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A1. OTHER AUCTION FORMATS

THE CONCLUSION IN Theorem 1 is made possible because the allocation in the
SPA can be described precisely, while the possible allocations in the FPA can
be narrowed down to a relatively small set. It is not necessary to know the exact
allocation in the FPA.

Aside from the issue of how much rent is extracted from βi types, Theo-
rem 1 therefore really says that the SPA is a poor auction format if the ob-
jective is to generate high expected revenue. For instance, if βw = βs and
uw(βw) = us(βs) = 0, any auction with k(v) ∈ [v� r(v)] is more profitable than
the SPA if condition (9) or (10) in the main paper is satisfied. In other words,
it is profitable to design an auction that favors the weak bidder moderately.

It has long been understood that optimal auctions typically favor the weak
bidder; see, for example, McAfee and McMillan (1989).1 Based on this prop-
erty, Klemperer (1999) argued that “it is plausible that a first-price auction
may be more profitable [ . . . ] than a second-price auction.” However, this pa-
per establishes a bound on the amount of favoritism that can safely be extended
to the weak bidder. Specifically, any mechanism where the weak bidder wins
more often than is efficient but less often than he would in a counterfactual
symmetric auction against another weak bidder is more profitable than a SPA.

To illustrate, define a winner-pay auction to be an auction in which the win-
ner pays a proportion γ of his own bid and (1 − γ) of the losing bid, and the
loser does not pay, γ ∈ [0�1]. The FPA corresponds to γ = 1, the SPA to γ = 0.

PROPOSITION A1: Assume that (i) Fw ≤rh Fs, (ii) condition (9) or (10) holds,
and (iii) βs = βw. Then, the SPA yields strictly the lowest expected revenue of all
winner-pay auctions.

PROOF: Consider γ ∈ (0�1], that is, an auction that is not a pure SPA. In this
case, the two bidders must share the same maximal bid, b. Let φi(b) denote
bidder i’s inverse bidding strategy, i = s�w, where b ∈ [βw�b]. Assume, for the

1In Maskin and Riley’s (2000) one model where the SPA is superior to the FPA, the optimal
auction would in fact discriminate against the weak bidder. In contrast, for the proof of Theorem 1
to work, it is necessary that Fs dominates Fw in terms of the hazard rate (see footnote 12 in the
main paper). An optimal auction therefore favors the weak bidder.
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moment, that the bidding strategy is strictly increasing and differentiable. If
bidder i has type v, his problem is

max
b

∫ b

βw

[
v− (γb+ (1 − γ)x)

]
dFj(φj(x))�

where j �= i denotes bidder i’s rival. The first order condition is

fj(φj(b))

Fj(φj(b))
φ′

j(b) = γ

v − b
�

In equilibrium, bidder i bids b if his type is v = φi(b). Substituting into the first
order conditions produces the system of differential equations

fw(φw(b))

Fw(φw(b))
φ′

w(b) = γ

φs(b)− b
�

fs(φs(b))

Fs(φs(b))
φ′

s(b) = γ

φw(b)− b
�

The only difference from the FPA is that γ ∈ (0�1] (the boundary conditions
are the same). The proofs in Maskin and Riley (2000) can then be repeated
to conclude that the auction has the same features as a FPA, kγ(v) ∈ [v� r(v)]
for all γ ∈ (0�1]. Since bidders with type βi earn zero rent for all γ ∈ [0�1],
Theorem 1 applies directly. Q.E.D.

Not all auctions have the property that k(v) ∈ [v� r(v)]. The most prominent
example is probably the all-pay auction for which k(v) < v when v is small.
The reason is that a weak bidder with a low type is deterred from bidding
(which is a sunk cost in an all-pay auction) when facing a rival he perceives as
strong. Thus, it is not possible to rank the SPA and the all-pay auction using
the method developed in this paper.

