
Rapid Prototyping of Embedded Software Using Selective Formalism

John Carter, Ming Xu, W.B. Gardner
Modeling & Design Automation Group, Dept. of Computing & Information Science

University of Guelph
Guelph, Ontario, Canada

jcarter@uoguelph.ca, mxu@uoguelph.ca, wgardner@cis.uoguelph.ca

Abstract

Our software synthesis tool, CSP++, generates C++
source code from verifiable CSPm specifications, and in-
cludes a framework for runtime execution. Our technique
of selective formalism allows the synthesized formal con-
trol backbone code to be linked with non-formal user-
coded C++ functions that carry out I/O and data pro-
cessing. This tool already facilitates rapid prototyping
of formally-specified software by bypassing the customary
manual translation from a formal notation. In this work,
we extend the rapid prototyping capability to SOPC (sys-
tem on programmable chip) by targeting the CSP++ execu-
tion framework to an FPGA processor core. This is demon-
strated with a new point-of-sale case study.

1. Introduction

Advocating formal methods for software specification
and development continues to receive a mixed reaction in
industry. No doubt some categories of embedded systems,
including safety-critical and mission-critical applications,
could benefit from using formal verification to help ensure
that specifications are met. As well, concurrent systems are
subject to pitfalls such as deadlocks that could potentially be
detected by verification tools. However, even if one wishes
to go the formal route, that would seem to throw up a barrier
to rapid prototyping. This is because a formal specification
notation is generally not executable, so a time-consuming,
error-prone hand translation to a conventional programming
language is required. Furthermore, it would not be clear
that the resulting hand-translated code retained the verified
properties. This situation is exacerbated if the entire soft-
ware system has to be specified in a formal notation and
hand-translated.

Our solution, “selective formalism”—based on making a
specification written in the process algebra CSP (Communi-
cating Sequential Processes) [7] [6] executable in C++—is

described in the following background section. This ap-
proach enables rapid prototyping of a CSP-specified sys-
tem by eliminating the hand translation step. It has been
applied to software running on general purpose computers
under Unix variants. We then describe our current work, re-
targeting the run-time framework (which provides CSP syn-
chronization and communication semantics) to an FPGA
processor core. The aim is to enable rapid prototyping
of SOPC (system on programmable chip) embedded soft-
ware. A new case study is presented for illustrative pur-
poses, based on a retail point-of-sale system. Our plans for
future work are also outlined.

2. Selective Formalism and CSP++

The “selective” aspect of selective formalism is that for-
mally specified and verified components of a system can be
easily mixed with components coded in a conventional pro-
gramming language (C++). Critical components of a sys-
tem are specified in CSPm [2] [4] (the machine-readable
dialect of CSP) to describe process composition, interac-
tion, and synchronization. A translation tool synthesizes
C++ source code from the CSPm statements for execution
under the CSP++ runtime framework.

Non-critical behavior is implemented as user-coded
functions in C++. These functions are linked to abstract,
named CSPm events, and invoked by processes in the ex-
ecutable specification. They could be used for I/O, inter-
facing to packages such as database management systems,
or performing calculations that are awkward to express in
CSP, which is not intended to be a full-featured program-
ming language. User-coded functions are subject to some
restrictions to prevent them from breaking the formalism.
The designer is free to strike an appropriate selective bal-
ance between the relative quantity of formal CSP versus
non-formal C++, according to the nature of the system un-
der construction.

Figure 1 depicts the CSP++ software synthesis process.
A developer creates a CSPm specification, and can use com-

Figure 1. CSP++ Design Flow

mercial tools FDR2 and Probe, from Formal Systems Eu-
rope, to scrutinize, simulate, refine, and verify the CSP
models. When used correctly, these tools allow the spec-
ification that forms the control backbone of the system to
be tested for points of failure, and aids in exposing unin-
tended and potentially unsafe behavior, such as deadlock
and livelock.

