Multimarket Contact in Vertically Related Markets

September 2010

Sencer Ecer
Istanbul Technical University, College of Management,
Macka, Istanbul, 34367, Turkey
Email: sencerecer@hotmail.com

&

Talat S. Genc
Dept. of Economics, University of Guelph, Guelph, ON, N1G2W1, Canada
Email: tgenc@uoguelph.ca

Abstract: We analyze collusion in two comparable market structures. In the first market structure, only one firm is vertically integrated; there is one more independent firm in the upstream industry and another independent firm in the downstream industry. In the second market structure, there are only two vertically integrated firms that can trade among themselves in the intermediate good market. The second market structure mimics markets like the California gasoline market where firms vertically integrated through refinery, and retail markets. We rank these two market structures in terms of ease of collusion and show that while under a reasonable collusive sharing rule, collusion is not possible in the market with one vertically integrated firm, collusion is possible in the market structure with two vertically integrated firms. We conclude that vertical (multimarket) contact facilitates collusion and if vertical mergers are suspected to lead to subsequent vertical mergers in an industry, then they should receive higher antitrust scrutiny relative to single isolated vertical mergers.

Keywords: Multimarket; collusion; vertical integration; gasoline markets
1. Introduction

California gasoline market is well-known for its higher than national average prices and mark-ups. Even after correcting for state-specific legislative requirements, such as the CARB, this fact stands (McAfee, 2006). Thus, most authors attribute the higher-prices and margins to lack of competition due to market concentration and capacity restrictions precluding entry (Wolak, 2004). In particular, even though some argued that the situation is consistent with competitive markets (Energy Information Administration, 2003), the data have been found to be consistent with some firms exercising market power (Borenstein, Bushnell, and Lewis, 2004).

Indeed, historically, a few vertically integrated oil companies have dominated both the refinery and retail levels in the California gasoline market. One characteristic of this market is the existence of several integrated companies coupled with horizontal concentration at both levels of the industry. This characteristic raises concerns about the relative likelihood of coordinated interaction especially in the presence of multimarket interaction across upstream and downstream markets. The US Merger Guidelines define coordinated effects, which is a well-known concept in merger enforcement, as “Co-ordinated interaction is comprised of actions by a group of firms that is profitable for each of them only as a result of the accommodating reactions of the others. This behavior includes tacit or express collusion…” (see http://ec.europa.eu/dgs/competition/economist/delamano2.pdf). Not surprisingly given the concentration in the California gasoline market, there is also a concern for coordinated effects in merger enforcement. In particular, the Federal Trade Commission has objected to several mergers in this particular market based on coordinated effects theories (see FTC, 2003, http://www.ftc.gov/ftc/oilgas/charts/merger_enforce_actions.pdf). However, vertical mergers may lead to more opportunities to collude in terms of not just coordinated effects but also in terms of the multimarket aspect of contacts of vertically merged firms.

In this paper, we emphasize that there is one aspect of a market such as the gasoline market in California that requires further attention than would be given to a standard concentrated market in a horizontal context and coordinated effects concerns. That is, there is the
possibility of multimarket interaction of vertically integrated firms embedded in a market composed of vertically related levels. Multimarket contact is generally known to facilitate collusion, but the extension of this argument to vertically related levels is not trivial as we demonstrate in this paper. Our paper is also relevant to antitrust policy concerning vertical mergers where a vertical merger that may lead to a subsequent one or a vertical merger that results in higher concentration in both the upstream and the downstream markets. To pose our problem specifically, consider a vertically related industry with only one vertically integrated firm and two independent firms, one of which is an upstream and the other is a downstream firm. We investigate whether downstream collusion is facilitated when the independent upstream and downstream firms integrate and form a second integrated company. In particular, we examine whether the contact of these two vertically integrated firms across the intermediate good and final good markets facilitate collusion in a way that is different from the facilitation that would be solely due to the decrease in the number of competitors. One fact that motivates such an investigation is the presence of spot market trade between vertically integrated gasoline markets in California.

Although integrated, the oil companies in California regularly trade the refined gasoline among themselves, leading to differing market shares between the refined gasoline (intermediate good) and retail gasoline (final good) markets. Thus, these companies contact and compete with each other in multiple markets (McAfee and Hendricks, 2009), and, as is well-known, apart from market concentration within a given market, multi-market contact in general further facilitates tacit collusion by allocating market power across the participants according to their relative efficiencies or spheres of influence in the product space (Bernheim and Whinston, 1990). Note, however, that the vertically related nature of refined and retail gasoline markets constitutes a special form of multimarket contact, which we call multilevel contact, and this type of contact has never been formally modeled (McAfee, 2003). In particular, since these markets are inherently (vertically) related, Bernheim and Whinston’s (1990) seminal paper, which finds that multimarket contact generally facilitates collusion, may not necessarily apply to them, and even if the argument applies, characterization of the environment where collusion is facilitated is critical for ensuing antitrust policy. While we
point out the California gasoline market as an example, our paper applies to any industry with a high concentration of vertically integrated firms.

Although vertical mergers have been extensively studied, there are still open questions (see Higgins (2009) for an excellent review). For example, in modeling multilevel collusion, one needs to pay simultaneous attention to collusion in all the vertically related markets. As Nocke and White (2007), who study upstream collusion in their paper, put it, “One would of course like to know how vertical integration might facilitate collusion between firms at each level of the vertical hierarchy; this is an open question…” In this paper, although we focus on downstream collusion, we consider the participation and involvement of all levels of the industry, and we provide a model of multilevel collusion, and collusion in a market structure with a single vertically integrated firm. We show that multilevel collusion facilitates downstream collusion and point out what specifics need to be worked out in order to extend the Bernheim and Whinston (1990) result to this setting. Our result, then, suggests a more aggressive push towards vertical divestitures in vertically related levels as part of merger enforcement. For example, in the case of gasoline in California, divestiture of retail gasoline has been proposed by Wolak (2004), who conditions this on high costs of concentration to consumers. Our results also support a dynamic view of merger enforcement in that a given vertical merger to be followed by several others may be disproportionately more harmful then an isolated one or the first one (McAfee, 2006).

