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Abstract

The theoretical literature on asymmetric first-price auctions has focused

mainly on settings with either (1) exactly two bidders or (2) an arbitrary num-

ber of bidders with types in a common support. Even though closed form

solutions are typically impossible, there is enough structure in the problem to

guide both empirical work and numerical solutions or simulations. However,

casual observation of real-world auctions suggests that the assumptions are re-

strictive. Indeed, the empirical literature has ventured beyond these models.

We explain the relevant complications that arise if the above conditions do

not hold, emphasizing that the structure of the problem changes significantly.

Critically, the dimensionality of the problem appears to increase as bidders may

now tender bids over different supports (bid bifurcation). The main conceptual

contribution of this paper is to establish a method by which the dimensionality

of the problem can once again be reduced. This insight is used to construct

the first robust solution algorithm that allows for bid bifurcation. Accurate

solution methods are essential to e.g. evaluate different counterfactual policies.

We provide sufficient conditions, and in some cases necessary and sufficient

conditions, for bid bifurcation to occur and demonstrate its relevance through

a series of analytical and numerical examples. Implications for empirical work

are emphasized.
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1 Introduction

Although auction theory is often touted as a success story, there remains important

areas where the theory is less than fully developed. One such area is asymmetric

auctions—auctions involving bidders who are in some way different from each other.

Such settings are typically modeled as involving heterogeneous bidders who draw

types from different distributions. This is not the only case which would result in

an asymmetric auction as they could also arise because of collusive efforts from a

subset of bidders, if bidders have different preferences (for example, different risk

attitudes), if they face different constraints (financial or, perhaps in a procurement

setting, capacity-based), or even because the awarding rule treats the bids from dif-

ferent groups asymmetrically (as in the case of bid preference policies). Aided by the

richness of available auction data, empirical researchers have noted potential sources

of asymmetry, particularly in the procurement setting, based off experience in the in-

dustry, region in which the bidders are located, distance to project locations, backlog,

or classification of the bidder (firm) such as whether it is a small business, owned by a

minority, veteran, or female, for example.1 The literature on the structural economet-

rics of auctions has married this detailed data with theoretic models and developed

rapidly since Paarsch’s (1992) seminal work, increasing the demand for theoretical re-

sults which characterize equilibrium; see Hickman, Hubbard, and Sağlam (2012) for

a recent survey. Even when bidder identities are not observed (or are only partially

observed), Lamy (2012) provides a way to still allow for asymmetries in estimation.

Unfortunately, some important issues have gone overlooked as empirical researchers

have tried to account for asymmetries but, in some cases, ventured into territory not

yet fully explored by theory. The purpose of our work is to point out a potential

oversight in such analysis and, more constructively, to further develop the theory

of asymmetric auctions to help empirical researchers tackle the particular stumbling

block identified here. To understand the issue, it is helpful to first identify a weakness

in the existing theoretical literature on asymmetric first-price auctions.2 There are

1To give a few examples, Campo, Perrigne, and Vuong (2003) distinguish between joint and
solo bidders, De Silva, Dunne, and Kosmopoulou (2003) classify bidders as entrant or incumbents,
Flambard and Perrigne (2006) use firm location as a source of asymmetry, Marion (2007) as well as
Krasnokutskaya and Seim (2011) both identify state-qualified small business enterprises and non-
small businesses, Athey, Levin, and Seira (2011) consider loggers and sawmills as inherently different,
and De Silva, Hubbard, and Kosmopoulou (2015) see firm eligibility status and election of whether
to complete a state-run training program.

2Most of the theoretical literature is in the context of standard auctions in which buyers pay to
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two common models. In the first model there are exactly two bidders, where typically

a “weak” bidder is facing a “strong” bidder. It is not hard to see that in equilibrium

the two bidders share a common maximum bid; otherwise, one bidder could lower his

bid without lowering his winning probability. In comparison, empirical researchers

might study auctions with a number of weak bidders and a number of strong bid-

ders; as examples, the weak bidders might be characterized as small, inexperienced,

having a high capacity utilized, unfavorably located, or otherwise depending on the

application, with strong bidders taking on the opposite characteristic(s). In the sec-

ond model, there is an arbitrary number of bidders, but the distributions of bidders’

types have a common support. In this case, it can also be shown that all bidders

share a common maximum bid. Examples of the first kind of model are Maskin and

Riley (2000) and Kirkegaard (2012), while examples of the second kind are Lebrun

(1999) and Kirkegaard (2009), among many others. Technically, these models have

the helpful feature that there is a single boundary condition. This makes it easier

for theorists to make inferences from the system of differential equations describing

equilibrium behavior.

To highlight the limitations of such models, imagine two weak bidders are facing

two strong bidders. For instance, two art students are up against two well-known

billionaire art collectors in a first-price auction for an old masterpiece. The latter

are unlikely to be too concerned about the presence of the former, and it is patently

absurd to suggest that the two kinds of bidders would share the same maximum bid.

Compared to the first kind of model mentioned above, the issue here is that once

the economy grows, equilibrium behavior undergoes a qualitative change. Stated

differently, replicating the economy is not without its pitfalls. Compared to the second

kind of model noted above, the issue is that the type supports are likely very different

for the students and billionaires. In either situation, it is no longer necessarily the

case that there is a single boundary condition prescribing that all bidders tender the

same highest bid. In these situations, any analysis that assumes a single boundary

condition should thus be treated with some caution.

It is pertinent to note that empirical researchers typically assume bidders’ types

are drawn from distributions that share a common, compact support having strictly

acquire an item. To ease comparison with this literature, we use the same setting and terminology
here. However, much of the empirical work is based off procurement settings in which firms represent
bidders vying for the right to complete a task for the seller (typically a government) at the lowest
cost. This difference is discussed further below.
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positive densities; for example, most structural work employs some version of the

two-step estimator proposed by Guerre, Perrigne, and Vuong (2000) which maintains

these assumptions. Such an estimator is often extended and applied in asymmetric

settings. For example, Flambard and Perrigne (2006) consider snow removal contracts

in Montreal. In Figure 1 of their paper, they depict distributions of bids submitted

(per meter) in certain tracts based on where the firm tendering the offer is located.

Strong bidders are quite frequently observed submitting bids that are far more ag-

gressive (i.e., lower, in the case of procurement) than even the most aggressive bid

ever submitted by weak bidders which suggests that bidding supports do not overlap.

Still, to our knowledge, all empirical researchers have maintained the assumption of

a common type support—perhaps because theory is most well understood in that

context.

This complication has been recognized in the theoretical literature before. How-

ever, the only paper that tackles the problem head on appears to be Lebrun (2006),

but the point of that paper is solely to establish uniqueness of the equilibrium. It

is harder to find explicit reference to the problem in the empirical literature, but

Athey and Haile (2007, pages 3885–3886) provide a brief discussion that suggests (1)

researchers in the existing literature maintain the assumption of common type sup-

port, (2) conditions for observed bids to be rationalized by equilibrium behavior (such

as the common high bid) are critical, and (3) “plausible specifications of primitives”

(such as the bounds of the type supports) might violate the common high bid assump-

tion, “so it may be useful to relax that assumption in practice.” Despite the warning

and discussion they provide, to our knowledge no one has pursued this venture and

we hope to allow for this. Lastly, because analytic solutions to the standard system of

differential equations describing equilibrium behavior rarely exist, researchers often

solve for the bidding strategies numerically. However, researchers contributing to that

literature have also not dealt with the problem of potentially different bid supports.

In fact, the opposite is often true—numerical approaches often hinge critically on the

common bid support. Hubbard and Paarsch (2014, footnote 8) recognize that the

canonical boundary conditions may need adjustment if the type supports differ when

there are more than two bidders at auction; however, they do not consider such an

extension.

Thus, this particular analytical problem has been recognized in some corners of

the literature. We maintain however, that the problem is not widely known among
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practitioners and that no one has considered how to accommodate these empirically-

relevant settings. Note, too, that extending models to allow for different bid supports

is important from a policy perspective. As an example, take the case of bid preference

policies which has received much attention due to the prevalence of such programs

in procurement auctions; see, for example, Marion (2007), Hubbard and Paarsch

(2009), and Krasnokutskaya and Seim (2011). We outline such a policy in a first-

price setting and note that the asymmetry is effectively endogenously determined by

the size of the preferential treatment. Specifically, in a standard first-price auction,

a bidder’s expected utility if his valuation is v and his bid is b is (v − b)G(b), where

G(b) is the (endogenously determined) winning probability. Now assume this bidder

is given preferential treatment. For instance, if he wins he has to pay only a fraction

r ∈ (0, 1) of his bid. As bidding strategies are likely to change, the winning probability

for any given bid is likely to change as well. Thus, let Gr(b) denote the new winning

probability, given b and r. The bidder’s expected utility is now (v−rb)Gr(b), which is

of course maximized where (v/r− b)Gr(b) is maximized. Thus, from his competitors’

point-of-view, giving the bidder preference is equivalent to changing the distribution

of his types. In particular, the support shifts to the right. Even if all bidders start

out with the same support, preferential treatment effectively destroys that property.

If the bid preference is sufficiently large, or if one would like to simulate behavior

under such policies (such as in counterfactual experiments), one may be concerned

that equilibrium behavior is no longer accurately characterized by a single boundary

condition.

In this paper, we investigate an asymmetric auction model which allows for more

than two bidders. The critical feature of these settings is whether equilibrium bids are

projections from types into a common support, or not. When there exists a region in

which the bidding supports do not overlap, we say that bid bifurcation occurs.3 The

possibility of bid bifurcation presents new challenges. At the conceptual level, bid

bifurcation seems to increase the dimensionality of the problem as different bidders

may now have different maximum bids. The main contribution of the first part of the

paper is to advance the theory to the point where the dimensionality of the problem

can be reduced. Focusing on the case with two distinct groups of bidders, we show

3We borrow and adapt the term from Parreiras and Rubinchik (2010), who consider related
complications in all-pay auctions with many bidders. See the conclusion for further discussion of
all-pay auctions as well as the possibility of more groups of bidders.
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that the maximum bids of the two groups are mechanically linked in a way that

implies that it is sufficient to only worry about the lowest of the maximum bids.

Conceptually, the problem is then no harder than the standard problem with a single

boundary condition.

It is obviously legitimate to ask whether bid bifurcation is merely a theoretical

curiosity or whether it might play a role in real-world auctions and by extension in

empirical work. We present comparative statics results which prove that bid bifurca-

tion is more likely to occur the “stronger” bidders are (in terms of the reverse hazard

rate). When distributions are uniform over different supports, we verify the intuition

that bid bifurcation is more likely the more bidders there are. Indeed, in this case

it is possible to quantify precisely how large the asymmetry between bidders must

be in order for bid bifurcation to arise. Stated differently, we derive necessary and

sufficient conditions for bid bifurcation in this environment. For example, if there

are three “strong” bidders and two “weak” bidders, with supports [0, v1] and [0, v2]

respectively, bid bifurcation results as long as v1 is more than 8.11% percent larger

than v2. This percentage rapidly decreases in the number of bidders.4 Our interpre-

tation is that these asymmetries are so small that one should not a priori dismiss the

possibility of bid bifurcation in real-world applications. Sufficient conditions for bid

bifurcation in the general model (without uniform distributions) are also presented.

