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Abstract

In the Frequentistic Model Averaging framework and within a linear model
background, we consider averaging methodologies that extend the analysis of
both the generalized Jacknife Model Averaging (JMA) and the Mallows Model
Averaging (MMA) criteria in a multi-objective setting. We consider an esti-
mator arising from a stochastic dominance perspective. We also consider aver-
aging estimators that emerge from the minimization of several scalarizations
of the vector criterion consisting of both the MMA and the JMA criteria as
well as an estimator that can be represented as a Nash bargaining solution
between the competing scalar criteria. We derive the limit theory of the esti-
mators under both a correct specification and a global misspecification frame-
work. Characterizations of the averaging estimators introduced in the context
of conservative optimization are also provided. Monte Carlo experiments sug-
gest that the averaging estimators proposed here occasionally provide with
bias and/or MSE/MAE reductions. An empirical application using data from
growth theory suggests that our model averaging methods assign relatively
higher weights towards the traditional Solow type growth variables, yet they
do not seem to exclude regressors that underpin the importance of factors like
geography or institutions. JEL Codes: C51, C52.
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1 Introduction

Model Averaging has been proposed as a general framework to deal with model
uncertainty and as such there have been two main approaches in the literature,
the Bayesian model averaging (BMA) and the Frequentist model averaging (FMA).
Model uncertainty naturally stems from the presence of many competing theories
that tend to examine different sources for possible data generating processes (DGP)
that are intrinsically non nested. There is a voluminous amount of work done in
the BMA strand as Bayesian methods are ideally suited for averaging or combining
different models using posterior based weights, see Steel (2019) for a very compre-
hensive survey of the BMA methods. However, in this paper we will examine an
approach that rests within the FMA methodological camp and we will provide a
comparison with other existing methods within this area. For example an important
area that highlights the importance of model uncertainty is in the are of growth
theory, where there are different valid approaches based on pure standard economic
arguments based on a production function approach (Solow type), an institutional
approach as in Acemoglu et al. (2001) [1] and a geography approach as proposed
by Sachs (2003) [36]. In fact model uncertainty has been used to shed light on the
relative importance of the three main growth theories (geography, integration and
institutions), see Kourtellos et al. (2010) [23]. An earlier approach that aimed to
shed light on the importance of the multitude of different variables that are being
used in growth regressions is Extreme Bounds Analysis (EBA) proposed by Leamer
(1983) [24] and applied in the empirics of growth by Levine and Renelt (1992) [25].
In that study variables were classified as "robust” and "fragile” and the ones that
survived the different model specifications based on different variable combinations
were essentially the "Solow” type variables.

Within the FMA approach there has been a variety of criteria proposed to achieve
the averaging such as Mallows model averaging estimator (MMA), the jackknife
model averaging estimator (JMA) and its generalized version, focused information
criterion model selection (FIC) and plug-in averaging estimator (Plug-In) as well as.
The literature on FMA, starting with Hansen (2007) [19], Liu (2015) [27] and Zhang
and Liu (2019) [42] focuses on the limiting distributions of least squares averaging
estimators for linear regression models in a local asymptotic framework.

In this paper we will extend the analysis of the generalized Jacknife Model Aver-
aging (JMA) and the Mallows Model Averaging (MMA) criteria within a stochastic
dominance framework. Specifically, and in the spirit of Zhang and Liu (2019) [42],
we consider a version of the MMA estimator where the regularization parameter con-
verges to zero with the sample. We then consider a vector valued criterion consisting



of both the MMA and JMA criteria with the purpose of constructing averaging
estimator via utilizing information from both methodologies. Using a multiobjec-
tive optimization approach, we consider averaging estimators that approximate a
potentially infeasible solution that jointly minimizes both criteria, emerging from a
stochastic dominance perspective. We also consider averaging estimators that emerge
from the minimization of several scalarizations of the vector criterion; we consider
scalarizations emerging from the ¢? norms of the multi-objective function, as well
as a scalarization emerging from the consideration of Nash bargaining solutions in
social choice contexts. The proposed estimators are given as ¢, ¢2, /*° and Nash and
their properties will be developed below as well as that of the approximate bound
(AB-see Arvanitis et al. (2021) [5]).

We derive the limit theory of the estimators under both a correct specification and
a misspecification framework. In the latter case the set of statistical models is globally
misspecified due to the erroneous exclusion of DGP regressors from the analysis.
The limit theory depends on the rates at which the MMA and JMA regularization
parameters are asymptotically nullified, and it is identical to all considered averaging
estimators in the correct specification case; the weights converge in probability to
the deterministic vector that picks up the minimal correctly specified model. A
richer theory emerges in the misspecification case, where even though the weights
in all cases are asymptotically deterministic, their limits are in some cases distinct
reflecting differing use of information of the dependence between the regressors used
in the analysis.

Monte Carlo experiments are also provided suggesting occasional cases where the
averaging estimators proposed here provide with provide with bias and/or MSE/MAE
reductions in both the correctly specified and the misspecification scenarios, espe-
cially for the estimators emerging from the stochastic dominance considerations and
the Nash bargaining solution criterion. Characterizations of the averaging estimators
above in the context of conservative optimization are also provided; the robustness
analysis is conformable to the findings of the Monte Carlo experiments regarding the
behavior of the stochastic dominance based and the Nash averaging estimators in
the context of misspecification.

An empirical application from economic growth is also provided; our findings are
contrasted with the ones from existing methods-like the much earlier study of Levine
and Renelt (1992) [25]. Overall, our proposed methods allocate heavier weights
towards models formed by the fundamental Solow growth regressors (Solow, (1956)
[38]; Mankiw et al., (1992) [29]), but do not dismiss models that contain auxiliary
regressors that underpin the importance of geography (Diamond, (1997) [12]; Gallup
et al., (1999) [36]; Sachs, 2003) and institutional quality (Acemoglu et al., (2001) [1];



Rodrik et al., (2004) [35]).

The remaining structure of the paper is the following: Section 2 describes the
regression models background, Section 3 discusses the basis averaging criteria, namely
the modified MMA and the Zhang and Liu (2019) [42] modification of the JMA
criterion. Section 4 derives the limit theory of the modified MMA estimator and
contrasts it with the analogous derivations of Zhang and Liu (2019) [42] for the JMA
case. Section 5 introduces the proposed averaging estimators based on the multi-
objective function that contains both the aforementioned criteria. Their conservative
optimization characterizations are derived along with their limit theory under correct
specification and the consistency of a sub-sampling estimator for their asymptotic
variance. Section 6 contains the limit theory in the misspecification case, and Section
7 discusses potential extensions. Section 8 contains the Monte Carlo experiments.
Section 9 contains the empirical application on growth and Section 10 concludes.
The appendices contain the proofs of our theoretical results and the tables with the
results of our Monte Carlo experiments and our empirical application.

2 Background

The linear model background of Zhang and Liu (2019) [42] is considered. Specifically,
the following linear regression in matrix form is examined:

y =Xif1 + Xof +e, (1)

where the dependent variable y is a random n-vector, X is the core regressors n x Ky
random matrix, X, is the auxiliary regressors n x K, random matrix, and ¢ is the
random n-vector of errors. [3; and S5 are the associated unknown parameter vectors.
From the above an array of M := K, + 1 statistical models is formed. The m™
model is formed by the regression consisting of the core regressors, accompanied by
the initial m — 1 auxiliary regressors, excluding the remaining Ky — m + 1 ones.
The ordering of regressors is considered irrelevant. As in Zhang and Liu (2019) [42],
it is assumed that there exists a maximal K; < M, < M for which the models
m = 1,..., My are considered misspecified, in the sense that they have non-zero
sloped omitted regressors. M, thus represents the minimal well specified regression.
The regressors included in the m'™ model are X,, := XII' , where X = (X, Xs),
and 1L, := (Ix, xkm> Okpx (K —kpn)), Where k,, = K1 + m — 1, K = K; + Ky. The
unrestricted OLSE for 3 := (3, 83) in the m'™ model is £, := I (X! X,,) X" y,
and for w an element of the M — 1 unit simplex, the resulting OLSE averaging
estimator of 5 is f(w) := Z%:l W Om.-



3 Basis Averaging Criteria

Given the projection matrices P, := X, (X, X,,)" X!~ m = 1,--- , M, the av-
eraging (across the models) projection is P(w) := Zf\n/lzl W, P, Furthermore,
o2 = (n — K)7 Yy — XBui||?, where || - || denotes the Euclidean norm, ¢,, ¢x-

potentially stochastic or data dependent-regularization parameters that depend on
n. P(i,i)n, is the i*" diagonal element of P,,, and D,, is the diagonal matrix with
it" diagonal element equal to m Finally, K := (kp)m=1. -

The Mallows Model Averaging (MMA) criterion is defined as

Mo (w) = [[(Lixn — P(W)y|* + dron K'w. (2)

The original criterion (see Hansen (2007) [19]) is recovered when ¢; = 2. The
Mallows weights are then defined by the optimization problem specified as wyna €
arg mingcan—1 M, (w), where A1 is the standard M — 1 dimensional unit simplex.
The Mallows averaging estimator of J is then Syma = B(Wy,nma). Existence and
uniqueness is ensured by standard arguments-see Hansen (2007) [19].

The generalized Jacknife Model Averaging (JMA) criterion-see Zhang and Liu
(2019) [42]-is defined as

Ta(W) = [[(Dyn(P(W) = Tnsn) + L)Y [ + 0nK'w. (3)

The JMA weights are then defined by the optimization problem

Winma € arg mingeam-1 J,(w). The JMA estimator of 8 is then Sypya 1= B(Wpm gma)-

Essentially the JMA methodology rests on the leave one out cross validation technique-
see Racine (1997) [33], while due to the form of the D,, matrix, it takes into account

the possibility of forms of conditionally heteroskedasticity for the errors.

4 Limit Theory for the Basis Averaging Estima-
tors

The limit theory (as n — oo) of the generalized MMA estimator is obtained. The
analogous limit theory for the generalized JMA is derived in Zhang and Liu (2019)-
see Th. 5 there. A mild assumption framework is first introduced; it is almost
identical to conditions C.1-C.4 of Zhang and Liu (2019) [42]; in what follows ~
denotes convergence in distribution:

A1 n XX~ Q= E(X X)), with Q pd. Xy denotes the first row of X.
A2 2X'e v 7~ N(Og 1, V), with V = E(e2X,X}) positive definite.
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A.3 sup;<,, sup,,<pr Prn(i,7) = 0,(n™").
Adn 'Y 22X X~ Vand not Y0 27~ 0?2 > 0.

i =11

In time series settings A.1 and A.4 are expected to hold under conditions of sta-
tionarity and ergodicity, as well as tail decay conditions for the marginal distributions
of the random variables involved. Similarly, A.2 would follow under additional mix-
ing conditions, as well as linear independence for the random elements that appear
in the form of the asymptotic variance. Approrpiate notions of exchangeability could
validate the aforementioned assumptions in non-time series settings. As Zhang and
Liu (2019) [42] point out, A.3 is weaker than the analogous condition in Andrews
(1991) [3].

A limit theory for the generalized MMA can be obtained via the proofs of Th.
3-4 of of Zhang and Liu (2019) [42]; here the fact that the matrices D,, and I, x,, —

D, = diag(f”’—’)’ﬁ),- do not affect the criterion, which is also self normalized due to
1 P(1’0>m

Assumptions A.1-2, imply that the rate of divergence of the regularization parameter

¢* can be unrestricted. In what follows, and for k € {My +1,..., M}, w*) denotes
the k'™ element of the AM-! simplex, i.e., wo = Ix(m), with I(-) denoting the

indicator of the k™ coordinate:

Theorem 1. Suppose that A.1-A.4 hold, and that ¢}, — oco. Then,

WAMA ~ arg IIAHAIII ) K'w = c?K'wMotD), (4)
weAM-
Furthermore,
n?(Bania — B) ~ V*z ~ N0 VVVY), (5)

with V* = g1 (M1 QMg 41) " Mg i1+ Finally, ¢ (wiaa — wMot) = o,(1).