In the literature, to our knowledge, multimarket collusion in vertically related markets, in which there are cost- and demand- based linkages across markets, has received scarce attention. Modeling multilevel collusion is complicated due to the inherent relationships between the markets. One challenge is the benchmark model to compare the structures with several vertically integrated firms. Also, one needs to cover a variety of possibilities especially when modeling deviation, e.g., an independent upstream firm can deviate from collusion or a downstream firm, simultaneously or sequentially. Notwithstanding these challenges we provide a reasonable collusion model and fairly general conditions on model parameters under which collusion is sustainable only with more than one vertically integrated firm.
Vertical mergers are increasingly found to have anti-competitive elements, mostly under the umbrella of post-Chicago theories. The “raising rivals’ costs” and “facilitating collusion” theories are two strands of this literature. In this paper, we find results that combine both strands of this literature, however our focus is on the latter. Although the topic of vertical mergers may seem to have been exhausted at first sight (see comments of Higgins (2009)), the numerosity of possibilities in the vertical structure seems to continuously lead to new models (see Higgins (2009), Nocke and White (2007), Normann (2009), Chen (2001), Ayar (2008)). Collusion in vertical settings is a fairly important topic exactly because of the subtleties and ad hoc nature of these settings. Thus, while we contribute to the multiplicity of these models, we shed more light on this important economic and antitrust issue.

Two recent papers that show that vertical integration facilitates upstream collusion are relevant in terms of modeling, even though our paper studies downstream collusion. First, Nocke and White (2007) use a two-part tariff in pricing and Bertrand competition. We use neither of these assumptions, but rather linear pricing following Ordover, Saloner, and Salop (1990) and Cournot competition. Furthermore, our benchmark is the case of single vertically integrated firm and we compare this case with the case of two integrated firms in terms of ease of collusion, whereas Nocke and White’s benchmark case is vertical separation (no integrated firms). As such, even Nocke and White’s (2007) section on multiple vertical integrations, where they simply extend their findings via comparative statics of the model with one vertical integration, is not relevant for our purposes. In other words, our design of the extension to multiple vertically integrated firms from one integrated firm involves qualitative differences such as the decision to participate in the intermediate good market. Second, Normann (2009) studies upstream collusion in the same setting as Nocke and White (2007) except that he uses linear pricing as we also do. Even though these papers study upstream collusion, their result that such collusion is facilitated by vertical integration is consistent with ours.

Finally, Ayar (2008) is the closest paper to ours with its focus on downstream collusion and model of quantity competition. It is different in that Ayar (2008) uses a Stackelberg (two-
stage) setting where the integrated firm is a Stackelberg follower, whereas we use a static Cournot setting. Ayar (2009) also argues that further vertical mergers have an ambiguous effect on downstream collusion, they first facilitate downstream collusion due to a market share effect, but then they hinder it. As stated earlier, our approach to analyzing the impact of further vertical mergers relative to a single vertical merger cannot be confined to comparative statics analysis because of the strategic decisions to participate in the intermediate goods market.

To obtain our results, we use the repeated games technique and the Cournot model in the punishment and deviation phases. The usage of the repeated games technique is standard in collusion settings and we also want to make our results comparable to those of Bernheim and Whinston (1990) and to the literature that stems from that paper. The usage of Cournot modeling is, first, due to our interest in examining this question in a homogeneous market setting in order to model commodity products such as gasoline. Second, the Cournot model is more useful in modeling market power in either the upstream or the downstream markets in terms of the margins that it generates as well as some of the other relevant aspects of the industry such as intra-industry trade, where the Bertrand model falls short (see, for example, McAfee and Hendricks, 2009). Finally, Cournot model better approximates conscious parallelism that is one of the main concerns of the antitrust authorities (McAfee, 2006).

We first model the case in that there is only one integrated firm and investigate optimal collusion. In particular, our assumption is that the integrated firm can only sell the intermediate goods at a price that is equal to the cost of the (less efficient) unintegrated upstream firm. This assumption is not critical for our results, and the efficient firm’s leadership replicates the most efficient collusion possible, i.e., where there is no intermediate market separating upstream and downstream markets (optimal collusion). We show that such collusion is not preferred to Cournot competition by the single vertically integrated firm, and so this precludes collusion. We provide the conditions where the only integrated firm elects to withdraw from the market a la Ordover, Saloner, and Salop (1990).
Consequently we show that under a reasonable collusive sharing rule collusion is possible with two integrated firms but not with one. This establishes that multilevel contact facilitates collusion. The structure of the paper is as follows: In the next section, we discuss our model and in the third and fourth sections we present our results. In the final section we conclude with a discussion of the policy implications of our results.

2. Model

In our model there are two vertically related levels, upstream (like refining crude oil) and downstream (like retailing gasoline), and correspondingly two markets, the intermediate and the final good markets. There are two firms in each of the upstream and downstream levels. We denote the two upstream firms with U1 and U2 and the two downstream firms with D1 and D2. To denote a vertically integrated firm formed from the integration of Ui and Di we use the notation Ui–Di, i=1,2. We study collusion possibilities in two different cases based on the number of integrated firms, which is denoted by \(m \in \{1, 2\} \):

Case 1: Single Vertical Integration \((m=1)\)
Case 2: Multilevel Contact \((m=2)\)

Firms are assumed to have a dynamic interaction in the market in each case. Thus, to study collusion possibilities we use the infinitely repeated games technique. In each case, we first set up the collusion using a sharing rule that respects the cost asymmetry. Collusion continues unless there is deviation by a firm. To check if there is an individual incentive to deviate from this collusion, we assume that deviation will be immediately (in the next period) followed by infinite punishment, i.e., competition in Cournot style.\(^1\) Of course, while deviation profits are high and obtained only once, punishment profits are low and forever. Then, in order to check the sustainability and ease of collusion, short run benefits from deviating from collusion are compared with long run losses due to punishment. This method typically yields a cutoff discount factor between zero and one\(^2\) that would be applied to future cash flows. When the real discount factor is above this cutoff, collusion is possible

\(^1\) Such strategies are called the Nash Reversion or Grim Trigger strategies.
\(^2\) If the cutoff discount factor is higher than one, collusion is impossible. Negative discount rates are not modeled because that would mean that future cash flows are more valuable.
because future is relatively less valuable. As such, ease of collusion in each case is measured by the cutoff discount factor that the model yields.

