
POSTER PAPER
Synthesis of C++ Software for Automated Teller

from CSPm Specifications
Stephen Doxsee

Dept. of Computing & Information Science
University of Guelph

Guelph, Ontario, Canada
1(416)620-9783

sdoxsee@uoguelph.ca

W. B. Gardner
Dept. of Computing & Information Science

University of Guelph
Guelph, Ontario, Canada
1(519)824-4120 x52696

wgardner@cis.uoguelph.ca

ABSTRACT
CSP++ is an object-oriented application framework for execution
of CSP specifications that have been automatically translated into
C++ source code by a tool called cspt. This approach makes CSP
specifications directly executable, and extensible via the ability to
incorporate user-coded functions. Designers can exploit “selective
formalism” to code some system functionality in CSP for formal
verification purposes, and other functionality directly in C++.
The translator has now been enhanced to accept input in CSPm
syntax, the same dialect processed by the commercial verification
tool, FDR2, and we demonstrate this with a new ATM case study.

Categories and Subject Descriptors
D.1.2 [Programming Techniques]: Automatic Programming—
Program synthesis, Program verification; C.0 [General] Systems
specification methodology; D.1.3 [Programming Techniques]:
Concurrent Programming; D.2.1 [Software Engineering]:
Requirements/Specifications—Languages, Tools, CSP, C++;
D.2.2 [Software Engineering]: Design Tools and Techniques;
D.2.4 [Software Engineering]: Software/Program Verification
—Formal methods, Model checking; D.2.10 [Software
Engineering]: Design—Methodologies; I.6.5 [Simulation and
Modeling]: Model Development—Modeling methodologies.

General Terms
Design, Languages, Verification.

Keywords
Executable specifications, Object-oriented Application
Frameworks.

1. INTRODUCTION
Formal methods have yet to achieve any great impact on typical
software engineering practices. As a middle ground between pure

formal methods and conventional software programming, we are
advocating a technique called “selective formalism.” It attempts
to capitalize on both formal methods and traditional software
practices by making formal specifications both executable and
extensible. By selectively choosing to formally specify only the
critical control portions of a system, one can synthesize such a
formal specification into executable code for a popular
programming language and allow other programmers to write
modular extensions that will tie into the synthesized control
backbone. Selective formalism requires three main ingredients: (i)
a suitable formal notation that preferably has verification tool
support; (ii) a popular programming language; and (iii) some type
of framework to tie them together. The synthesis of executable
code from formal specifications should be done automatically
because of the errors that can be introduced by hand translation
and the time it would take.

We chose the process algebra CSP [5] as the formally verifiable
notation, C++ as our target programming language, and built an
integrating framework dubbed CSP++. CSP statements can be
used to model a concurrent system’s control and data flow in an
intuitive way, constituting a kind of hierarchical behavioral
specification. It is supported by sophisticated commercial tools
such as FDR2 and ProBE from Formal Systems (Europe) Limited
(http://www.fsel.com).

CSP++ development has been underway for several years [2,3,4]
based on translating a local dialect of CSP called csp12. Here we
demonstrate, by means of an ATM case study, a new front-end to
the CSP++ translator, cspt, that supports CSPm syntax. The
upgraded translator allows CSP specifications verified by FDR2
to be directly translated to C++.

2. CSPM AND SYNTHESIZED C++
In brief, each statement in a CSP specification is the description
of a process. The process engages in a sequence of named events,
which may include point-to-point communication with another
process via a nonbuffered, unidirectional channel. The set of all
events that a process may ever engage in is called its alphabet.
These may correspond to real-world occurrences such as sensor
input, device actuation, and so on. Processes can define
themselves in terms of other processes, including several
processes running in parallel. Then, the formalism provides for
interprocess synchronization each time an event occurs that is in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’05, March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003…$5.00.

their common alphabet. This includes synchronization around
channel communication.

A simple CSPm specification illustrates the CSP++ translator:
channel p,q,r,s,z
A = p->q->z->p->SKIP
B = r->s->z->r->SKIP
SYS = (A [|{z}|] B)

This C++ code will be generated by cspt for the SYS process:
static ActionRef z_r(z);
AGENTPROC(SYS_)
 z_r.sync();
 {
 Agent::compose(2);
 Agent* a1 = START0(A_, 0);
 Agent* a2 = START0(B_, 1);
 WAIT(a1);
 WAIT(a2);
 }
 Agent::popEnv(1);
 END_AGENT;
}

Objects z_r, a1, and a2 are instances of classes in the CSP++
framework which supply CSP execution semantics. The code
begins by registering z for synchronization, and anticipating a
two-process composition. Then it starts the processes, waits for
them to finish, and finally pops the z synchronization off the
environment stack. A and B will run their initial events in no
particular order until they reach their respective z events. Once
one process arrives at z, it waits for the next one. Then they
perform z together and continue separately to their conclusions
(SKIP).

