
The Pilot Approach to Cluster Programming in C

J. Carter, W. B. Gardner, G. Grewal
Department of Computing and Information Science

University of Guelph
Guelph, Ontario, Canada

jcarter@uoguelph.ca
{wgardner,gwg}@cis.uoguelph.ca

Abstract—The Pilot library offers a new method for program-
ming parallel clusters in C. Formal elements from Communi-
cating Sequential Processes (CSP) were used to realize a
process/channel model of parallel computation that reduces
opportunities for deadlock and other communication errors.
This simple model, plus an application programming interface
(API) fashioned on C’s formatted I/O, are designed to make the
library easy for novice scientific C programmers to learn.
Optional runtime services including deadlock detection help the
programmer to debug communication issues. Pilot forms a thin
layer on top of standard Message Passing Interface (MPI), pre-
serving the latter’s portability and efficiency, with little perfor-
mance impact. MPI’s powerful collective operations can still be
accessed within the conceptual model.

Keywords—MPI; library; parallel programming; deadlock
detection; CSP

I. INTRODUCTION

The Message Passing Interface (MPI) library [1] has
been a popular method of parallel programming for high-
performance computing (HPC) clusters for years. Indeed, it
is fair to call MPI the mainstay of programmers in the 17
Canadian academic institutions using SHARCNET—Shared
Hierarchical Academic Research Computing Network
(www.sharcnet.ca)—the consortium with whom this
approach is being developed. Popularity notwithstanding,
experience shows that training novice programmers to mas-
ter MPI can be very challenging. While students coming up
through a computer science curriculum typically learn some-
thing about parallel programming techniques and their haz-
ards—e.g., in operating systems courses—scientific
programmers are rarely exposed to such content.

MPI's application programming interface (API) is large
and daunting—around 300 functions in the C bindings of
MPI 2.1 [1]—and opportunities for misusing the message-
passing functions abound. As well, the collective functions
are arguably intrinsically confusing: The same function call
(e.g., MPI_Bcast) has a different effect depending on the
caller’s identity (MPI “rank”). While this may ease the cre-
ation of Single Program, Multiple Data (SPMD) applica-
tions, when the code for the ranks is separate, as it may be
for the master/worker pattern, the workers execute the
“broadcast” function in order to receive data—just the oppo-
site meaning of the function’s name. This can be disorienting

given the current norms of software engineering.
A common result of either API misuse or faulty program

design is deadlock. However, since the deadlocked program
is likely to run on uselessly until it exhausts its time limit,
detecting the condition, let alone diagnosing its cause, is
troublesome for beginning scientific programmers.

The above state of affairs suggests that there is room for
a new method of programming HPC clusters that leverages
standard MPI while being easier for novice users to under-
stand and utilize. Our C library, called Pilot, forms a layer
above MPI. It is theoretically based on a few simple abstrac-
tions from a classic formal notation, Communicating
Sequential Processes (CSP) [2], and presents an API that
capitalizes on the minimum knowledge which can be
expected of novice C programmers. Parallel programming
with Pilot should prove both easier and safer than with MPI
alone, yet still provide the benefits of message-passing, the
proven scalable mechanism for cluster-based HPC.

The following sections describe related work (Section
II), the Pilot API and runtime services (Section III), the
library’s implementation (Section IV), performance data
(Section V), and plans for development (Section VI), which
include extending the Pilot approach to Fortran and C++.

II. RELATED WORK

Techniques for programming parallel clusters can be
classified broadly into two categories: languages and librar-
ies. Pilot falls squarely in the latter, but it is worth noting
that, before the advent of MPI, Mazzeo et al. suggested using
CSP to program a cluster of heterogeneous workstations [3].
The DISC language was C with CSP-like extensions, and
involved a custom parallel compiler, linker, run-time envi-
ronment, system monitor, profiler, debugger, makefile gener-
ator and graphical user interface. DISC computation was
performed through a set of processes, in turn composed of
events, each representing a step in a calculation. Interprocess
communication was performed exclusively via channels,
including many-to-one channels. With Pilot, CSP is kept
more “under the hood”; for example, “events” are not part of
the programmer model.

A number of libraries for concurrent programming,
though not necessarily for HPC clusters, essentially provide
a tool kit of CSP components so the programmer can imple-
ment a process/channel model. Their use is possible without

978-1-4244-6534-7/10/$26.00 ©2010 IEEE

extensive CSP knowledge, but effective and correct usage is
facilitated by familiarity with CSP. JCSP [4] was originally
invented to improve upon Java’s native concurrency con-
structs, and this approach has been applied to C, C++ [5],
and C# [6], as well as other languages. In contrast, Pilot is
aimed at novice HPC programmers who could be intimi-
dated by introducing a formal method too explicitly; how-
ever, the Pilot library approach does belong to this family.