Our hypothesis is that collusion is easier in Case 2 than in Case 1 under the following assumptions:

1. The demand for the final good is exogeneously given by $Q_f = a - P_f$
2. The upstream firms U1 and U2 have asymmetric constant marginal costs, which satisfy $0 < c_1 < c_2 < a$ and there are no fixed costs of production.
3. There is a fixed proportions technology with one-to-one transformation between the input and the output.
4. Optimal collusion: Our collusive sharing rule assumes that in collusion stages of each case joint profits are maximized because all production is made by the low-cost producer. Then, the low cost producer sells these intermediate goods to the high cost producer at the high cost producer’s cost, c_2.
5. Individual Rationality: Firms participate in collusion and in the intermediate good market in punishment stages (competition) only if it is individually profitable for them.
6. Transactions between independent firms always take place through the intermediate goods market. This assumption is fairly standard in Cournot models of vertical models (see Salinger (1988) and McAfee and Hendricks (2009)).

In the following sections, we cover our two cases.

3. Collusion Analysis with a Single Vertically Integrated Firm ($m = 1$)

3.1. Collusion Stage with a Single Vertically Integrated Firm

There are only three distinct firms in this case. The only vertically integrated firm is U1–D1, and U2 and D2 operate in the upstream and downstream markets, respectively (the extension of the analysis to the case where U2-D2 is the only integrated firm is straightforward. In that case collusion profits for U2-D2 would remain unaltered, however deviation profits would

3 The asymmetric cost assumption serves as a tie-breaking rule in collusive profit sharing. Our results trivially extend to symmetric marginal costs.
decrease). Our collusive sharing rule is as follows. In the collusive stage, the low-cost firm \(U_1-D_1 \) sells \(D_2 \) all the intermediate goods it needs in exchange for a unit price of \(c_2 \), which is the marginal production cost \(c_2 \) of \(U_2 \). This assumption is consistent with optimal collusion maximizing joint industry profits. With such a low price, we assume that \(U_2 \), with cost \(c_2 \), is foreclosed from the market during collusion. Finally, \(U_1-D_1 \) splits the downstream monopoly quantity equally with \(D_2 \), so we use the 50-50 production sharing rule. This rule has two properties that make it reasonable and consistent with the literature: 1) It is joint profit maximizing and 2) Although sales are equal, the more efficient firm produces all of the intermediate good and obtains higher profits as determined by side payments of \(c_2 \) from the less efficient firm. Thus, our rule recognizes that at a higher side payment than \(c_2 \), \(D_2 \) may find it more profitable to purchase from \(U_2 \) (or, when \(m=2 \), \(U_2-D_2 \) may produce itself). Note that the sharing rule we use is also consistent with the principles raised in the paper by Ganslandt et al. (2007). Particularly, our rule maximizes joint profits and the more efficient firm benefits more from collusion when industry asymmetry increases.

The monopoly output to be sold at the downstream market with equal shares is computed using the demand curve \(Q_f = a - P_f \) and the cost \(c_1 \) (leading to industry profit maximization output hence to optimal collusion), which is \((a-c_1)/2 \). Each firm equally shares the monopoly output, i.e., \((a-c_1)/4 \), at the monopoly price \((a+c_1)/2 \). Assuming \(D_2 \) pays \(c_2 \) to \(U_1-D_1 \) for each unit, which \(U_1-D_1 \) produces at a cost of \(c_1 \), the implied profits for the three firms are readily computed:

\[
\Pi_{1, \text{col}, m=1} = ((a+c_1)/2 - c_1)(a-c_1)/4 + (c_2 - c_1)(a-c_1)/4
\]
\[
\Pi_{2, \text{col}, m=1} = 0
\]
\[
\Pi_{3, \text{col}, m=1} = ((a+c_1)/2 - c_1)(a-c_1)/4 - (c_2 - c_1)(a-c_1)/4,
\]

and simplified to

\[
\Pi_{U_1-D_1, \text{col}, m=1} = (a-c_1)^2/8 + (a-c_1)(c_2 - c_1)/4, \quad \Pi_{U_2, \text{col}, m=1} = 0, \quad \text{and}
\]
\[
\Pi_{D_2, \text{col}, m=1} = (a-c_1)^2/8 - (a-c_1)(c_2 - c_1)/4.
\]

To check the participation constraint (individual rationality of participation), we compare
these collusive profits with profits from Cournot competition where, in theory, both U1-D1 and U2 can produce and there is an intermediate market. There is no individual rationality of participation concern for U2 because by construction it is excluded from collusion. Indeed, in this case we will show that collusive profits from collusion are lower than those in punishment. We leave out the discussion of deviation profits since deviation profits do not matter for collusion as explained in the next section on punishment.

3.2. Punishment Stage with a Single Vertically Integrated Firm (m =1)

In this stage, there are three firms, which play a static Cournot game under the conditions:
1) Total production equals total sales, \(x_{U1-D1} + x_{U2} = q_{U1-D1} + q_{D2} \)
2) \(P_I \) clears the intermediate good market.

The names, descriptions, and strategic variables of the firms are given are given in Table 1.