A2. TYPES WITH TWO COMPONENTS

Here, I first reexamine the “stochastic shift” model from Section 4.2 in the
main paper. The condition that fw is increasing is relaxed. Then, I consider a
model where the strong bidder’s type is obtained by multiplying two random
variables. For both models, the following lemma is useful. Here, a function is
said to be unimodal if it is monotonic or has an inverse-U shape (it may have
regions where it is flat). If fs is unimodal but not monotonic, let v̂ denote the
smallest type at the peak, such that fs(̂v) > fs(v) for all v < v̂.

LEMMA A1: Condition (9) is satisfied if βw = βs, fs and fw are unimodal on
Ss and Sw, respectively, fw(v) ≥ fs(v) and fw(v) ≥ fs(r(v)) for all v ∈ Sw, and
v̂ ≤ αw.
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PROOF: The lemma is straightforward if fs is monotonic. Hence, assume fs
is not monotonic; v̂ is in the interior of Ss. By assumption, v̂ ∈ Sw. Since Fs is
more disperse than Fw, fw(v) ≥ fs(r(v)) for all v ∈ [βw� r

−1(̂v)], an interval on
which fs is increasing since r−1(̂v) < v̂. Thus, condition (9) is satisfied for all v ∈
[βw� r

−1(̂v)]. Since fw(r
−1(̂v)) ≥ fs(̂v), fw(̂v) ≥ fs(̂v), and fw is itself unimodal,

it must hold that fw(v) ≥ fs(̂v) for all v ∈ [r−1(̂v)� v̂], and since fs attains its
peak at v̂, condition (9) must also be satisfied on the interval [r−1(̂v)� v̂]. For
v > v̂, fw(v) ≥ fs(v) combines with the monotonicity of fs on that region to
ensure that (9) is satisfied here as well. Q.E.D.

A2.1. Stochastic Shifts

To generalize Example 1 to permit G to be nondegenerate and obtain Propo-
sition 1, the assumption that Fw is log-concave need only be replaced with the
slightly stronger assumption that fw is log-concave. By imposing more condi-
tions on g, the assumption that fw is increasing can also be relaxed. The inten-
tion is to use Lemma A1.

However, the convolution of two unimodal densities is not necessarily uni-
modal. Ibragimov (1956) has shown that the convolution of a log-concave den-
sity with any unimodal density is itself unimodal. Hence, a log-concave func-
tion is sometimes referred to as strongly unimodal. Since it has already been
assumed that fw is log-concave, unimodality of fs is then guaranteed if g is
unimodal.2 It will also be assumed that β = 0, implying that βw = βs. Log-
concavity of fw also implies that Fs is more disperse than Fw, as mentioned in
the main paper. However, to apply Lemma A1, it is also necessary that Fw is
steeper than Fs on Sw. Unfortunately, a convolution may increase the density
locally. Thus, additional assumptions are required.

PROPOSITION A2: The FPA yields strictly higher expected revenue than the SPA
in the additive model if fw is log-concave, β= 0, and g is decreasing and satisfies

fw(αw)≥
∫ α

0
fw(αw − z)g(z)dz�(A1)

PROOF: For v ∈ C = Sw,

fs(v)

fw(v)
=

∫ α

0 fw(v− z)g(z)dz

fw(v)
=

∫ α

0

fw(v − z)

fw(v)
g(z)dz�

2Miravete (2011) examined the properties of convolutions of two log-concave densities. He
emphasized their relevance to models of asymmetric information, including multidimensional
screening.
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where fw(v− z) = 0 if v− z ≤ βw. Thus,

d

dv

(
fs(v)

fw(v)

)
≥

∫ α

0

(
f ′
w(v− z)

fw(v− z)
− f ′

w(v)

fw(v)

)
fw(v− z)

fw(v)
g(z)dz�

which is positive since fw is log-concave. Hence, Fs dominates Fw in terms of
the likelihood ratio (this conclusion relies on β = 0). Condition (A1) is equiv-
alent to fs(αw)

fw(αw)
≤ 1. Thus, since fs(v)

fw(v)
is increasing on Sw, fw(v) ≥ fs(v) for all

v ∈ Sw. Since the convolution of fw and g is unimodal, Lemma A1 applies if fs
peaks to the left of αw. However, when v > αw,

fs(v)=
∫ αw

max{βw�v−α}
g(v − z)fw(z)dz�

which is decreasing in v when g is decreasing. Consequently, fs peaks at or
before αw. Q.E.D.