CSP4MPI [7] also aimed to help programmers avoid
communication-related errors by introducing an abstraction
layer over MPI. This approach was inspired by the CSP++
[8] software synthesis tool, which generates C++ from a for-
mal CSP specification. However, CSP4MPI requires some
user understanding of CSP, and feedback from SHARCNET
staff responsible for new user training judged this impracti-
cal for the targeted user community.

MPI programmers can presently resort to a third-party
package to obtain detection of deadlocks and other program-
ming errors, e.g., inadvertently using up MPI resources. The
Umpire tool [9] hooks into an MPI program transparently by
means of the MPI profiling layer, so that it receives a record
of every MPI function called by the application, including
the functions’ arguments. Umpire builds and analyzes a
dependency graph, and shuts down the program with a diag-
nostic upon detection of a deadlock. The authors note that
the task of deadlock detection for MPI programs is greatly
complicated by non-blocking calls, collective calls, and
wildcard receives. Hilbrich et al. found that the complica-
tions warranted devising a fresh model for MPI deadlocks,
called Wait-For Graphs [10]. Their approach,
based on sound theory, is implemented within Umpire’s
framework and has obtained orders of magnitude speed-up
for the detection apparatus. Pilot’s limited use of MPI func-
tions, and its restricting of collective calls and wildcard
receives to specific controlled contexts, mean that Pilot can
use simple dependency-based deadlock detection without
much elaboration.

Pilot’s combination of distinctive characteristics can be
summarized as follows: applications programmed using
ANSI C (no preprocessor or custom compiler); based on
CSP’s process/channel model (without exposure to the for-
mal method); inspired by C’s formatted I/O for ease of learn-
ing; and implemented on top of standard MPI (thus sharing
the latter’s portability). It is not claimed that individual Pilot
programs are necessarily portable, since they may be
designed to exploit hardware resources on a particular clus-
ter. But the Pilot library source code is portable, since it does
not use language extensions, does not invoke external librar-
ies, and only relies on a limited set of MPI functions.

III. THE PILOT API
Pilot aims to facilitate parallel program design by using

high-level abstractions that define a simple parallel computa-
tional approach. By shielding the user from dealing with
low-level communication issues, such as MPI’s tags, com-
municators, and buffers, programmers are free to concentrate
on designing their parallel algorithms. Transferring the algo-
rithms to an implementation based on the same abstractions

is a straightforward path. Subsections below introduce the
few abstractions that a Pilot programmer is required to learn,
followed by the entire API—less than two dozen functions.

A. Abstractions to learn
A Pilot program is based on two simple abstractions:

process, a locus of execution; and channel, the sole means of
interprocess communication. Readers familiar with process
algebras such as CSP [2] and Pi-calculus [11] will recognize
these at once.

A Pilot process is equivalent to an MPI process, that is, a
typical “process” in operating system terms, with its own
address space and thread of execution. A process is created
by associating it with a C function, and arguments may be
passed at creation time much like the POSIX threads func-
tion pthread_create. Just as with MPI programs, the code
for all processes is typically packaged into a single execut-
able file, copies of which are run on each node. However, the
code for Pilot processes is normally disjoint, residing in indi-
vidual functions, though it is permissible for any process
function to serve multiple Pilot processes (the instances
being distinguished by different argument values). This con-
trasts with the MPI practice of interleaving the code of all
processes into one function, and controlling them by means
of rank-dependent conditionals. It may be more accurate to
say that Pilot is a Multiple Program, Multiple Data (MPMD)
approach in the guise of SPMD. Keeping the source code for
each process distinct can make for better software quality
factors (e.g., readability and maintainability), the trade-off
being a bias toward master/worker organizations.

A Pilot channel has three characteristics: (1) point-to-
point, being bound to two processes at creation time; (2)
one-way, such that one process writes to the channel and the
other process reads; (3) synchronous, so that execution of the
reader and writer only proceed after the message is passed;
(4) not typed, so that a given channel may be used to com-
municate any type of data. This design choice was made to
avoid the proliferation of channels that would occur if they
were strongly typed. Thus, the programmer works with a
model of synchronous communication, but “synchronous” is
not as strict as it sounds. The underlying MPI_Send opera-
tion may only block until the message is on its way.

There are benefits to restricting interprocess communica-
tion to defined channels. With MPI, any process can poten-
tially message any other process. If a message is sent to a
process that was not planning to receive it, or a coding error
is made in a rank, tag, or communicator argument, runtime
errors or even system deadlock can occur. An analogy can be
made to UML: Class diagrams show defined relationships
between classes as lines. Collaboration diagrams are more
specific, depicting the flow of messages between objects.
However, unless certain Computer-Aided Software Engi-
neering (CASE) tools are used, these defined relationships
present in the design are not enforced in the code. In prac-
tice, any object can invoke any other object’s public meth-
ods. Since Pilot enforces interprocess communication
integrity via channels, one category of parallel program logic
and coding errors is avoided. Fig. 1(a) illustrates simple mas-

AND OR⊕

ter/worker and pipeline architectures using processes
(clouds) and channels (arrows).

