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Abstract

A general mixture model of contests is introduced. The contest combines

multivariate adverse selection with moral hazard in the form of stochastic per-

formance. Incomplete information does not add to the dimensionality of the

problem, and actions are unambiguously strategic substitutes when technolo-

gies are homogenous. These properties facilitate tractable comparative statics

with respect to changes in the multivariate type distribution. Hence, the role of

the dependence structure between di¤erent characteristics can be explored. To

illustrate, if valuations and budgets become more positively dependent, then

each type�s expenditure decreases but expected performance increases. With

asymmetric agents, the exclusion principle can be reversed.
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1 Introduction

Contests are strategically complicated environments. Realistically, they often feature

two distinct sources of uncertainty. First, agents face incomplete information about

the characteristics of rivals. These characteristics can be multivariate and correlated.

For instance, rivals�valuations, productivity, and �nancial resources may be unknown,

and it is not unreasonable to think that a rival with more resources may also be more

likely to have a higher valuation or willingness to pay. Second, there is outcome

uncertainty in the sense that performance is stochastic and only imperfectly related

to the agent�s e¤ort or expenditure. Incentives are shaped by both considerations. It

is obvious that characteristics and beliefs impact incentives, but it is also true that

the nature of the randomness involved in the agent�s performance has a role to play

in determining his return to e¤ort and thereby his incentives.

Unfortunately, a completely general analysis of contests is still not within reach.

Hence, the contest literature relies to a large extent on a limit set of tractable �work-

horse models,�chief among them the Tullock contest, the rank-order tournament, and

the all-pay auction.1 These models di¤er in how actions determine or in�uence who

wins the contests � in the parlance of contest theory, the contest success functions

(CSFs) are di¤erent in each model. This paper studies a complementary model of

contests, termed the mixture model, in which the CSF takes yet another form.

The chief advantage of the mixture model is that unlike existing models it easily

accommodates a combination of multivariate incomplete information and stochastic

performance.2 This makes it possible to explore the role of the statistical depen-

dence between di¤erent characteristics that was alluded to in the �rst paragraph.

The analysis of the relationship between valuations and budgets and between valu-

ations and starting advantages are particularly clean. Moreover, the mixture model

challenges the robustness of some of the comparative statics in the existing literature,

thus demonstrating that the workhorse models do not give a full picture of the kind

of comparative statics that may arise more generally in contests. This is important

because comparative statics inform design choices and policy recommendations.

1See Konrad (2009) and Vojnovíc (2016) for book-length surveys of contest theory. For other
recent surveys, see Corchón and Serena (2018) and Fu and Wu (2019).

2The Tullock contest (Tullock 1975, 1980) can be microfounded as a contest with stochastic
performance. The rank-order tournament also features stochastic performance. However, it is
hard to handle even univariate incomplete information in those models. The all-pay auction is
deterministic.
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The mixture model is as follows. Agents have independent private information

about valuations, impact functions, cost functions, and action sets. The impact func-

tion in�uences how productive an agent�s action is. To be speci�c, the distribution of

performance is a mixture distribution with two mixture components and endogenous

weights that are determined by the agent�s impact. Thus, the agent�s costly action

amounts to purchasing a compound lottery. The higher his impact is, the more likely

it is that his performance is drawn from a good rather than a bad component or

distribution. Indeed, the agent�s expected performance is proportional to his impact.

The mixture distribution may arise naturally in settings where the agent is hiring a

subcontractor, manager, or research team, or alternatively procuring equipment, any

of which aids, or is responsible for, the agent�s output. Imagine that the subcontractor

can be good or bad. A good (bad) subcontractor draws performance from the good

(bad) mixture component. Then, the agent�s action represents his search e¤ort and

his impact the probability that he correctly identi�es a good subcontractor.

Private information about types implies that the agent�s impact function and

equilibrium action are not known to his competitors. Hence, the competitors are

uncertain about the weights that are placed on the two mixture components. When

they attempt to assess the distribution of the agent�s performance, the uncertainty

over types gives rise to a lottery over the compound lottery chosen by each type.

What matters in this doubly-compounded lottery is simply the expected cumulative

weight that is placed on the good and bad components, respectively. This implies

that the expected value of the impact function is a su¢ cient measure of the ex ante

distribution of the agent�s performance �knowing this single number is su¢ cient to

describe everything that is of relevance about the agent to his competitors.