Condition (A1) requires that fw(αw) exceeds a weighted average of fw over
the interval [αw −α�αw] (on which fw may be zero if αw −α≤ βw). Thus, if α is
small, it rules out that fw is decreasing. However, fw may be nonmonotonic as
long as it does not “dip down” too much after it has passed its peak. The con-
dition is less restrictive if α is large, such that the asymmetry between bidders
is large.

A2.2. A Multiplicative Model

Assume that the strong bidder’s type has two components, v and a. The
former is drawn from Fw. The latter is drawn from G, which has support [β�α].
The strong bidder’s type is then u(v�a)= va.

Cuculescu and Theodorescu (1998) examined multiplication of random vari-
ables. For nonnegative random variables, they showed that log-concavity of fw
must be replaced by log-concavity of fw(ev) to obtain results that mirror those
for addition of random variables.3 That is, if a random variable with this prop-
erty is multiplied with another random variable with unimodal density, then
the resulting variable also has unimodal density. Likewise, the multiplicative
convolution of Fw and a nondegenerate random variable G is more “star dis-
perse” than Fw itself (i.e., r(v)

v
is increasing).

Assume β ≥ 1, such that βs ≥ βw and Fs (the multiplicative convolution of
Fw and G) first order stochastically dominates Fw. Then, r(v)

v
increasing implies

r(v)− v increasing. In other words, Fs is more disperse than Fw.

3Jewitt (1987, footnote 15) made a related observation in a model of risk aversion with two
sources of uncertainty. Jewitt (1987) used tools from total positivity, as in Miravete (2011).
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Turning to reverse hazard rate dominance, note first that, for any v ∈C,

Fs(v)

Fw(v)
=

∫ α

β

Fw

(
v

z

)
Fw(v)

g(z)dz�

Since fw(e
v) is log-concave, Fw(e

v) is log-concave as well. Equivalently,
vfw(v)/Fw(v) is decreasing. Thus, since z ≥ 1,

d

dv

⎛
⎜⎜⎝
Fw

(
v

z

)
Fw(v)

⎞
⎟⎟⎠ = 1

v

Fw

(
v

z

)
Fw(v)

⎛
⎜⎜⎝

(
v

z

)
fw

(
v

z

)

Fw

(
v

z

) − vfw(v)

Fw(v)

⎞
⎟⎟⎠ ≥ 0�

and Fw ≤rh Fs follows. A counterpart to Proposition 1 in the main paper is now
immediate.

PROPOSITION A3: The FPA yields strictly higher expected revenue than the SPA
in the multiplicative model if fw(ev) is increasing and log-concave.

The proof is identical to the proof of Proposition 1 in the main paper.
To relax the assumption that fw is monotonic, it is necessary to impose more

restrictions on g instead. As in the additive model, Lemma A1 is used. The
proof of the following proposition is omitted since it is analogous to the proof
of Proposition A2.

PROPOSITION A4: The FPA yields strictly higher expected revenue than the SPA
in the multiplicative model if fw(ev) is log-concave, β = 1, and g is decreasing and
satisfies

fw(αw)≥
∫ α

1
fw

(
αw

z

)
g(z)

z
dz�(A2)

A3. AUCTIONS WITH MANY STRONG BIDDERS

This part of the Supplemental Material provides the details behind the claim
in Section 4.4 of the main paper that the FPA is superior to the SPA if the
asymmetry is large enough and m≥ 2. Let bs = bs(αs) and bw = bw(αw) denote
the maximum bids of the strong and weak bidders, respectively. When m ≥ 2,
it is possible that bs > bw.