Th. 5 of Zhang and Liu (2019) [42] provides the limit theory for the JMA es-
timator; the regularization parameters’ growth to infinity is restricted due to the
dependence of the criterion on the P,, matrices and their asymptotic behavior as
prescribed by A.3:

Theorem 2. Suppose that A.1-A.4 hold, and that ¢, — oo, while % — 0. Then,

Wi ~ arg min K'w = K'wMo+D), (6)

WEAS/I_l
where Aéw_l = {W e AVl w, =0,VYm=1,..., MO}. Furthermore,
n'*(Bya — B) ~ V*z. (7)

Finally, ¢,(wya — wMotD) =0 (1).



Essentially, J,, epi-converges in distribution (see Knight (1999) [22]) to the lin-
ear function w — K'w, something that results to (6) from Prop. 3.2 in Ch. 5
of Molchanov (2006) [30] via the use of Skorokhod representations justified by Th.
3.7.25 of Gine and Nickl (2021) [17]. By construction then the limiting criterion is
uniquely minimized at w(*o+Y) The rate result along with the restrition #n/\m — 0,
implies that the above are non informative on the issue of asymptotic tightness for
Vi(wia — wtor),

Both estimators thus share the limit theory of the OLSE for the (latent) minimal
well-specified model. Asymptotic normality is the case due to the incorporation of
the diverging penalization parameters in their definition.

5 Multi-objective Model Averaging

The MMA and JMA averaging criteria can be jointly used in order to construct a
stochastic dominance relation on the AM~! simplex. The rationale of the relation is
that convex combination w dominates another w*, iff the first attains lower values
when evaluated-and thereby is "preferred”-by both M,,, and 7,. Formally,

w = whiff M, (w) < My(w”), and, Jnp(w) < Jn(w”).

The (pre-) order reflects the following problem of multi-objective optimization (here-
after MOOP-see for example Hwang and Masud (2012) [21]): ming W, (W), where
the minimum is considered w.r.t. the pointwise order on R?, for the R-valued ob-
jective w — W, (w) := (M,(w), J,(w)) comprised of both the MMA and JMA
criteria.

Any maximal element of the (pre-) order, i.e. any solution of the aforementioned
optimization problem-which would seldomly exist-corresponds to an element that
simultancously minimizes both criteria, hence dominates every other possible weight.

Any non-dominated-or (Pareto) efficient-weight, must be necessarily preferred
over any other weight, by at least one of the associated criteria; the latter generally
depends on the alternative weight choice to which the efficient element is compared.
Thus, the maximal-when existent, or the weights that minimize at least one of the
criteria, i.e. Wynia, or Wyya are examples of efficient elements of the order. Those
however may not be the only cases of efficiency. In general, w is efficient iff for
any weight w*, for which M,,(w) > My (w*) (respectively J,(w) > Jn(w*)) holds,
then J,(w) < Jn(W*) (respectively M, (w) < Mu(w*)). In general, the location of
the set of efficient elements of a (pre-) order and the derivation of its properties lies
within the scope of the theory of MOOP.



A type of efficient element of stochastic dominance (pre-) orders, that is of general
interest in portfolio selection applications, is that of the approximate bound (AB-sce
Arvanitis et al. (2021) [5]). This-in the present context-is defined via the following
optimization problem:

min sup (G(w) — G(w").
weAM-1 GE{Mp,TntwreAM -1
Negativity at the minimum of supgeqag,,7,1,wrear-1(G(W) — G(W*) is equivalent to
the existence of a maximal element. More generally, any weight w that solves this
problem is an efficient element of the order; if this were dominated then any dominant
weight would further diminish the criterion supgea, 7,3 weear—1(G(W) —G(w*) due
to transitivity.
The optimization problem above can be equivalently re-expressed as:

min max {(My(w) = My (Wana)), (Tn(W) = Tn(Wina))} (8)

wEA

the optimal value of which can be easily seen to be less than or equal to the optimal
value of

: M (w) — : in G(w)), (T (w) — . e 7
fin  max {( (w) Ge{r/?/llﬁjn} min (W), (Tn(w) Ge{%lfj,,} min (W))}
and greater than or equal to the optimal value of
i M (W) — inG(w)), (Jn(w) — in G :
i max {( (w) Gefmax | min (W), (Tn(w) gefmax | min (W))}

Both the optimization problems that act as bounds above share the same set of opti-
mizers, notably the minimizers of the ¢*° norm of W, (w). Minimization of this norm
w.r.t. w would also lead to an efficient element of the order; if the optimizer were
dominated, the dominant weight would challenge the optimality of the dominated.

The aforementioned optimization problem are both examples of scalarization (see
Hwang and Masud (2012) [21]); the vector criterion is transformed to a real valued
criterion. The use of the /> norm above can be generalized to 7 for any p > 1 on
R2. The following definitions summarize those constructions:

Definition 1. The AB weights are defined by:
wap € arg min max {(M,(w) — M (Warna)), (F(W) — Tn(Wana))} -

Subsequently, the AB estimator of [ is defined by

M
ﬁAB = Z Wm,ABBm-
m=1
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Definition 2. The 7 weights are defined by:

Wer € arg min_ [ Wa(w)]l,.

Subsequently, the /# estimator of 3 is defined by

M
ﬁﬂ’ = Z Wm,fpﬁm~
m=1

The solutions of the optimization problems defined above are not invariant to re-
scaling of M,, and/or J,,. Scaling invariance holds for the Nash bargaining solution
to the associated MOOP (see Ch. 32 in Aumann and Hart (1992) [7]). Here the basis
criteria are treated as players in a context of "social” choice; the optimal weights are
chosen so as to be efficient, scaling invariant, symmetric and independent of irrelevant
alternatives. The following definition is then motivated:

Definition 3. The Nash weights are defined by:
Whash € arg eﬂiiM_l(Mn(W) — M (wWina) ) (T (Wama) — T (W),

s.t.

Mn(“’Nash) S Mn(WJMA) and j(WNash) S j(WMMA)
Subsequently, the Nash estimator of 3 is defined by

M
ﬁNash = Z Wm,Nashﬁm'
m=1
Existence of the optimal weights in all the above cases is established by the
compactness and separability of the AM~! simplex, the continuity of M, and 7,,
the continuity of the /” norms and the multiplication operation, and Theorem of
Measurable Projections (see Par. 1.7 of van der Vaart and Wellner (1996) [41]).
The transitivity of the dominance relation implies that any weight that conforms
to any of the definitions above is an efficient element of the relation. In the following
paragraphs statistical properties of the aforementioned methodologies of choosing
efficient elements are discussed; a conservative optimization characterization is first
documented, based on the penalties present in the basis criteria. The MOOP pro-
cedures in some cases imply further conservatism. The relevant limit theories are
also derived; to the first order all the considered methodologies are indistinguish-
able as they asymptotically choose the most parsimonious well specified model. Fi-
nally, misspecification in the form of omitted variables is also considered; the MOOP
methodologies can in some cases partially alleviate the effect of misspecification on
the inconsistency of the OLS estimators for the remaining parameters.
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5.1 Conservative Optimization Characterizations

The optimization problems appearing in the optimal weights selection in each of the
previous methodologies are characterized as problems of conservative optimization;
this is essentially based on the penalization factors that occur in the MMA and
JMA objectives, along with results on convex duality for robust optimization (see
for example Lemma 1 of Gao, Chen, and Kleywegt (2017) [16]).

Some needed notation is initially established: T, denoted the emprical distri-
bution (ecdf) of (y,X). For P an arbitrary distribution on R***and ¢ (p) such
that % + % = 1, the (first) Wasserstein distance between P and F,, is defined by
W (F,,P;p) := minerw,p) [ |2 — 2%, dv (2,2%), where T (Fz,P) denotes the set
of Borel probability distributions that have respective marginals F, P, and also
have finite first moment (see Gao, Chen, and Kleywegt (2017) [16]). W metrizes
weak convergence-see Rahimian and Mehrota (2019) [32]. For € > 0, N, (F,,¢€) :=
{P: W (F,,P;p) < e} is the Wasserstein closed ball centered at F,, with radius e.

The results are summarized in the following theorem-there unindexed suprema
denote elementwise suprema over the support of (y,X;):

Theorem 3. Suppose that (a). the distribution of (y:, X;) is independent of i, (b).

the support of the distribution of (y1,X1) is compact, and (c¢). min;—y K; > 1.

Then, for €1 1= 9175/2(sup ly1|(1+supy, sup [[P(w)1]), and €3 := n/2(sup |y1|(| D(w): [[+sup,, sup | D(w)P(w)1)]]),
and for any w € AM~1:

inf  M,(w)> inf sup  Ep(y: — (P(w)y)1)?, (9)

weAM—1 weAM-1 IPGNl(Fn7€1)

inf  J,(w)> inf sup  Ep((Dp(P(W) — Lisyn) + Lixn)y1)? (10)

WEAM-1 weAM =1l peay, (Fn,e2)

Furthermore, for ®,, ;= min(¢,, 20721); and €3 := ¥n/(—2 CS%

oRoR

_ . Ep(y1 —P(wW)y1)*+
f W > f
welilM—l H (W)Hl - welilM—l pej\il(l]gwey,)( ]EIP’((Dm(P(W) - Inxn) + Inxn)Yl)z

). (11)

Finally, the infimum of the Nash criterion in greater than or equal to

inf max( sup Ep(y1—(P(wW)y)1)?, sup Ep((Dp(P(W)—TIhxn)+luwn)y1)?.
weAM-1 P€N1(Fn,61) PE./\/1(]Fn,62)
(12)

Condition (a.) in the previous result is trivially satisfied in strictly stationary
time series settings. Condition (b.) is quite strong, it however seems indispensable.
Condition (c.) is trivial.
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The results indicate that for fixed n, the basis criteria obey more conservative
characterizations than similar criteria with penalizations based on 2 norms of the
weights that also have disributionaly robust characterizations over Wasserstein neigh-
borhoods of the empirical distribution. This is due to due to the form of the penaliza-
tion factors of the basis criteria. The multiobjective ¢! criterion, partially alleviates
conservativeness by employing smaller neighborhoods; however it also dominates a
strictly larger criterion along with a strictly larger penalization term w.r.t. the crite-
rion it is compared. The Nash criterion is even more conservative than both the basis
criteria, as well as than the approximate bound criterion. The latter is obviously by
construction more conservative than both the basis criteria. As such, both the Nash
criterion, as well as the AB one are expected to have superior robustness properties
in cases of misspecification.

5.2 Limit Theory

Theorems 1-2 almost directly provide the limit theory of the multi-objective averaging
estimators. Specifically, the following results are obtained:

Theorem 4. Suppose that A.1-A.4 hold, and that min(¢,, ¢;) — +oo, 2—:’1 — C €
[0, +00], while max(¢r, ¢n) = 0,(v/n). Then,

Wap ~ arg min max(0*1osg, C oo + lomg) K/ (w — wMot)), (13)
weEA) T
Also, max(¢%, ¢,)(wap — wMot) = o (1).
Under the same conditions,
We ~ arg min (0%1aso + (C s + lemo)?) "K'w. (14)
WEAS/I_l
Also, max(6, 6,) (wa — WMD) = 0,(1).
Suppose now, that A.1-A.4 hold, and that min(¢,, ¢r) — +oo, while ¢, =

op(v/n). Then,
Whash ~» arg min o (K'(w — wMo1)))2, (15)
WEAS/I_l
Also, max(¢%, ¢n) (Wyasn — wotD) = o (1).
Subsequently, under A.1-A.4, and and that min(¢,, @) — +oo, while ¢, =
0,(v/n), then for J = Nash,

(B = B) ~ V'a. (16)
If moreover i—i — C € [0,400], while ¢} = o0y(y/n) then (16) also holds for J =
AB, /».