There is one more abstraction for a Pilot programmer to
learn: the bundle. This construct represents a group of chan-
nels that have a common endpoint. The purpose of introduc-
ing bundles is to allow the library to access MPI’s efficient
collective operations, specifically broadcast and gather,
without breaking the theoretical process/channel model.
(Pilot support for other commonly-used collectives opera-
tions, scatter and reduce, is planned for the future.) Thus, a
broadcaster bundle is a group of channels with a common
write process, while a gatherer bundle has a common read
process. A bundle is created after first creating all its constit-
uent channels.

Another type of bundle, a selector, also has a common
read process. It is useful in master/worker architectures
where the master wishes to know which worker has a result
to read. This is the same sense of “select” as in the standard
C library, whereby a program can learn which file descriptor
(representing, say, a group of sockets) is ready to read before
committing to a blocking read operation. This feature of
Pilot echoes the ability of MPI programmers to obtain “non-
determinism” by means of wildcard receives. Fig. 1(b) illus-
trates a broadcaster and a selector bundle (the white arrow
shows Worker1 ready to read).

B. API function calls
A Pilot program has two distinct phases: (1) configura-

tion, where all processes, channels, and bundles are created
in main(); and (2) execution, where processes start their
individual lives and carry out communication.

1) Configuration phase: During this phase, all processes
are actually executing, in SPMD style, the same code in
main(), with the result that, upon entering the execution
phase, all have built up the identical tables of process, chan-
nel, and bundle definitions, irrespective of their various node
architectures. There is no need for one node to send the
tables to the other nodes.

A Pilot program initially calls PI_Configure, just as an
MPI program calls MPI_Init:
int PI_Configure(int *argc, char ***argv);

Pilot checks for and removes any command line arguments
starting with “-pi...”, and passes the rest to MPI_Init. Pilot
arguments are used for selecting runtime options, such as
error-checking level, deadlock detection, and logging. This
function returns the maximum number of Pilot processes that
can be created (equal to the MPI_COMM_WORLD size). The
program may use this information to adjust the number of
Pilot processes it goes on to create.

Processes are created using the following function:
PI_PROCESS* PI_CreateProcess(func,index,hook);

This associates a Pilot process with a C function having the
following prototype:
int func(int index, void *hook);

In the case where a single function serves multiple Pilot pro-
cesses, the index argument, say, an array index, may be
used to distinguish the instances. The hook argument can be
used to pass arbitrary data to the function.

This is not a “fork”; the process function is not executed
until the execution phase (see below).

Process, channel, and bundle creation functions all return
a pointer to an opaque datatype. PI_PROCESS* pointers are
not needed after the configuration phase, so they may be
kept in variables of any storage class. However,
PI_CHANNEL* and PI_BUNDLE* pointers are needed, so
must be kept in storage accessible by both main() and pro-
cess functions, or, alternatively, passed to process functions
via a hook data structure.

Pilot processes are mapped to finite resources, MPI pro-
cesses, but channels are a software abstraction. They have no
practical limit and need not be “conserved” by the program-
mer. The channel creation function fixes a channel’s end-
points and direction, which cannot be changed:
PI_CHANNEL* PI_CreateChannel(from, to);

The from and to arguments are both PI_PROCESS* vari-
ables. The main/master process is designated by the symbol
PI_MAIN (which simply equates to zero). One may create
multiple channels between a given pair of processes, in the
same or opposite direction.

The three types of bundles, for three distinct purposes,

Master/worker
Selector Bundle

Pipeline

Broadcaster Bundle

(a) (b)
Figure 1. Pilot process/channel architectures.

are created from arrays of PI_CHANNEL* pointers having a
common endpoint:
PI_BUNDLE* PI_CreateBundle(usage,chanarray,N);

where usage is one of PI_BROADCAST, PI_GATHER, or
PI_SELECT. The chanarray argument is an array of type
PI_CHANNEL*[N]. These functions verify that the channels
in selector and gatherer bundles have a common read end,
and that broadcaster channels have a common write end. A
further restriction is that no channels have duplicate pro-
cesses at the other end of the bundle.

After the configuration phase is complete and the execu-
tion phase is entered, no further creation of processes, chan-
nels, or bundles is allowed.

2) Execution phase: This phase is triggered by calling the
following function:
int PI_StartAll(void);

At this point, each Pilot process starts executing its associ-
ated function. In main(), where PI_StartAll returns to,
the subsequent code becomes the “master” process, with
MPI rank 0, also known as PI_MAIN.

During this phase, processes may freely engage in chan-
nel reading and writing. The syntax of these operations has
been specially designed to utilize constructs that novice C
programmers are sure to know, and thus able to quickly
grasp. They are inspired by fprintf and fscanf formatted
I/O. Furthermore, the PI_CHANNEL* and PI_BUNDLE* vari-
ables of Pilot work like C’s FILE* variables. This is simply
an idiom for specifying data types; it does not imply that
messages are being sent as text.