<table>
<thead>
<tr>
<th>Player</th>
<th>Description</th>
<th>Strategic Variable ((\in R^+)))</th>
<th>Description of Strategic Variable</th>
<th>Profits (Objective Function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1-D1</td>
<td>The only integrated firm</td>
<td>(x_{U1-D1}, q_{U1-D1})</td>
<td>(x_{U1-D1}:) Upstream production of U1-D1; (q_{U1-D1}:) Downstream sales of U1-D1</td>
<td>((a- q_{U1-D1} - q_{D2} - c_I)q_{U1-D1} + (P_I - c_I) x_{U1-D1})</td>
</tr>
<tr>
<td>U2</td>
<td>The upstream firm</td>
<td>(x_{U2})</td>
<td>Intermediate good production</td>
<td>((P_I - c_2)x_{U2})</td>
</tr>
<tr>
<td>D2</td>
<td>The downstream firm</td>
<td>(q_{D2})</td>
<td>Downstream sales of D2</td>
<td>((a- q_{U1-D1} - q_{D2} - P_I)q_{D2})</td>
</tr>
</tbody>
</table>
We first establish in Proposition 1 below that in the case of punishment U1-D1, the only integrated firm, does not participate in the intermediate good market in equilibrium.

In the punishment phase of case \(m=1 \), the independent upstream firm U2 produces the intermediate good at a cost of \(c_2 > c_1 \) and sells at the intermediate good price \(P_i \) to D2, where \(P_i \) is determined in the market. Firm D2 is the only independent downstream firm, and it engages in Cournot competition with U1-D1 in the downstream market. Proposition 1 shows that in equilibrium firm U1-D1 does not sell inputs to D2 and also establishes the impossibility of collusion when \(m = 1 \).

Proposition 1. Assume that in the punishment phase the downstream firms, U1-D1 and D2, have to compete a la Cournot among themselves and the intermediate good market remains in operation with U2 supplying D2. If U1-D1 and D2 collude by sharing downstream sales equally and in exchange having D2 pay \(c_2 \) to U1-D1, then such collusion is not possible because U1-D1’s profits at the punishment stage are higher and it immediately deviates.

Proof of Proposition 1.
To obtain our result, we solve for equilibria of two games and compare U1-D1’s profits (one can think of these two different games as a unified game by introducing a first stage where U1-D1 decides which one to play). In Game 1, U1-D1 does not participate in the intermediate goods market (\(x_{U1-D1} = 0 \)), in Game 2 it does. Then, we use the profits of U1-D1 from Game 1 and compare it with the profits of Game 2. We show below that profits are higher in equilibrium when U1-D1 does not participate.

This *simultaneous* Cournot game is played by U1–D1, U2, and D2, given downstream demand and an intermediate market. The equilibrium for Game 1 can be found as follows.

Profits of the firms from downstream sales are:

\[
\Pi_{U1-D1} = (a - q_{U1-D1} - q_{D2} - c_1)q_{U1-D1} \\
\Pi_{D2} = (a - q_{U1-D1} - q_{D2} - P_i)q_{D2} \\
\pi_{U2} = (P_i - c_2)x_2
\]
Solving for the Cournot quantities in the downstream we have (we suppress some subscripts, e.g., U1-D1 to 1, when it’s obvious from the context):

\[
q_{U1-D1}^* = q_1^* = \frac{(a - 2c_1 + P_f)}{3}, \quad q_{D2}^* = q_3^* = \frac{(a + c_1 - 2P_f)}{3}.
\]

Now we proceed to solve for \(P_f \) from the equation of \(q_{D2} \) because as long as \(P_f > c_1 \) the firm U1-D1 always purchases the inputs from itself: \(P_f = \frac{(a + c_1 - 3q_3^*)}{2} \). Recalling our assumption on one-to-one transformation, note that \(q_2^* = q_3^* \), and hence the demand for the intermediate goods becomes \(P_f = \frac{(a + c_1 - 3q_3^*)}{2} \). Firm U2 maximizes its profit given \(x_{U2} = q_{U2} \):

\[
\max (P_f - c_2)q_2 = \left(\frac{(a + c_1 - 3q_2^*)}{2} - c_2\right)q_2.
\]

The maximizing quantity is \(q_2^* = \frac{(a + c_1 - 2c_2)}{6} = q_3^* \). Plugging it into the other expressions we have,

\[
q_1^* = \frac{(5a - 7c_1 + 2c_2)}{12}, \quad P_f^* = \frac{(a + c_1 + 2c_2)}{4}, \quad \text{and} \quad P_f^* = \frac{(5a + 5c_1 + 2c_2)}{12}.
\]

Note that \(P_f > c_1 \). Also, \(P_f^* > c_2 \) if and only if \(a > 2c_2 - c_1 = c_2 + (c_2 - c_1) \), our earlier assumption. Thus, U1-D1’s profit from punishment modeled as Game 1 equals

\[
\pi_{U1-D1}^{pun} = \left(P_f^* - c_1\right)q_1^* = \left(\frac{(5a - 7c_1 + 2c_2)}{12}\right)^2.
\]

Next we move on the Game 2.

Firms U1-D1 and D2 maximize their profit functions with respect to downstream quantities (note that we are not solving this game via backward induction, but in two steps)

\[
\max_{q_{U1-D1}} \Pi_{U1-D1} = (a - q_{U1-D1} - q_{D2} - c_1)q_{U1-D1} + (P_f - c_1)x_{U1-D1}
\]

\[
\max_{q_{D2}} \Pi_{D2} = (a - q_{U1-D1} - q_{D2} - P_f)q_{D2}, \quad \text{which yield}
\]

\[
q_{U1-D1} = \frac{(a - 2c_1 + P_f)}{3}, \quad \text{and} \quad q_{D2} = \frac{(a + c_1 - 2P_f)}{3}.
\]