11



The AB and the ¢7 cases require the ¢} = o0,(v/n) condition, due to the scale
variance of the associated criterion. The scale invariance of the Nash criterion avoids
such restrictions. The weights estimators, due to their convergence to the minimal
well specified model-become asymptotically scale invariant. The parameters’ estima-
tors are thus asymptotically normal. The limit theory is not fine enough so as to be
able to discriminate between the estimators involved under the particular assumption
framework.

5.3 Subsampling Estimation of Asymptotic Variance

The Multi-objective Model Averaging estimators converge to the limiting distribution
of the OLSE for the minimally well specified model. Due to the latency of the latter,
the limit theory cannot be directly used for inference; the asymptotic variance cannot
be directly and consistently estimated via analogy. One way to circumvent this is
via resampling. In what follows a subsampling approach for the estimation of the
asymptotic covariance matrix is presented in a stationary and ergodic time series
setting which conforms to our empirical application later on.

Specifically, let b < n and given the sample (y,X) consider the the sub-sample
sequence ((y,X);,. j+b—1)j=1n—b+1. Then, B;,; denotes the MA estimator over the
4™ subsample, for J = AB, (P, Nash. The subsampling variance is then defined as
Vo = 5oy 2 P (8- D gt Ba) (Bag = iy 2ot Bag.)s In
a time series context of strict stationarity and strong mixing we obtain the following
weak consistency result:

Theorem 5. Under A.1-A.4, and, min(¢,,¢;) — +oo, and for J = AB, (7,
% — C € [0,+00], max(¢dk, dn) = o,(/n), while for J = Nash ¢, = 0,(v/n),
and if (a.) (y,X) is stationary and strongly mizing, and (b.) for some € > 0,
E(|| X e1]|*¢) < 400, and (c.) b — oo, b¥/n — 0, then:

Vi~ Var(V*z). (17)

V.7 is thus a weakly (actually and L?) consistent estimator of the asymptotic
variance, and can therefore be used for inference. A slight modification of the es-
timator, in which the weights are held constant on the original sample can be also
proven consistent in the present framework. This is associated with minimal compu-
tational burden (see for example Section 4 and Proposition 2 in Arvanitis, Scaillet
and Topaloglou (2023) [6] for a similar approach). The result can also be extended
in non-time series contexts involving exchangeability or more generally invariance of

the underlying joint distributions under groups of transformations (see for example
Austern and Orbanz (2022) [8]).
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6 Misspecification

The effect of globally omitted variables misspecification on the averaging procedures
is now considered. For notational simplicity and without loss of generality it is sup-
posed that K; < M, and the X, regressors submatrix is omitted from the statistical
models at hand. Thereby every model considered is now misspecified. Under A.1
and A.2 it is readily seen that 3, ~ I (15, 4+ (IL%, QT )~ II;, QI Tk, ) 3, with
I, = (O (ki) x K1 > Lo — K0 ) x (e — K1) > Ok — K1) (K—k) ). INCONSistency is then the
case for every model included. Partial consistency, i.e. consistency for the OLSE
for the non-omitted regressors slopes occurs iff 1T}, QI is a zero matrix, i.e. every
included regressor is "asymptotically orthogonal” to every omitted regressor. In the
present framework M = Ks. The definitions of the model averaging estimators for
B are accordingly modified in all cases. The interest lies in the limiting behavior
of model averaging under this framework of global misspecification. Would they for
example chose models for which the term (ITf,QIL%) 15, QI Ik, ) is “minimal”,
approximating thereby partial consistency for the remaining correct regressors?

The following result concerns the limiting behavior of the MMA estimator under
A.1, A.2 and A.4; there we have that K* := (1,2,...,K>), and ¢? := 02 + 5'(Q —
QIIig, (I}, QI ) I3, Q) -

Theorem 6. Suppose that A.1, A.2 and A.4 hold, in the global misspecification
framework. Suppose also that % — C € [0,+0c]. Then,

WMMA ~> Wipa i= arg weniifl‘}*l Me(w),

where Mc(W) := AW)1ocioo +02(Cloccetoo + Lo—to) K* W, where now, A(w) :=

i * * * N —=17T* *
>t =1 Wi Wins FQUn (WL Qb | Q1L — 2307 W B QI (T, QTT) T TT4,QB

= (T, QI ) 7T, QB
Finally,
K>
Bunia ~ > Wi ()T (IT, + (I,QTL) ', QI i )5 (18)
m=1

When C' = +c0 it is obtained that Symia ~ 11} (I} + (I QI ) T IQIT Ik, ) 3,
i.e. the simple regression model is asymptotically picked. When C' # +oo then
the limiting covariance between the regressors that appear in the underlying mod-
els is taken into account, and larger weights are attributed to models with more
pronounced asymptotic signals H;QH;;.

13



The proofs of Th. 3-5 of Zhang and Liu (2019) [42] directly imply that under
A.1-A .4, and if ¢, = 0,(v/n), 1T (W) converges weakly, and locally uniformly over

AM=1 modulo constants that do not affect optimization, to A(w), while -7 (w) is
asymptotically non tight, due to the behavior of the MMA part of the JMA criterion

(see Th. 3 of Zhang and Liu (2019) [42]). This then implies the following result:

Theorem 7. Suppose that A.1-A.4 hold in the global misspecification framework.
Suppose also that ¢,, = 0,(y/n). Then,

(0.¢] . :
WIMA ~* Wi = arg min A(w).
w

If, furthermore, %” — C €0, +00], then,
WAB ~ WA

and
W(oo ~ Wli./([)MA’

Furthermore, when p < +0o0,

kS

W~ Wop 1= argweniiﬂl}_l R(w)?,
UJhGTB, R(W) = (A(W)10<+oo + 03(010<C<+oo + 1C=+oo)K*/W)p + (A(W)10<+oo)p'
Finally,

Wit~ Wi, = arg min (Mo(w) — Mo(wiie)) (A (WRha) — Aw))

s.t. Mo(w) < Ma(Wia), AMwinga) = A(w).

Consequently, for J = JMA, AB, (P, Nash,
Ko
By~ Y w ()T, (I, + (10, QIT,) ' TT, QT T, ) 6. (19)
m=1

The regularization constraints become asymptotically negligible for the JMA
methodology since the restriction ¢, = 0,(y/n) is retained in order for a unified,
with the case of well specification, statistical methodology to be possible.

The limiting behavior of the parameter ¢} influences the asymptotics of the multi-
objective methodologies, as those asymptotically take into account the regularized
MMA criterion. When C' = 0 then the asymptotic weights are identically equal to
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Wit i all cases considered in the previous theorem. The regularization parameters
are diverging slowly enough so that the scaled criteria considered essentially converge
to A. When C' = +o00, so that ¢} diverges quickly, the AB and the /¥ methodologies
are again asymptotically equivalent to the MMA; the weights asymptotically pick
up the minimal simple regression model. This is not the case for JMA and Nash;
the asymptotic optimal weights retain information on the asymptotic covariances
between the regressors appearing in the misspecified models. When 0 < C' < 400,
the latter is also true for the JMA, /7 and the Nash methodologies. Compared to the
MMA methodology, the ¢P-for finite p-and Nash methodologies seem to asymptoti-
cally attach more significance to the aforementioned limiting covariances, due to the
presence of the A(w) term in their limiting criteria, without completely asymptoti-
cally denouncing the regularization, as in the case of the JMA methodology. Hence,
they search for a combination of model parsimony with the greater possible signal
for the well specified regressors.

The asymptotic framework above also provides for some motivation for the con-
sideration of the multi-objective optimization methodologies. There are cases, 0 <
C < 400, and methodologies, namely the 7, for p < 400, and Nash, that attribute
more significance, compared to the MMA, to well specified regressors signal, yet do
not abandon parsimony.

7 Discussion

The limit theory for the case of correct specification allows for a direct extension
to data dependent penalization parameters. The results hold unaltered whenever C
is a well defined almost everywhere non-negative random variable that could attain
extended values with positive probability. This seizes to be generally the case in the
global misspecification framework; it is not difficult to see that when C' is a random
element, the (P, for p < +o00, and the Nash weights would have stochastic limits.
Further investigation of data dependent regularization is also left for future research.

The misspecification results of Th. 19 depend crucially on A.3 that essentially
regulates the asymptotic behavior of P,,. The op(n_%) rate for its diagonal elements,
implies locally uniform asymptotic negligibility for the non-MMA part of the JMA
criterion apart from the regularization term. Hence, information on potential forms
of conditional heteroskedasticity is lost by every averaging estimator considered here.
This kind of information may be recoverable under other forms of A.3. For exam-
ple, when as n — oo, D,,, under some appropriate topology, converges to a tight
random operator, then the scaling of the JMA criterion by (nlc< oo + ¢5lo=ioo) "
would produce asymmptotic terms that would be associated with this limit, thus
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analogously affecting the limit theories of the multi-objective averaging procedures.
Again, the investigation of such extensions is also delegated to further research.

8 Monte Carlo Experiments

In this section finite sample properties of the averaging estimators considered above
are approximated through a Monte Carlo study.

The design follows closely some of the Monte Carlo experiments of Zhang and
Liu (2019) [42]. Specifically the DGP has the linear form that appears in (1), where
Ky =2, Ky =8, M =9, the first column of X 1, is constant, i.e. X;; =(1,1,...,1)",
for the ™" row vector consisting of the it" eclements of the remaining regressors,
ie. (Xjz2,Xs);, we have that it follows N(0Ogyx1,Xx), where Xx is a 9 x 9 matrix
with diagonal elements equal to 0.7, and off-diagonal elements equal to 0.72. Those
regressors’ row vectors are independent across ¢ = 1,...,9. ¢; has the martingale
difference form of w;o;, with the u;s being iid and independent of the regressors. (A) in
the homoskedastic case, u; ~ N(0, 1) and o; = 2.5 identically over i = 1,...,n, while
(b) in the heteroskedastic case, u; ~ t4 and o; = A+2Xi2)H4X25(O)/3 Vi = 1,... n.
Assumptions A.1-A.4 are trivially satisfied in this setup. The following cases for
the population regression coefficients are considered:

C.1 8= (1,1,0.5,0.5%0.53,0.5%0,0,0,0Y,
C.2 8= (1,1,0.5%0.5%,0.52,0.5,0,0,0,0), and,

C.3 3=(1,1,0.5,0.5%,0,0,0.5%,0.5,0,0)".

As far as the analysts’ choice of the regressors’ matrix is concerned, two cases of
specification are considered. In the first case of “correct specification” the regressors’
matrix used is the full matrix of regressors in the DGP, i.e. X. Thus, My-that in
this case represents the number of regressors in the minimal correctly specified model-
equals 4 in C.1-C.2, and equals 6 in C.3. In the second case of "misspecification”, the
analyst uses as a regressors’ matrix X without the second core regressor. The analyst
erroneously considers as core regressors X;; and Xs;, and 7 auxiliary regressors
emerging from X, by deleting its’ first collumn. Thus in this case, the number
of statistical models considered M = 8, and every one of them is misspecified, i.e.
My = 8 for C.1, C.2 and C.3.

The sample size, n, is set equal to 100 and 400. The multiplier coefficients that
appear in the definitions of MMA and JMA (i.e. ¢} and ¢, respectively) are set equal
to 0.001 x n and ,0.05 x In(n) respectively, whereas ¢:/n — 0.001, ¢»/\/n — 0, and
¢/¢, — 00. Those choices correspond to convergence to non-stochastic weights and
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asymptotic selection of the narrowest well-specified model under correct specification
for all estimators. Under global misspecification those choices are relevant to the
limiting choice of the narrowest regression model for all the considered estimators
except for the JMA and Nash.