The two basic channel communication functions are:
void PI_Write(chan, format, vars...);

void PI_Read(chan, format, vars...);

The chan argument is a PI_CHANNEL* pointer. There is no
need to specify the origin or destination processes; they are
already bound to the channel. Pilot will verify that the call-
ing process is indeed bound to the referenced channel and is
acting in its predefined role as reader or writer.

Just like C formatted I/O, the format string is made of
individual formats with the pattern: %nT. T is the datatype,
using a subset of scanf’s designations (see Table I). “l”
stands for long, and “h” for “half” (implying short).

Non-scanf additions are very few. “b”, standing for byte
format, transfers uninterpreted 8-bit bytes. It is suitable for
sending (arrays of) structures among homogeneous nodes,
where there are known to be no endian, word length, sign
convention, floating point format, or character code differ-
ences. The IMB benchmarks (see Section V) rely on this
datatype. For heterogeneous clusters, where C structures
may require conversion assistance from MPI, advanced
users may construct user-defined datatypes and send them
using the special “m” format. “%m” requires a variable of
type MPI_Datatype as the next argument in order, followed
by a data pointer argument; i.e., “%m” consumes two argu-
ments. The Pilot API does not directly support the construc-
tion of user-defined datatypes; it is up to the user to call the

necessary MPI functions directly, e.g., MPI_Type_struct
and MPI_Type_commit.

The optional n, a quantity in the same position as
printf’s “field width,” specifies the number of elements in
the datatype. If omitted, the data argument is treated as a sca-
lar value. An array may be specified either by hard-coding a
literal length, e.g., %250f, or by coding an asterisk, %*f, to
supply the length from an argument. (This “*” is a printf
field width convention.) For readability, whitespace may be
inserted into the string between individual formats. The for-
mat argument is simply of type const char* and so may,
of course, be supplied from a char array as well as from a
string literal.

As with printf and scanf, the sequence of formats
drives the interpretation of the variable arguments. Pilot
checks that the number of arguments matches the format
string. For PI_Write, each argument supplies a scalar value
or array address. (Note that “%m” always requires an
address.) For PI_Read, each argument must be an address.
However, any “*” causes the next argument, in order, to be
interpreted as an array length. For example,
PI_CHANNEL *data; float x[200]; int k[300];

PI_Write(data,"%200f %*d %c",x,100,k,‘w’);

would send a 200-element float array from x followed by
100 int elements of k, ending with the character “w”. This
example shows all three length forms: fixed-length array,
variable-length array, and scalar.

The above write must be paired with a single PI_Read
call. Two of the possible matching reads are shown here:
PI_CHANNEL *data;

float input[200]; int num[300], n=100; char c;

PI_Read(data,"%200f %*d %c",input,n,num,&c);

PI_Read(data,"%*f %100d %c",200,input,num,&c);

Just as with fscanf, the scalar receptacle c needs an
“address of” operator, which the array receptacles input
and num do not (since in C the name of an array resolves to
the address of its first element). In the first read, the length
for %200f is an integer literal, while the length argument

TABLE I. PILOT FORMATS VS. C AND MPI DATATYPES

Pilot format C datatype MPI datatype
%c char MPI_CHAR

%hhu unsigned char MPI_UNSIGNED_CHAR

%d, %i int MPI_INT

%hd short int MPI_SHORT

%ld long int MPI_LONG

%lld long long int MPI_LONG_LONG

%u unsigned int MPI_UNSIGNED

“u” gives corresponding unsigned integer types: hu, lu, llu
%f float MPI_FLOAT

%lf double MPI_DOUBLE

%Lf long double MPI_LONG_DOUBLE

%b any MPI_BYTE

%m user-defined MPI_Datatype variable

for %*d is supplied in the variable n (100).
This sense of “variable-length array” does not mean the

reader is absolved from knowing the incoming length in
advance; it may need to be sent in an earlier message. Vari-
able-length array means that the array length can be supplied
as an argument rather than hard-coded in the format.

The above examples are for basic writing and reading on
channels. One additional function is available for polling a
channel’s read status. It returns true if the channel is ready to
be read (i.e., PI_Read would not block).
int PI_ChannelHasData(chan);

For collective operations on bundles, the big departure
from MPI is that only the process at the common end of the
bundle uses the special “collective” function call, while the
processes at the bundle’s other end use the naturally symmet-
ric PI_Read or PI_Write, as shown in Table II. The argu-
ment lists for PI_Broadcast and PI_Gather are the same
as for PI_Write and PI_Read.