Since U1-D1 purchases the inputs from itself, only \(q_{D2} \) determines the inverse demand for firm U2 and firm U1-D1: \(P_f = \frac{(a + c_1 - 3(x_{U1-D1} + x_{U2}))}{2} \),
where \(x_{U1-D1} + x_{U2} = q_{D2} \), so U1-D1 and U2 are both selling to D2. Incorporating this market clearing condition to the profit functions of U1-D1 and U2 we have
\[
\Pi_{U1-D1} = ((a + c_1 - 3(x_{U1-D1} + x_{U2})/2) - c_2) x_{U1-D1}
\]
\[
\Pi_{U2} = ((a+c_1-3(x_{U1-D1}+x_{U2})/2)-c_2)x_{U2}
\]
Maximizing each profit function with respect to quantities, we have
\[
x_{U1-D1} = (a - 3c_1 + 2c_2)/9, \quad \text{and} \quad x_{U2} = (a + 3c_1 - 4c_2)/9. \quad \text{Hence} \quad P_t = (a + 3c_1 + 2c_2)/6, \]
\[
q_{U1-D1} = (7a - 9c_1 + 2c_2)/18, \quad q_{D2} = 2(a-c_2)/9, \quad \text{and} \quad P_f = (7a + 2c_2 + 9c_1)/18.
\]
Note that \(P_t < P_f \) holds since \(a > c_2 \). The profits are,
\[
\Pi_{U1-D1} = (7a + 2c_2 - 9c_1)^2 / 324 + (a + 2c_2 - 3c_1)^2 / 54, \quad \Pi_{D2} = 2(a-c_2)^2 / 81 \text{ and}
\]
\[
\Pi_{U2} = (a - 4c_2 + 3c_1)^2 / 54.
\]
A comparison of equilibrium profits for U1-D1 from Game 1 and Game 2 reveals that Game 1 profits are higher, i.e.
\[
((5a - 7c_1 + 2c_2)/12)^2 > (7a + 2c_2 - 9c_1)^2 / 324 + (a + 2c_2 - 3c_1)^2 / 54
\]
So U1-D1 does not participate in the intermediate good market, and the punishment game is Game 1. Finally, when \(a > 2c_2 - c_1 \).

Collusive profit of U1-D1 = \((a-c_1)^2 / 8 + (a-c_1)(c_2-c_1) / 4 < ((5a - 7c_1 + 2c_2)/12)^2 = \) punishment profit of U1-D1.

So with this sharing rule, collusion is impossible because U1-D1 will defect. ☐

We provide the intuition next. First, the equilibrium final good price \(P_f^* = (5a + 5c_1 + 2c_2)/12 \) applies to all the quantities sold by firm 1, whereas in collusion U1-D1 was selling some of its goods to D2 at a low price of \(c_2 \). Second, when U1-D1 competes in Cournot fashion with D2, it has a great advantage due to the arising cost structure: \(P_t > c_2 > c_1 \), provided the condition \(a > 2c_2 - c_1 \) holds. In collusion, U1-D1 has to sacrifice more profits. Thus, \(P_f^* = (5a + 5c_1 + 2c_2)/12 \) is “not too low” compared to the collusive price. Third, obviously, the expansion in output of U1-D1 due to Cournot competition with relatively high equilibrium price increases the profits of U1-D1 in this “punishment” phase. Simply put, firm 1 has nothing to gain from such collusion even though
D2 prefers to collude whenever $a < 2c_2 - c_1$. It is also true that when there is no collusion, U1-D1 has nothing to gain from participating in the intermediate good market. If U1-D1 participates, then both intermediate good and final good prices decrease and also its profits decrease. That is, the integrated firm U1-D1 does not participate when $m=1$ because U2 then sells inputs to D2 at a price higher than c_2 during the punishment phase, putting D2 at a significant competitive disadvantage. If U1-D1 participates, it removes the competitive disadvantage of its competitor.

Next we study the case $m = 2$, which corresponds to multilevel contact.

4. Multilevel Contact ($m=2$)
In this case there are two integrated firms and no others. These firms are denoted by U1-D1 and U2-D2. There is still an intermediate market in deviation and punishment phases due to the cost asymmetry.

4.1. Collusive Phase ($m=2$)
In this case, firms engage in optimal collusion, i.e., maximize industry profits by producing the monopoly output corresponding to the lowest cost upstream firm (U1-D1 producing at cost c_1). Also, as in the case $m=1$, all firms make equal sales at the downstream level. Only U1-D1 produces the whole industry output at the upstream level and sells an equal share to U2-D2 at a side-payment of c_2. Since there are two entities participation constraint is equivalent to sustainability of collusion, which we show is the case. Now we proceed to solve the model under collusion. The collusive profits are the same as in the case $m=1$ because we had excluded U2 from collusion in the case of $m=1$ (but U2 is an active producer and Cournot competitor during deviation and punishment phases when $m=1$ and when $m=2$).

$$\Pi_{U1-D1}^{col,m=2} = \Pi_{U1-D1}^{col,m=1} = (a - c_1)(a - 3c_1 + 2c_2) / 8$$

$$\Pi_{U2-D2}^{col,m=2} = \Pi_{D2}^{col,m=1} = (a - c_1)(a + c_1 - 2c_2) / 8$$

Next we move forward with the analysis of deviation and punishment.
4.2. Deviation Phase ($m=2$)

We assume that only one player deviates at a time via hidden production, which is observed only after the sales. The deviation stage is not a game, it is an optimization problem. In the deviation of U1-D1, U1-D1 takes as given the collusive production and sales amount of U2-D2 and determines its optimal production unilaterally. The deviation profit for U1-D1 is the same as that in $m=1$:

$$\Pi_{U1-D1}^{dev,m=2} = \Pi_{U1-D1}^{dev,m=1} = (a - c_1)(9a + 16c_2 - 25c_1) / 64 .$$

On the other hand, the optimal deviation profit for U2-D2 is different because when $m=1$, D2 must buy from U2, who is the only source, so U2 charges a higher price than c_2. The deviation profit for U2-D2 is computed as, (in the Appendix we show the derivation of the profit expressions):

$$\Pi_j^{dev} = (3a + c_1 - 4c_2)^2 / 64 .$$

4.3. Punishment Phase ($m=2$)

The model in this section is a simultaneous-move game where, given downstream demand, each integrated firm determines its upstream production level x_i and downstream sales q_i subject to the equilibrium constraint $Q^*_j = \sum_i x_i$ (see McAfee and Hendricks, 2009, for a similar model), where P_1 clears the market. Total sales equal total production and hence the intermediate market clears. In this stage, it is also possible that neither firm participates in the intermediate goods market in equilibrium. However, this only happens with low asymmetry between the firms. At the end of this section, we show that no participation happens only when there is not sufficient asymmetry.
Table 2. One stage punishment game with double vertical integration (m=2)