The numerical evaluation of the MMA and JMA estimators is performed on
simple modifications of the Liu (2015) [27] freely available Matlab code that among
others involves optimization solvers for quadratic programming. The evaluation of
the multi-objective estimators is also performed in Matlab using the fmincon solver
for non-linear (interior point or convex) programming. For the sample sizes involved
in the experiments and the empirical applications, the cumulative time spent on
optimization for all the estimators involved using computers with five-core chip-sets
does not exceed 3-5 seconds.

The number of Monte Carlo replications is set equal to 1000. Similarly to Zhang
and Liu (2019) [42], the Monte Carlo variance, MSE, MAE and bias are reported
for the simple averaging (SimAve), MMA, JMA, ¢, ¢ />, Nash, and AB averaging
estimators for (3, in the case of "correct specification”, and for f3 in the case of
"misspecification”. In both cases the Monte Carlo mean of the squared Euclidean
norm of the weights as well as the Monte Carlo rounded mean of the first two models
at which the weights are maximally concentrated for all the methodologies above are
also reported in order to obtain a sense of the finite sample analogy of the asymptotic
concentration of the averaging estimators as reported by the limit theories of the
previous sections at least in the case of correct specification, as well as the models
at which they maximally concentrate on average.

This information is reported in Tables 1-5. Specifically, Tables 1-2 provide infor-
mation on the Monte Carlo variance-bias trade-off and the MSE-MAE divergences
from the DGP value in the case of correct specification. Tables 3-4 deal with the anal-
ogous information regarding misspecification. Finally, Table 5 provides the aforemen-
tioned information regarding the weights. Specifically, for each averaging estimator
it presents the Monte Carlo mean of the sum of squares of its” weights, as well as a
vector of two integers. The vector’s first component represents the rounded Monte
Carlo mean of the statistical model at which the maximum weight is attributed, and
the second component the rounded Monte Carlo mean at which the second maximum
weight is attributed. There the number 1 corresponds to the narrow model, i.e. the
one that contains only what the analyst considers as core regressors, and the number
1 < m corresponds to the model that besides the core contains also the first m — 1
regressors from the regressors’” matrix. m < s, where s = 9 in the case of "correct
specification” and s = 8 in the case of misspecification.

The simulation results do not seem to favour uniformly any of the considered
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estimators. The MMA estimator seems to in several cases induce less bias compared
to the simple averaging one, usually at the cost of (sometimes significantly higher)
variance/ MSE/MAE. The JMA seems to usually improve the variance/ MSE/MAE of
the simple averaging estimator at the cost of higher bias (except for the first and the
third cases in the misspecification setup for n = 100 where it seems to also improve
on the bias). The multi-objective estimators seem to lie between those two cases;
they usually improve the bias of the JMA by incurring higher variance/ MSE/MAE,
that is usually significantly less than the ones for the MMA ;consider though the bias
improvements compared to the MMA that appear for the multi-objective estimators
in the correct specification heteroskedastic set-up for n = 400; in several instances
the multi-objective estimators provide with significant bias improvements compared
to the MMA achieving simultaneously in several cases significantly less variance or
MSE-see for example the performances of the /# and Nash estimators in Case 2, or
the one of the AB estimator in Case 1. The (> estimator seems uniformly close
to the JMA in terms of the aforementioned properties. The JMA seems to have a
uniformly better performance-in terms of bias and variance/MSE/MAE-in Case 1 of
the global misspecification scenario for both n = 100, 400, followed closely by the £>.

In terms of concentration the results show that the JMA typically is comparatively
the one with maximal concentration, again followed shortly by the ¢*°. The MMA
seems also to have high concentration for n = 100 that drops significantly-even
compared to the multi-objective estimators- for n = 400. In the n = 100 case
the Nash appears as the one of minimal concentration, something that is in several
cases also true for n = 400. The remaining multi-objective estimators concentrations
lie usually between those two case, mainly with significantly lower concentration
compared to the JMA-except for the *°. The MMA-especially for n = 100-seems
to favor the large models. This is partly alleviated when n = 400 in which cases its
model choices seem close to the ones of the AB. The JMA and the > seem to quite
frequently favor the second model, while the remaining estimators seem to also lie
between the aforementioned case usually favoring the fourth model.

The results depend on the choice of the penalization parameters ¢; and ¢,. Aux-
iliary results that are not reported here-yet are available upon request- suggest that
a choice of parameters equal to y/In(n) would imply, especially for n = 100, that the
multi-objective estimators would be greatly affected by the sparse selection behavior
induced by the large penalization terms, and become maximally concentrated on the
minimal models. They would induce some bias compared to the MMA and JMA ba-
sis case, while in several cases achieving impressive MSE/MAE improvements. The
optimal-in terms of finite sample properties-choice of the penalization terms is a non-
trivial task, that may be benefited by out of sample analyses, and it is left as an
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interesting issue for further research.

9 Empirical Application

This section provides an empirical application of the proposed methodologies along-
side the standard model averaging methods. One of the main areas in which the
model averaging methods is the cross-section growth regressions (see, e.g., Steel,
2020). As extensive numbers of explanatory variables are needed to explain the
growth differences across countries, model averaging provides a valuable and reliable
attempt to provide a selection and combination of models with different numbers of
explanatory variables. Therefore, to overcome (or limit) the model uncertainty, the
existing literature has been using model averaging methods (see e.g., Fernandez et
al., (2001) [14]; Sala-i Martin et al., (2004) [37]; Durlauf et al., (2008) [13]; Magnus
et al., (2010) [28]; Amini and Parmeter, (2012) [2]; Liu, (2015) [27]; Gunby et al.,
(2017) [18]; Arin et al., (2019) [4]; Cazachevici et al., (2020) [9], among many others).
In this section, we use the following standard model averaging methods: the Mallows
model averaging (MMA; Hansen, (2007) [19]), the jackknife model averaging (JMA;
Hansen and Racine, (2012) [20]); and estimators proposed in this paper: ¢!, ¢2 (>
Nash and AB. To provide a comparison of different growth regression models, we use
the same data set of Magnus et al. (2010) [14] and Liu (2015) [27], and the following
cross-section growth regression model is used:

growth = Xlﬁl + Xgﬁz + ¢, (20)

where growth is average growth rate of gross domestic product (GDP) per capita
between 1960 and 1996. X, represents the core regressors used in the classical
growth theory. In the application, we use different numbers of core regressors to
provide empirical evidence based on different core regressors. Five core regressors
include i) the logarithm of GDP per capita in 1960 (GDP60); ii) the share of the
equipment investment as a share of the GDP between 1960 and 1985 (INV); iii)
the primary school enrolment rate in 1960 (SCHOOLG60); iv) the life expectancy at
birth in 1960 (LIFE60); and v) the population growth rate between 1960 and 1990
(POP). Finally, a sct of auxiliary regressors, Xg, is included: i) the rule of law index
(RULE) as a proxy for institutional quality; ii) the proportion of a country’s land
area within geographical tropics (TROPICS); iii) Average of five different indices of
ethnolinguistic fragmentation (ETHNO); and iv) fraction of Confucian population in
1970 and 1980 (CONFUC). A detailed description of the data set could be obtained
from Magnus et al. (2010), and the number of countries used in the analysis is 74.
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For comparison of different model averaging methods, we use different number of
core regressors, leading to a set of model setups: i) Model A with one core regressor
(GDP60); ii) Model B with two core regressors (GDP60 and INV); iii) Model C
with three core regressors (GDP, INV and SCHOOLG60); iv) Model D with four
core regressors (GDP, INV, SCHOOLG60, and LIFE60); and v) Model E with five
core regressors (GDP, INV, SCHOOLG60, LIFE60 and POP). All of the models also
include a constant term.

Our parameter of interest is the log GDP per capita coefficient in 1960 to examine
the beta convergence. Our analyses for models A to E consider the core regressors
and include each auxiliary regressor one at a time to the model specifications. The
penalization parameters are both chosen equal to 107 x y/In(n) in order to avoid
maximal concentration due to large penalties. The estimation results for Models A,
B, C, D, and E are reported in Tables 6, 7, 8, 9, and 10 respectively. Finally, Table 11
provides the weights assigned to the coefficients of each model under the respective
scenario and Table 12 lists the regressors included in each sub-model in consideration
foe each respective scenario.

Overall, with scenarios A-E, in line with the Monte Carlo simulations, JMA
assigns full weight to the narrow model (i.e., model that contains core regressors)
and MMA allocates full weight to the model that contains all the core and auxiliary
regressors. On the other hand, our model averaging methods assign relatively more
weights towards the model with full set of regressors (i.e., full model) but also assigns
some positive weights to the majority of the rest of the models. Our methods allocate
more weights towards to models with all regressors including extended Solow growth
regressors (Solow, (1956) [38]; Mankiw et al., (1992) [29]) and auxiliary regressors
highlighting the importance of the geography (Diamond, (1997) [12]; Gallup et al.,
(1999) [36]; Sachs, 2003) and institutional quality (Acemoglu et al., (2001) [1]; Rodrik
et al., (2004) [35]). With respect to the initial GDP per capita coefficients, they tend
to be closer to each other.

10 Conclusion

Within a linear model background, we consider averaging methodologies that extend
the analysis of both the generalized Jacknife Model Averaging (JMA) and the Mal-
lows Model Averaging (MMA) criteria in a multi-objective setting within the context
of a stochastic dominance perspective. We also consider averaging estimators that
emerge from the minimization of several scalarizations of the vector criterion con-
sisting of both the MMA and the JMA criteria as well as an estimator that can
be represented as a Nash bargaining solution between the competing scalar criteria.
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We derive the limit theory of the estimators under both a correct specification and a
global misspecification framework and our Monte Carlo experiments suggest that the
averaging estimators proposed here occasionally provide with bias and/or MSE/MAE
reductions in both the correctly specified and the misspecification scenarios. An em-
pirical application using data from growth theory suggests that our model averaging
methods assign relatively higher weights towards the traditional Solow type growth
variables, yet they do not seem to exclude regressors that underpin the importance
of geography or institutions.

For future research, we would like to extend our framework to some nonlinear
settings, such as threshold regression and kink regression models, where the analy-
sis would allow for possible discontinuities and/or kinks in the regression function,
something that our current analysis has not considered.

Furthermore, methodologically, the multi-objective optimization framework can
be readily extended to include further basis averaging estimators, like the focused
information criterion (FIC) with a view towards local misspecification; see Claeskens
and Hjort, (2003) [10], and/or modifications of the MMA /JMA procedures so as to
incorporate sparsity restrictions in diverging number of regressors frameworks; see
Liao et al. (2021) [26]. A general theory of what properties of the basis estimators
are retained and/or combined via scalarization methodologies with a view towards
the optimal selection of penalization for the basis estimators and scalarization seems
like a fascinating issue for further research.

21



References

1]

2]

3]

[4]

[5]

(6]

7]

8]

[9]

[10]

[11]

[12]

Acemoglu, D., Johnson, S., Robinson, J.A. (2001). The Colonial Origins of
Comparative Development: An Empirical Investigation. American FEconomic
Review, 91(5), 1369-1401.

Amini, S.M., & Parmeter, C.F. (2012). Comparison of model averaging tech-
niques: assessing growth determinants. Journal of Applied Econometrics, 27(5),
870-876.

Andrews, D.W.K. (1991). Asymptotic optimality of generalized CL, cross-
validation, and generalized cross-validation in regression with heteroskedastic
errors. Journal of Econometrics 47, 359-377.

Arin, K.P., Braunfels, E., & Doppelhofer, G. (2019). Revisiting the growth ef-
fects of fiscal policy: A Bayesian model averaging approach. Journal of Macroe-
conomics, 62, 103158.

Arvanitis, S., Post, T., & Topaloglou, N., (2021). Stochastic Bounds for reference
sets in portfolio analysis. Management Science, 67(12), 7737-7754.

Arvanitis, S., Scaillet, O. and Topaloglou, N., (2023). Sparse spanning portfolios
and under-diversification with second-order stochastic dominance. mimeo.

Aumann, R. J., & Hart, S. (Eds.). (1992). Handbook of game theory with eco-
nomic applications (Vol. 2). Elsevier.