The su¢ cient uncertainty measure drastically reduces the dimensionality of the

problem. Any agent is just best responding to the pro�le of his competitors�expected

impacts. Thus, the optimization problem is no more di¢ cult to handle with incom-

plete information than with complete information. The lack of such a measure in e.g.

the Tullock contest makes it much harder to add private information to that model.

Starting with Section 3, focus is on contests with homogenous technologies or,

more precisely, where mixture components are identity-independent. In such contests,

actions are always strategic substitutes in the sense that the agent, regardless of

his type, lowers his action when a competitor�s expected impact increases. This

monotonicity property also adds to the relative tractability of the mixture model
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compared to e.g. the Tullock contest in which reaction functions are hump-shaped.

Section 4 assumes that agents are ex ante symmetric and develops general com-

parative statics results on how changes to the type distribution in�uences the unique

symmetric equilibrium. Such results are feasible because equilibrium characterization

hinges on solving a one-dimensional �xed-point problem that nails down the equilib-

rium value of the summary uncertainty measure. The fact that actions are strategic

substitutes makes it possible in a range of applications to say how the �xed-point

problem and its solution is a¤ected by changes in the type distribution.

Di¤erent kinds of changes in the type distribution are considered. Roughly speak-

ing, the �rst assumes that �strong�types become more likely, with the understanding

that this can be modeled is several di¤erent ways with multivariate types. Neverthe-

less, the general conclusion is that any given type works less hard but, since stronger

types are more likely, the expected equilibrium impact and performance increase.

The second and more novel comparative statics examine the role of the dependence

structure between di¤erent characteristics. This is an underexplored issue in contests,

in no small part simply because it is harder to accommodate multivariate types in

existing models. To isolate the role of the dependence structure, the marginal distri-

butions are held �xed while the joint distribution changes. The supermodular order

is used to discipline these changes. The correlation between any two characteristics

increases when the characteristics become more positively dependent in the sense of

the supermodular order. Equivalently, the expected value of any supermodular payo¤

function �i.e. those for which inputs are complements �increases.

The resulting comparative statics are best explained in the context of applica-

tions. In the leading application, the importance of the relationship between private

valuations and budgets (or time constraints on the agent�s search for a subcontractor)

is examined. The supermodular order is ideally suited to this application (Section 5).

The reason is that the two characteristics are complements because the agent is will-

ing and able to achieve a high impact only if both his valuation and budget are high

at the same time. As this is more likely to occur the more positively dependent the

two are, the expected impact increases, other things equal. However, this observation

does not entirely settle matters, since other things are not equal when equilibrium

changes. Nevertheless, the nature of the �xed-point problem ensures that equilibrium

changes in the anticipated direction. Thus, the expected performance increases.

The opposite conclusion obtains if types capture valuations and starting advan-
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tages. The reason is that these characteristics are substitutes since high impacts are

justi�ed or automatic if the valuation or the starting advantage is high, respectively.

In an application with additive and multiplicative productivity parameters, the

two characteristics have complementary e¤ects on actions (Section 6). However, this

interaction washes out in the agent�s impact. Hence, greater dependence does not

change the expected performance, but it does increase the expected action.

In the above applications, the equilibrium impact is in�uenced in an unambiguous

direction by changes in the dependence structure. The conclusion is less clear-cut

when types re�ect valuations and productivity. Su¢ cient conditions are identi�ed

under which the characteristics are substitutes or complements, respectively.

Lastly, the consequences of a mean-preserving spread of a univariate type distri-

bution in symmetric contests is considered (Section 7). The main application is to

uncertainty about valuations. Here, expected performance may increase or decrease

depending on the primitives. Su¢ cient conditions are given for either possibility. It

is possible that agents expend more resources, yet perform worse.

These results are also relevant to complete information contests in which agents

have di¤erent valuations. Increasing the asymmetry is similar to a mean-preserving

spread and may, depending on the primitives, encourage competition. This is in

contrast to the discouragement e¤ect that is found in much of the existing literature.

Similarly, the exclusion principle may be turned on its head. Baye et al (1993) show

that excluding a strong competitor in an all-pay auction may increase total e¤ort.