A3.1. Small Overlap

Assume that αw is “close” to βs such that there is little overlap between the
supports. As a starting point, if βs = αw, then (i) Jw(αw) = αw = βs > Js(βs),
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and (ii) bs > bw in a FPA (a strong bidder with type βs bids βs = αw ≥ bw, and
his strategy is strictly increasing). If αw is “slightly above” βs, it must remain the
case that bs > bw, or k1(αw) < αs, with Jw(αw) > Js(x) for all x ∈ [βs�k1(αw)].
Moreover, by continuity,

Jw(v) > Js(x) for all v ∈ [βs�αw] and x ∈ [βs�k1(αw)]�(A3)

when βs and αw are sufficiently close.4 In the following, when the overlap is
said to be “small,” it should be taken to mean that (A3) is satisfied.

In this case, the FPA yields higher expected revenue than the SPA because
the weak bidders are winning more often against strong bidders with inferior
virtual valuation. Recall that the two are revenue equivalent if there is no over-
lap.

PROPOSITION A5: Assume that Fw ≤rh Fs and the overlap is small. Then, the
FPA generates strictly higher expected revenue than the SPA when m ≥ 2, n≥ 1.

PROOF: Both auctions ensure that uk
i (βi) = 0, i = s�w. A weak bidder with

type below βs loses both auctions (competition between the strong bidders
ensures that any serious bid must be at least βs). By (i), a weak bidder with
type v ∈ (βs�αw] wins more often in the FPA than in the SPA. By (ii) or (A3),
the winner’s virtual valuation is no lower in the FPA, and may be higher. In
other words, Dm is positive. Q.E.D.

EXAMPLE 1—Continued: Consider a many-bidder extension of Example 1,
with m ≥ 2. If Fs is shifted far to the right such that there is no overlap between
supports, then the two auctions are revenue equivalent. The same is true if
a = 0, in which case bidders are homogenous. Proposition A5 then states that
the FPA is superior for large “interior” values of a. A comparison cannot be
made for small values. Recall that Proposition A5 does not require Fs to be a
“shifted” version of Fw.

A3.2. Large Stretches

Assume the asymmetry between bidders is so large that bs > bw. Define
αs ≡ k1(αw) as the highest strong type that competes with the weak bidders.
A strong bidder outbids the weak bidders with probability 1 if his type ex-
ceeds αs, αs < αs.

Consider the consequences of “stretching” the strong bidder’s distribution,
transforming Fs with support [βs�αs] to Fλ

s with support [βs�α
λ
s ], αλ

s > αs, such
that Fλ

s = λFs on the subinterval v ∈ [βs�αs], with λ ∈ (0�1). More concisely,

4Fs need not be more disperse than Fw . For instance, the former could have a smaller support
than the latter. It is a general property that Ji(αi) = αi and Ji(βi) < βi , i = s�w.
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Fs is a truncation of Fλ
s . Importantly, Fs and Fλ

s have the same reverse hazard
rate on [βs�αs] and therefore on [βs�αs]. Thus, if Fs dominates Fw in terms of
the reverse hazard rate, so does Fλ

s . Likewise, the system of first order condi-
tions from the bidders’ maximization problems is unchanged at bids below bw.
This can be seen by examining the systems in Maskin and Riley (2000) or Le-
brun (2006). The implication is that weak bidders regardless of type and strong
bidders with type below αs use the exact same strategy in either case. Conse-
quently, k1 is the same in both environments.

For types in [βs�αs], the strong bidders’ virtual valuation is

Jλ
s (v)= v− 1 − Fλ

s (v)

f λ
s (v)

= v−
1
λ

− Fs(v)

fs(v)

as a function of λ. The important property is that Jλ
s decreases without bound

as Fs is stretched more and more (i.e., as λ decreases and goes to zero). Thus,

Jw(v)≥ Jλ
s (x) for all v ∈ [βw�αw] and x ∈ [βs�αs](A4)

when Fs is stretched sufficiently much. In the following, when Fs is said to be
stretched “a lot,” it should be taken to mean that (A4) is satisfied.

PROPOSITION A6: Assume that Fw ≤rh Fs and Fs is stretched a lot. Then, the
FPA generates strictly higher expected revenue than the SPA when m≥ 2, n≥ 1.

The proof is identical to the proof of Proposition A5.