Austern, M., & Orbanz, P. (2022). Limit theorems for distributions invariant
under groups of transformations. The Annals of Statistics, 50(4), 1960-1991.

Cazachevici, A., Havranek, T., & Horvath, R. (2020). Remittances and economic
growth: A meta-analysis. World Development, 134, 105021.

Claeskens, G. and Hjort, N. L., (2003 a). Frequentist model average estimators.
Journal of the American Statistical Association, 98(464), 879-899.

Claeskens, G., Hjort, N.L. (2003 b). The focused information criterion. Journal
of the American Statistical Association, 98(464), 900-916.

Diamond, J.M. (1997). Guns, germs and steel: The fate of human societies. New
York: W.W. Norton & Co.

22



[13] Durlauf, S., Kourtellos, A., &Tan, C. (2008). Are any growth theories robust?
Economic Journal, 118, 329-346.

[14] Fernandez, C., Ley, E., & Steel, M. (2001). Model uncertainty in cross-country
growth regressions. Journal of Applied Econometrics, 16, 563-576.

[15] Gallup, J.K., Sachs, J.D., Mellinger, A.D. (1999). Geography and Economic
Development. International Regional Science Review, 22(2), 179-232.

[16] Gao, R., Chen, X. and Kleywegt, A.J., (2017). Distributional robustness and
regularization in statistical learning. arXiv preprint arXiv:1712.06050.

[17] Giné, E., & Nickl, R. (2021). Mathematical foundations of infinite-dimensional
statistical models. Cambridge university press.

[18] Gunby, P., Jin, Y., & Reed, W.R., 2017. Did FDI Really Cause Chinese Eco-
nomic Growth? A Meta-Analysis. World Development, 90, 242-255.

[19] Hansen, B.E. (2007). Least squares model averaging. Econometrica 75, 1175—
1189.

[20] Hansen, B.E., & Racine, J. (2012). Jackknife model averaging. Journal of Econo-
metrics, 167, 38-46.

[21] Hwang, C. L., & Masud, A. S. M. (2012). Multiple objective decision making—
methods and applications: a state-of-the-art survey (Vol. 164). Springer Science
& Business Media.

[22] Knight, K., (1999). Epi-convergence in distribution and stochastic equi-
semicontinuity. mimeo.

[23] Kourtellos, A., Stengos, T. and Tan, C.M., (2010). Do institutions rule? The role
of heterogeneity in the institutions vs. geography debate. Economics Bulletin,
30(3), pp.1710-1719.

[24] Leamer, E.E., (1983). Model choice and specification analysis. Handbook of
econometrics, 1, pp.285-330.

[25] Levine, R., & Renelt, D. (1992). A sensitivity analysis of cross-country growth
regression. American Economic Review,82, 942-963.

23



[26]

[27]

28]

[29]

[30]

[31]

32]

33]

[34]

[35]

[36]

[37]

[38]

Liao, J., Zou, G., Gao, Y., & Zhang, X. (2021). Model averaging prediction for
time series models with a diverging number of parameters. Journal of Econo-
metrics, 223(1), 190-221.

Liu, C.A. (2015). Distribution theory of the least squares averaging estimator.
Journal of Econometrics, 186, 142-159.

Magnus, J., Powell, O., & Prufer, P. (2010). A comparison of two model averag-

ing techniques with an application to growth empirics. Journal of Econometrics,
154, 139-153.

Mankiw, N.G., Romer, D., Weil, D.N. (1992). A Contribution to the Empirics
of Economic Growth. The Quarterly Journal of Economics, 107(2), 407-437.

Molchanov, 1., (2006).Theory of random sets, Springer Science & Business Me-
dia.

Politis, D. N., Romano, J. P., & Wolf, M. (1999). Subsampling. Springer Science
& Business Media.

Rahimian, H. and Mehrotra, S., (2019). Distributionally robust optimization: A
review. arXiv preprint arXiv:1908.05659.

Racine, J. (1997). Feasible cross-validatory model selection for general stationary
processes. Journal of Applied Econometrics, 12(2), 169-179.

Rockafellar, R. T., & Wets, R. J. B., (2009). Variational analysis (Vol. 317).
Springer Science & Business Media.

Rodrik, D., Subramanian, A., Trebbi, F. (2004). Institutions Rule: The Primacy
of Institutions Over Geography and Integration in Economic Development. Jour-
nal of Economic Growth, 9, 131-165.

Sachs, J.D. (2003). Institutions don’t rule: direct effects of geography on per
capita income. National Bureau of Economic Rescarch Working Paper No. 9490.

Sala-i Martin, X., Doppelhofer, G., & Miller, R. (2004). Determinants of long-
term growth: a Bayesian Averaging of Classical Estimates (BACE) approach.
American Economic Review, 94, 813-835.

Solow, R.M. (1956). A Contribution to the Theory of Economic Growth. The
Quarterly Journal of Economics, 70(1), 65-94.

24



[39] Steel, M.F.J. (2020). Model Averaging and Its Use in Economics. Journal of
Economic Literature, 58(3), 644-719.

[40] van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3). Cambridge univer-
sity press.

[41] van der Vaart, A. W., & Wellner, J. A. (1996). Weak convergence and empirical
processes with applications to statistics. Springer-Verlag New York.

[42] Zhang, X., & Liu, C. A. (2019). Inference after model averaging in linear regres-
sion models. Econometric Theory, 35(4), 816-841.

Appendix

Proofs
This appendix contains the proofs of the results.

Proof of Theorem 1. Skorokhod representations verified by Th. 3.7.25 of Gine and
Nickl (2021) [17] and the proofs of Th. 3-4 of Zhang and Liu (2019) [42] imply
the locally uniform convergence in distribution of q%*j\/ln to o?K'w. Then (4) fol-

lows from Cor. 5.8 of Van Der Vaart (2000) [40], the compactness of A}, and
the fact that the limiting criterion is uniquely minimized over Aé” “at Wt
The latter then directly imply (5). The rate follows from the following argument:
suppose that ¢ (wynga — wMotD) £ o (1). Let h = ¢f(w — wotl) H, =
{h; W € Aé”_l}, and notice that as n — oo, H,, converges in the Painleve-Kuratwoski
topology (see for example Par. 4.B in Rockafellar and Wetts (2009) [34]) to the con-
vex cone Hy = RY? x R x RY =1 Furthermore, for the modified criterion

1 y hm) him* h(m
o e, M — w080 - or) = 3 b s b o)
[~ ' h o ! .
%W%MOH))JE’ PpPe —23°M €' Pne + 02K'h, weakly converges locally uni-

formly over Hy, to o?K'h due to Assumptions A.1-2. Here h(m) denotes the respec-
tive component of hA. Furthermore, h,, is by construction the minimizer of /\/l(q% —

w Moty M (wMo+D)) - Since h,, is not further restricted to lie inside the o; sequences
inside Hy,, Cor. 5.8 of Van Der Vaart (2000) [40] implies that it weakly converges
to the minimizer of 02K’h which is the extended element (0,0,...,0,—00,0,...,0),
while the limiting criterion evaluated at its minimizer equals —oco. This is a contra-
diction since due to the proof of (4), and for h, := ¢*(wyna — wMoth), M(g—f —
W(Mo+1)) — M(W(Mo-i-l)) = 0,(1). ’ O
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Proof of Theorem 2. (6) and (7) follow directly from Th. 5 of Zhang and Liu (2019)
[42]. The final part follows from the proofs of Th.4 and Th.5 of Zhang and Liu (2019)
[42], and a similar contradiction argument to the one in the proof of Theorem 1. [

Proof of Theorem 3. The results follow directly form Th. 1 of Gao, Chen, and Kley-
wegt (2017) [16], the fact that K'w — ||w|| > 0 due to the Cauchy-Schwarz inequal-

ity, the relations between ¢? norms, and (c.), and due to the elementary inequality
inf(A + B) > inf A + inf B. O

Proof of Theorem 4. For the case of AB, Skorokhod representations, Theorems 1-2,
and the Lipschitz continuity property of the max imply the locally uniform conver-
gence in distribution of the AB criterion scaled by /g, to max(c?1csg, C oo +

v, C>0
Lo—o)K'(w — wMot)) for g, = qu o 0’. The rate follows from the Lips-

chitz continuity property of max and the in contradiction arguments in the proofs
of the analogous results in Theorems 1-2. The case of # follows analogously via the
Lipschitz property of the £ norm. For the case of the Nash estimator the result is
analogously obtained by considering the original criterion scaled by (¢,¢%)~!, using
arguments like the above, by also taking into account the locally uniform convergence
of the MMA and JMA criteria and the consistency of the respective optimal weights.
The rate follows from the boundedness of the MMA and JMA criteria, and the subse-
quent Lipschitz continuity property of multiplication along with the in contradiction
arguments in the proofs of the analogous results in Theorems 1-2. U

Proof of Theorem 5. The result follows from Lemma 3.8.1 of Politis, Romano and
Wolf (1999) [31], via the CMT and the Cramer Wold device, by noting that condi-
tion (b.) and stationarity-ergodicity imply the uniform integrability condition of the
aforementioned lemma. O

Proof of Theorem 6. The proof of Th. 1 of Zhang and Liu (2019) [42] and the anni-
hilating properties of the I,, — II,, matrices imply that in the present context of
misspecification, wyna equivalently minimizes
K> (X8 + e) XTI, (I, X' XL, )~ I, X
2o <1 W T (T XY XTI ) L X (X5 + e)
~2 2 W (X8 &) XTI (I, X XL )~ T, X (X6 + )
+olor K w.

A, (w) =
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/ ! XTI
Due to A.1, A.2 and A.4, 02 = I¥r Yn I

/
I, X/ XTIy, )1 My, X'yn
'IZ—KQ n—Kz
to A.1, A.2, we have that

~+ 02, Due
n n

L(XB+ &) XTI, (IL5, X XTI )~ I, X! - B' QI (1T, QITx, ) Iz, Q1T
x XTI% ., (T X XTI ) IS X (X B+ €) (I, QII% )~ I* . QB3 ’

and
(X B+ &) XTI, (1T, X' XTI,) 7T, X (X B + €) ~ B/QIT, (1, QI1,) 15, Q.
Thus, for g, := nlocioe + &5 1o— 100, locally uniformly on AM~1

1 /

g_An(W) ~ A(W)10<+oo + 03(010<C<+oo + 1C=+oo)K* w.
Then, the first result follows from the above, Cor. 5.8 of Van Der Vaart (2000)
[40], the compactness of AM~1 and the fact that the limiting criterion is uniquely
minimized over AM~!. The second result follows then readily. O

Proof of Theorem 7. The decomposition J,, = M, +K,—(02¢tK* —¢,K* )w that is
essentially established in the proof of Th. 3 of Zhang and Liu (2019) [42] is also valid
in the misspecification setting. K, is a quadratic form that becomes asymptotically
negligible, locally uniformly over AM =1 when scaled by (nlccioo + @5 lo—100) ! as
readily seen from the proofs of Th. 4-5 of Zhang and Liu (2019) [42]. As indicated
by the proof of Th. 4 this scaling is necessary in order for the MMA part of the
criterion to become asymptotically tight in the present misspecification setting. The
result then follows from the fact that ¢, = o0,(y/n) and the limiting behavior of
A, — Uiqb;K*'W as established in the proof of Th. 6. The limiting behavior of wya
then follows. The rest then follow via similar arguments to the ones establishing
weights consistency to the minimal model in the proof of Th. 4, where now the AB
and (P criteria are scaled by (nlo<cioo + ¢Xlo=100)” ', while the Nash criterion is
scaled by (nlocioo + @5 lomioo) 2 O
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Monte Carlo Results

Table 1: Simulation results in three cases for n = 100: Correct Specification.

| Homoskedastic Setup Heteroskedastic Setup
Method | Var MSE MAE Bias | Var MSE MAE Bias