In the mixture contest, it may instead be optimal to exclude a weak agent. The

intuition is simple. In a two-player mixture contest, equilibrium is in strictly dominant

strategies. Hence, a stronger agent works harder than a weaker agent. Thus, starting

with a three-player contest, if it is pro�table to exclude anyone, it must be the weaker

agent in order to retain the stronger agents for the dominant-strategy contest.

Section 8 presents extensions and discusses the empirical falsi�cation of competing

contest models, including the mixture model. Section 9 concludes. Proofs are in

Appendix A. Appendix B contains supplementary material.

Related Literature: Gürtler and Kräkel (2012) consider a mixture model

with two agents and homogenous technologies. Although they do not explicitly phrase

it this way, it is clear from their analysis that equilibrium is in dominant strategies.

Kräkel (2010) consider a variant with two teams. While there is the usual coordination

problem within each team, there is no strategic interaction across the two teams.
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Kräkel (2010) and Gürtler and Kräkel (2012) note that the mixture distribu-

tion is an application of the spanning condition used in Grossman and Hart�s (1983)

principal-agent model. Kirkegaard (2017) solves the principal-agent contracting prob-

lem when the spanning condition holds but the �rst-order approach is invalid. In

Kirkegaard (2023a), contest design is viewed as a contracting problem with multi-

ple agents. He derives optimal design principles for a general complete information

model with stochastic performance. Design takes the form of biasing the allocation

rule, and the winner is not necessarily the agent with the best performance. Among

the examples is one that satis�es the spanning condition. The current paper focuses

on comparative statics in unbiased contests while permitting incomplete information.

There is a small literature on incomplete information in Tullock contests. Malueg

and Yates (2004) characterize equilibrium with two agents and binary types. Fey

(2008) and Ryvkin (2010) derive equilibrium numerically with a continuum of uni-

variate types and up to four agents. Ewerhart and Quartieri (2020) consider private

information in very general Tullock-style contests, but their focus is on equilibrium

existence and uniqueness. They provide a thorough literature review. See Hammond

and Zheng (2013) for a discussion of private information in rank-order tournaments.

In the mixture model with homogenous technologies, all types agree that actions

are strategic substitutes. In other contest models it is usually the case that best-

response functions are non-monotonic and that di¤erent types disagree about whether

actions are strategic substitutes or complements. Hopkins and Kornienko (2007) show

that in all-pay auctions, di¤erent types react di¤erently to changes in the distribution

of valuations. This is also the case in the numerical examples in Ryvkin (2010).

The literature on private valuations and budgets in auctions is also relevant. Che

and Gale (1998) compare standard deterministic auctions with correlated valuations

and budgets. However, they do not study the e¤ects of changes in the dependence

structure. Kotowski and Li (2014) consider the all-pay auction and the war of attri-

tion. They assume that valuations are a¢ liated across agents but that budgets are

independent of valuations. A change in the distribution of budgets may be met with

di¤erent reactions depending on the agent�s valuation. The mixture model assumes

independence across agents but allows correlated valuations and budgets in a setting

with stochastic performance. The current paper also identi�es a stochastic order

(the supermodular order) that is particularly well-suited to study how equilibrium is

in�uenced by the dependence between budgets and valuations in the mixture model.
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2 The mixture model of contests

Consider a contest with n agents and a single prize. Agents are independently and pri-

vately informed about their types. Agent i�s type is denoted �i and it is allowed to be

multi-dimensional. The non-empty type-space is �i. Each agent�s type distribution

is common knowledge. Complete information arises if �i is a singleton.

Agent i�s type determines his valuation, impact function, cost function, and action

set. The action set is a unidimensional, non-empty and compact interval, Ai(�i).

Note that the action set may be type-dependent. Di¤erent upper bounds may capture

di¤erent and privately known time or budget constraints. Di¤erent lower bounds may

describe di¤erent �starting advantages,�in the language of Siegel (2009). A generic

element of Ai(�i) is denoted ai. Actions are costly, with cost function ci(aij�i). The
valuation of the prize is vi(�i) � 0. Agent i earns net payo¤ vi(�i) � ci(aij�i) if he
wins and �ci(aij�i) otherwise. There is no option to exit the contest.
Agent i�s performance is determined in part by his impact function, pi(aij�i) 2

[0; 1]. For all ai 2 Ai(�i) and all �i 2 �i, the cost and impact functions satisfy

@ci(aij�i)
@ai

> 0,
@pi(aij�i)
@ai

� 0; and

@2ci(aij�i)
@a2i

� 0,
@2pi(aij�i)
@a2i

� 0; with at least one strict inequality.

