Protocol_BCA assay_Protein Concentration

Product: Thermo ScientificTM PierceTM BCA Protein Assay Kit, Cat. no. PI23227

- Working range for BSA equals 20 to 2000µg/mL. Down to 5µg/mL with the enhanced protocol. Below this use MicroBCA kit
- Not compatible with SDS, DTT, beta-merc
- The Thermo ScientificTM PierceTM BCA Protein Assay Kit is a detergent-compatible formulation based on bicinchoninic acid (BCA) for the colorimetric detection and quantitation of total protein. This method combines the well-known reduction of Cu+2 to Cu+1 by protein in an alkaline medium (the biuret reaction) with the highly sensitive and selective colorimetric detection of the cuprous cation (Cu+1) using a unique reagent containing bicinchoninic acid (see reference 1 on page 4). The purple-colored reaction product of this assay is formed by the chelation of two molecules of BCA with one cuprous ion. This water-soluble complex exhibits a strong absorbance at 562 nm that is nearly linear with increasing protein concentrations over a broad working range (20–2000 μg/mL). T

Reagents:

- BCA Reagent A, 500 mL
- BCA Reagent B, 25 mL
- Albumin Standard Ampules, 2 mg/mL, 10 x 1 mL

Store at room temperature

Other materials

- 96-well plates
- Plate reader that measures 562nm

Microplate method				
Prepare standards	Dilution Scheme for Standard Test Tube Protocol and Microplate Procedure (Working Range = 20-2,000 µg/mL)			
	Vial	Volume of Diluent (µL)	Volume and Source of BSA (µL)	Final BSA Concentration (µg/mL)
	A	0	300 of Stock	2000
	В	125	375 of Stock	1500
	С	325	325 of Stock	1000
	D	175	175 of vial B dilution	750
	E	325	325 of vial C dilution	500
	F	325	325 of vial E dilution	250
	G	325	325 of vial F dilution	125
	н	400	100 of vial G dilution	25
	1	400	0	0 = Blank

	Use the following formula to determine the total volume of WR required:				
Preparation of the BCA working reagent (WR)	 (# standards + # unknowns) × (# replicates) × (volume of WR per sample) = total volume WR required Example: for the standard test-tube procedure with 3 unknowns and 2 replicates of each sample: (9 standards + 3 unknowns) × (2 replicates) × (200 uL) = 4.8 mL WR required Prepare WR by mixing 50 parts of BCA Reagent A with 1 part of BCA Reagent B (50:1, Reagent A:B). For the above example, combine 5.0 mL of Reagent A with 100ul of Reagent B 				
96-well assay	 Record standard and sample positions using a 96-well template Add 25 μL of each standard or unknown sample replicate into a microplate well Add 200 μL of the WR to each well and mix plate thoroughly on a plate shaker for 30 seconds Cover plate and incubate at 37°C for 30 minutes Cool plate to RT. Measure the absorbance at or near 562 nm on a plate reader 				
Plate reader in CMK lab	 Open software, MPM.6.exe Choose "new experiment" Click on template icon. Enter standards by typing in the concentration (e.g "2000" for 2000ug/mL), enter samples b typing in "S#", e.g. S1 for sample 1 Select read new plate and set the endpoint to 562nm Use curve fit plot icon (f(x)) to change the curve fit to four-parameter, which provides more accurate results than a purely linear fit Record sample concentrations or use the export to excel option to save data (must use USB) For more details see instruction manual on BioRad website- Microplate Manager® 6 Software Instruction Manual Version 6.1 				