EXAMPLE 2—Continued: Proposition A6 applies directly if Fw is a trunca-
tion of Fs, in which case Fs(v) = λFw(v) on v ∈ [βw�αw]. As with Example 1,
the two auctions are revenue equivalent if the bidders are homogenous, or
λ = 1. A comparison cannot be made if λ is close to 1, or the asymmetry is
small. By Proposition A6, however, the FPA is superior when λ is close to zero.
Note that Proposition A6 does not require Fs and Fw to be related in any way
other than through reverse hazard rate dominance (it does not imply one is a
truncation of the other), nor does it require log-concavity.

A4. BOUNDING THE ALLOCATION

Recall from (3) in the main paper that the system of differential equations
can be written

k′
1(v) = Fs(k1(v))

fs(k1(v))

fw(v)

Fw(v)

k1(v)− bw(v)

v− bw(v)
�(A5)

b′
w(v) = fw(v)

Fw(v)
(k1(v)− bw(v))
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for v ∈ (b∗�αw], where b∗ ∈ [βw�βs] is the smallest serious bid (see Maskin and
Riley (2000) for a characterization of b∗). The system must satisfy the condition
k1(αw) = αs. It is also the case that k1(b∗) = βs and bw(b∗) = b∗. Fix k1 and
v ∈ (b∗�αw], with k1 ≥ v, and note that

d

dbw

(
k1 − bw

v − bw

)
= k1 − v

(v − bw)2
≥ 0�(A6)

The implication is that if bw can be bounded, then the last term in k′
1(v) can be

bounded as well.
To illustrate the usefulness of bounds on bw, start with the crudest bound,

namely, bw(v) > b∗ for v ∈ (b∗�αw]. Consider the function k, with domain
(b∗�αw]. Assume k(αw) = αs, with

k
′
(v)= Fs(k(v))

fs(k(v))

fw(v)

Fw(v)

k(v)− b∗
v− b∗

(A7)

for v ∈ (b∗�αw]. Assuming Fw ≤rh Fs, the same proof as in footnote 9 of the
main paper proves that k ∈ [v� r(v)]. Compare now k1 and k. Should they co-
incide at some v ∈ (b∗�αw], then k′

1(v) ≥ k
′
(v), by (A6). Hence, k can cross

k1 at most once, and then from above. If this occurs in the interior, then
k1(αw) = k(aw) is violated because k′

1(αw) > k
′
(αw) due to the assumption

that k1(αw)− αw = αs − αw > 0. Consequently, k is an upper bound on k1, on
(b∗�αw]. The assumption that αs > αw can be replaced by the joint assump-
tion that αs = αw and Fs log-concave.5 Recall that k(v) ≤ r(v), so the bound is
tighter than r(v). Clearly, k depends only on the primitives, Fs and Fw, and the
fixed number b∗ (which Maskin and Riley (2000) derived).

Like r(v), k(v) can be implicitly characterized. Since (A7) is a separable
differential equation, it is helpful to rewrite it as

fs(k)

Fs(k)

1

k− b∗
dk= fw(v)

Fw(v)

1
v− b∗

dv�

With the boundary condition k(αw)= αs, k is then implicitly characterized by∫ αs

k(v)

fs(x)

Fs(x)

1
x− b∗

dx=
∫ αw

v

fw(x)

Fw(x)

1
x− b∗

dx�(A8)

5In this case, k1 and k coincide and are tangent at v = αw . Assume now that k1 >k for some v.

Then, by log-concavity, Fs(k1)
fs(k1)

≥ Fs(k)

fs(k)
. Thus, by (A6), k1 is strictly steeper than k. Hence, k1 and

k diverge, and k1(αw)= k(αw) is impossible. Thus, k1(v)≤ k(v) for all v ∈ (b∗�αw].
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for v ∈ (b∗�αw]. Incidentally, the tying function in an asymmetric all-pay auc-
tion can be characterized implicitly in much the same way; see Amann and
Leininger (1996).