Case 1 SimAver | 1.9312 1.9300 1.0454 -0.0257 | 1.7441 1.7437 1.0411 -0.0367
MMA |[3.1511 3.1481 1.3207 -0.0127 | 2.8700 2.8671 1.3186 0.0004

JMA | 0.7451 0.7551 0.5577 -0.1039|0.7595 0.7668 0.5658 -0.0894

o 1.5423 1.5439 0.8609 -0.0559 | 1.5108 1.5105 0.8730 -0.0349

2 1.4627 1.4647 0.8352 -0.0591 | 1.4396 1.4396 0.8472 -0.0377

> 0.7482  0.7582 0.5590 -0.1036 | 0.7627 0.7698 0.5672 -0.0889

Nash |1.8210 1.8211 0.9646 -0.0438 | 1.7654 1.7643 0.9789 -0.0255

AB 1.7703 1.7705 0.9391 -0.0444]1.7226 1.7215 0.9554 -0.0252

Case 2 SimAver | 1.7550 1.7534 1.0395 0.0137 | 1.6688 1.6672 1.0177 0.0063
MMA |2.9217 29189 1.3020 0.0122 |2.7175 2.7148 1.2741 0.0026

JMA | 0.7566 0.7577 0.5214 -0.0430 | 0.6493 0.6517 0.4749 -0.0552

s 1.5193 1.5182 0.8527 -0.0190 | 1.3799 1.3794 0.8075 -0.0306

2 1.4465 1.4455 0.8260 -0.0211 | 1.3104 1.3102 0.7809 -0.0323

> 0.7598 0.7609 0.5229 -0.0429 | 0.6523 0.6547 0.4765 -0.0551

Nash | 1.7754 1.7737 0.9610 -0.0116 | 1.6026 1.6013 0.9197 -0.0191

AB 1.7343 1.7328 0.9357 -0.0136 | 1.5762 1.5750 0.8940 -0.0200

Case 3 SimAver | 1.5791 1.5779 0.9939 -0.0213 | 1.8200 1.8198 1.0616 -0.0410
MMA | 2.6855 2.6834 1.2902 0.0243 | 3.0758 3.0732 1.3597 -0.0205

JMA | 0.6641 0.6799 0.5534 -0.1283|0.7639 0.7785 0.5767 -0.1241

o 1.3675 1.3698 0.8492 -0.0606 | 1.5914 1.5949 0.8986 -0.0713

I 1.2991 1.3020 0.8240 -0.0654 | 1.5089 1.5130 0.8707 -0.0745

2 0.6671 0.6828 0.5548 -0.1279]0.7672 0.7817 0.5781 -0.1238

Nash | 1.5937 1.5933 0.9424 -0.0338 | 1.8195 1.8206 0.9913 -0.0547

AB 1.5602 1.5602 0.9210 -0.0395| 1.7975 1.7991 0.9732 -0.0585

Entries report the Monte Carlo variance, bias and the MSE-MAE divergences from the DGP value of B4, in the case
of correct specification, for all averaging estimators considered in the text along with the simple averaging (equal
weights) averaging estimator. n = 100 and all three cases for true parameter values of the auxiliary regressors are
considered, in both the homoskedastic and the heteroskedastic scenarios for the regression errors.
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Table 2: Simulation results in three cases for n = 400: Correct Specification.

| Homoskedastic Setup Heteroskedastic Setup
Method | Var MSE  MAE Bias | Var MSE  MAE Bias

Case 1 SimAver | 0.4487 0.4491 0.5266 -0.0302 | 0.4472 0.4545 0.5320 -0.0879
MMA [ 0.5228 0.5230 0.5432 -0.0263 | 0.4877 0.4946 0.5366 -0.0857

> 02221 02343 0.3648 -0.1113 | 0.1832 0.2016 0.3518 -0.1361
Nash | 0.4128 04149 0.4718 -0.0500 | 0.3623 0.3713 04625 -0.0965
AB | 05473 05473 05531 -0.0229 | 0.4880 0.4939 0.5400 -0.0799

Case 2 SimAver | 0.4391 0.4387 0.5229 0.0060 | 0.4288 0.4297 0.5175 0.0371
MMA [ 0.5177 0.5172 0.5308 -0.0069 | 0.5026 0.5025 0.5187 0.0201

JMA 1 0.2362 0.2369 0.3146 -0.0306 | 0.2239 0.2240 0.3116 -0.0179

I 0.3923 0.3922 0.4401 -0.0168 | 0.3803 0.3800 0.4305 0.0046

12 0.3893 0.3891 0.4378 -0.0170 | 0.3773 0.3769 0.4284 0.0043

£ 0.2369 0.2376 0.3151 -0.0305 | 0.2246 0.2247 0.3122 -0.0178

Nash | 0.4265 0.4263 0.4526 -0.0128 | 0.4104 0.4101 0.4447 0.0076

AB 0.5451 0.5447 0.5384 -0.0095 | 0.5284 0.5281 0.5256 0.0168

Case 3 SimAver | 0.4513 0.4527 0.5392 -0.0426 | 0.4734 0.4734 0.5236 -0.0223
MMA [ 0.5134 0.5141 0.5490 -0.0348 | 0.5388 0.5386 0.5350 -0.0194

Nash | 04185 04209 0.1837 -0.0534 | 04032 0.1050 0.1580 -0.0472
AB | 05425 05420 0.5589 -0.0307 | 0.5285 0.5281 0.5390 -0.0122

Entries report the Monte Carlo variance, bias and the MSE-MAE divergences from the DGP value of 34, in the case
of correct specification, for all averaging estimators considered in the text along with the simple averaging (equal
weights) averaging estimator. n = 400 and all three cases for true parameter values of the auxiliary regressors are
considered, in both the homoskedastic and the heteroskedastic scenarios for the regression errors.

Table 3: Simulation results in three cases for n = 100: Misspesification.

| Homoskedastic Setup Heteroskedastic Setup
Method | Var MSE MAE Bias | Var MSE MAE Bias

Case 1 SimAver | 2.2674 2.3133 1.1795 0.2193 | 2.1156 2.1508 1.1568 0.1931
MMA | 3.2431 3.2711 1.3844 0.1767 | 2.9783 2.9960 1.3551 0.1441

JMA 1.1270 1.1308 0.7181 0.0699 | 1.1863 1.1899 0.7283 0.0690

o 1.9158  1.9307 1.0093 0.1295 | 1.8453 1.8582 0.9933 0.1214

2 1.8479 1.8621 0.9883 0.1267 | 1.7892 1.8017 0.9740 0.1197

£ 1.1300 1.1338 0.7195 0.0702 | 1.1892 1.1928 0.7296 0.0694

Nash | 2.1342 2.1526 1.0928 0.1436 | 2.0286 2.0426 1.0706 0.1266

AB 21122 2.1294 1.0771 0.1387 | 2.0038 2.0183 1.0553 0.1282

Case 2 SimAver | 2.1075 2.1720 1.1407 0.2581 | 2.0545 2.0913 1.1252 0.1970
MMA | 29867 3.0038 1.3424 0.1419 | 2.9344 2.9407 1.3139 0.0959

JMA | 1.1718 1.2002 0.7076 0.1720 | 1.0711 1.0898 0.6675 0.1408

o 1.8595 1.8849 0.9873 0.1653 | 1.7852 1.8009 0.9587 0.1322

I 1.7992  1.8253 0.9669 0.1670 | 1.7226 1.7390 0.9384 0.1344

£2° 1.1745 1.2029 0.7089 0.1720 | 1.0738 1.0926 0.6689 0.1409

Nash | 2.0505 2.0765 1.0690 0.1674 | 1.9553 1.9702 1.0380 0.1297

AB 2.0266 2.0526 1.0527 0.1674 | 1.9457 1.9603 1.0234 0.1286

Case 3 SimAver | 2.1343 2.1425 1.1564 0.1017 | 2.0810 2.1461 1.1649 0.2591
MMA | 29237 29214 1.3252 0.0251 | 2.8666 2.9103 1.3352 0.2158

JMA | 11286 1.1277 0.7167 0.0161 | 1.1914 1.2051 0.7302 0.1221

0 1.8264 1.8256 0.9866 0.0318 | 1.8363 1.8671 0.9922 0.1806

I 1.7683 1.7676 0.9671 0.0322 | 1.7858 1.8159 0.9740 0.1785

022 1.1315 1.1306 0.7180 0.0162 | 1.1941 1.2079 0.7315 0.1225

Nash | 2.0174 2.0170 1.0621 0.0397 | 2.0457 2.0812 1.0756 0.1939

AB 2.0022 2.0017 1.0501 0.0378 | 2.0150 2.0504 1.0577 0.1934

Entries report the Monte Carlo variance, bias and the MSE-MAE divergences from the DGP value of 83, if the 2nd
core regressor is dropped from analysis, for all averaging estimators considered in the text along with the simple
averaging (equal weights) averaging estimator. n = 100 and all three cases for true parameter values of the auxiliary
regressors are considered, in both the homoskedastic and the heteroskedastic scenarios for the regression errors.
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Table 4: Simulation results in three cases for n = 400: Misspesification.

| Homoskedastic Setup Heteroskedastic Setup
Method | Var MSE  MAE Bias | Var MSE  MAE Bias

Case 1 SimAver | 0.5387 0.5765 0.5970 0.1958 | 0.5152 0.5385 0.5859 0.1543
MMA | 0.6168 0.6404 0.6151 0.1557 | 0.5892 0.5999 0.6034 0.1061

JMA | 0.3935 0.4024 0.4683 0.0963 | 0.3657 0.3686 0.4515 0.0569

o 0.5117 0.5291 0.5487 0.1340 | 0.4825 0.4896 0.5337 0.0872

2 0.5096 0.5270 0.5474 0.1336 | 0.4804 0.4874 0.5323 0.0869

£ 0.3940 0.4029 0.4686 0.0964 | 0.3662 0.3691 0.4519 0.0570

Nash | 0.5402 0.5587 0.5620 0.1381 | 0.5089 0.5166 0.5461 0.0908

AB 0.6240 0.6456 0.6143 0.1491 | 0.5940 0.6029 0.6010 0.0974

Case 2 SimAver | 0.5470 0.6042 0.6115 0.2402 | 0.5459 0.6145 0.6238 0.2629
MMA | 0.6727 0.7009 0.6348 0.1700 | 0.6709 0.7064 0.6487 0.1903

JMA | 0.4519 0.4795 0.4833 0.1675 | 0.4503 0.4874 0.4937 0.1937

s 0.5728 0.6000 0.5706 0.1666 | 0.5659 0.6018 0.5831 0.1911

2 0.5707 0.5979 0.5692 0.1668 | 0.5637 0.5997 0.5817 0.1914

£ 0.4524  0.4800 0.4836 0.1675 | 0.4508 0.4878 0.4940 0.1937

Nash | 0.6012 0.6279 0.5833 0.1651 | 0.5929 0.6271 0.5941 0.1868

AB 0.6802 0.7036 0.6321 0.1553 | 0.6707 0.7013 0.6448 0.1769

Case 3 SimAver | 0.4833 0.5220 0.5784 0.1977 | 0.5042 0.5507 0.5793 0.2168
MMA | 0.5421 0.5648 0.5856 0.1525 | 0.5870 0. 6133 0.5922  0.1639

JMA | 0.3528 0.3611 0.4441 0.0928 | 0.3906 0.4002 0.4660 0.1000

o 0.4533 0.4701 0.5221 0.1314 | 0.4940 0.5125 0.5337 0.1379

2 0.4515 0.4682 0.5208 0.1310 | 0.4921 0.5105 0.5326 0.1376

£ 0.3532  0.3615 0.4444 0.0930 | 0.3909 0.4006 0.4663 0.1002

Nash | 0.4729 0.4907 0.5322 0.1354 | 0.5157 0.5352 0.5429 0.1415

AB 0.5476 0.5678 0.5825 0.1441 | 0.5907 0.6131 0.5890 0.1517

Entries report the Monte Carlo variance, bias and the MSE-MAE divergences from the DGP value of 3, if the 2nd
core regressor is dropped from analysis, for all averaging estimators considered in the text along with the simple
averaging (equal weights) averaging estimator. n = 400 and all three cases for true parameter values of the auxiliary
regressors are considered, in both the homoskedastic and the heteroskedastic scenarios for the regression errors.
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Table 5: Monte Carlo Concentration of the Averaging Estimators