Next, the CSPm specification is automatically translated,
generating C++ source code based on the CSP++ object-
oriented application framework [5] [3]. Table 1 shows
the CSPm constructs presently implemented by the CSP++
translator. Boolean guard (&), replicated operators (@), un-
timed timeout ([>), and interrupt (/\) are not yet imple-
mented.

The synthesized source code is then compiled with the
CSP++ headers, and linked with the CSP++ run-time library
and any user-coded functions the developer has added, re-
sulting in an executable specification. The user-coded func-
tions must not “go behind the back” of the CSP specification
to carry out their own interprocess communication or syn-
chronization. This insures that the trace of event execution
adheres to the original specification.

The current version of CSP++ uses GNU Portable
Threads (Pth) to provide nonpreemptible multithreading. It
runs on any Unix variant that supports Pth. CSP++ is not

Table 1. CSPm constructs currently imple-
mented by CSP++

Construct CSPm Symbol
parallel synchronization ||

process interleaving |||
sequential composition ;

prefix ->
channel I/O ? and !

external choice []
event renaming <-

event hiding \\
conditional if-then-else

wedded to Pth, and has been ported to other threads pack-
ages.

3. SOPC Work In Progress

Our goal is to allow CSP++ source code to be cross-
compiled, linked, and executed on an SOPC target platform
(as shown in figure 2).

At present, we have selected a suitable FPGA device and

Figure 2. Target Platform

Figure 3. POS Overview

RTOS for our SOPC: the Xilinx MicroBlaze soft processor
core configured on a Virtex FPGA device, and uClinux. The
MicroBlaze processor is a 32-bit RISC processor architec-
ture that is capable of hosting uClinux [10], a lightweight
Linux distribution created for use in embedded devices. We
now have a configured and bootable SOPC, with a working
build chain (cross-compiler and binary tools).

Current work is focused on getting Pth to coexist hap-
pily with uClinux on the MicroBlaze. If this obstacle is
insurmountable, we will port CSP++ to another RTOS.

4. POS Case Study

We have created a new case study to illustrate the ad-
vantages of rapid prototyping using our technique. An
overview of the “point of sale” (POS) system architecture
is given in figure 3, showing components of the system and
their intercommunication. The system behaviour was first
captured at a high level using finite state machines (FSM),
shown in figure 4. FSM models are relatively easy to ex-
press in CSPm for functional refinement. The CSPm speci-
fication was simulated, debugged, and verified.

Figure 4. FSM description of system.

A POS terminal was chosen as the first SOPC case study
for several reasons. Most people have a high degree of fa-
miliarity with these systems. POS systems feature a simple,
well-known interface. POS terminals are composed of sev-
eral interacting control-dominated subsystems. Lastly, POS
terminals utilize peripherals such as barcode readers, seg-
ment displays, scales, and electronic funds transfer systems.
These peripherals are supported by the FPGA development
board we are working with.

The CSPm specification for the top-level system process
SYS is shown below. It executes the INITIALIZATION
process, followed by five concurrent subsystem processes:

SYS = INITIALIZATION;
((((TERMINAL [|{| barcode_requested,

barcode_out |}|] BARCODE)
[|{| weight_requested,

weight_out |}|] SCALE)
[|{| start_job,

finish_job |}|] PRINTER)
[|{| amount,

approve,
disapprove,
display_change,
payment_start |}|] PAYMENT)

The INITIALIZATION process is composed of a num-
ber of events to be executed sequentially, bring the various

components of the POS system online. “SKIP” is normal
process termination.

INITIALIZATION = init_terminal ->
init_scale -> init_printer ->
init_barcode -> init_eftpos ->
init_credit -> init_drawer ->
SKIP

As an illustration of one of the concurrent processes,
the payment subsystem is in turn composed of a PAY-
MENTCHOICE process, which determines which payment
method is selected, and PAYMENTSYSTEM, a set of three
payment-specific subprocesses used for each of the possi-
ble payment methods. PAYMENTCHOICECMD provides
an example of the CSP concept of parameterized processes.
The invocation PAYMENTCHOICECMD(option) will be
dynamically bound to the correct variant at run time, de-
pending on the value of option.