<table>
<thead>
<tr>
<th>Player</th>
<th>Description</th>
<th>Strategic Variable ($\in R^+$)</th>
<th>Description of Strategic Variable</th>
<th>Profits (Objective Function)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1-D1</td>
<td>The efficient integrated firm</td>
<td>x_{U1-D1}, q_{U1-D1}</td>
<td>x_{U1-D1}: Upstream production of U1-D1; q_{U1-D1}: Downstream sales of U1-D1</td>
<td>$(a - q_{U1-D1} - q_{U2-D2} - c_1)q_{U1-D1} + (P_1 - c_1) x_{U1-D1}$</td>
</tr>
<tr>
<td>U2-D2</td>
<td>The less efficient integrated firm</td>
<td>x_{U2-D2}, q_{U2-D2}</td>
<td>x_{U2-D2}: Upstream production of U2-D2; q_{U2-D2}: Downstream sales of U2-D2</td>
<td>$(a - q_{U1-D1} - q_{U2-D2} - c_2)q_{U2-D2} + (P_1 - c_2) x_{U2-D2}$</td>
</tr>
</tbody>
</table>

This punishment model is suitable in many industries, including the oil industry, in which we observe spot markets. Moreover, this assumption helps us to purely abstract from any form of limited or partial vertical integration such as contracts.

Let q_i be downstream (e.g. retail) sales of firm i, x_i be upstream (e.g. refinery) production of firm i, and P_i be the price of the intermediate good (e.g. refined gasoline). To find the pure strategy Nash equilibrium, (we write the problem for general case. To calculate the prices and outputs replace $n=2$ and $i=1,2$), we solve the first order conditions for q_i and x_i subject to the equilibrium constraint. The profit function for firm i is ($i=1,2$)

$$\Pi_i(\cdot) = (a - Q_f)q_i - P_i(q_i - x_i) - c_i x_i = (P_f - P_i)q_i + (P_i - c_i) x_i,$$
where the profit from the sale of quantity q_i is added to that obtained from the production quantity x_i. The first order necessary conditions lead to

$$q_i^* = a - Q^*_i - P_i$$

and

$$Q^*_i = n(a - P_i)/(n+1)$$

where $n=2$.

Since $Q^*_i = \sum_i x_i$, we have $P_i = a - (n+1)\sum_i x_i / n$, (indicating a more inelastic demand for the intermediate good). The profit function for firm i in the Cournot stage can be rewritten as,

$$\Pi_i^*(.)(.) = (P_i^* - P_i q_i^* + (P_i^* - c_i)x_i = (a - P_i - \sum_i x_i)(a - P_i)/(n+1) + (P_i - c_i)x_i,$$

where we employ that $q_i^* = (a - P_i)/(n+1)$ and $P_i^* = a - \sum_i x_i$. Then the profit as a function of the upstream quantities is $\Pi_i^*(.) = (\sum_i x_i/n)^2 + [n(a - c_i) - (n+1)\sum_i x_i] x_i / n$.

The first order necessary conditions of this profit function provide,

$$X^* = \sum_i x_i^* = \frac{n(na - c)}{(n+1)^2 - 2} = (4a - 2c_1 - 2c_2) / 7,$$

where $c = \sum_i c_i$, $x_i^* = \frac{a(n+1)n + c(n^2 + n - 2) - c_i((n+1)^2 - 2)n}{(n+1)((n+1)^2 - 2)}$.

We can now calculate the equilibrium intermediate good price,

$$P_i = (a(n-1) + c(n+1))/((n+1)^2 - 2) = (a + 3c_1 + 3c_2) / 7.$$

Thus, the optimal profit level for each player i in the punishment phase is,

$$\Pi_i^* = (X^*/n)^2 + [(a - c_i) - (n+1)X^*/n]x_i^*,$$

where x_i^*, X^* are defined as above.

The profit expression is,

$$\Pi_i^* = (P_i^* - P_i) q_i^* + (P_i^* - c_i)x_i = (a - P_i - \sum_i x_i)(a - P_i)/(n+1) + (P_i - c_i)x_i,$$

where

$$P_i^* = (3a + 2c_1 + 2c_2) / 7$$

and

$$P_i = (a + 3c_1 + 3c_2) / 7$$

$x_{U1-D1} = 6a - 10c_1 + 4c_2) / 21$, $x_{U2-D2} = (6a + 4c_1 - 10c_2) / 21$.

At this point, we need to compare the profits from this game to the profits from a standard asymmetric Cournot game in order to ensure the participation of both U1-D1 and U2-D2 in the intermediate goods market. This comparison yields that the difference between the cases
of participation and no participation (Asymmetric Cournot) is given by \(5a^2 + 58ac_{ij} - 67c_i^2 + 128ac_{ij} - 316c_{ij} - 4c_i^2)/441\) for each \(i\) and \(j\), and \(i\) is different than \(j\). This expression cannot be signed, however, it can be shown that if we assume sufficient asymmetry (e.g. \(c_1 = 0\)), then it becomes positive, implying that in equilibrium firms participate in the intermediate goods market. Hence we assume that there is sufficient asymmetry in the industry and our punishment phase involves positive trading of the intermediate good between U1-D1 and U2-D2.

Note that efficient firms are net sellers and inefficient firms are net buyers of the intermediate good in the equilibrium of this punishment phase where Cournot style competition prevails with full multilevel contact. This can be calculated by noting that \(q_i^* = \frac{(na - c)}{(n+1)^2 - 2}\), and the difference between sales and production is \(q_i^* - x_i^* = \frac{c_i n - c}{n + 1}\), which takes either sign. Specifically \(q_2^* > x_2^*\) and \(q_1^* < x_1^*\) hold since \(c_2 > c_1\).