Having now argued that bid bifurcation may be a real concern, it is important

to realize that there are ramifications for both empirical work and for the algorithms

typically used to obtain numerical solutions. Note that the solution approach often

links theory and estimation. For example, a parametric structural approach in the

spirit of Donald and Paarsch (1993,1996) applied to an asymmetric auction would

require solving for the equilibrium for every guess of the parameters in a pseudo

maximum likelihood routine. Moreover, regardless of the estimation strategy, such

solutions are an essential ingredient in counterfactual policy analysis or simulations

involving asymmetric first-price auctions. Thus, it is desirable to build a robust

algorithm that takes bid bifurcation into account. The second part of the paper is

devoted to this endeavour. Here, the reduction in the dimensionality of the problem

that we obtain in the first part of the paper once again plays a crucial role.

4The model in which bidders’ types are uniformly distributed over different supports has been
extremely valuable to theorists since Vickrey’s (1961) groundbreaking work. Kaplan and Zamir
(2012) recently generalized Vickrey’s equilibrium characterization. Both papers assume there are
precisely two bidders. We continue in this tradition, but allow for more bidders.
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Because we know much about the uniform distribution setting, it provides an

ideal testbed for our general numerical solution strategy. Thus, we first use uniform

examples to substantiate that the algorithm performs well before providing other

solved examples which build off our earlier results. We provide a discussion of our

results and note how they can be useful to applied researchers in Section 5.

2 Asymmetric auctions with many bidders

A total of n risk neutral bidders are participating in an independent private-values

first-price auction. Bidder i’s value or type, vi, is drawn from the distribution function

Fi, with continuous and strictly positive density fi and support [vi, vi], vi > vi ≥ 0.

Lebrun (2006) has proven that there is an essentially unique equilibrium in undom-

inated strategies under the mild assumption that Fi is strictly log-concave near vi,

i = 1, 2, ..., n.5 In this paper we simply assume that the equilibrium is unique. Bids

are continuous and strictly increasing in type among those types that have a strictly

positive probability of winning. Let bi denote the bid submitted by bidder i with type

vi. We begin with an intuitive observation.

Lemma 1 If vi = vj then bi = bj. If vi > vj then bi ≥ bj.

Proof. See the Appendix.

The focus of the paper is the possibility that bi > bj. The current section describes

some first theoretical insights. These are then utilized to develop a solution procedure

that can correctly handle the case where bi > bj. As we discuss in Section 4, this

procedure extends current approaches which can, and should, be amended given our

results.

Let ϕi(b) denote bidder i’s inverse bidding strategy. Assume, for now, that there

is a range of bids where all bidders are active. If bidder i with type v contemplates

bidding in this range, his expected payoff is (v − b)
∏

j 6=i Fj(ϕj(b)), which is maximized

where

ln (v − b) +
∑
j 6=i

lnFj(ϕj(b))

5That is, the reverse hazard rate fi(v)
Fi(v)

is strictly decreasing on an interval (vi, vi + δ), δ > 0.

The assumption can be further weakened if vi is not the same for all i.
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is maximized. Deriving the first order condition and imposing the equilibrium condi-

tion that v = ϕi(b) produces

∑
j 6=i

d

db
lnFj(ϕj(b)) =

1

ϕi(b)− b
. (1)

Summing (1) across all agents and subtracting (1) for agent i yields the system of

differential equations

d

db
lnFi(ϕi(b)) =

1

n− 1

[∑
j 6=i

1

ϕj(b)− b
− n− 2

ϕi(b)− b

]
. (2)

It follows from Lemma 1 that if vi = v for all i, then there is some b such that

ϕi(b) = vi, i = 1, n. Hubbard and Paarsch (2014) discuss this system at length

with a focus on detailing and comparing ways in which researchers have gone about

solving this system which rarely admits a closed-form solution. As we have noted,

the approaches considered are generally valid only if n = 2 (even if v1 6= v2) or if

vi = v for all bidders i = 1, 2, ..., n.

However, the point of the current paper is to allow n > 2 and vi 6= vj for some (i, j)

pair. For concreteness, and in line with the relevant empirical literature, assume in the

remainder that bidders draw types from one of two distribution functions.6 Bidders

1, ...,m1 draw types from the distribution F1, while bidders m1 + 1, ..., n all draw

types from Fn. Let mn = n−m1 denote the number of bidders in the latter group. It

follows from Lebrun (2006) that bidders within each of the two groups use symmetric

strategies. Thus, the first m1 bidders all use the same inverse bidding strategy as

bidder 1, ϕ1(b). Likewise, the last mn bidders are all ex ante identical to bidder n,

and thus they all use the strategy ϕn(b).

The complete solution to an asymmetric auction model requires appropriate bound-

ary conditions. As such, we continue with an overview of these conditions, for a few

reasons. First, the wrong boundary condition can lead to either the wrong solution

or no solution at all. Second, boundary conditions often drive the approach employed

in solving for the equilibrium strategies. Lastly, for convenience and completeness,

we collect in one place all the different scenarios that one may encounter.

6The only empirical paper we know of that treats more than two different groups of bidders is
De Silva, Hubbard, and Kosmopoulou (2015). However, due to data constraints, they only deal with
auctions in which combinations of two groups of bidders are present in their application.
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By Lemma 1, b1 = bn if v1 = vn. Of course, the case where v1 6= vn is the most

interesting for our purposes. Thus, assume v1 > vn. Then, b1 ≥ bn. Nonetheless,

all bidders must share the same maximum bid if m1 = 1. The reason is familiar; if

b1 > bn, then bidder 1 with type v1 could lower his bid slightly and still win with

probability one. Hence, assume from now on that m1 ≥ 2. The boundary conditions

are that ϕi(bi) = vi, i = 1, n.

Next, assume that the supports strictly overlap, such that [v1, v1] ∩ [vn, vn] has

strictly positive measure. With no overlap, or v1 ≥ vn, the existence of the last mn

bidders is irrelevant as they would have no chance of winning the auction (at a price

that does not exceed their valuation). In other words, the problem is interesting only

if the supports overlap. We have v1 > vn > v1, vn.

At this juncture, an examination of bidding behavior among low types is required

as this will provide the initial conditions. Imagine first that v1 > vn. Since m1 ≥ 2,

competition among the first group of bidders ensure that they will bid at least v1.

Thus, bidder n wins with probability zero if his type is below v1. Similarly, if mn ≥ 2

and vn > v1 then bidders in the first group stand no chance of winning if their types

are below vn. Stated differently, in both cases any bidder has a strictly positive

chance of winning if and only if his type strictly exceeds v = max{v1, vn}. This

insight provides the “initial condition” that ϕi(v) = v, i = 1, n.

However, the above discussion does not include the possibility that mn = 1 and

vn > v1. In this case, it is no longer true that bidder n of type v = vn bids his true

value. There is an incentive to bid lower, as he may still win in the event that his

rivals all have types below v. Following Maskin and Riley (2000) and Lebrun (2006),

the initial condition can nevertheless be uniquely and explicitly characterized. Specif-

ically, among the first group of bidders there is a threshold value, b ∈ (v1, vn), such

that any bidder bids his true value (and wins with probability zero) if his type is be-

low b. In equilibrium, ϕn(vn) = b. Hence, bids above b are what Lebrun (2006) terms

“serious bids” as they entail a strictly positive winning probability. The equilibrium

value of b is

b = max
(

arg max
b

(vn − b)F1(b)
m1

)
. (3)

To understand (3), recall that the first m1 bidders bid their true value when their

type is below b. The expression in the parenthesis says that bidder n with type vn

must best respond to this bidding behavior.
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In summary, if m1,mn ≥ 2, then the initial condition is that ϕi(v) = v, i = 1, n.

Here, the smallest serious bid is b = v. The same is true if mn = 1 and v1 > vn. If

mn = 1 and vn > v1, however, the initial condition is that ϕn(vn) = b and ϕ1(b) = b,

where b is determined by (3). The initial condition is determined in a similar manner

if m1 = 1 and v1 > vn.

Figure 1 depicts some complications that can arise in the inverse bidding strategies

in light of Lemma 1 and our discussion of the boundary conditions. Though we have

not discussed the details of everything being presented in these graphs (we will refer

back to these later in the paper), it may help to visualize some of the discussion we’ve

presented until this point. Specifically, in panel (a) we present a situation in which

(i) either v1 = vn or mn > 1, (ii) v1 > vn, and (iii) b1 > bn. Likewise, in panel (b) we

depict a situation in which (i) mn = 1, (ii) v1 > vn > vn > v1, and (iii) b1 > bn. Note

that the inverse bidding strategies must cross in such a situation like that presented

in panel (b). As denoted in Figure 1, let v̂ = ϕ1(bn) ∈ (v1, v1] be the (endogenously

determined) type of bidder 1 that submits a bid of exactly bn. Going forward, it is

important to realize that b1 > bn if and only if v̂ < v1. That said, the relationship

between b1 and vn is not clear—panel (a) provides an example where b1 > vn while

panel (b) shows a scenario in which b1 < vn, though this relationship is not tied to

the boundary condition at the lower end of the bid support.
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β i(v )

v b
c bn
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ϕn(b)
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β i(v )
b b
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(b) Different Low Types and mn = 1

Figure 1: Potential Inverse Bid Functions
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With the boundary and initial conditions in place, we return to “interior” bids.

Since strategies are continuous and strictly increasing, it follows that for each bid in[
b, bi
]
, bidder i has a type that submit such a bid. Thus,

[
b, b1

]
=
[
b, bn

]
∪
[
bn, b1

]
consists of one interval of bids where all bidders are potentially active as well as a

(possibly empty) set of higher bids where only bidders in the first group compete.

The system in (2) still accurately describes behavior for bids in (b, bn). If bn < b1,

then (2) should be replaced by

d

db
lnF1(ϕ1(b)) =

1

m1 − 1

1

ϕ1(b)− b
(4)

for b ∈ (bn, b1], since only the first m1 bidders are active on this range. The simple

form of (4) reflects the fact that at high bids the auction is essentially a symmetric

auction (involving only a symmetric subset of the population).