PAYMENT=PAYMENTCHOICE[|{|cash_payment,
credit_payment,
debit_payment|}|] PAYMENT_SYSTEM

PAYMENTCHOICE=payment_start ->
payment_selection?option ->
PAYMENTCHOICE_CMD(option)

PAYMENTCHOICE_CMD(0) =
cash_payment->PAYMENTCHOICE

PAYMENTCHOICE_CMD(1) =
credit_payment->PAYMENTCHOICE

PAYMENTCHOICE_CMD(2) =
debit_payment->PAYMENTCHOICE

PAYMENTCHOICE_CMD(x)=CANCELPAYMENT

CANCELPAYMENT=amount?trash ->
display_change!0 ->
disapprove->PAYMENTCHOICE

PAYMENT_SYSTEM=EFTPOS |||
CREDITCARDTERMINAL |||
CASHDRAWER

The PAYMENT process uses two of the types of par-
allelism provided by CSP.Interface parallel defines a
set of events (enclosed in the [|{| and |}|] symbols) on
which the participating processes must synchronize. The
PAYMENT SYSTEM employs interleaving parallelism,
whereby a number of processes (in this case EFTPOS,
CREDITCARDTERMINAL and CASHDRAWER) exe-
cute in parallel with no synchronization or communication
among them.

Figure 5. FSM description of EFTPOS portion
of payment state.

A further illustration is the EFTPOS process (based
loosely on the FSM description shown in figure 5) used
by the payment subsystem. Its EFTPOSVERIFICATION
process tries 3 times to verify the customer’s PIN.
The line starting with “−−” is a comment. EFT-
POSVERIFICATION uses the “if, else” construct to pro-
vide conditional behavior, an alternative to defining param-
eterized processes like PAYMENTCHOICECMD above.

EFTPOS=debit_payment -> amount?bill ->
debitcard_scan?card ->
EFTPOS_VERIFICATION(3,bill,card)

-- (3 is number of pin ’tries’ remaining)

EFTPOS_VERIFICATION(n,bill,card) =
if (n == 0) then display_change!0 ->

disapprove -> EFTPOS
else

pin_entry?pin ->
EFTPOS_CHECKFUNDSPIN(n,

bill,
card,
pin)

EFTPOS_CHECKFUNDSPIN(n,bill,card,pin) =
senddebitrequest!card.bill.pin ->
recvdebitresult?r ->

if (r == 0) then
EFTPOS_VERIFICATION(n-1,
bill,card)

else if (r == 1) then
(display_change!0 ->
approve -> EFTPOS)

else (display_change!0 ->
disapprove -> EFTPOS)

At the implementation stage, user-coded functions were
added to carry out I/O such as console input and output,
to calculate totals, and to simulate operations such as re-
trieving inventory from a database. The ability to attach
user-defined functionality to a verified CSP model makes
the selective formalism approach convenient. At present,
our case study relies on simple console input and output
from a serial terminal. Support will later be added for addi-
tional hardware, as appropriate to a realistic POS terminal.
The console I/O functions will be replaced with a differ-
ent set of user-coded functions interfacing with the uClinux
drivers running on the MicroBlaze core. Such a change re-
quires only relinking, not a rewriting or re-synthesis of the
CSPm specification.

Shown below is an example of a user-coded function to
initialize the printer. It would be invoked by the initprinter
event of the INITIALIZATION process. The linkage of
CSPm events to user-coded functions is provided by the de-
veloper at compile time in the makefile.

void init_printer_q(ActionType t,
ActionRef* a,
Var* v, Lit* l) {

printf("init: printer.\r\n");

// open printer
fopen("PRN","w");

}

Here is a sample user-coded function to send a request
for an EFTPOS transaction. This one takes the place
of a channel output event, senddebitrequest!card.bill.pin,
in EFTPOSCHECKFUNDSPIN above. The getList()
method is used to extract the data from the channel object.