Some redundancy is built into this model formulation as both pi and ci can be non-

linear in the action. Depending on the application, it may be meaningful to normalize

one of the two to be linear. For instance, if the aim is to study budget constraints in

contests where actions are monetary expenditures, then it is sensible to assume that

ci is linear. However, the redundancy also facilitates comparison to di¤erent strands

of the literature. In Tullock contests, it is often assumed that the cost function is

linear, while in rank-order contests it is often assumed that the impact is linear.

The contest is won by the agent with the best performance. Agent i�s performance,

Xi, is a unidimensional random variable. In particular, if agent i has type �i and

takes action ai, then his performance follows the mixture distribution

Fi(xijai;�i) = pi(aij�i)Hi(xi) + (1� pi(aij�i))Gi(xi); (1)

where the publicly known mixture componentsHi andGi are continuous and atomless
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distribution functions with densities hi and gi, respectively. It is crucial that Hi and

Gi are independent of �i and ai. The mixture components are also independent of

one another. Moreover, Hi and Gi have the same support, and this is the same for

all agents, i = 1; :::; n. Thus, the performance of all agents have the same support

regardless of actions. Consequently, there is always a chance of winning the contest

but winning is never guaranteed. The probability of ties is zero since distributions

are atomless. When needed, the support is denoted [x; x]. It can be bounded or

unbounded. Finally, Hi �rst order stochastically dominates Gi in the strict sense

that Hi < Gi on (x; x). Thus, Hi is a more productive technology than Gi. Let �Hi
and �Gi denote the expected values of Hi and Gi respectively, with �Hi > �Gi.

The agent�s action essentially buys him a compound lottery. His performance is

drawn from the good and bad component with probability pi(aij�i) and 1� pi(aij�i),
respectively. Recall that action sets, valuations, impact functions, and cost functions

can all be private information at the same time. Applications are in Sections 5�7.

The mixture distribution is separable in xi and pi, and only the latter depends

on ai and �i. This is why it is important that the mixture components are publicly

known, and it has two indispensable consequences. The �rst relates to the structure

of an agent�s beliefs about the performance of other agents. The second concerns the

structure of the agent�s maximization problem, given his beliefs, which in turn gives

structure to the best response functions.

2.1 A summary uncertainty measure

Agent i faces uncertainty when thinking about the distribution of agent j�s perfor-

mance, j 6= i. Agents j�s type is unknown, and he could be using a mixed strategy
(a complication that arises in Section 8.1). A mixed strategy, �j, is a mapping from

types into a probability distribution over Aj(�j). The two sources of uncertainty

produce a joint distribution over types and actions. This can be used to compute

the ex ante �expected impact�of agent j�s action, which is just the expected value

of pj(ajj�j). Let this be denoted pj(�j). Then, the ex ante distribution of agent j�s
performance is

F
�j
j (xj) = pj(�j)Hj(xj) +

�
1� pj(�j)

�
Gj(xj).

Everything that is relevant to agent i about agent j�s strategy is captured by the single

number pj(�j), which is e¤ectively a summary and su¢ cient uncertainty measure.

7



2.2 Best responses

It is not relevant to agent i what �j is, beyond the pj value that it implies. Now,

�x some pro�le p�i =
�
p1; :::; pi�1; pi+1; :::pn

�
. Given type �i and action ai, agent i�s

interim winning probability is

qi
�
ai;p�ij�i

�
=

Z �Q
j 6=i
�
pjHj(x) +

�
1� pj

�
Gj(x)

��
(pi(aij�i)hi(x) + (1� pi(aij�i)) gi(x)) dx:

This can be decomposed into

qi
�
ai;p�ij�i

�
= ti

�
p�i
�
+ pi(aij�i)ki

�
p�i
�
; (2)

where

ti
�
p�i
�
=

Z �Q
j 6=i
�
pjHj(x) +

�
1� pj

�
Gj(x)

��
� gi(x)dx

ki
�
p�i
�
=

Z �Q
j 6=i
�
pjHj(x) +

�
1� pj

�
Gj(x)

��
(hi(x)� gi(x)) dx:

Given p�i, ti
�
p�i
�
measures the base probability that agent i wins and ki

�
p�i
�
the

return to e¤ort. The latter is the di¤erence between the probability that agent i

wins with a draw from Hi and Gi, respectively. First order stochastic dominance

means that the winning probability is higher under Hi than Gi. Thus, ki
�
p�i
�
> 0.