As mentioned previously, in cases where b1 = bn = b (e.g., if either v1 = vn or

m1 = mn = 1) researchers typically solve for a pair (ϕ1(b), ϕn(b)) of inverse bidding

strategies along with the common high bid b (which is unknown a priori) satisfying

the system (2) as well as the initial conditions. Generalizing this to the case in which

bid supports may potentially differ initially seems much harder since the system (2)

remains, but now we need to solve for not just a single unknown value (b), but three

(v̂, bn, b1). However, it is easy to reduce this to two free variables. For instance, given

any (bn, b1) pair, v̂ can be obtained by integrating (4) backwards (which can be done

analytically) from b1 to infer the v1 value (v̂) for which v1 = ϕ1(bn). Alternatively, for

any (v̂, bn) pair, b1 can be computed simply by integrating (4) forwards from b = bn,

ϕ1(bn) = v̂. Although it may seem natural to consider finding a (bn, b1) pair, we find

it more fruitful to think of (v̂, bn) as the pair to be determined.

Still, while the system (2) is appropriate for the bid range [b, bn], an apparent

complication is that a pair (v̂, bn) is involved, suggesting that the search for a valid

boundary condition is a two-dimensional problem. However, as we will soon show,

it turns out there is a one-to-one mapping between bn and v̂ which means that the

unknown pair can in fact be reduced to a one-dimensional problem. In other words,

there is in reality only one free variable in the triplet (v̂, bn, b1). It is worth emphasizing

the point that, because of this relationship, conceptually and computationally the

problem is now no more complicated than in the models where b1 = bn is known to

hold at the outset. In both cases, the system (2) applies and one value is unknown
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beforehand—in the standard case this is b, while in the general case it is bn (which

implies a value for v̂ and in turn a value for b1). The chief difference is that in the

standard models v̂ is known to equal v1, whereas here we have to determine v̂ through

a step that luckily turns out to be trivial.

To see this relationship, first note that Lebrun (2006) has shown that if b ∈ (v, bi)

then ϕ′i(b) > 0. The key step is now to show that if bn < b1 then the (left-)derivative

of ϕn at bn is zero, ϕ′n(bn) = 0. Note that if bn < b1 then v̂ < v1.

Lemma 2 If bn < b1 then ϕ′n(bn) = 0.

Proof. See the Appendix.

Since ϕn(bn) = vn and ϕ1(bn) = v̂, it follows from (2) that

sign{ϕ′n(bn)} = sign

{
m1

v̂ − bn
− m1 − 1

vn − bn

}
. (5)

Starting with the assumption that bn < b1, Lemma 2 makes it possible to solve for v̂,

v̂ =
m1

m1 − 1
vn −

1

m1 − 1
bn. (6)

Note that since any equilibrium candidate must satisfy bn < vn, it holds that v̂ > vn.

Of course, the restriction that v̂ cannot exceed v1 must also be taken into account.

The solution in (6) satisfies v̂ < v1 if and only if

bn > m1vn − (m1 − 1) v1, (7)

the right hand side of which is smaller than vn whenever vn < v1. Indeed, from (2),

if bn ∈ (m1vn − (m1 − 1) v1, vn) then ϕ1(bn) = v1 would imply ϕ′n(bn) < 0, which

is inconsistent with an equilibrium. Thus, for bn candidates in this range, it must

be the case that bn < b1, meaning that v̂ is determined by (6). Values of bn for

which bn ≥ vn are inconsistent with an equilibrium. This leaves the possibility that

bn ≤ m1vn − (m1 − 1) v1, at least in the case where the right hand side exceeds

v. However, if bn < m1vn − (m1 − 1) v1 then the candidate in (6) would exceed

v1. Stated differently, there are no feasible values of ϕ1(bn) for which ϕ′n(bn) is not

strictly positive. Then, by Lemma 2, any such candidate must thus satisfy bn = b1,

or equivalently v̂ = v1. In summary, v̂ has been characterized for each bn candidate,
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bn ∈ (b, vn). Returning to the situations presented in the panels of Figure 1, the

piecewise linear function in each subplot depicts this relationship. Note that the

intersection of this line with the inverse bidding strategy ϕ1(b) obtains at the point

(bn, v̂) in both figures. We state this insight formally as a proposition.

Proposition 1 For any bn ∈ (b, vn), v̂ is uniquely determined by

v̂ = min

{
v1,

m1

m1 − 1
vn −

1

m1 − 1
bn

}
. (8)

Proof. In text.

Proposition 1 is what simplifies the dimensionality of this general problem, making

the complexity of its solution akin to that of the common bid support setting as we

suggested earlier. In the general case, there are evidently two possibilities: either

v̂ = v1 (no bid bifurcation) or v̂ < v1 (bid bifurcation occurs). Given (8), the latter

holds if and only if bn exceeds the critical value bc, where

bc = m1vn − (m1 − 1)v1, (9)

which is indicated in the subplots of Figure 1 as the kink points in the piecewise

functions. If bn ≤ bc, then v̂ = v1 and there is no bid bifurcation. As such, there

are precisely two mutually exclusive possibilities: either (i) b1 = bn ≤ bc, or (ii)

b1 > bn > bc.

In equilibrium, bn > b. Thus, if b > bc then bn > b > bc must hold. In this case,

bid bifurcation must occur in equilibrium. Stated differently, b > bc is sufficient for

bid bifurcation (but not necessary).

Corollary 1 In equilibrium, bn < b1 if b > bc.

Proof. In text.

Corollary 1 reveals, as is intuitive, that bidding must break into two regions, or

bn < b1, if v1 is sufficiently large compared to vn. Note also that bc is decreasing in

m1. In other words, bid bifurcation must occur if m1 is large enough. The intuition

behind the link between the number of bidders and bid bifurcation is explained in

more detail in Section 3.1.

A complementary sufficient condition for bid bifurcation can be derived. To set

the scene, consider the example from the introduction in which two billionaire art

12



collectors compete against two art students. Let b
s

1 denote the maximum bid in a

(counterfactual) symmetric auction involving only the billionaires. It is a standard

exercise to obtain b
s

1 as it is derived from a symmetric auction. That is, b
s

1 need not

be known to solve the (in this symmetric case) equation characterizing equilibrium

behavior. Imagine for the moment that b
s

1 > vn, where vn denotes the highest possible

type among the art students. Once the students enter the auction, it seems unlikely

that the billionaires will accommodate them by lowering their maximum bid. In this

case, bid bifurcation must occur, as even a student of type vn will be unwilling to

bid above b
s

1. This style of argument can be further refined. Thus, it turns out that

bid bifurcation must take place if b
s

1 exceeds bc. The reason is that b1 > b
s

1; i.e., the

highest bid increases when the last mn bidders enter the auction. Thus, b1 > b
s

1 > bc.

However, as noted after (9), b1 > bc occurs only in the case of bid bifurcation.

Corollary 2 In equilibrium, bn < b1 if b
s

1 > bc.

Proof. See the Appendix.

Note that if v1 > vn then b
s

1 > v1 = b, in which case Corollary 2 is stronger than

Corollary 1.

In the next section we develop further, more specific, theoretical results, focusing

again on when bid bifurcation is likely to occur. The section employs uniform distri-

butions which will later serve as a nice way of verifying the performance of solutions

to asymmetric auction problems.

3 The incidence of bid bifurcation

The current section contains two main results. The first result identifies precisely

when bid bifurcation occurs in the special case when both distributions are uniform

distributions. This result is thus of a quantitative nature. The second result proves

that bid bifurcation is more likely to occur when either group of bidders becomes

“stronger” in a standard auction-theoretical sense. Thus, this can be seen as a qual-

itative result, or as a comparative statics exercise. Combining the two results, and

thinking of the uniform distribution as a benchmark, then produce further insights

into how often bid bifurcation occurs.

13



3.1 The uniform benchmark

Assume both distributions are uniform, on different supports. The uniform distribu-

tion satisfy Lebrun’s (2006) condition, implying the equilibrium is unique. It turns

out that the exact values of v̂, bn, and b1 can be derived analytically. Thus, it is pos-

sible to describe precisely when bn < b1. The proof, in the appendix, may be of some

independent interest. The proof demonstrates that in the uniform case, insights from

mechanism design theory can be used to obtain another, quite separate, characteriza-

tion of the (v̂, bn) pair. Combined with the characterization above, it is then possible

to solve explicitly for both v̂ and bn. As discussed earlier, for any parameterization, it

is then easy to derive b1. To simplify the exposition, it is assumed that v1 = vn = 0.

However, the proof is easily modified to handle v1 6= vn. A reserve price can also be

accommodated.

For ease of notation in formulating the result, let m = m1 +mn−1 = n−1 denote

the number of rivals faced by any bidder. Finally, define κ(m1,mn) and τ(m1,mn),

respectively, as

κ(m1,mn) =
(m1 + 1)m−

√
(m1 + 1)2m2 − 4mnm1m

2mn

,

τ(m1,mn) =
m1 − κ(m1,mn)

m1 − 1
,

and note that κ(m1,mn) ∈ (0, 1) while τ(m1,mn) > 1. Of course, both functions are

independent of v1 and vn. It can be shown that κ(m1,mn) is strictly increasing in

both its arguments and that τ(m1,mn) is strictly decreasing in both its arguments.

The functions κ(m1,mn) and τ(m1,mn) allow a complete characterization of the

equilibrium (v̂, bn) pair. Hence, it is possible to identify precisely when bid bifurcation

occurs. To put this result in context, Vickrey (1961) first considered a specific two-

bidder example involving asymmetric uniform distributions.7 A half-century later,

Kaplan and Zamir (2012) obtained a full, closed-form, equilibrium characterization

that holds in any two-bidder first-price auction in which both distributions are uni-

form, allowing for arbitrary supports. The time gap between the two papers illus-

trates the magnitude of the difficulties involved in analyzing asymmetric auctions.

To our knowledge, the next result is the first to address asymmetric auctions with

7In fact, Vickrey (1961) assumed that one bidder’s type is known, or that his type-distribution
is degenerate.
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more than two bidders in the uniform-distribution setting. A closed-form equilibrium

characterization is not currently within reach, and may or may not be theoretically

possible.

Proposition 2 Assume Fi(v) = v
vi

, v ∈ [0, vi], i = 1, n, with v1 > vn > 0. Assume

m1 ≥ 2, mn ≥ 1. Equilibrium properties depend on the relative difference between

supports, v1
vn

:

1. If v1
vn
≤ τ(m1,mn) (the supports do not differ too much), then both kinds of

bidders share the same maximum bid, bn = b1 and v̂ = v1, with

bn =
m

v1mn + vnm1

v1vn.

2. If v1
vn
> τ(m1,mn) (the supports differ considerably), then bid bifurcation occurs,

bn < b1 and v̂ < v1, with

bn = κ(m1,mn)vn

and

v̂ = τ(m1,mn)vn.

Moreover, the equilibrium is continuous in all the parameters, m1, mn, v1 and vn.