For example, here is the code for the “master” process
(PI_MAIN). It creates two groups of N channels to/from the
N worker processes, then fashions them into two bundles:
PI_PROCESS *work[N];
// PI_CreateProcess calls not shown

for (int i=0; i<N; i++) {
data[i]=PI_CreateChannel(PI_MAIN,work[i]);
result[i]=PI_CreateChannel(work[i],PI_MAIN);}

PI_BUNDLE *thedata =
PI_CreateBundle(PI_BROADCAST, data, N);

PI_BUNDLE *allresults =
PI_CreateBundle(PI_GATHER, result, N);

PI_StartAll();

Now, the main process sends the same 100 coefficients to
N workers, and then gathers the results as N doubles:
float coeffs[100];

double z[N];// room for N results

PI_Broadcast(thedata, "%100f", coeffs);

PI_Gather(allresults, "%lf", z);

The workers on the bundles’ other ends simply call the
usual read/write functions:
float coef[100]; double ans;

PI_Read(data[mynode], "%100f", coef);

// ...calculate...

PI_Write(result[mynode], "%lf", ans);

The last function to be introduced is only for use with a

selector bundle:
PI_PROCESS *work[N]; // create not shown

PI_CHANNEL *result[N];

for (int i=0; i<N; i++)
result[i]=PI_CreateChannel(work[i],PI_MAIN);

PI_BUNDLE *workers =
PI_CreateBundle(PI_SELECT, result, N);

...

int w = PI_Select(workers);

PI_Read(result[w], "...", ...);

Here, PI_Select is used to interrogate the selector bundle
coming from the worker processes. This call will block until
at least one channel is ready to read. Its index (in the array
originally used to create the bundle), returned from
PI_Select, is used here in the subsequent PI_Read.

If multiple channels become ready to read before
PI_Select is called, MPI will queue the arrivals.
PI_Select will indicate the channel whose message arrived
first. Successive calls to PI_Select/PI_Read will receive
the messages in order.

Analogous to PI_ChannelHasData, a non-blocking
version of PI_Select is available as PI_TrySelect. It
returns the same channel index as PI_Select, or -1 if no
channel in the selector bundle was ready to read.

Two helper functions are available for use with selector
bundles. The first retrieves the number of channels in the
bundle. The second can be used in lieu of looking up a chan-
nel in the array that was used to create the bundle.
int PI_GetbundleSize(bund);

PI_CHANNEL* PI_GetbundleChannel(bund,index);

3) Utility functions: A common requirement in master/
worker patterns is to have one set of channels going to the
workers, another set coming back, and perhaps additional
sets for broadcast or gather use. In order to reduce coding, a
function is provided to “copy” an array of channels. That is,
another array of PI_CHANNEL* pointers will be produced
having the same endpoints. An option allows the directions
to be reversed, making it convenient to create the channels
needed for, say, a gatherer bundle after already creating those
for a broadcaster bundle.
PI_CHANNEL **PI_CopyChannels(direction,
chanarray, N);

where direction is PI_SAME or PI_REVERSE.
There are a small number of additional functions that do

not relate to channel I/O. The first pair allows a process to
set or get an optional global-scope alias that can be attached
to any process, channel, or bundle, mainly used for diagnos-
tic printouts and logging:
void PI_SetName(object,“alias”);

const char *PI_GetName(object);

Here object can be any PI_PROCESS*, PI_CHANNEL*, or
PI_BUNDLE* pointer. In the absence of aliases, Pilot will
print diagnostics using default names like “P3” for the pro-

TABLE II. FUNCTION CALLS FOR USE WITH BUNDLES

Process at common end of
bundle will call

Multiple processes at other
end of bundle will call

PI_Broadcast PI_Read

PI_Gather PI_Write

PI_Select & PI_Read PI_Write

cess of MPI rank 3, or “C4” and “B2” for the fourth channel
and second bundle created, respectively.

There are two functions for timing, PI_StartTime and
PI_EndTime. Finally, PI_Abort provides a clean way for
any process to abort the program.

4) Program termination: When individual process func-
tions are finished, they need only return, which results in
their calling exit(0). The integer return value has no
effect, but will be entered in the log. The main() function,
on the other hand, must call PI_StopMain(status). This
synchronizes all processes on a barrier, after which
MPI_Finalize is called, and then Pilot’s internal tables are
deallocated. The application can have other code following
PI_StopMain, but no further Pilot calls can be made.

C. Programmer support
A major goal of Pilot is to provide support for the novice

programmer—in terms of monitoring, analysis, debugging—
that is mostly absent from MPI. The features are calibrated
as to the overhead required, and selectable (via command
line option or global variable PI_CheckLevel) so as to bur-
den program performance with only those desired at any one
time. It is expected that programmers would run with Level
1 checking or higher until confident of their code, and then
switch to Level 0 for production runs.

Level 0 validates function preconditions that can be trivi-
ally checked for usage errors. Level 1, the default, in addi-
tion validates internal tables (which may have been
corrupted, say, by misuse of dynamic memory) and performs
more time-consuming checks.

All Pilot errors are fatal, and result in a diagnostic mes-
sage being output on stderr that pinpoints the source file
name and line number where the user program called a
library function. In the event of an MPI error, the location of
the library call is reported. In the future, additional checks
will be provided in a Level 2, such as verifying that read/
write formats match their arguments lists.