The upper bound can be tightened further, and a lower bound established as
well, by exploiting tighter bounds on bw(v). To begin, let bs denote the strong
bidder’s strategy in the asymmetric auction. Let bii denote bidders’ strategy
in a symmetric auction in which both bidders are of kind i, i = s�w. Then,
Maskin and Riley’s (2000) Proposition 3.5 implies that bww(v) ≤ bw(v), v ∈ Sw,
and bss(v) ≥ bs(v), v ∈ Ss. That is, bidders are more aggressive when they face
a strong rather than a weak bidder. Let b∗ denote the maximum bid in the
asymmetric auction. Since the purpose is to bound bw,

bw(v) ≥ max{b∗� bww(v)} = max
{
b∗� v−

∫ v

βw

Fw(x)

Fw(v)
dv

}

is immediately useful. If βw = βs, then bww(v) ≥ b∗ = βw for all v ∈ Sw.
An upper bound on k1 can now be derived by replacing b∗ in (A7) with
max{b∗� bww(v)}.

It is harder to derive a lower bound on k1. To do so, an upper bound on
bw is needed. Recalling that k1(v) ≤ r(v) leads to the conclusion that bw(v) =
bs(k1(v)) ≤ bs(r(v)). Hence,

bw(v) ≤ bs(r(v)) ≤ min{b∗� bss(r(v))}

= min
{
b∗� r(v)−

∫ r(v)

βs

Fs(x)

Fs(r(v))
dv

}
�

There are two weaknesses here. First, b∗ is endogenous and, unlike b∗, cannot
generally be characterized. Second, it is entirely possible that min{b∗� bss(r(v))}
exceeds v. An alternative is to begin with

(v− bw(v))Fs(r(v)) ≥ (v− bw(v))Fs(k1(v))

=
∫ v

βw

Fs(k1(x))dx

≥
∫ v

βw

Fs(x)dx�

where the inequalities come from r(v) ≥ k1(v)≥ v. The equality is due to My-
erson (1981). Hence,

bw(v) ≤ v−
∫ v

βw

Fs(x)

Fw(v)
dx�

since Fs(r(v)) = Fw(v). Clearly, this bound on bw does not exceed v.
The next example illustrates the main points.
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EXAMPLE: Assume bidder i, i = s�w, draws a type from Fi, where

Fi(v)=
(
v

αi

)γi

� v ∈ [0�αi]�

with αs = 4
3 > 1 = αw and γs = 2 > 1 = γw. These parameters fit with Cheng’s

(2006) assumptions. In this case, it is possible to solve the model analytically.
Specifically, Cheng (2006) showed that bidding strategies are linear. Thus,
k1(v) = 4

3v, which is also linear. The ex ante probability that bidder w wins
can then be calculated to be W (k1) = 1

3 . In contrast, if r(v) = 4
3

√
v is used as

an upper bound, then it is possible to conclude only that bidder w wins (ex
ante) with probability no greater than W (r) = 1

2 . This is a general conclusion
when using r(v) as the bound on k1(v), and shows just how loose a bound it
is. Now, using the bound derived from bw(v) ≥ b∗ = 0, (A8) yields k(v) = 4 v

v+2

and W (k) ≈ 0�403. If bw(v) ≥ bww(v) = 1
2v is used to derive an upper bound,

the result is the solution to

dkww

dv
= kww

2
1
v

kww − 1
2
v

v− 1
2
v

� kww(1)= 4
3
�

FIGURE A1.—Bounds on k1.
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which is kww(v) = 12v(v3/2 + 8)−1, with W (kww) ≈ 0�360. Turning to a lower
bound, note that

bw(v) ≤ v−
∫ v

0

Fs(x)

Fw(v)
dx= v− 3

16
v2�

Using this in place of b∗ in (A7) yields the less palatable lower bound

k(v)=
(

3
4
√
v

e−8/(3v)

e−8/3
+ 1√

v
e−8/(3v)

∫ 1

v

8
3x5/2

e8/(3x) dx

)−1

�

with W (k) ≈ 0�281. In comparison, using only k1(v) ≥ v as the lower bound
would yield W (v) = 3

16 = 0�1875. Figure A1 illustrates the bounds just derived.
The dashed curves are the bounds on k1 that exist in the current literature,
namely, r(v) and v, respectively. The fat line is the true k1. The remaining
curves are the two upper bounds and the lower bound just derived.
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