void senddebitrequest_q(ActionType t,
ActionRef* a,
Var* v, Lit* l)

{

List<Lit>* temp = l->getList();

// extract parameters
int card = int((*temp)[0]);
int bill = int((*temp)[1]);
int pin = int((*temp)[2]);

// to be replaced with actual I/O:
fprintf(EFTPOS,"<#%d:$%d:!%d>",
card, bill, pin);

}

This user-coded function receives the response from the
EFTPOS terminal. It takes the place of channel input,
recvdebitresult?r, and passes the data received from the pe-
ripheral into the CSPm channel.

void recvdebitresult_q(ActionType t,
ActionRef* a,
Var* v, Lit* l)

{
int r;

// to be replaced with actual I/O:
fscanf(EFTPOS,"<%d>",&r);

// return result thru ’v’
*v = Lit(r);

}

5. Future Work

The current CSP++ tool is based on the original def-
inition of CSP, which does not include timing and inter-
rupts. Until timing support is added, perhaps on the basis
of “timed CSP” [9], specifications can be written in terms
of event based “tock” [8] timing. The real-time nature of
many embedded systems justifies the effort needed for its
inclusion. Looking ahead, it is intended to extend CSP++’s
synthesis capabilities to include hardware description lan-
guage, with applications to hardware/software codesign [1].
Developers will be able to partition the CSPm specification
between software and hardware, and inter-process synchro-
nization and channel communication will be automatically
synthesized by the tool.

6. Conclusion

Formal methods can be a key link in the design flow of
embedded systems, but automatic translation of specifica-
tions, as provided by CSP++, is important for facilitating

rapid prototyping. By using the selective formalism ap-
proach, and by using SOPC as a vehicle, it will be possible
to quickly create prototypes that can be turned into reliable
embedded systems.

References

[1] G. D. Micheli, R. Ernst and Wayne Wolf,Readings
In Hardware / Software Co-design, Morgan Kaufman
Publishers, San Francisco, CA, 2002.

[2] W.B. Gardner, “Bridging CSP and C++ with Selective
Formalism and Executable Specifications,”First ACM
& IEEE International Conference on Formal Methods
and Models for Co-design (MEMOCODE ’03), Mont
St-Michel, France, June 2003, pp. 237-245.

[3] W.B. Gardner, “CSP++: An Object-Oriented Ap-
plication Framework for Software Synthesis from
CSP Specifications,” Ph. D. dissertation, Depart-
ment of Computer Science, University of Victoria,
Canada. 2000.http://www.cis.uoguelph.
ca/˜wgardner/ , Research link.

[4] W.B. Gardner, “Converging CSP Specifications and
C++ Programming via Selective Formalism,” to ap-
pear inACM Transactions on Embedded Computing
Systems(TECS), Special Issue on Models & Method-
ologies for Co-Design of Embedded Systems.

[5] W.B. Gardner, and Micaela Serra, “CSP++: A Frame-
work for Executable Specifications,” chapter 9, in M.
Fayad, D. Schmidt, and R. Johnson, editors,Imple-
menting Application Frameworks: Object-Oriented
Frameworks at Work, John Wiley & Sons, 1999.

[6] Michael G. Hinchey and Stephen A. Jarvis,Concur-
rent Systems: Formal Development in CSP, McGraw
Hill, Berkshire, UK, 1995.

[7] C.A.R. Hoare,Communicating Sequential Processes,
Prentice Hall, 1985

[8] A.W. Roscoe,The Theory and Practice of Concur-
rency, Prentice Hall Europe, Hertfordshire, UK, 1998.

[9] Steve Schneider,Concurrent and Real Time Systems:
The CSP Approach, John Wiley & Sons, Inc., New
York, NY, 2000.

[10] John Williams, uClinux on MicroBlaze Project
Home Page, University of Queensland, Aus-
tralia. 2005. http://www.itee.uq.edu.au/
˜jwilliams/mblaze-uclinux/ , Research
link.