In addition to error diagnosis, Pilot aims to provide mon-
itoring and reporting features (see Future Work in Section
VI). The first feature available is deadlock detection,
described next.

D. Deadlock detection
A user may enable the deadlock detection service by

specifying the command line option “-pisvc=d”. The cur-
rent implementation consumes one MPI process. Deadlock
detection was designed to be integrated with a range of Pilot
runtime services, including logging of calls to Pilot func-
tions. As of Version 1.1, deadlock detection has been imple-
mented, and the logging infrastructure is in place. The
current implementation is not claimed to be efficient, but has
the advantage of not depending on third-party packages, and
does not need to interface with the MPI profiling layer.

When deadlock detection is running, each Pilot commu-
nication function sends an event message to the log via MPI,
which is received by the detection process. It records each
event in a dependency matrix based on the semantics of CSP
channel communication. That is, if process P writes to pro-

cess Q, a write dependency is inserted. When Q reads from
P, the new read dependency satisfies the write, and the
dependencies are cleared. Collective operations, e.g.,
PI_Select and PI_Broadcast, record multiple dependen-
cies. A selection dependency is special, because it can be sat-
isfied by any write on the related bundle channels; however,
the write dependency remains, because it must be satisfied
by an explicit channel read. Depending on various factors,
such as message length, MPI_Send can unblock after dis-
patching the message from the user’s buffer, but before the
message is received. Thus, it is possible that a writing pro-
cess—which, according to CSP semantics ought to be
blocked—may continue on to generate another communica-
tion event before the first one is formally completed by a
receive event. Such “eager” events are queued for processing
in order after the earlier dependency is satisfied.

When a deadlock is detected, the detection process prints
on stderr a record of what each deadlocked process was
doing, down to the file name and line number of the Pilot
API call, and then aborts execution. Armed with this infor-
mation, the programmer can track down the cause. Diagnosis
is categorized by deadly embrace (e.g., P writes to Q, but Q
reads from P on a different channel), circular wait (P reads
from Q, Q writes to R, R reads from P), “dead” wait (e.g., P
reads from Q, before or after Q exits without writing on the
channel), and vain select (P selects on a bundle of channels,
but all are/become blocked or exit and cannot write to P).
Some of these cases are trivially detected when the commu-
nication event is processed. Circular wait is checked for any
time a new dependency is inserted.

IV. IMPLEMENTATION

It is acknowledged that MPI is excellent for providing
message-passing infrastructure on high-performance clus-
ters, has a standard API, and widespread availability on a
multitude of architectures. Thus, there was no obvious
advantage in replacing MPI, and no desire or need for Pilot
to “reinvent the wheel.” In OSI network parlance, MPI is
taken as the “transport layer” (layer 4) and Pilot builds a
higher-level protocol on top of it. Pilot would be analogous
to a combined “presentation” and “session layer” (layers 5
and 6), and, in particular, its channels could be viewed as the
“connections” of layer 5. Describing its implementation
involves detailing how Pilot utilizes MPI.

Processes are equivalent to MPI processes, therefore
each Pilot process is assigned an MPI rank, up to
MPI_COMM_WORLD size, with 0 reserved for the continuation
of main() after PI_StartAll. If this size is exceeded, an
error is issued. A data structure for each process records its
rank, default name or alias (from PI_SetName), associated
function pointer, and the two arguments from
PI_CreateProcess. PI_StartAll dispatches control to
the appropriate function according to its rank number, or
simply returns to main() if running as rank 0.

Channels are an abstraction that represent resolution of a
write in one process to a matching read in another process. In
MPI, a physical message is associated with a rank, a tag, and
a communicator or [R,T,C]. In terms of constraints, R is

unique within a given C, while T is effectively global across
all communicators. A reader may wildcard R and/or T, but C
must be specified. Collective operations only specify C (not
T) and apply to all ranks (with one designated as the “root”).
Given the above, Pilot’s strategy for implementing channel
operations is as follows:

• When a channel is created, its associated endpoint
processes are recorded.

• Point-to-point channel read/write: The pair of proc-
esses know each other’s ranks, so they can simply ad-
dress them (with C=MPI_COMM_WORLD). Since mul-
tiple channels can exist between the same pair of
processes, Pilot assigns tag numbers as channels are
created, so that each channel has its own tag.
PI_ChannelHasData uses a tag with MPI_Iprobe.

• Selector bundle: PI_Select and PI_TrySelect
are implemented via MPI_Probe and MPI_IProbe,
respectively, with C=MPI_COMM_WORLD and manda-
tory wildcard for R. A tag is necessary to prevent Se-
lect from picking up a write from any process with
channels outside the bundle. Pilot assigns the same
tag number to all the channels in a selector bundle.
Ambiguity is prevented by disallowing multiple
channels from the same process in one bundle.

• Broadcaster and gatherer bundles: These groups of
channels are each assigned their own communicator
for use with MPI_Bcast and MPI_Gatherv. A
PI_Write or PI_Read on the non-common end of a
bundle calls the relevant MPI collective function in-
stead of simple send/receive.