Proof. See the Appendix.

Proposition 2 refines Corollary 1 in a special case.

In Figure 2, we consider bidders who draw valuations from uniform distributions

for which we consider various combinations of (vi, vj). The diagonal line from the

southwest corner to the northeast corner is the symmetric bidder case (vi = vj).

Northwest (southeast) of this line, bidders of class j (i) are the strong bidders as

the highest possible valuation for these bidders exceeds that of bidders from the rival

class. The various lines that are plotted correspond to the sufficient condition for bid

bifurcation from Corollary 1 (which applies to any distribution) and the necessary

condition from Proposition 2 (which is uniform-distribution-specific). In the white

areas, the sufficient condition for bid bifurcation from Corollary 1 and the necessary

condition from Proposition 2 are both satisfied and bid bifurcation occurs. In the

darker shaded areas, the condition specified in Corollary 1 is not met, but bid bi-

furcation still occurs because the condition from Proposition 2 holds. Only for the
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Figure 2: Bid Bifurcation with v1 = vn = 0

lightly-shaded gray, cone-shaped area (partitioned by the line vi = vj) do all bidders

tender the same high bid and bid bifurcation will not occur. Note that the regions

themselves are asymmetric—this is because rather than reflect the same example over

the vi = vj line, we always consider the case where (mi,mj) = (2, 3) so that when

bidders of class j are strong, there are three strong and two weak bidders, while the

opposite is true when bidders of class i are strong. The figure helps visualize, within

the context of examples concerning the uniform distribution, the magnitudes of the

light gray region in which bid bifurcation does not occur (as researchers have most

commonly assumed) as well as the region in which the sufficient condition for bid

bifurcation from Corollary 1 is not met, yet bid bifurcation still obtains.

The next two corollaries describe how the equilibrium changes when one of the

two groups of bidders become “stronger.” The weak group, for instance, becomes

stronger if either vn or mn increase. Interestingly, the comparative statics are not

only quantitatively but also qualitatively different.

Corollary 3 (The weak group becomes stronger) In the uniform model in Propo-

sition 2, (1) bn is strictly increasing in vn, whereas v̂ is weakly increasing in vn, and

(2) bn is strictly increasing in mn, whereas v̂ is weakly decreasing in mn.8

8The proof of the corollary establishes that as long as v̂ < v1, v̂ is in fact strictly increasing in
vn and strictly decreasing in mn.
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Proof. See the Appendix

The first part of Corollary 3 is intuitive. As vn increases, the weak group is

reinforced with types that have a higher willingness-to-pay. The presence of these

new types puts upwards pressure on bn. To understand how v̂ changes with vn, it is

useful to consider the extreme cases. If vn is close to zero, the weak group presents

no threat to the strong group, and v̂ will itself be small. On the other hand, if vn is

close to v1, the asymmetry between the two groups almost disappears. In this case,

v̂ must be close to vn.

The second part of the corollary is more interesting. It is hardly surprising that

adding bidders to the auction intensifies competition and drives up bn. It is more

interesting to note that v̂ decreases as mn increases. That is, more types among

the strong bidders will “break off” from the weak group, even though they must bid

higher to do so (as bn increases). An important implication is that bid bifurcation

is more likely to occur the bigger the weak group is. To understand the intuition,

consider the limit as mn → ∞. Competition is so intense among the weak group

that these bidders will bid close to their true type. The strong bidders are concerned

with the highest type among the weak bidders. As mn → ∞, this type approaches

vn. Thus, from the strong bidders’ point of view, vn eventually takes a role similar

to a reserve price; a bid below vn results in a loss with near-certainty. Consequently,

v̂ must decrease, and eventually approach vn.

Corollary 4 (The strong group becomes stronger) In the uniform model in Propo-

sition 2, (1) bn and v̂ are strictly increasing in v1 as long as v1 ≤ τ(m1,mn)vn (i.e.,

v̂ = v1) and independent of v1 thereafter, and (2) bn is strictly increasing in m1,

whereas v̂ is weakly decreasing in m1.

Proof. See the Appendix.

Corollary 4 confirms the intuition that weaker bidders are forced to become more

aggressive, meaning that bn increases, when they face tougher competition. The first

part of the corollary reveals that once bid bifurcation occurs, it will occur at the

exact same v̂ cut-off type even as v1 increases further. This is because the system in

(2) does not change when F1(v) changes from v
v1

to v
v′1

, v′1 > v1 > v̂. In fact, this

argument is true whenever F1 is “stretched”, changing from F1(v) to λF1(v) on the

relevant subset of the support, v ∈ [b, v̂], λ ∈ (0, 1). In the general case, however,

a perturbation of F1(v) should be expected to affect the equilibrium value of (v̂, bn).
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Figure 3: Prevalence of Bid Bifurcation given Bidder Composition

Finally, v̂ is weakly decreasing in m1 because the more intense competition within

the strong group spurs more aggressive bidding behavior, such that more strong types

separate away from the weak group. In fact, since τ(m1,mn) is strictly decreasing in

m1, bid bifurcation is more likely to occur the bigger the strong group is.

The second parts of Corollary 3 and Corollary 4 together imply that as the number

of bidders increases, it is more likely that bidders do not share a common maximum

bid. In Figure 3, we convey this for the case of asymmetric uniform distributions.

The three-dimensional bar graph plots m1 and mn along the horizontal axes with

(v1/vn − 1) on the vertical axis. Specifically, the height of the bars indicate the

maximum percentage that v1 can exceed vn without bid bifurcation occurring. As

an example, the largest bar represents the most likely scenario for a common bid

support—when (m1,mn) = (2, 1) in which case if v1 exceeds vn by more than 23.61%,

bid bifurcation must occur. Notice that regardless of whether there is an increase

in the number of weak or strong bidders (or both), the height of the bars decrease

rapidly. For instance, if (m1,mn) were instead (3, 2), only a 8.11% difference between

v1 and vn would imply bid bifurcation.9 Holding the number of strong bidders fixed,

9This partition of the five bidders is not unreasonable. For example, Krasnokutskaya and Seim
(2011) report that on average there were 2.6 large bidders and 1.7 small bidders vying for contracts
in their California procurement data. Moreover, on average 6.6 large firms and 3.9 small firms
requested plans for the contracts which is typically the proxy empirical researchers use for the
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the threshold difference falls slower as mn increases than in the opposite case where

the number of weak bidders is fixed and m1 increases. There are 90 bars depicted

and 74 of them take on a value less than 0.05, meaning if the strong bidders’ high

type exceeds the weak bidders’ strong type by five percent, bid bifurcation will occur

for all of those instances. If the magnitude considered is 0.02, 52 of the instances still

result in bid bifurcation.

The figure helps convey the practical importance of the corollaries discussed for

the uniform model. Recall the argument in the introduction that preferential treat-

ment of one group of bidders is mathematically equivalent to rescaling the support.

The uniform example thus demonstrates that even if the two groups are initially

identical, even a modest preference rate could lead to bid bifurcation—meaning sim-

ulations, counterfactual experiments, and even structural estimation routines cannot

be based on an assumption of a common maximal bid. Lastly, notice one implication

of Corollary 1 is that in a general model, bid bifurcation must occur if v1
vn
> m1

m1−1 .

If m1 = 2, for instance, it is thus sufficient that v1 is twice as large as vn (assuming

b = 0). The larger m1 is (or the larger b is), the lower the relative difference between

the high types of each group in order to guarantee bid bifurcation. That said, these

relative differences might be smaller for bid bifurcation to occur as the uniform ex-

ample suggested—recall that the dark shaded areas in Figure 2 represent instances in

which the high types were quite close, but the sufficient condition was not satisfied.

3.2 Comparative statics for the general case

In the previous subsection, we focused on examples involving uniform distributions.

As such, the shape of the distributions were held constant but the supports and

number of bidders were allowed to vary. We consider the opposite in this subsection

in which we provide some results for the general case. Thus, fix the size of the two

groups, m1,mn ≥ 2 and the supports [v1, v1] and [vn, vn], respectively. We consider

the consequences of changing the pair of distributions from (F1, Fn) to (G1, Gn).

Recall that Gi (strictly) dominates Fi in terms of the reverse hazard rate if

gi(v)

Gi(v)
>
fi(v)

Fi(v)
for all v ∈ (vi, vi].

number of potential bidders.
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Borrowing from Lebrun (1998), we will write Gi � Fi if the above holds. Here, we

will assume that Gi either strictly dominates Fi in terms of the reverse hazard rate

or is identical to Fi. Borrowing from Lebrun (1998) once again, this will be denoted

Gi � Fi.

There are substantial technical difficulties involved in analyzing asymmetric first-

price auctions in general, some of which come into play in the current comparative

statics exercise as well. Lebrun (2006, footnote 8) describes the potential pitfalls

stemming from the fact that lnFi(ϕi(b)) tends to −∞ if b tends to vi. Lebrun

(2006) cleverly solves these issues, at the cost of a somewhat more complicated proof

technique. Here, we settle for the simpler proof that can be constructed with the

assumption that there is a binding reserve price (r) in place, with r ∈ (v,min{v1, vn}).
This assumption greatly simplifies the proof and seems conceptually to come at little

cost, since r could be arbitrarily close to v. The system of differential equations must

now satisfy ϕi(r) = r, i = 1, n (Lebrun (2006)). The technical significance of the

assumption is that lnFi(ϕi(b)) is finite even as b → r. Lebrun’s (2006, Section 3)

simpler proof technique can then be adapted to prove the main result in the current

subsection.

Let (v̂F , b
F

n ) and (v̂G, b
G

n ) denote the equilibrium values of (v̂, bn) when the distri-

butions are (F1, Fn) and (G1, Gn), respectively. The characterization in Proposition

1 implies that v̂ is non-increasing with bn.

Proposition 3 Assume Gi � Fi, i = 1, n and m1,mn ≥ 2. Assume there is a binding

reserve price in place, with r ∈ (v,min{v1, vn}). Then, b
G

n ≥ b
F

n and thus v̂G ≤ v̂F .

Consequently, if bid bifurcation occurs under (F1, Fn) it also occurs under (G1, Gn);

i.e., when bidders become stronger.

Proof. See the Appendix.

Proposition 3 is consistent with intuitive comparative statics in Lebrun (1998).

With two groups of bidders who share the same support, Lebrun (1998) shows that

the common maximum bid must increase when one group of bidders become stronger.

Applied to our setting, this would suggest that if we hold v̂ fixed at v̂F , then bn should

increase when (F1, Fn) is replaced by (G1, Gn). Given the inverse relationship between

bn and v̂ (see Proposition 1 or the piecewise linear functions in Figure 1), it is then

no surprise that the latter decreases.
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It is useful to compare, or rather combine, Propositions 2 and 3. Note that any

convex distribution function on [0, vi] strictly dominates the uniform distribution on

[0, vi] in terms of the reverse hazard. Proposition 3 thus implies that if the distribu-

tions are convex, then bid bifurcation is more likely to occur (i.e., occurs for more

(v1, vn) pairs) than in the uniform benchmark. Letting r approach zero then allows

Proposition 2 to be used as a lower bound on the incidence of bid bifurcation.