Correct Specification MMA  JMA o 72 £ Nash AB
n = 100
Case 1 Homosk. Sum Sq.  0.6563 0.6782 0.5268 0.5308 0.6772 0.4419 0.4687
Max. Conc. 8.4 2.4 4.4 4.4 2.4 54 5,4
Heterosk.  Sum Sq.  0.6504 0.6772 0. 5214 0.5252 0.6760 0.4388 0.4632
Max. Conc. 84 24 44 4.4 2.4 54 5,4
Case 2 Homosk. Sum Sq.  0.6651 0.6783 0. 51 0. 0198 0.6771 0.4415 0.4659
Max. Conc. A 2.4 4 2,4 5,5 5,4
Heterosk.  Sum Sq.  0.6574 0.6865 0.5258 0. 0299 0.6854 0.4426 0.4699
Max. Conc. 8.4 24 4 44 2,4 5.4 5,4
Case 3 Homosk. Sum Sq. 0. 6675 0.6632 0. 5149 0. 5185 0.6621 0.4415 0.4643
Max. Conc. 2,4 4.4 4.4 2.4 54 5,4
Heterosk.  Sum Sq. 0. 6707 0.6718 0. 5150 0. 5185 0.6706 0.4387 0.4655
Max. Cone. 8,3 24 54 14 2,4 54 54
n = 400
Case 1 Homosk. Sum Sq.  0.4925 0.6359 0.5142 0.5149 0.6352 0.4943 0.5273
Max. Cone. 6.3 24 44 44 24 44 64
Heterosk. ~ Sum Sq.  0.5003 0.6458 0. 5229 0. 5257 0.6450 0.5024 0.5297
Max. Conc. 6,3 2,4 2,4 44 5.4
Case 2 Homosk. Sum Sq.  0.4955 0.6457 0. 5100 0. 5107 0.6448 0.4962 0.5301
Max. Conc. 6,3 2.4 2,5 44 6,4
Heterosk. Sum Sq. 0.4948 0.6428 0. 5241 0. 5249 0.6420 0.5000 0.5313
Max. Cone. 6,3 24 4.4 2,5 44 6,4
Case 3 Homosk. Sum Sq.  0.4938 0.6391 0. 5261 0.5269 0.6384 0.4984 0.5285
Max. Conc. 6,3 2,4 44 2,4 44 54
Heterosk.  Sum Sq.  0.4959 0.6380 0. 131 0.5136  0.6372 0.4940 0.5263
Max. Cone. 6,3 2.4 14 14 2.4 44 6.4
Misspecification MMA  JMA o 2 (> Nash AB
n = 100
Case 1 Homosk. Sum Sq. 0. ()()67 0.6821 0. 5-145 0. 5477 0.6810 0.4524 0.4807
Max. Conc. 2,4 2,4 4.4 4.4
Heterosk.  Sum Sq. 0. 6;711 0.6869 0. 5350 0. 5386 0.6859 0.4521 0.4786
Max. Conc. 2.4 2.4 44 4.4
Case 2 Homosk. Sum Sq. 0. 6786 0.6559 0. 5286 0. 531-1 0.6550 0.4504 0.4760
Max. Conc. 2.4 4.3 4.3 24 54 54
Heterosk.  Sum Sq. 0. 67773 0.6639 0.f 196 0. 0230 0.6629 0.4418 0.4671
Max. Conc. 2.4 4.3 4.3 2,4 5,4 44
Case 3 Homosk. Sum Sq. 0. 6770 0.6796 0. 5267 0. 5303 0.6785 0.4498 0.4743
Max. Conc. 2,4 4.3 2,4 54 44
Heterosk.  Sum Sq. 0. 6686 0.6823 0. 5351 0. 538-1 0.6813 0.4508 0.4784
Max. Cone. 7,3 24 13 43 24 44 44
n = 400
Case 1 Homosk. Sum Sq. 0.5135 0. 0287 0. 5279 0. 5282 0.6280 0.5088 0.5458
Max. Conc. 5,3 2,4 44 5,4
Heterosk.  Sum Sq.  0.5102 0. 0184 0. 5222 0. 5225 0.6177 0.5070 0.5490
Max. Conc. 5,3 2.4 44 5,4
Case 2 Homosk.  Sum Sq.  0.5112 0. 5% 0, 5113 0. 5113 0.5779 0.4973 0.5478
Max. Conc. 6,3 3,3 4.3 4.3 3,4 44 5,4
Heterosk.  Sum Sq.  0.5055 0.5821 0. 5004 0. 0057 0.5815 0.4938 0.5460
Max. Conc. 6,3 3,3 4.3 43 3,4 44 6,4
Case 3 Homosk. Sum Sq.  0.5090 0.6400 0.5269 0. 027" 0.6393 0.5103 0. )422
Max. Cone. 5,3 2.4 14 1.3 24 14 5.4
Heterosk.  Sum Sq.  0.5151 0.6352 0. 5295 0.5299 0.6345 0.5144 0. 5593
Max. Cone. 5.3 2.4 13 13 24 14 5.4

Scalar entries report the Monte Carlo mean of the sum of squares of weights of each averaging estimator that appears
in the main text. The vector entries’ first component represents the rounded Monte Carlo mean of the statistical
model at which the maximum weight is attributed, and the second component the rounded Monte Carlo mean atS
which the second maximum weight is attributed. There the number 1 corresponds to the narrow model, i.e. the one
that contains only what the analyst considers as core regressors, and the number 1 < m corresponds to the model
that besides the core contains also the first m — 1 regressors from the regressors’ matrix. m < s, where s =9 in the
case of ”correct specification” and s = 8 in the case of misspecification. In the case of misspecification the second
core regressor is erroneously dropped from the analysis.
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Empirical Application Results

Table 6: Coefficient estimates with Model A scenario

SimAver MMA JMA 01 2 X  Nash AB
CONSTANT 0.0489 0.0600 0.0018 0.0593 0.0583 0.0567 0.0568 0.0567
(0.0154)(0.0193)(0.0115)(0.0182)(0.0176)(0.0173)(0.0173)(0.0173)
GDP60 ~0.0123 -0.0155 0.0014" -0.0152 -0.0148 -0.0144 -0.0144 -0.0144
(0.0022) (0.003) (0.0014)(0.0027)(0.0026)(0.0026)(0.0026)(0.0026)
INV 0.1942" 0.1368 0.1686  0.155 0.1613" 0.1708 0.1718 0.1712
(0.0312)(0.0399) (0.015) (0.0384)(0.0369)(0.0369) (0.037) (0.0369)
SCHOOL60 0.0175" 0.017 0.018 0.0178 0.0182 0.0182 0.0182
(0.0059) (0.0085) (0.0078)(0.0076)(0.0074) (0.0074)(0.0074)
LIFE60 0.0006" 0.0008 0.0008" 0.0008 0.0007" 0.0007 0.0007
(0.0002) (0.0003) (0.0003)(0.0002)(0.0002) (0.0002)(0.0002)
POP 0.1486  0.346 0.3063 0.2762 0.2629 0.2632 0.2629
(0.0973)(0.1908) (0.1685)(0.1558)(0.1479)(0.1482) (0.148)
LAW 0.009  0.0173 0.0162 0.0147 0.0144° 0.0145 0.0144
(0.0024)(0.0058) (0.0051)(0.0045)(0.0045) (0.0045)(0.0045)
TROPICS -0.0028 -0.0075 -0.0064 -0.0057 -0.0053 -0.0053 -0.0053

(0.0012)(0.0036)
ETHNO -0.0021 -0.0077

(0.0015)(0.0066)
CONFUC 0.0062" 0.0561
(0.0014) (0.0128)

(0.003) (0.0027)(0.0025)(0.0025)(0.0025)
-0.0056 -0.0055 -0.0047 -0.0047 -0.0047
(0.0048)(0.0045) (0.004) (0.004) (0.004)
0.0404" 0.0336 0.0339 '0.034 0.0339
(0.0092)(0.0077)(0.0078)(0.0078)(0.0078)

Note: Standard errors are reported in parentheses.

Table 7: Coeflicient estimates with Model B scenario

SimAver MMA JMA _ ¢% 2 ¢® Nash AB

0.0573 0.0600 0.0242 0.0597 0.0602 0.0575 0.0574 0.0575
(0.0161)(0.0193)(0.0117)(0.0182)(0.0177)(0.0173)(0.0173)(0.0173)
GDP60 ~0.0145 -0.0155 -0.0026 -0.0153 -0.0153 -0.0146 -0.0145 -0.0146

CONSTANT

(0.0024) (0.003) (0.0015)(0.0028)(0.0027)(0.0026)(0.0026)(0.0026)
INV 0.2184° 0.1369 ~ 0.36 ~ 0.1584 0.1691 0.1771 0.177 0.1771
(0.0351) (0.04) (0.032) (0.0386)(0.0378)(0.0374)(0.0374)(0.0374)
SCHOOL60 0.0197 0.017 0.018  0.0183  0.0182" 0.0183 0.0182
(0.0066) (0.0085) (0.0079)(0.0077)(0.0074) (0.0074)(0.0074)
LIFEGO 0.0007" 0.0008 0.0008" 0.0008 0.0007" 0.0007 0.0007
(0.0002)(0.0003) (0.0003)(0.0002)(0.0002) (0.0002)(0.0002)
POP 0.1672° 0.346 0.3063° 0.279  0.263 " 0.2633 0.2631
(0.1094) (0.1908) (0.1684)(0.1576) (0.148) (0.1481) (0.148)
LAW 0.0102 0.0174 0.0162 0.0149° 0.0144 0.0145 0.0144
(0.0027)(0.0058) (0.0051)(0.0046)(0.0045) (0.0045)(0.0045)
TROPICS -0.0032 -0.0075 -0.0064 -0.0058 -0.0053 -0.0053 -0.0053
(0.0013)(0.0036) (0.003) (0.0027)(0.0025)(0.0025)(0.0025)
ETHNO -0.0023 -0.0077 -0.0056 -0.0055 -0.0047 -0.0047 -0.0047
(0.0017)(0.0066) (0.0048)(0.0045) (0.004) (0.004) (0.004)
CONFUC 0.007 " 0.0561 0.0404" 0.0337° 0.0339 '0.034  0.0339

(0.0016)(0.0128)

(0.0092)(0.0077)(0.0078)(0.0078)(0.0078)

Note: Standard errors are reported in parentheses.
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Table 8: Coeflicient estimates with Model C scenario

SimAver MMA JMA /! 7 /X  Nash AB
CONSTANT 0.062 0.0609 0.0479 0.0608 0.062 0.0595 0.0504 0.0595
(0.0169)(0.0193)(0.0128)(0.0183) (0.018) (0.0174)(0.0174)(0.0174)
GDP60 ~0.0161 -0.0155 -0.0095 -0.0156 -0.0159 -0.0152 -0.0151 -0.0152
(0.0026) (0.003) (0.002) (0.0028)(0.0027)(0.0027)(0.0027)(0.0027)
INV 0.1982° 0.1368 0.312° 0.1559° 0.1622 0.1724" 0.1724° 0.1723
(0.0361) (0.04) (0.0319)(0.0387)(0.0382)(0.0375)(0.0375)(0.0375)
SCHOOL60 0.0225° 0.017 0.0379 0.0196  0.0195 0.0212" 0.0213 0.0212
(0.0076) (0.0085) (0.0064)(0.0081)(0.0081)(0.0078)(0.0078)(0.0078)
LIFE60 0.0008" 0.0008 0.0008" 0.0008 0.0007" 0.0007 0.0007
(0.0002) (0.0003) (0.0003)(0.0003)(0.0002) (0.0002)(0.0002)
POP 0.1911" 0.3461 0.3067  0.2857 0.2641" 0.2645 0.2628
(0.1251)(0.1909) (0.1687)(0.1623)(0.1489)(0.1491) (0.149)
LAW 0.0116" 0.0174 0.0162" 0.0153 0.0146" 0.0146 0.0146
(0.0031)(0.0058) (0.0051)(0.0047)(0.0045) (0.0045)(0.0045)
TROPICS -0.0036 -0.0075 ~0.0064 -0.0059 -0.0053 -0.0053 -0.0053
(0.0015)(0.0036) (0.003) (0.0027)(0.0025)(0.0025)(0.0025)
ETHNO ~0.0027 -0.0077 -0.0056 -0.0056 -0.0047 -0.0046 -0.0047
(0.0019)(0.0066) (0.0048)(0.0046) (0.004) (0.004) (0.004)
CONFUC 0.008 " 0.0561 0.0403" 0.0339" 0.0337 0.0338 0.0339

(0.0018) (0.0128)

(0.0092)(0.0078)(0.0077)(0.0077)(0.0077)

Note: Standard errors are reported in parentheses.