MPI implementations must support a 15-bit tag, so a
minimum of 32,767 are available. Pilot reports the program’s
quantities of created processes, channels, and bundles.

V. PERFORMANCE

Since Pilot forms a layer on top of MPI, superior perfor-
mance is not a goal, but Pilot should not degrade perfor-
mance with excessive overhead. Our approach for assessing
Pilot’s performance is to take the Intel MPI benchmarks
(IMB 3.1) [12] and “Pilotize” the ones that can be imple-
mented using Pilot’s API. So far, this has been done for the
pingpong benchmark, preserving all the original IMB code,
changing only MPI_Send to PI_Write and MPI_Recv to
PI_Read. Because of the architecture of the IMB suite, it is
necessary to call PI_Configure after MPI_Init has been
invoked. This sequence is detected by PI_Configure and
automatically puts Pilot into a “bench mode” whereby
PI_StopMain does not call MPI_Finalize as usual, thus
permitting IMB to change the message size and number of
iterations, and do another round of timing.

Message sizes and iterations are specified in the original
IMB code. In Fig. 2, the time for a complete round of itera-
tions is shown against message sizes on the X axis. The data
type is MPI_BYTE (Pilot %b). The number of iterations for
each data point starts at 1000, and begins to decrease (by
halves) as the message size passes 215. With Pilot’s level 0 of
checking, running on an HP Opteron (2.2 GHz) cluster with
Myrinet-2G (GM) interconnect, using HP Linux XC 3.1 and

HP-MPI, it is clear that the time for any Pilot round is only
slightly more than for pure MPI, with more noticeable over-
head for smaller message sizes, as would be expected. The
other pair of lines provide the effective throughput in
MBytes/sec. Again, the Pilot throughput is barely below the
pure MPI line. In future, the rest of the applicable IMB
benchmarks will be converted to Pilot and tested.

In conjunction with a graduate course, Pilot has been
used to build parallel cluster applications. Takeva-Velkova
demonstrated image reconstruction from parallel magnetic
resonance imaging (MRI) [13]. Girard implemented parallel
scatter search in both MPI and Pilot to compare their perfor-
mance on the same hardware [14]. The results bore out what
the benchmark data showed, no significant overhead, at least
for that algorithm.

VI. AVAILABILITY AND FUTURE WORK

This paper describes Version 1.1 of Pilot. The software is
copyright by the University of Guelph. The public source
code release can be configured and installed onto a variety of
platforms without any license fee. Aside from an installation
of MPI, no other library is needed to install and use Pilot.
See http://www.carmel.cis.uoguelph.ca/pilot for current
availability, including documentation and training material.

In the near term, future work will concentrate on enhanc-
ing Pilot’s ability to detect inadvertent usage errors (e.g.,
mismatch of formats and arguments), and on giving the pro-
grammer visibility into the complex world of a parallel clus-
ter application via monitoring and reporting features:
statistics and/or logging of Pilot library calls, a trace of com-
pleted read/write events (which could be used for formal
analysis), and a map of process/channel topology. We plan to
add support for MPI_Scatter, and investigate how to sup-
port reductions (e.g., MPI_Reduce). Since Pilot is based on
CSP, it should be possible to carry out formal verification on
a Pilot program, and uncover potential deadlock scenarios
without actually running it. Such work has been carried out
for MPI programs—for example, Vo et al. [15]—so the Pilot
case ought to be simpler.

We also are interested in making it easier for program-
mers to apply parallel design patterns, for example, pipelines

Figure 2. IMB 3.1 pingpong timings and throughput

0.1

1

10

100

1000

10000

0 1 2 4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K

13
2K

26
4K

51
2K 1M 2M 4M

Message Size (bytes)

Ti
m

e
(u

se
c)

0

200

400

600

800

1000

1200

1400

1600

Th
ro

ug
hp

ut
 (M

B
/s

ec
)

MPI Time
Pilot Time
MPI Throughput
Pilot Throughput

that “shift” without accidentally deadlocking, or networks of
processes and channels organized into grid or graph topolo-
gies. An experimental Fortran API for Pilot, based on the
ISO_C_BINDING module, is undergoing trials. There is
likely use for a C++ object-oriented API, as well.

Fundamentally, in its concept and initial release, Pilot is
aimed firmly at the “novice programmer” user group. This
group, in particular, may be quite willing to sacrifice some
performance if less programming complexity is obtained, as
shown by the use of Java on clusters for the sake of speeding
up deployment. If it becomes evident that Pilot is attracting
attention as a favourable alternative to pure MPI program-
ming, features can be added to satisfy more advanced users
by giving indirect access to more powerful MPI functions,
while respecting the formal process/channel model. This
approach is already illustrated with the bundle construct, and
the ability to utilize user-defined datatypes. Ultimately, we
wish to see development driven by HPC users’ needs and not
for its own sake.