Likewise, ki(p�i) < 1 because it is the di¤erence between two probabilities.

In the language of contest theory, (2) is an interim contest success function (CSF).

It takes the strategy pro�le of agent i�s competitors along with his own action (and

type) and outputs a winning probability. An ex ante CSF is obtained by taking the

expectation of (2) with respect to agent i�s strategy. This yields the ex ante probability

that agent i wins the contest as a function of the pro�le p = (p1; p2; :::; pn),

qi(p) = ti
�
p�i
�
+ piki

�
p�i
�
:

Hence, the mixture model yields separable CSFs.

Given p�i and type �i, agent i�s objective is to maximize

ui
�
ai;p�ij�i

�
= vi(�i)

�
ti
�
p�i
�
+ pi(aij�i)ki

�
p�i
��
� ci(aij�i): (3)
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Since ti
�
p�i
�
is independent of agent i�s action, the problem is equivalent to maxi-

mizing

Ui(ai;p�ij�i) = vi(�i)pi(aij�i)ki(p�i)� ci(aij�i): (4)

Recall that ki
�
p�i
�
> 0. Thus, if vi(�i) = 0 then the unique solution is to take the

lowest possible action. If vi(�i) > 0, then the problem is strictly concave and the

solution is again unique. Let Bi(p�ij�i) denote type �i�s unique best response to p�i.
Note that ki(p�i) describes all that is relevant about the aggregate uncertainty

faced by agent i. The higher ki(p�i) is, the higher is the best response. Thus,

how ki(p�i) depends on p�i determines the nature of the strategic interaction. If
@
@pj
ki
�
p�i
�
< 0, then the incentive to increase pi is lower the higher pj is, in which

case there is a sense in which agent i considers actions to be strategic substitutes,

j 6= i. More precisely, an increase in the action by a set of agent j�s types of positive
mass increases pj, which in turn makes agent i decrease his action. Conversely,

agent i considers actions to be strategic complements if @
@pj
ki
�
p�i
�
> 0. The sign of

@
@pj
ki
�
p�i
�
depends only on the properties of the mixture components. Finally, since

ki
�
p�i
�
is linear in pj, the sign of

@
@pj
ki
�
p�i
�
does not depend on pj. Thus, agent

i�s �reaction function,�Bi(p�ij�i), is globally increasing or decreasing in pj, and it
moves in the same direction for all �i 2 �i.

2.3 Equilibrium

Let pmini = E�i
�
minai2Ai(�i) pi(aij�i)

�
and pmaxi = E�i

�
maxai2Ai(�i) pi(aij�i)

�
denote

the smallest and largest possible values of pi. Given p�i and type-dependent best re-

sponses, agent i�s ex ante expected impact is just E�i
�
pi(Bi(p�ij�i)j�i)

�
2
�
pmini ; pmaxi

�
.

In equilibrium, agents are mutually best responding. Hence, in equilibrium, the pro�le

p = (p1; p2; :::; pn) 2 �ni=1
�
pmini ; pmaxi

�
must satisfy

pi = E�i
�
pi(Bi(p�ij�i)j�i)

�
for all i = 1; :::; n. (5)

Characterizing equilibrium amounts to solving this �xed-point problem. Once the

�xed-point p has been found, the equilibrium strategy is given by si(�i) = Bi(p�ij�i).

Proposition 1 A solution p = (p1; p2; :::; pn) 2 �ni=1
�
pmini ; pmaxi

�
to (5) exists. For

any such solution, there exists an associated pure-strategy Bayesian Nash Equilibrium

of the contest game, in which strategies are given by si(�i) = Bi(p�ij�i), i = 1; :::; n.
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2.4 Interpretation and the organizer�s objective function

The equilibrium �xed-point contains important information. First, p is su¢ cient to

describe the ex ante joint distribution of the performance pro�le, which is

J(x1; x2; :::; xnjp) =
Qn
i=1 (piHi(xi) + (1� pi)Gi(xi)) :