4 Solving for asymmetric equilibrium

As we are the first to delve into the general asymmetric model with more than two

bidders, researchers who have solved asymmetric auctions have typically been careful

to limit attention to settings in which the standard boundary condition is sure to

hold. Li and Riley (2007, footnote 8) explicitly note that they restrict attention

to the case of identical supports. Instead, they argue that if the supports differ

one could replace the distributions with approximations which do have a common

support. Likewise, Hubbard and Paarsch (2014) claimed that boundary conditions

might need adjustment in settings where the type supports differ and there are more

than two bidders at auction, and so they explicitly restricted their analysis to the case

of common type supports in trying to avoid such complications. These researchers,

however, are among the few to explicitly recognize that bid supports may differ. That

said, no one has proposed a solution technique that solves for the equilibrium of an

asymmetric auction when bid bifurcation is possible.

As we have argued above, casual observation of auctions suggest bid bifurcation

is a likely possibility in some settings and empirical researchers encounter raw data

that suggests bidding supports may differ. Moreover, allowing for bid bifurcation is

required to evaluate real-world policies such as bid preferences, where any avoidance

of the bid bifurcation issue (in the spirit of the proposal by Li and Riley) would

require approximations to the type distributions which would need to vary with the

preference rate. Given the potential for bid bifurcation in real world auctions, and the

disadvantages that come with using approximations which map type distributions over

different supports to ones on a common support in order to avoid the issue, we seek

to strengthen the approach to solving an asymmetric auction. There are no existing

solution techniques that can accommodate settings as those we have suggested. In the

first subsection, we provide a way for solving a general asymmetric auction that allows
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for bid bifurcation. We then complement this proposal with some solved examples in

the second subsection—first demonstrating the ability of our approach to determine

equilibrium in examples we know much about from the insights documented above

(such as ones involving uniform distributions) before venturing into situations where

little is known a priori.

4.1 General solution approach

Unlike the symmetric first-price model which admits a closed-form solution for the

Bayes–Nash equilibrium bid functions, asymmetric auctions rarely allow for such

tractability. As such, researchers are left resorting to numerical methods to solve the

system of differential equations under the appropriate boundary conditions. Hub-

bard and Paarsch (2014) summarize the various ways in which researchers have gone

about solving for the equilibrium which can be broadly categorized as: (i) shooting

algorithms, (ii) fixed-point iterations, and (iii) a polynomial approach. Rather than

delve into the merits of each of these approaches, we first describe a general strategy

and then provide a discussion of important steps.

1. Compute bc = m1vn − (m1 − 1)v1.

2. Check whether bc < b, if so bid bifurcation must occur as the sufficient condition

from Corollary 1 holds; if not, bid bifurcation may still occur as the condition

in Corollary 1 is sufficient, but not necessary.

3. Compute the maximum bid tendered in a symmetric auction amongst m1 class

1 bidders. If this bid is greater than bc, bid bifurcation must happen given

Corollary 2 which, again is sufficient but not necessary.

4. If one of the previous two steps did not suggest bid bifurcation, there is one

more way in which bc can be useful. Importantly, bc provides an upper-bound

on b when the bid support is common to bidders and a lower-bound on bn when

bid bifurcation obtains. Because of this, bc can be used in a diagnostic test

which allows for detecting whether bid bifurcation happens or not. Specifically,

consider imposing the boundary conditions ϕi(b
c) = vi, i = 1, n, and integrating

the system (2) backwards under the assumption that the equilibrium involves a

common bid support. One of two things will happen in integrating backwards:

22



(a) The system blows up (becomes unbounded, going off to negative infinity)

in approaching b. We argue (see below) this is evidence that all bids are

below bc in equilibrium—in particular, b ≤ bc (bidders share a common bid

support);

(b) The inverse bid functions return values in the range [v, vn]. We argue (see

below) this is evidence that some bidders tender amounts that exceed bc

in equilibrium—in particular, bn, b1 ≥ bc (bid bifurcation occurs).

5. Given the outcome of the previous steps, if the equilibrium involves bid bifur-

cation, solve the system (2) on the overlapping region of the bid support and

then integrate (4) over the region that only class 1 bidders are active. If the

equilibrium involves a common bid support, solve the system (2) over the entire

support.

The first three steps follow directly from the theory presented and discussed in

earlier sections of the paper. The fourth step warrants some further discussion given

it allows us to understand whether bid bifurcation occurs should the theoretical con-

ditions from Corollary 1 and 2 fail. Recall the panels of Figure 1 presented earlier

and note that if any bids (in particular the bids submitting by high types) exceed bc,

it must be that v̂ < v1 and, by Proposition 1, v̂ is pinned down by the downward

sloping line in the panels. Similarly, if bids are all below bc, then v̂ = v1 and bidders

share a common bid support. The test allows us to decipher whether bid bifurcation

occurs or not because the equilibrium solution is monotonic in b—something critical

to researchers who adopt shooting algorithms as such behavior guides guesses for

initial conditions across iterations; see, for example, Marshall, Meurer, Richard, and

Stromquist (1994). Fibich and Gavish (2011) showed that the shooting algorithm is

inherently unstable and the comparisons in Hubbard and Paarsch (2014) echo that

this approach has issues.10 As such, we are not advocating an attempt to solve for

the equilibrium by integrating backwards which would involve shooting as a basis for

search of bn. We integrate backwards (once) not to actually approximate equilibrium,

but to see whether the system blows up when starting from bc or not.11 That is, it

10To be clear, the instability documented relates to shooting backwards from an ε-neighborhood
of the true b. In our case, we are interested in investigating behavior of the system when integrating
backwards from the point bc.

11As an aside, there may be a way to modify the fixed-point iteration approach of Fibich and
Gavish (2011) so that it is capable of diagnosing whether bid bifurcation occurs or not. It would
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is precisely the tendency of the solution to blow up when fed a high bid that is too

high that guides our diagnostic test.

To consider the accuracy of this detection step, consider the plots depicted in

Figure 4. In the left panel, we consider asymmetric uniform auctions in which

(m1,mn) = (3, 2) where we vary vn in the plot. Given a value for vn (and v1 which

is set equal to one), we compute bc and integrate the system backwards. We record

whether step 4 above suggests bid bifurcation or not and define an indicator variable,

referred to as “Terminal Indicator” in the figure, that equals one if the diagnostic test

in step 4 suggests bid bifurcation, and zero if it suggests the bid support is common

for all bidders. We also report threshold values implied by Corollary 1 and Corollary

2. Specifically, for all points to the left of “Cor 1 Bifurcation Indicator”, the condition

of Corollary 1 is satisfied. For all points the left of “Cor 2 Bifurcation Indicator”, the

condition of Corollary 2 is satisfied. (Note that, here b = 0 so Corollary 2 is stronger

than Corollary 1.) In addition, we denote whether the necessary and sufficient con-

dition of Proposition 2 is satisfied. For every value of bc implied by the given vn, the

prediction of step 4 matched the prescription of Proposition 2.12

In the middle panel, we consider a situation in which bidders draw types from

truncated normal distributions. Again, consider (m1,mn) = (3, 2) and fix v1 =

1 while letting vn vary. In this example, we also fix the parameters of group 1’s

distribution to be a normal distribution with mean 0.5 and standard deviation 0.25

which is truncated over the [0,1] support. For every vn, we consider the group receives

valuations from a normal distribution with mean µn = vn/2, has a fixed standard

deviation, and is truncated over [0, vn]. In this figure, we indicate the threshold point

at which the Terminal Indicator switched from predicting bid bifurcation to predicting

a common support for three parameterizations, corresponding to different values of

the variance for group n’s distribution. The condition of Corollary 1 is independent

of the parameters of the distributions, depending only on the supports and number of

players. As such, this threshold is fixed as group n’s distribution changes. Because we

have fixed the distribution of group 1, Corollary 2 is also fixed across examples. Note

that, although we did not require it in this exercise, the step 4 test always predicts

seem that one would need to embed flexibility in the boundary condition on the tying function, t(v),
that describes the type of bidder 1 that ties with (bids the same as) bidder n with type v to allow
for the possibility that bidding supports may differ—so t(vn) need not equal v1.

12In constructing this figure, we consider a grid of vn values in which points are 0.0005 apart
from each other.
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Figure 4: Predictions of Diagnostic Test for Bid Bifurcation
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bid bifurcation when these sufficient conditions are met. Moreover, the predictions

change in reassuring ways—when the σn is low, the terminal indicator approaches the

Corollary 2 threshold while, when the σn is high the terminal indicator approaches

the uniform distribution threshold. When group n’s distribution has a lower variance,

high types of group 1 need not worry as much about facing competitive group n

bidders for a given vn. As such, competition within group n is what disciplines bidding

behavior in a way that is similar to the symmetric auction setting involving only m1

bidders. Likewise, when the variance of the group n distribution is high, the density

becomes very flat, mimicking the uniform distribution. Though the comparison to the

uniform case is not valid (remember that group 1’s distribution is a fixed truncated

normal distribution), we see that bid bifurcation approaches the uniform threshold.

In fact, if the standard deviation of both groups is set sufficiently high, the predictions

of the diagnostic test are exactly the same as in the uniform distribution case—the

Terminal Indicator line falls directly on the Proposition 2 indicator depicted to the

far right in the middle panel figure.

Lastly, consider the panel on the right. In this case, we again consider (m1,mn) =

(3, 2) bidders with types drawn from asymmetric truncated normal distributions over

[0, vi] where vn changes in the figure. Group 1’s distribution is fixed to be a normal

distribution with mean 0.5 and standard deviation 0.25 which is truncated over the

[0, 1] support. In this figure, σn = 0.25 for all parameterizations but we let µn vary.

Specifically, we depict situations in which µn = δ(vn− vn) where δ = {1/4, 1/2, 3/4}.
For a given vn, since σn is fixed, higher values for δ imply distributions that first-

order stochastically dominate distributions associated with lower values of δ. Thus, by

construction, we can investigate whether the diagnostic test respects the predictions of

Proposition 3. Note that the figure in the right panel identifies the same relationship

as this theoretical result—higher values of δ imply bid bifurcation occurs more often.

Said another way, for a given vn, if bid bifurcation holds for a low value of δ, it is also

true that bid bifurcation occurs for a higher value of δ.