Table 9: Coeflicient estimates with Model D scenario

SimAver MMA JMA 01 2 X  Nash AB
CONSTANT 0.0644 0.0600 0.0563 0.0615 0.0629 0.0608 0.0607 0.0612

(0.0179)(0.0193)(0.0131)(0.0184)(0.0185)(0.0175)(0.0175)(0.0177)
GDP60 -0.0173 -0.0155 -0.0159 -0.0161 -0.0164) -0.0161 -0.0161 -0.0162

(0.0027) (0.003) (0.0026)(0.0028)(0.0028)(0.0028)(0.0028)(0.0028)
INV 0.1793" 0.1367 0.2406 0.1501" 0.1546 0.1614" 0.1609 0.1595

(0.0375) (0.04) (0.0353)(0.0391)(0.0388)(0.0383)(0.0383)(0.0384)
SCHOOL60

0.0199° 0.017 0.0181 0.0181" 0.0184 0.0182  0.0182 (0.0183
(0.008) (0.0085)(0.0077)(0.0083)(0.0082)(0.0081)(0.0081)(0.0082)
LIFE60 0.0009 0.0008" 0.0011 0.0009" 0.0009 0.0009" 0.0009 0.0009
(0.0003) (0.0003) (0.0002)(0.0003) (0.0003)(0.0003) (0.0003) (0.0003)

POP 0.2229 0.3462 0.3077 0.2976 0.265 0.2668 0.2726
(0.1459) (0.191) (0.1695)(0.1706)(0.1493) (0.1498) (0.1545)
LAW 0.0135" 0.0174 0.0163 0.016 0.0146" 0.0147  0.015

(0.0036) (0.0058)

TROPICS ~0.0042 -0.0075
(0.0018)(0.0036)
ETHNO ~0.0031 -0.0077
(0.0022)(0.0066)
CONFUC 0.0094 0.0561

(0.0021)(0.0128)

(0.0051)(0.0049)(0.0045) (0.0045)(0.0046)
£0.0064 -0.0061 -0.0054 -0.0054 -0.0055
(0.003) (0.0028)(0.0025)(0.0025)(0.0026)
-0.0056 -0.0057 -0.0047 -0.0047 -0.0049
(0.0048)(0.0047) (0.004) (0.004) (0.0042)
0.0404" 0.0345 0.0339 0.0342 0.0343
(0.0092)(0.0079)(0.0078) (0.0078)(0.0078)

Note: Standard errors are reported in parentheses.
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Table 10: Coefficient

estimates with Model E scenario

SimAver MMA JMA /! 7 /X  Nash AB
CONSTANT 0.066 0.0609 0.0587 0.0618 0.0635 0.0615 0.0626 0.0627
(0.0193)(0.0193)(0.0202)(0.0192)(0.0191)(0.0192)(0.0191)(0.0191)
GDP60 ~0.0175 -0.0155 -0.016 -0.0162 -0.0165 -0.0163 -0.0164 -0.0164
(0.0027) (0.003) (0.0028)(0.0029)(0.0028)(0.0028)(0.0028)(0.0028)
INV 0.167 " 0.1367 0.2405 0.1463" 0.1509 0.1535 0.1511 0.1517
(0.0384) (0.04) (0.0353)(0.0395)(0.0392)(0.0391)(0.0392)(0.0392)
SCHOOL60 0.0203" 0.017 0.0184 0.0183" 0.0185 0.0185 0.0185 0.0186
(0.0081)(0.0085)(0.0079)(0.0083) (0.0083)(0.0082) (0.0083)(0.0083)
LIFE60 0.0009° 0.0008" 0.001  0.0008" 0.0009 0.0009" 0.0009 0.0009
(0.0003) (0.0003) (0.0003)(0.0003) (0.0003)(0.0003) (0.0003)(0.0003)
POP 0.2675" 0.3464° -0.0341 0.3156" 0.3112° 0.282  0.3037 0.3011
(0.1751)(0.1911)(0.1635)(0.1843) (0.1828)(0.1803) (0.1822)(0.1819)
LAW 0.0163" 0.0174 0.0173" 0.0169 0.0167 0.0168 0.0168
(0.0044) (0.0058) (0.0054)(0.0051)(0.0051)(0.0051)(0.0051)
TROPICS ~0.0051 -0.0075 ~0.0065 -0.0064 -0.0054 -0.0062 -0.0061
(0.0021)(0.0036) (0.003) (0.0029)(0.0025)(0.0028)(0.0028)
ETHNO ~0.0037 -0.0077 -0.0056 -0.0059 -0.0047 -0.0055 -0.0054
(0.0027) (0.0066) (0.0048)(0.0048) (0.004) (0.0046)(0.0045)
CONFUC 0.0112" 0.0561 0.0404" 0.0348 0.0341 0.0355 0.0346
(0.0026)(0.0128) (0.0092) (0.008) (0.0078)(0.0081)(0.0079)

Note: Standard errors are reported in parentheses.
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Table 11: Weights on each model in different scenarios

Panel A. Scenario A
Model[MMA[JMA] ¢ | ¢2 | ¢ [Nash| AB

0.00 | 0.53(0.01]0.03(0.02| 0.01 |0.02
0.00 | 0.47 |0.04(0.04(0.06| 0.07 |0.07
0.00 | 0.00 [0.04]0.04(0.08| 0.08 |0.07
0.00 | 0.00 [0.02]0.05/0.05| 0.04 {0.05
0.00 | 0.00 [0.00{0.04/0.00| 0.00 {0.00
0.00 | 0.00(0.07{0.06(0.10{ 0.11 |0.11
0.00 {0.00 (0.10{0.06/0.08| 0.08 |0.08
0.00 | 0.00 [0.00{0.08(0.01| 0.00 {0.00
1.00 | 0.00{0.72(0.60{0.60| 0.61 |0.60

Panel B. Scenario B
Model|[MMA[JMA]| ¢1 | ¢2 | ¢> |Nash| AB

1 0.00 | 1.00 [0.04]0.05/0.08| 0.08 |0.08
0.00 | 0.00 [0.04]0.05/0.08| 0.08 |0.08
0.00 | 0.00 [0.02]0.05/0.05| 0.05 0.05
0.00 | 0.00 |0.00{0.04(0.00{ 0.00 {0.00
0.00 {0.00(0.07{0.06/0.11] 0.11 |0.11
0.00 {0.00 [0.10{0.07(0.08| 0.08 |0.08
0.00 {0.00 (0.01{0.08(0.00| 0.00 |0.00
1.00 | 0.00{0.72(0.60{0.60| 0.60 |0.60

Panel C. Scenario C
Model|[MMA[JMA| ¢! | ¢2 | ¢>* |Nash| AB

1 0.00 | 1.00 (0.08]0.06/0.15| 0.15 |0.15
0.00 | 0.00 [0.02{0.06/0.05| 0.04 {0.05
0.00 | 0.00 (0.00{0.05(0.00| 0.00 |0.00
0.00 {0.00(0.070.07|0.11] 0.12 |0.12
0.00 | 0.00 [0.10{0.07(0.09| 0.09 |0.08
0.00 | 0.00 (0.01{0.09(0.00| 0.00 |0.00
1.00 | 0.00{0.72(0.60{0.60| 0.60 |0.60

Panel D. Scenario D
Model|[ MMA[JMA| ¢! | ¢2 | ¢>* |Nash| AB

0.00 | 1.00 (0.10{0.08(0.20| 0.19 |0.17
0.00 | 0.00 [0.00{0.06/0.00{ 0.00 |0.01
0.00 | 0.00 (0.07{0.08(0.11{ 0.11 |0.11
0.00 {0.00 (0.10{0.08(0.09| 0.09 |0.08
0.00 | 0.00 (0.01{0.09(0.00| 0.00 |0.02
1.00 | 0.00{0.72(0.61{0.60| 0.61 |0.61

Panel E. Scenario E
Model|[ MMA[JMA]| ¢! | ¢2 | ¢ |Nash| AB

1 0.00 | 1.00 (0.05/0.10(0.10| 0.09 |0.09
0.00 | 0.00 (0.12{0.08(0.20| 0.12 |0.13
0.00 | 0.00 (0.10{0.09(0.09| 0.10 |0.10
0.00 {0.00 (0.01{0.11|0.00| 0.06 |0.06
1.00 | 0.00 |0.72]0.62|0.61| 0.63 |0.62
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Table 12: Regressors for different model scenarios

Panel A. Regressors for model A scenario

Model Regressors

CONSTANT, GDP60

CONSTANT,GDP60, INV

CONSTANT,GDP60,INV,SCHOOLG60

CONSTANT,GDP60,INV,SCHOOLG60, LIFE60
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP, LAW
CONSTANT,GDP60,INV,SCHOOL60,LIFE60,POP,LAW, TROPICS
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP,LAW, TROPICS, ETHNO
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP,LAW , TROPICS,ETHNO,CONFUC

© 00 O U LN

Panel B. Regressors for model B scenario

Model Regressors

CONSTANT,GDP60, INV

CONSTANT,GDP60,INV,SCHOOL60

CONSTANT,GDP60,INV,SCHOOLG60, LIFE60
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP, LAW
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP,LAW, TROPICS
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP,LAW, TROPICS, ETHNO
CONSTANT,GDP60,INV,SCHOOL60,LIFE60,POP,LAW, TROPICS,ETHNO,CONFUC

00O UL W

Panel C. Regressors for model C scenario

Model Regressors

CONSTANT,GDP60,INV,SCHOOLG60

CONSTANT,GDP60,INV,SCHOOLG60, LIFE60
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60, POP
CONSTANT,GDP60,INV,SCHOOL60,LIFE60,POP, LAW
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP,LAW, TROPICS
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP,LAW, TROPICS, ETHNO
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP,LAW, TROPICS,ETHNO,CONFUC

~ O U N

Panel D. Regressors for model D scenario

Model Regressors

CONSTANT,GDP60,INV,SCHOOLG60, LIFE60
CONSTANT,GDP60,INV,SCHOOLG0,LIFE60,POP
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP, LAW
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP,LAW, TROPICS
CONSTANT,GDP60,INV,SCHOOLG0,LIFE60,POP,LAW, TROPICS, ETHNO
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP,LAW , TROPICS,ETHNO,CONFUC

DU W=

Panel E. Regressors for model E scenario

Model Regressors

CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP, LAW
CONSTANT,GDP60,INV,SCHOOL60,LIFE60,POP,LAW, TROPICS
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP,LAW, TROPICS, ETHNO
CONSTANT,GDP60,INV,SCHOOLG60,LIFE60,POP,LAW, TROPICS,ETHNO,CONFUC

T OO N
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