Comparison of the traded amounts:
\[
\begin{align*}
q_1^{\text{pun},m=2} - x_1^{\text{pun},m=2} &= (c_1 - c_2) / 3 < 0, \text{ then U1-D1 is net seller of intermediate good.} \\
q_2^{\text{pun},m=2} - x_2^{\text{pun},m=2} &= (c_2 - c_1) / 3 > 0, \text{ then U2-D2 is net buyer of intermediate good.}
\end{align*}
\]

4.4. The Possibility of Collusion (m=2)

In the previous sections we show that collusion is impossible when \(m < 2\). In this section, we show that collusion is sustainable when \(m = 2\) under the same assumptions and comparable structures. Our method at this point onwards is fairly standard. Since we readily compute the profits from collusion, deviation, and punishment phases for each firm, a cutoff discount factor that ensures collusion follows for each firm. The ultimate discount factor to sustain collusion is the maximum of these cutoff discount factors.

Proposition 2. Collusion is possible when \(m=2\).

Proof. See the Appendix.
In the proof, where we normalize \(c_1 = 0 \) and assume that \(a \geq 8c_2 \) for illustrative purposes, but these sufficiency conditions can be made much weaker, making the domain of the collusion possibility result much larger. These sufficiency conditions render a discount rate strictly between zero and one in the case of full multilevel contact \((m=2)\). Thus, under very general conditions on model parameters, collusion is only sustainable when \(m = 2 \) but not when \(m < 2 \). So under our assumptions two vertically integrated firms are needed for collusion to be sustained. The facilitation of collusion is because of a qualitative difference that arises between the two cases.

The qualitative difference between \(m = 1 \) and \(m = 2 \) is that \(U_1-D_1 \) does not find it profitable to participate in the intermediate good market when \(U_1-D_1 \) is the only integrated firm \((m=1)\). As we argued above, when there is no collusion \(U_1-D_1 \) does not gain from participating in the intermediate good market. If \(U_1-D_1 \) participates, then both intermediate good and final good prices decrease and also its profits decrease. That is, the integrated firm \(U_1-D_1 \) does not participate when \(m=1 \) because \(U_2 \) then sells inputs to \(D_2 \) at a price higher than \(c_2 \) during the punishment phase, putting \(D_2 \) at a significant competitive disadvantage. If \(U_1-D_1 \) participates, it removes the competitive disadvantage of its competitor. However, when \(m=2 \), i.e., when \(U_2 \) and \(D_2 \) are also integrated, \(U_1-D_1 \) participates in the intermediate good market. When \(m=2 \) (both firms are integrated), the input cost of \(U_2-D_2 \) is simply \(c_2 \), where \(c_2 > c_1 \). However, at an intermediate good price between \(c_1 \) and \(c_2 \), mutual gains from trade kick in as follows: when the price is between \(c_1 \) and \(c_2 \), \(U_1-D_1 \), whose cost is \(c_1 \), obtains profits from intermediate good sales to \(U_2-D_2 \). Moreover, \(U_2-D_2 \) also finds it profitable to buy intermediate goods at a price between \(c_1 \) and \(c_2 \). As a result, \(U_2-D_2 \) becomes more competitive in the final good market and industry expands. Then, \(U_1-D_1 \)’s profits from extra sales of the intermediate good and the profits from industry expansion more than compensate its losses in the final good market due to the slightly higher competitiveness of \(U_2-D_2 \).

5. Conclusion
We consider optimal collusion possibilities in a vertically related industry comprised of upstream and downstream components. We compare two cases. In our first case, there is one vertically integrated firm, one independent upstream firm, and one independent
downstream firm. We show that under equal collusive profit sharing rule when the integrated firm colludes with the independent downstream firm and forecloses the independent upstream firm, collusion is impossible. In our second case, there are two vertically integrated firms, and all production is done by the lowest cost firm to be consistent with optimal collusion as in the first case, and the higher cost firm receives side payments. As a result we show that collusion is possible in the second case only.

In Bernheim and Whinston (BW) (1990) the markets where firms contact are not inherently related through cost or demand structures. In other words, the markets in our paper are inherently (vertically) related, Bernheim and Whinston’s (1990) seminal paper do not necessarily or trivially extend. Still, we find that some of the intuition carries over. First, keeping in mind that both the demand and the level of constant marginal costs differ across the intermediate goods and final goods markets, BW’s irrelevance of multimarket contact does not hold. This is consistent with our finding that multimarket contact matters. Second, note that firm 1 (U1-D1) has an absolute advantage in both the intermediate goods market ($c_1 < c_2$) and the final goods market ($c_1 < P = (a + 3c_1 + 3c_2)/7$). According to BW, the inefficient firm tends to specialize in the high price market, which obviously is the downstream market in a vertically related industry. Our finding that U2-D2 does not sell intermediate goods to U1-D1, making all its sales in the downstream market is consistent with BW.

Our results show that the number of vertically integrated firms is a critical decision variable for an antitrust authority in deciding whether to approve a vertical merger. Particularly, due to the qualitative difference between cases $m=1$ and $m=2$ we recommend a stricter merger policy towards vertical mergers if they are likely to be followed by other ones in the same industry. The FTC’s actions in the petroleum industry demonstrate that since 1981 every merger that FTC took action upon is accompanied by another one within one year of the action. In the last decade, there were two mergers or attempts in 2001, 2002, 2004, and 2007 and three in 2005. This record favors a dynamic view of mergers, where merger decision is considered as strategically made in anticipation of other mergers.
APPENDIX