With confidence that the type of equilibrium can be deciphered from this diagnos-

tic test, we now turn to the final step of approximating the equilibrium. We should

note that our goal is not to take a stance on which solution technique is the best,

but rather to make clear how the theory presented above can guide and modify the
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implementation of such algorithms.13 If bidding is over a common support, the struc-

ture of the problem is exactly the same as the standard setting—though note, we can

use the insight above to inform a better initial guess for b which we know must be

in the range [b, bc].14 On the other hand, if bid bifurcation occurs, the key input to

our algorithm will be a guess on bn ∈ [bc, vn], paired with the theoretically consistent

v̂ from Proposition 1, to approximate the system (2) over the intersection of the bid

supports.

Here, we describe a solution technique which builds off the polynomial-based ap-

proach considered in Hubbard, Kirkegaard, and Paarsch (2013). Under this approach,

the inverse bidding strategies are assumed to be polynomials, the coefficients of which

are chosen to solve approximately the system of differential equations that charac-

terize equilibrium behavior along with the unknown high bid such that conditions

provided by theory (such as the appropriate boundary conditions) hold. Thus, as-

suming the equilibrium strategies can be approximated by Chebyshev polynomials,

the inverse bid function for bidder i can be expressed as

ϕ̂i(b;αi, bn) =
K∑
k=0

αi,kTk[x(b; bn)] i = 1, n (10)

where x(·) lies in the interval [−1, 1] and where, for completeness, we have explic-

itly defined it as a transformation of the bid b under consideration.15 Here, Tk(·)
denotes the kth Chebyshev polynomial of the first kind and the vector αi collects the

13For example, building on our comments in footnote 11, it may be possible to modify the
fixed-point approach of Fibich and Gavish (2011) to handle bid bifurcation as well—the boundary
conditions would need to be adjusted appropriately. For example, one could replace v1 in the
boundary condition t(vn) = v1 with some v̂ < v1 guess, and then use the fixed-point algorithm to
derive a candidate solution. If the solution does not return the value bn in Proposition 1, the v̂ guess
is incorrect. One could then iterate on this procedure until a theoretically-consistent (bn,v̂) pair is
reached. Unfortunately, because the fixed-point approach involves a transformation it suppresses
the one item, bn, about which we have some information (Proposition 1) which requires an iterative
scheme to be written around the core fixed-point algorithm. In contrast, the approach we describe
builds the bn-v̂ relationship directly into the algorithm.

14In the standard setting, the only information known a priori is that b ∈ [b, vn].
15We abuse notation slightly so that, in the case where bidders tender offers over a common

support, bn = b.
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polynomial coefficients for bidder i. Thus,

T0(x) = 1

T1(x) = x

Tk+1(x) = 2xTk(x)− Tk−1(x) k = 1, 2, . . . , K − 1.

We evaluate the system (2) over the Chebyshev nodes from the relevant bid sup-

port which have the property of minimizing the maximum interpolation error when

approximating a function and so are often considered a good choice for the requisite

grid. Casting the problem within the Mathematical Programming with Equilibrium

Constraints (MPEC) approach proposed by Luo, Pang, and Daniel (1996) and advo-

cated by Su and Judd (2012), the unknowns (αi, bn) are then chosen to minimize the

deviations from the system (2) at the grid points such that the relevant theoretical

(importantly, the boundary) conditions hold. Our focus has been on how the bound-

ary conditions are modified if bidding supports differ. Once the boundary conditions

are modified, our approach mirrors that of Hubbard, Kirkegaard, and Paarsch (2013)

where readers can find an extended discussion of the shape-based constraints that

guide search for the polynomial coefficients and high bid. Because Proposition 1 re-

duces the dimensionality of the problem so that instances involving bid bifurcation

are no more complex than the common support setting, the approach generalizes nat-

urally once the boundary conditions are modified with the exception that, under bid

bifurcation, the inverse bid function of group n must satisfy the derivative condition

of our Lemma 2 above.

4.2 Solved examples

The theory we present above is most precise for situations in which bidders draw

valuations from asymmetric uniform distributions. Continuing the tradition of Vick-

rey (1961) and Kaplan and Zamir (2012), we first consider two examples involving

bidders who receive types from uniform distributions where, because more than two

bidders are considered, no closed-form solution exists.

Example 1: Consider an auction with m1 = 3 group 1 bidders who draw valuations

from a uniform distribution over the support [0, 1] and mn = 2 group 2 bidders who

draw valuations from a uniform distribution over the support [0, 3/4]. In this setting,
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bc = 1/4. If the m1 bidders were at a symmetric auction, the equilibrium strategy

would prescribe high-type bidders tender a bid of b
s

= 2/3. Thus, the condition

of Corollary 2 holds and we know bid bifurcation will occur. Moreover, applying

what we know from Proposition 2(b): v1/vn = 4/3 > 1.0811 = τ so the necessary

and sufficient condition which applies to this example confirms that bid bifurcation

must happen. We present the inverse bid functions approximated by following the

algorithm proposed above for this example in Figure 5(a). Note that the group n

inverse bid function satisfies the property of Lemma 2 as it flattens out so that its

(left-)derivative is zero at bn. The line indicating the value for v̂ suggests that for

about 19% of group 1 types, they compete only with other group 1 bidders. The

inverse bid functions are nearly identical for low bids but as they approach bn there

is a clear divergence.
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Figure 5: Example 1: Imposing Bid Bifurcation vs. Common Bid Support

For Example 1, we complement the correct solution with an illustration of how

things look if the wrong boundary condition is imposed. Specifically, in the panel

on the right we present the output of an approximation in which the common bid

support conditions are imposed. There is a stark contrast across these figures and

the wrong solution on the right should raise some immediate flags. Recall that a

symmetric auction with m1 bidders leads to high types tendering a bid of b
s

= 2/3;

in fact the symmetric auction equilibrium involves a linear bid function with all types

tendering bids that are 2/3 of their valuation. When mn bidders enter the auction, the

29



presence of the mn bidders means a group 1 bidder should behave more aggressively

(or at least no less competitively) given the presence of the same (m1 − 1) rivals and

the mn bidders. This behavior propagates through to the group 1 bidders with types

that exceed the highest group n type given they now face more aggressive behavior

from their rivals with lower valuations. The symmetric auction inverse bid function

involving m1 = 3 bidders is depicted as the lighter, dashed line which we have labeled

ϕs
1(b;m1 = 3). More aggressive behavior would mean that the ϕ1(b) function in

the asymmetric auction should lie between this linear function and the 45o line. In

fact, the exact opposite is happening in the figure as bidders shade their valuations

by even more.16 Were one to assume this was the equilibrium as opposed to the

(correct) one in the panel on the left involving bid bifurcation, any inference based off

these approximations would suggest drastically different implications. For example,

consider ranking the first-price auction relative to a second-price auction according

to expected revenues. The correct solution suggests slightly higher revenues can be

expected from a first-price auction, while the incorrect solution predicts expected

revenues from a first-price auction that are less than half of the amount that can

be expected from a second-price auction.17 Thus, the incorrect solution not only

substantially miscalculates expected revenue, but it would lead to the wrong revenue

ranking as well.

Example 2: Consider an auction with m1 = 3 group 1 bidders who draw valuations

from a uniform distribution over the support [0, 1] and mn = 2 group 2 bidders who

draw valuations from a uniform distribution over the support [0, 0.95]. In this setting,

bc = 0.85. If the m1 bidders were at a symmetric auction, the equilibrium strategy

would again prescribe bidders tender 2/3 of their valuations since their distribution

did not change from Example 1. Importantly, because now b
s
< bc, the condition

of Corollary 2 is not met (again, nor is the Corollary 1 condition) meaning bidders

will tender offers over a common support. Moreover, applying what we know from

16Though we depict this improper approximation, we should note that if the wrong boundary
conditions are imposed, the nonlinear optimization solver we use (SNOPT) cannot achieve conver-
gence and typically reports that it cannot proceed into an undefined region. We are reassured by
this as it suggests the problem is sufficiently well disciplined and users would recognize immediately
any difficulties.

17Expected revenue from a second-price auction is 0.5949. Using the correct bid bifurcation
solution, the winning bid (tendered by a group 1 bidder) exceeds bn 47% of the time and expected
revenue increases slightly to 0.5959. In contrast, expected revenue from the incorrect, common bid
support approximation is 0.2539.
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Proposition 2(a): v1/vn = 1.0526 < 1.0811 = τ so the necessary and sufficient

condition which applies to this example confirms that bidding should happen on the

same support for all types. We present the inverse bid functions approximated by

following the algorithm proposed above for this example in Figure 6(a).

This time the algorithm that imposes (appropriately now) the boundary conditions

for a common bid support succeeds in solving for the correct bid function. Building on

the discussion above involving how behavior should compare across a m1-symmetric

auction and a (m1,mn)-asymmetric auction, the inverse bidding strategies suggest

all bidders are now more aggressive in equilibrium. In this example the bidders are

nearly identical. If all bidders were group 1 bidders, then the symmetric auction

equilibrium strategy would involving bidders tendering 4/5 of their valuation. In this

asymmetric setting, since group n bidders are slightly weaker than group 1 bidders,

we see the common high bid is just below 4/5 and there is only a slight separation

in behavior at the upper end of the bid support. Note, too, that the solution to this

problem, even though bid bifurcation does not obtain, was previously unattainable

by researchers solving asymmetric auctions since m1 ≥ 2 and the type supports are

different. Rather than present another approximation using the wrong boundary

conditions, we note that the discussion provided above about violating equilibrium

bidding behavior when mn bidders enter the auction holds in this setting too; that is,

improperly imposing bid bifurcation fails to converge to a solution and in searching

for a solution continues to stray into territory which we know is theoretically invalid

because m1 bidders shade their valuations more.

Example 3: As a final example based on bidders who receive valuations from uniform

distributions, consider an auction with m1 = 2 group 1 bidders who draw valuations

from a uniform distribution over the support [0, 1] and mn = 2 group 2 bidders who

draw valuations from a uniform distribution over the support [0, 0.15]. The extreme

difference in the highest possible valuations of bidders might best correspond with the

motivating example we provided in the introduction which involved two billionaire

art collectors vying for a painting at an auction with two art students. We are likely

being quite generous in evaluating the competitiveness of the art students in this

example—if the highest possible valuation for the billionaires is just $1,000,000, the

highest possible valuation of students is still $150,000. Regardless, in this setting,

bid bifurcation is certain—the sufficient conditions of Corollary 1 and 2 as well as the

necessary and sufficient condition of Proposition 2(b) for bid bifurcation are easily
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Figure 6: Examples 2 & 3: Inverse Bid Functions

satisfied. Assuming a common bid support in this setting would be disastrous as, in

equilibrium, less than 18% of the strong types tender bids that fall within the bid

support of the weak bidders. We present the inverse bid functions approximated by

following the algorithm proposed above for this example in Figure 6(b). If a common

bid support were assumed, then no bid could exceed 0.15 which assumes students bid

as aggressively as possible by tendering their valuations. Actually, the high bid for

the strong group (0.51) is more than three times the highest type of the weak group.

