. A. R.
Hoare, Prentice Hall International Series in Computer
Science, pages 353-378. Prentice Hall, 1994.

[23] A.W. Roscoe. The Theory and Practice of Concurrency.
Prentice Hall, 1998.

[24] S. Schneider. Concurrent and Real-time Systems: The CSP
Approach. John Wiley & Sons, 2000.

[25] Savitha Srinivasan. Design patterns in object-oriented
frameworks. Computer, 32(2):24-32, February 1999.