CSP++ implements concurrent processes using the thread model
of GNU Pth (http://www.gnu.org/software/pth/). Pth is a portable
POSIX/ANSI-C library that provides non-preemptive scheduling.

3. ATM CASE STUDY
To illustrate the use of CSP++ with translation of CSPm input, we
have implemented a small and easy-to-understand system, an
Automated Teller Machine (ATM), based on a design by R. Bjork
[1], whose requirements, analysis, and design were used as a
starting point.

3.1 CSP in the Design Cycle
CSP notation can be utilized in four roles in the system design
cycle, constituting four complementary models: (1) a Functional
Model that captures the desired system behavior in terms of CSP
processes engaging in named events; (2) an Environmental Model
that simulates the behavior of entities in the system's target
environment, also in terms of processes engaging in events; (3) an
optional Constraint Model used to limit or constrain the event
sequences of the functional model; and (4) an Implementation
Model that completes, in CSP, details unspecified in the initial
functional model.

A functional model can be derived by various means, including
English system descriptions or Statecharts. The ATM Statecharts
translated readily into high level functional CSP descriptions of
the overall behavior of the system. The resulting ATM process
was simulated by making environmental model processes
CLIENT, OPERATOR, and BANK run concurrently with it. A
constraint model was unnecessary in this particular system, but

the details missing from the high level Statecharts (e.g., how to
handle invalid PINs) were added to the final implementation
model.

3.2 Verification and Functional Testing
There are some system properties that FDR2 can check on its own
with no special instructions, including the absence of deadlock,
livelock (divergence), and non-determinism. In our study, we also
used trace and failures refinement to prove functional test cases
(such as showing that a client's card will indeed be held after
entering the wrong PIN three times in a row).

3.3 User-coded Function Integration
When the environmental model is removed, the implementation
model, synthesized into executable C++, is free to interact with its
real environment (i.e. keypads, network connections, etc.) via
CSP events that are linked to user-coded C++ functions (UCF). In
this way, the ATM program reads PINs, displays balances,
establishes network connections, and so on.

3.4 Debugging
The C++ code generated by cspt is debuggable by GNU gdb. The
C++ source code closely corresponds to the statements of the
input CSP specification, making it easy to follow. One may also
set breakpoints in and step through the statements of user-coded
C++ functions.

4. CONCLUSIONS
We presented a new front-end to the CSP++ translator that
supports CSPm syntax and demonstrated it using an ATM case
study. We believe that selective formalism is an attractive
approach to concurrent system design and development because
of its flexible combination of formal verification and conventional
programming. The latest version of CSP++ and the code for the
ATM case study can be downloaded from the author’s website
(http://www.cis.uoguelph.ca/~wgardner).

5. REFERENCES
[1] Bjork, R. C. An Example of Object-Oriented Design: An

ATM Simulation. http://www.math-
cs.gordon.edu/local/courses/cs211/ATMExample/.

[2] Gardner, W. B. Bridging CSP and C++ with Selective
Formalism and Executable Specifications. In First ACM &
IEEE International Conference on Formal Methods and
Models for Co-design (MEMOCODE '03), Mont St-Michel,
France, June 2003, p. 237-245.

[3] Gardner, W. B. Converging CSP Specifications and C++
Programming via Selective Formalism. To appear in ACM
Transactions on Embedded Computing Systems (TECS),
Special Issue on Models & Methodologies for Co-Design of
Embedded Systems.

[4] Gardner, W. B. and Serra, Micaela. CSP++: A Framework
for Executable Specifications, chapter 9. In Fayad, M.,
Schmidt, D., and Johnson, R., editors. Implementing
Application Frameworks: Object-Oriented Frameworks at
Work. John Wiley & Sons. 1999.

[5] Schneider, Steve. Concurrent and Real Time Systems: The
CSP Approach, John Wiley & Sons, Inc., New York, NY,
2000.