Since a symmetric auction with only the two billionaires would involve each tendering

half of their valuation in equilibrium, the mere presence of the student bidders leads

to an increase in the bids of all strong types which propagates through to the (much

larger) share of the strong group’s bid support for which the weaker bidders are not

even active.

Example 4: Having given some credibility to the solution approach suggested by

considering examples with uniform distributions, let us venture into territory that is

less convenient analytically. The general solution approach we provide is not limited

in any way by the distribution considered so long as the standard conditions for

uniqueness are satisfied (see the conditions we discussed at the beginning of Section

2, just before Lemma 1). Consider instead an auction with two bidders from each

group at auction. Let the valuations of group 1 bidders be distributed according to

a Normal distribution with mean 0.5 and standard deviation 0.25 which has been
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truncated over the support [0, 1]. Likewise, assume group n bidders draw types which

are distributed according to a Normal distribution with mean vn/2 and standard

deviation 0.25, which has been truncated over the support [0, 0.75]. In this example,

the type distribution of group 1 bidders dominates that of group n bidders in terms

of the reverse hazard rate. Theory tells us this stochastic ranking of distributions is a

sufficient condition for weakness to breed aggression on overlapping portions of the bid

supports; for a given type, group n bidders should tender an offer that exceeds that

of group 1 bidders. For this example, bc = 1/2 and step 4 of the solution procedure

suggests bid bifurcation occurs. Indeed, our approximated solutions, depicted in

Figure 7(a) reflect this feature of the solution. Note, too, that the inverse bid function

of group 1 bidders is more nonlinear than the solutions involving uniform distributions

but, nonetheless, the solution is still smooth at (bn, v̂). Lastly, note that if vn is

increased from 0.75 to 0.82 (or above) the equilibrium involves all bidders tendering

offers over a common bid support. We continue this thought in the next example.
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Figure 7: Examples 4 & 5: Inverse Bid Functions

Example 5: Again let valuations of group 1 bidders be distributed according to a

Normal distribution with mean 0.5 and standard deviation 0.25 which has been trun-

cated over the support [0, 1]. Now, let’s increase the highest type of group n bidders

to 0.85. Assume group n bidders draw types which are distributed according to a

Normal distribution with mean vn/2 and standard deviation 0.25, which has been

truncated over the support [0, 0.85]. At the end of the last example we noted that if
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(m1,mn) = (2, 2), bid bifurcation would not occur. This implication is in the spirit

of the first part of Corollary 3 (which applied to the uniform model from Proposition

2): the weak group becomes stronger because their highest possible type increases

(as does the mean of their valuation distribution which is tied to the highest type by

construction) and so bid bifurcation is less likely. To revisit the implications of the

second parts of Corollary 3 and 4 in an situation outside of the uniform model, sup-

pose another bidder shows up at auction from each group so that (m1,mn) = (3, 3).

Step 4 of the general solution procedure suggests bid bifurcation occurs, consistent

with the implications of Corollary 3 and 4, though in a setting for which they are

not known to hold. We depict the equilibrium bid functions in Figure 7(b). Again,

because reverse hazard rate dominance holds, weakness leads to aggression over the

common part of the bid support. Perhaps not surprisingly, because participation has

increased by 50%, all bidders behave more competitively in tendering higher bids. Bid

shading decreases as does the difference in the equilibrium bid functions of the two

groups so that the only real separation in behavior occurs as types increase towards

v̂. Importantly, this example serves as a reminder that bid bifurcation depends on

both the relative difference between supports (v1/vn) as well as the composition of

(and number of) bidders at auction (m1,mn). This can be important when consid-

ering any number of counterfactual simulations (perhaps after having estimated type

distributions in empirical work) such as the effect of preference policies and bidder

subsidies, particularly when entry is endogenous so that participation may vary with

the policy considered.

5 Conclusion

This paper focuses on an empirically relevant complication that arises in first-price

auctions with more than two bidders, namely bid bifurcation. Our theoretical and

numerical results suggest that bid bifurcation may occur in the face of even relatively

small asymmetries. Nevertheless, most existing empirical and numerical methods do

not take bid bifurcation into account. A main motivation of the paper is to make

applied researchers aware of this oversight and to take some initial steps toward

satisfactorily incorporating considerations of bid bifurcation into both theory and

practice.

It should be noted that bid bifurcation may well exist outside the particular setting
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we have investigated. We have, for simplicity, concentrated on first-price auctions with

exactly two groups of bidders. Allowing for more groups of bidders does not appear

to make bid bifurcation any less likely. Similarly, other pay-your-bid auctions—most

notably the all-pay auction—will be prone to bid bifurcation as well.

Even with an arbitrary number of groups of bidders, Lemma 1 provides some

equilibrium structure. We speculate that a “recursive” version of Proposition 1 could

be developed to make inferences about the maximum bids of different groups and the

critical types that submit bids that coincide with the maximum bid of some other

group. The details, however, are left for future research.

In many ways, the all-pay auction is analytically even more complicated than

the first-price auction. Parreiras and Rubinchik (2010) prove that bidding strategies

need not even be continuous when there are more than two asymmetric bidders. In

a related paper, Kirkegaard (2013) proves that a bidder may become worse off if he

is a member of a diverse set of bidders who are given preferential treatment in an

all-pay auction with more than two bidders. Bid bifurcation simply adds to these

complications. We have elected to focus on the simpler first-price auction, though

this choice is primarily motivated by the empirical relevance of the auction format.
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Appendix

Proof of Lemma 1. The first part is well-known, see e.g. Lebrun (1999).

Kirkegaard (2009, footnote 12) uses a “revealed preference” approach to prove the

result. Here, we extend the latter method to allow vi ≥ vj. Thus, by contradiction,

assume vi ≥ vj but bi < bj. Let P (b) be the distribution function of the highest bid

among bidder i’s and bidder j’s common rivals, with P (bj) ≥ P (bi). Consider bidder

j with type vj. In order for bj to an equilibrium bid, there must be no incentive to

deviate to bi instead. For either bid, bidder j outbids bidder i with probability 1, so

the requirement is that

(
vj − bj

)
P (bj) ≥

(
vj − bi

)
P (bi)

or

vj
[
P (bj)− P (bi)

]
≥ bjP (bj)− biP (bi). (11)

Similarly, bidder i with type vi must weakly prefer bidding bi to bj. Since a bid of

bi causes bidder i to lose to bidder j with strictly positive probability, payoff from

bidding bi is strictly smaller than
(
vi − bi

)
P (bi). In comparison, deviating to bj leads

bidder i to outbid bidder j with probability 1. Thus, it is necessary that

(
vi − bi

)
P (bi) >

(
vi − bj

)
P (bj),

or

bjP (bj)− biP (bi) > vi
[
P (bj)− P (bi)

]
.

Since the term in the brackets is non-negative and vi ≥ vj, the last inequality implies

that

bjP (bj)− biP (bi) > vj
[
P (bj)− P (bi)

]
. (12)

The proof concludes by observing that (11) and (12) are contradictory.

Proof of Lemma 2. Assume bn < b1. Consider first bidder n with type vn. Let

Un(b) denote the natural logarithm of his expected payoff from bidding b, with

U ′n(b) =
−1

vn − b
+ (mn − 1)

d

db
lnFn(ϕn(b)) +m1

d

db
lnF1(ϕ1(b)) for b ∈ (v, bn)
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and

U ′n(b) =
−1

vn − b
+m1

d

db
lnF1(ϕ1(b)) for b ∈ (bn, b1).

Let U ′n(bn↗) and U ′n(bn↘) denote the left-derivative and right-derivative at bn, re-

spectively. In order for bidder n to not submit higher bids than bn it is necessary

that U ′n(bn↘) ≤ 0. For similar reasons, it is necessary that U ′n(bn↗) ≥ 0. However,

U ′n(bn↗) > 0 can be ruled out, because in this case types marginally below bn would

find it profitable to deviate from their equilibrium bid and instead bid bn. Thus,

U ′n(bn↗) = 0. Combining these observations yields

d

db
lnFn(ϕn(bn↗)) ≥ m1

mn − 1

[
d

db
lnF1(ϕ1(bn↘))− d

db
lnF1(ϕ1(bn↗))

]
. (13)

Consider next bidder 1 with type v̂ ∈ (v, b1). Let U1(b) denote the natural loga-

rithm of his expected payoff from bidding b. The derivative, U ′1(b), can be calculated

in much the same manner as U ′n(b), the main difference being that the composition

of rival bidders is different. In equilibrium, this bidder is supposed to find a bid of bn

optimal. By the above arguments, it is thus necessary that U ′1(bn↗) = U ′1(bn↘) = 0,

which implies that

d

db
lnFn(ϕn(bn↗)) =

m1 − 1

mn

[
d

db
lnF1(ϕ1(bn↘))− d

db
lnF1(ϕ1(bn↗))

]
. (14)

Since ϕn is non-decreasing, the term in brackets must be non-negative. If it is strictly

positive, then (13) implies

d

db
lnFn(ϕn(bn↗)) ≥ m1

mn − 1

[
d

db
lnF1(ϕ1(bn↘))− d

db
lnF1(ϕ1(bn↗))

]
>

m1 − 1

mn

[
d

db
lnF1(ϕ1(bn↘))− d

db
lnF1(ϕ1(bn↗))

]
,

which contradicts (14). Thus, the bracketed term must be zero, and it then follows

immediately from (14) that the left-derivative of ϕn at bn, which we for simplicity

denote ϕ′n(bn), must be zero as well (incidentally, it also follows that ϕ1 does not have

a kink at bn).

Proof of Corollary 2. To prove the corollary it is sufficient to establish that

b1 > b
s

1. Let EU s
1 (v) denote bidder 1’s expected utility, as a function of his type, in
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a symmetric auction against m1 − 1 ≥ 1 identical rivals. Myerson (1981) has shown

that

EU s
1 (v) = EU s

1 (v1) +

∫ v

v1

qs1(x)dx,

where qs1(x) = F1(x)m1−1 is the probability of winning for a bidder with type x. Of

course, it must also hold that EU s
1 (v) = (v − bs1(v))qs1(v), where bs1(v) is the bidding

strategy in the symmetric auction. Since m1 ≥ 2, it holds that EU s
1 (v1) = 0, since a

type v1 bidder wins with probability zero. Hence, since qs1(v1) = 1,

v1 − b
s

1 =

∫ v1

v1

F1(x)m1−1dx.

In the asymmetric auction we have

v1 − b1 =

∫ v1

v1

Fn (ϕn(b1(x)))mn F1(x)m1−1dx <

∫ v1

v1

F1(x)m1−1dx = v1 − b
s

1,

where b1(x) is bidder 1’s equilibrium bidding strategy in the asymmetric auction. It

follows that b1 > b
s

1.