VII. CONCLUSION

One can make the analogy that Pilot is to MPI as high-
level languages are to assembly code. Using its simple pro-
cess/channel model, programmers can design their algo-
rithms using higher-level abstractions and then transfer them
directly to Pilot library constructs. In this way, Pilot aims to
be an “easier” means of parallel programming than pure
MPI, which is borne out by its API being less than one-tenth
the latter’s size. Pilot is also “safer,” both due to its channel
basis inherently ruling out a category of program errors that
can be committed using pure MPI, and due to its attention to
diagnosing usage errors and detecting deadlocks. For these
reasons, Pilot can be useful in teaching introductory courses
on parallel programming.

It can be argued that advantages similar to those offered
by Pilot could be obtained by simply designating a small,
“safe” subset of MPI functions, and teaching only those. The
authors feel that this approach is inferior, because (1) train-
ees do not receive a conceptual model for organizing their
parallel program designs; (2) they have to deal with tags and/
or communicators in order to obtain any of the collective
functionality that Pilot gives without them; and (3) they are
sure to encounter mysterious problems which Pilot would
have diagnosed.

For some in the target user community—novice scien-
tific programmers—Pilot training may be all they need to
accomplish their parallel programming objectives. If others
need more power, control, or access to dynamic features of
MPI-2, then when they go on to learn MPI, their experience
with Pilot’s message passing should help them grasp how
MPI is used, just as learning a high-level programming lan-
guage prepares one to understand what assembly language is
all about.

ACKNOWLEDGMENT

This research is supported by grants from Canada’s Natu-
ral Science and Engineering Research Council (NSERC) and
by a SHARCNET fellowship.

REFERENCES

[1] Message Passing Interface Forum. MPI: A Message-Passing
Interface Standard Version 2.1 [online]. September 2008 [cited
07/17/2009]. Available from: http://www.mpi-forum.org/docs/
mpi21-report.pdf.

[2] C.A.R. Hoare. Communicating Sequential Processes.
Communications of the ACM, 21(8):666–677, 1978.

[3] S. Russo A. Mazzeo. and G. Ventre. Using CSP languages to
Program Parallel Workstation Systems. Future Gener.
Comput. Syst., 8(1-3):149–163, 1992.

[4] Nan C. Schaller, Gerald H. Hilderink, and Peter H. Welch.
Using Java for parallel computing: JCSP versus CTJ, a
comparison. In P.H. Welch and A.W.P. Bakkers, editors,
Communicating Process Architectures, pages 205–226.
WoTUG, IOS Press, 2000.

[5] Neil Brown. C++CSP2: A many-to-many threading model for
multicore architectures. Communicating Process Architectures
2007, pages 183–205, 2007.

[6] Alex A. Lehmberg and Martin N. Olsen. An introduction to
CSP.NET. In Peter Welch, John Kerridge, and Fred Barnes,
editors, Communicating Sequential Architectures 2006, pages
13–30. IOS Press, 2006.

[7] J. Carter and W.B. Gardner. A formal CSP framework for
message-passing HPC programming. Proceedings of
Canadian Conference on Electrical and Computer
Engineering (CCECE), pages 1466–1470, May 2006.

[8] William B. Gardner. Converging CSP specifications and C++
programming via selective formalism. ACM Trans. on
Embedded Computing Sys., 4(2):302–330, 2005.

[9] Jeffrey S. Vetter and Bronis R. de Supinski. Dynamic software
testing of MPI applications with Umpire. In Supercomputing
’00: Proceedings of the 2000 ACM/IEEE conference on
Supercomputing (CDROM), page 51, Washington, DC, USA,
2000. IEEE Computer Society.

[10] Tobias Hilbrich, Bronis R. de Supinski, Martin Schulz, and
Matthias S. Müller. A graph based approach for MPI deadlock
detection. In ICS ’09: Proceedings of the 23rd international
conference on Supercomputing, pages 296–305, New York,
NY, USA, 2009. ACM.

[11] R. Milner. Communicating and Mobile Systems: the Pi-
Calculus. Cambridge University Press, 1999.

[12] Intel. Intel MPI Benchmarks, Users Guide and Methodology
Description. Intel GmbH, Germany, 2004.

[13] Viliyana Takeva-Velkova and Dhavide Aruliah. Image
reconstruction from parallel MRI using Pilot. In SHARCNET
Research Day, University of Waterloo, May 21, 2009.

[14] Natalie Girard and G. Grewal. Comparison of Pilot and MPI
implementations of parallel scatter search. In SHARCNET
Research Day, University of Waterloo, May 21, 2009.

[15] Anh Vo, Sarvani Vakkalanka, Michael DeLisi, Ganesh
Gopalakrishnan, Robert M. Kirby, and Rajeev Thakur. Formal
verification of practical MPI programs. In PPoPP ’09:
Proceedings of the 14th ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 261–
270, New York, NY, USA, 2009. ACM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