\textit{Deriving profit expressions in Section 4.2 Deviation (m=2).}

The deviation profits for firm 1 are computed as

$$\Pi_i^{\text{dev}}(.) = (a - Q_f^* - z_1)(z_1 + Q_f^*/n) + c_z Q_f^*(n-1)/n - c_i(Q_f^* + z_i),$$

where \(z_1\) is the hidden production level for firm 1. Profit maximization deviation level is solved as
\(z_1^* = (n-1)(a-c_i)/4n\) leading to

$$\Pi_i^{\text{dev}} = \frac{(a-c_i)(a(1+n)^2 + 8c_z n(n-1) - c_i(1-3n)^2)}{16n^2}.$$

Similarly, the deviation profits for other firms \((j \neq 1)\) become (replace \(j = 2\) and \(n = 2\))

$$\Pi_j^{\text{dev}}(.) = (a - Q_f^* - z_j)(z_j + (a-c_i)/2n) - c_z(a-c_i)/2n - c_jz_j.$$

Profit maximizing hidden production level is

$$z_j^* = [c_i(n+1) + a(n-1) - 2nc_j]/4n.$$

Then the profit for firm \(j\) can be calculated as,

$$\Pi_j^{\text{dev}} = \frac{(c_i(n-1)^2 + (2c_z n)^2 + (a(1+n))^2 - 4c_z n(-2c_z + c_j(1+n)) + 2a(2n(-2c_z + c_j(1-n)) + c_i(n^2 - 1))}{16n^2}.$$

\textit{Proof of Proposition 2.}

First we present the expressions for the cutoffs above which collusion can be sustained. The collusion condition for firm \(i\) is

$$\frac{\Pi_i^{\text{col}}}{1-\delta_i} \geq \Pi_i^{\text{dev}} + \delta_i \frac{\Pi_i^c}{1-\delta_i}.$$

It implies, for firm 1, that

$$\delta_1(n,a,c_1,c_2) \geq \frac{d_1}{d_2 + d_3 + d_4},$$

where

\(d_1 = -(a - c_i)^2(1+n)(n^3 + n^2 - 3n+1)^2\),
\(d_2 = 16c_z n^2(n^3 + 2n^2 - 1) + (c_i(n^3 + 2n-1))^2(7n^4 - 3n^2 + 5n - 1) - a^2(n-1)^2(n^4 + 9n^4 + 2n^3 - 6n^2 + n + 1)\),
\(d_3 = 8c_i n(n^2 + 2n - 1)(-4cn(n^2 + n - 1) + c_z(n^4 + 2n^3 - 2n^2 - 2n + 1))\),
\(d_4 = 2a(n-1)[c_i(5n^6 + 12n^5 + n^4 - 5n^2 + 4n - 1) - 4n(-4cn(n^2 + n - 1) + c_z(1+n)(n^2 + 2n - 1)^2)]\)

and \(c = \sum_i c_i\).
Similarly, collusion will be maintained by firms $j \neq 1$, if and only if,

$$\delta_j(n, a, c_1, c_2, c_j) \geq \frac{e_1}{e_2 + e_3 + e_4},$$

where $e_1 = (1 + n)(c_1 + a(n - 1) + nc_1 - 2nc_j)^2 (n^2 + 2n - 1)^2$,

$$e_2 = -4nc_j(1 + n)(-2c_j + c_j(1 + n))(n^2 + 2n - 1)^2 + c_1^2 (n + 1)(n^3 + n^2 - 3n + 1)^2$$
$$+ a^2(n - 1)^2(n^5 + 9n^4 + 2n^3 - 6n^2 + n + 1)$$

$$e_3 = -4n^2[c_j^2(3n - 1)(n^2 + 2n - 1)^2 + 4c_j^2(n^3 + 2n^2 - 1) - 8cc_j(n^3 + 3n^3 - 3n + 1)]$$

$$e_4 = 2a[c_1(n - 1)(n^3 + 3n^2 + n - 1)^2 - 2n[2c_j(n + 1)(n^2 + 2n - 1)^2$$
$$+ 8cn(n^3 - 2n + 1) + c_j(n^6 - 4n^5 - 15n^4 - n^2 + 4n - 1)]$$

Collusion by all firms is possible if and only if the actual discount factor is greater than δ_1^{mlc}, where $\delta^{mlc} = \max(\delta_1, \delta_j)_{j>1}$. Now Let the difference of the discount factors in multilevel contact be $\Delta = \delta_2 - \delta_1$. Then for $n=2$,

$$\Delta = \frac{4704(4c_2 - c_1)(29a^2 + 186ac_1 - 95c_1^2 - 244ac_2 + 4c_1c_2 + 120c_2^2)}{(171a - 271c_1 + 100c_2)(171a^2 - 2054ac_1 + 923c_1^2 + 1712ac_2 + 208c_1c_2 - 960c_2^2)}.$$

There is no further compact representation of this term. To get the sign of this term, normalize the cost c_1 to zero so that the comparison is rendered. Observe that, $\delta_2 \big|_{c_1=0} = \frac{147(a - 4c_2)}{171a + 100c_2} > 0$ if and only if $a > 4c_2$, and $\delta_1 \big|_{c_1=0} = \frac{147a^2}{171a^2 + 1712ac_2 - 960c_2^2} > 0$ if and only if $171a^2 + 1712ac_2 - 960c_2^2 > 0$. Then, obviously,

$$\Delta \big|_{c_1=0} = \frac{4704c_2(29a^2 - 244ac_2 + 120c_2^2)}{(171a + 100c_2)(171a^2 + 1712ac_2 - 960c_2^2)} > 0 ,$$

by using above two inequalities and $a \geq 8c_2$. Note that whenever $a \geq 8c_2$ holds, then $\delta_1 \big|_{c_1=0} , \delta_2 \big|_{c_1=0} , \Delta \big|_{c_1=0} \in (0,1)$.
Acknowledgements:

We thank the corresponding editor, anonymous referees, Ömer Faruk Baykal, Tim Brennan, Ken Hendricks, Preston McAfee, Richard Shin, and Mike Hoy for helpful comments and discussions. We also thank the participants at the International Industrial Organization Conference for insightful comments especially to discussants Jeroen Hinloopen and Yuk-Fai Fong. The second author acknowledges research support from SSHRC, Canada.

REFERENCES

