

College of Engineering and Physical Sciences

SCHOOL OF COMPUTER SCIENCE

MSc Defence

Thursday August 29, 2019 at 10AM in Reynolds, Room 1101 Fast Fourier Transform Based Force Histogram Computation For 3D Raster Data Jaspinder Kaur

Chair: Dr. Joe Sawada Advisor: Dr. Pascal Matsakis Non-Advisory Committee: Dr. Denis Nikitenko

Abstract:

The force histogram is a quantitative representation of relative position between two objects. For 2D data, two algorithms are defined: a wellfunctioning line-based algorithm, and Fast Fourier Transform (FFT) based algorithm that has a high computational cost. The line-based algorithm has previously been extended to the 3D case, but found to be unstable, and affected by a variety of factors.

This thesis presents an extension of the FFT-based algorithm to the 3D case along with an analysis that demonstrates that, with the exception of a few special cases, the computational time of the 3D FFT-based algorithm is less than the line-based version. In addition, the results included here shown that the FFT-based algorithm is independent of the number of directions, the types of forces, and the shapes of the objects (convex, concave, disjoint or overlapping).