Proof of Proposition 2. The relationship in Proposition 1 characterizes a nec-

essary condition on any candidate (v̂, bn) pair. The next step is to use mechanism

design arguments to derive a second necessary condition. The final step combines

these two conditions to establish Proposition 2.

As in any mechanism design argument, the equilibrium allocation plays an im-

portant role. Thus, let qi(v) denote the probability that a bidder in group i, i = 1, n,

wins the auction if his type is v. Letting EUi(v) denote such a bidder’s expected

utility, Myerson (1981) has shown that

EUi(v) = EUi(vi) +

∫ v

vi

qi(x)dx.

In the setting in Proposition 2, it is easily seen that EUi(vi) = 0 (recall that vi = 0).
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Consider now the highest types, v1 and vn, respectively. First, observe that

EU1(v1) = EU1(v̂) +

∫ v1

v̂

qi(x)dx

=
(
v̂ − bn

)( v̂

v1

)m1−1

+

∫ v1

v̂

(
x

v1

)m1−1

dx,

since type x ≥ v̂ outbids all group n bidders with probability one and thus wins if all

rival bidders in group i have types that are below x. Conveniently, this expression does

not require any knowledge of q1(x) for x < v̂. Integrating now yields the conclusion

that ∫ v1

v1

q1(x)dx =
(
v̂ − bn

)( v̂

v1

)m1−1

+
1

m1

vm1
1 − v̂m1

vm1
1

. (15)

Similarly, since

EUn(vn) =
(
vn − bn

)( v̂

v1

)m1

,

it follows that ∫ vn

vn

q1(x)dx =
(
vn − bn

)( v̂

v1

)m1

. (16)

The ex ante probability that any given bidder wins the auction takes a particularly

useful form when distributions are uniform, since∫ vi

vi

qi(x)fi(x)dx =
1

vi

∫ vi

vi

qi(x)dx.

Since the auction has no reserve price, the item will be sold for sure. In other words,

the ex ante winning probabilities must aggregate to one, or

m1
1

v1

∫ v1

v1

q1(x)dx+mn
1

bn

∫ vn

vn

qn(x)dx = 1. (17)

Combining (15) and (16) with (17) yields the necessary condition that

bn =
m

bnm1 +mnv̂
vnv̂ (18)
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for v̂ ∈ [0, v1], or, stated differently,

v̂ =
vnm1bn

mn

(
vn − bn

)
+ vn (m1 − 1)

(19)

with the restriction that bn is such that v̂ ∈ [0, v1].

In summary, any equilibrium (v̂, bn) pair must satisfy both (19) and (8). Thus, the

next step is to characterize what turns out to be the unique (v̂, bn) pair that satisfies

both conditions. First, note that the right hand side of (19) is strictly increasing in

bn and ranges from 0 to m1

m1−1vn as bn increases from 0 to vn. However, the term
m1

m1−1vn −
1

m1−1bn on the right hand side of (8) is strictly decreasing in bn and ranges

from m1

m1−1vn to vn as bn increases from 0 to vn. Thus, the two equations (i.e. (19)

and v̂ = m1

m1−1vn −
1

m1−1bn) must have a unique intersection with bn ∈ (0, vn). We

first identify this intersection and then subsequently check whether it satisfies the

feasibility condition that v̂ ∈ [0, v1]. Equalizing these two equations yields a quadratic

equation in bn. The larger root can be ruled out, since it yields the conclusion

that bn > vn. The smaller root is bn = κ(m1,mn)vn, for which v̂ = τ(m1,mn)vn.

This candidate satisfies the final feasibility condition that v̂ ≤ v1 if and only if

τ(m1,mn) ≤ v1
vn

. This proves the second part of the proposition. If τ(m1,mn) > v1
vn

,

the condition that v̂ ≤ v1 instead binds. Nevertheless, (19) and (18) must be satisfied.

The latter establishes the characterization in the first part of the proposition.

Continuity follows from the continuity of (19) and (8). Of course this implies that

when τ(m1,mn) is identical to v1
vn

, the equilibrium pair (v̂, bn) in the two parts of the

proposition coincide.

Proof of Corollary 3. If it is initially the case that τ(m1,mn) > v1
vn

, then the

inequality remains true as vn increases. Thus, the first part of Proposition 2 applies.

In particular, v̂ = v1 remains unchanged, while bn strictly increases. Assume next

that τ(m1,mn) ≤ v1
vn

initially. There are two cases. If the inequality remains true as

vn increases, then it follows directly from the characterization in the second part of

the Proposition 2 that both v̂ and bn strictly increases. If the inequality is reversed,

then v̂ must increase from some value (weakly) below v1 to precisely v1. It follows

from (18) that bn strictly increases. This proves the first part of the corollary.

For the second part, note that (8) is independent of mn, while the curve described

in (19) shifts down when mn increases. Hence, the intersection of the two curves
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moves south-east in (bn, v̂) space. This proves the second part of the corollary.

Proof of Corollary 4. The first part follows immediately from the equilibrium

characterization in Proposition 2. For the second part, note that if If v1
vn
≤ τ(m1,mn)

then v̂ remains unchanged at v1 as m1 increases. However, bn strictly increases. If
v1
vn
> τ(m1,mn) then bn = κ(m1,mn)vn, v̂ = τ(m1,mn)vn. The proof concludes by

recalling that κ(m1,mn) is strictly increasing in m1 and that τ(m1,mn) is strictly

decreasing in m1.

Proof of Proposition 3. Let bidder i’s inverse bidding strategy be denoted

ϕF
i (b) and ϕG

i (b) in the two scenarios where distributions are (F1, Fn) and (G1, Gn),

respectively (recall the assumption that equilibrium is unique). The case where G1 =

F1 and Gn = Fn is uninteresting. Thus, assume in the remainder that G1 � F1

and/or Gn � Fn. The system in (2) can be written as

ϕ′i(b) =
1

n− 1

Fi (ϕi(b))

fi (ϕi(b))

[
mj

ϕj(b)− b
− mj − 1

ϕi(b)− b

]
(20)

where j 6= i, i = 1, 2.

Assume by contradiction that b
G

n < b
F

n , which by Proposition 1 implies v̂G ≥ v̂F .

Hence, ϕG
i (b

G

n ) > ϕF
i (b

G

n ), i = 1, 2. Now move leftwards (reducing b) from b
G

n . Let

b′ > r denote the first (i.e. highest) bid for which ϕG
i (b′) = ϕF

i (b′) for some (or

both) i, if it exists. If it exists, there are two possibilities. One possibility is that

the crossing occurs at the same place for both i = 1 and i = 2, i.e. ϕG
1 (b′) = ϕF

1 (b′)

and ϕG
n (b′) = ϕF

n (b′). The bracketed term in (20) is then the same for both scenarios.

However, since Gi � Fi for some i, it follows that ϕG′
i (b′) < ϕF ′

i (b′). However, this

contradicts the fact that ϕG
i (b) > ϕF

i (b) to the right of b′. The other possibility

is that ϕG
i (b′) = ϕF

i (b′) but ϕG
j (b′) > ϕF

j (b′), j 6= i. The conclusion is again that

ϕG′
i (b′) < ϕF ′

i (b′), because the bracketed term in (20) is smaller (and the first term is no

larger) when distributions are (G1, Gn) compared to (F1, Fn). The same contradiction

is thus achieved. It now follows that ϕG
i (b) > ϕF

i (b) for all b ∈ (r, b
G

n ], i = 1, 2.

Assuming that G1 � F1 (the proof is similar if Gn � Fn instead) it follows from (1)
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that

d

db
lnFn(ϕF

n (b))mnF1(ϕ
F
1 (b))m1−1 =

1

ϕF
1 (b)− b

>
1

ϕG
1 (b)− b

=
d

db
lnGn(ϕG

n (b))mnG1(ϕ
G
1 (b))m1−1,

or

d

db

ln

(
Fn(ϕF

n (b))

Fn(ϕF
n (b

G

n ))

)mn
(
F1(ϕF

1 (b))

F1(ϕF
1 (b

G

n ))

)m1−1
 > d

db

ln

(
Gn(ϕG

n (b))

Gn(ϕG
n (b

G

n ))

)mn
(
G1(ϕG

1 (b))

G1(ϕG
1 (b

G

n ))

)m1−1


for all b ∈ (r, b
G

n ]. Evaluated at b = b
G

n , the bracketed term on either side of the

inequality are both zero. Since r > v, the bracketed term on the left converges to a

finite value as b → r. Moreover, since the bracketed term on the left is steeper in b

than the bracketed term on the right, the latter must also converge to a finite value,

with

ln

(
Fn(ϕF

n (r))

Fn(ϕF
n (b

G

n ))

)mn
(
F1(ϕ

F
1 (r))

F1(ϕF
1 (b

G

n ))

)m1−1

< ln

(
Gn(ϕG

n (r))

Gn(ϕG
n (b

G

n ))

)mn
(
G1(ϕ

G
1 (r))

G1(ϕG
1 (b

G

n ))

)m1−1

Since (ϕF
1 , ϕ

F
n ) are equilibrium strategies, it must hold that ϕF

i (r) = r, i = 1, 2. If

(ϕG
1 , ϕ

G
n ) are equilibrium strategies as well, then it also holds that ϕG

i (r) = r, i = 1, 2,

and we have(
Fn(r)

Fn(ϕF
n (b

G

n ))

)mn
(

F1(r)

F1(ϕF
1 (b

G

n ))

)m1−1

<

(
Gn(r)

Gn(ϕG
n (b

G

n ))

)mn
(

G1(r)

G1(ϕG
1 (b

G

n ))

)m1−1

or (
Gn(ϕG

n (b
G

n ))

Fn(ϕF
n (b

G

n ))

)mn
(
G1(ϕ

G
1 (b

G

n ))

F1(ϕF
1 (b

G

n ))

)m1−1

<

(
Gn(r)

Fn(r)

)mn
(
G1(r)

F1(r)

)m1−1

which, since ϕG
i (b

G

n ) > ϕF
i (b

G

n ), implies(
Gn(ϕG

n (b
G

n ))

Fn(ϕG
n (b

G

n ))

)mn
(
G1(ϕ

G
1 (b

G

n ))

F1(ϕG
1 (b

G

n ))

)m1−1

<

(
Gn(r)

Fn(r)

)mn
(
G1(r)

F1(r)

)m1−1

45



However, the assumption that Gi � Fi (Gi = Fi) is equivalent to d
dv

G(v)
F (v)

> 0 ( d
dv

G(v)
F (v)

=

0). Consequently, the above inequality must be violated. In other words, (ϕG
1 , ϕ

G
n )

cannot form an equilibrium.
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