Hence, if the contest organizer has a Bernoulli utility function that depends only on

the performance pro�le, then p is enough to calculate her expected utility. In fact,

expected payo¤ is increasing in each pi as long as the Bernoulli utility function is

increasing; see Section 4.1 for a formal argument. To illustrate, agent i�s expected

performance,

E[Xijpi] = pi�Hi + (1� pi)�Gi ;

is proportional to pi. Thus, if the organizer is risk neutral and bene�ts from the

agents� total performance or output � her Bernoulli utility is
Pn

i=1 xi � then her

expected utility is proportional to a weighted sum of the components of p. If the

mixture components are identity-independent as in Sections 3�7, then total expected

output is proportional to the �total impact,�
Pn

i=1 pi.

Finally, p determines agent i�s ex ante winning probability, qi(p). Hence, p reveals

who is favorite to win and how unevenly distributed winning probabilities are. Agent i

of a given type is worse o¤when p�i is higher, because this leads the distribution of the

highest rival performance to improve in the sense of �rst-order stochastic dominance.

3 Contests with homogeneous technologies

The majority of the paper assumes that technologies are homogeneous across agents,

or Hi = H and Gi = G for all i = 1; ::; n. Hence, if two agents take actions that lead

to the same impact, then they have the same distribution of performance.3

This section establishes a robust property of the nature of the strategic considera-

tions in contests with homogeneous technologies. The property is robust in the sense

that it is invariant not only to the details of H and G, but also to agents�valuations,

3In contrast, it is generally impossible for one agent to replicate the distribution of performance
of another agent when technologies are not homogenous. The companion paper, Kirkegaard (2023b),
considers such contests with two agents. The resulting model challenges some common perceptions
about the strategic considerations of the favorite and the underdog, respectively.
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impact functions, cost functions, action sets, and type distributions.

It was observed after (4) that whether agent i considers the actions of agents i and

j to be strategic substitutes or complements is determined by how ki(p�i) depends on

pj. Thus, the sign of
@
@pj
ki(p�i) is of interest. However, note that ki(p�i) =

@
@pi
qi(p).

Therefore, @
@pj
ki(p�i) =

@
@pj@pi

qi(p). In other words, the question is whether the ex

ante winning probability qi(p) is submodular or supermodular in pi and pj. This ques-

tion is easy to answer. Consider agents 1 and 2. Since ex ante winning probabilities

sum to one for all p, it holds that @2

@p1@p2

P
qi(p) = 0. Moreover, since technologies

are homogenous, it is easy to see that @
@p1@p2

q1(p) =
@

@p1@p2
q2(p). Combining these

two facts implies that if agents 1 and 2 are the only participants, or n = 2, then
@

@p1@p2
q1(p) =

@
@p1@p2

q2(p) = 0. Thus, k1 and k2 are constants and there is no strategic

interaction whatsoever. Hence, equilibrium is in strictly dominant strategies.

Assume now that n � 3. Consider agents 1 and 2, along with their common

rival, agent 3. Agent 3 obviously wins less often in expectation when p1 increases, or
@
@p1
q3(p) < 0, but it is also easily veri�ed that the change is less pronounced the larger

p2 is, or
@2

@p1@p2
q3(p) > 0. The reason is that agent 3 is already unlikely to win if p2

is large, so a marginal increase in p1 has less of an e¤ect on agent 3. This argument

applies to all of the rivals that agents 1 and 2 have in common. Hence

0 =
@2

@p1@p2

X
qi(p)

>
@

@p1@p2
q1(p) +

@

@p1@p2
q2(p)

Since @
@p1@p2

q1(p) =
@

@p1@p2
q2(p) when technologies are homogeneous, it follows that

actions must be strategic substitutes, or @
@p1@p2

q1(p) =
@
@p2
k1(p�1) < 0 when n � 3.

More precisely, if pj increases, then agent i�s best response is lower type-for-type.
4

Proposition 2 There is no strategic interaction in any mixture contest with homoge-
nous technologies and n = 2 agents, and equilibrium is therefore in strictly dominant

strategies. Actions are strategic substitutes in any mixture contest with homogeneous

technologies and n � 3 agents.

Appendix B provides a more careful description of the properties of ki
�
p�i
�
. Note

that ki
�
p�i
�
is a polynomial in the n � 1 variables in p�i. By expanding ki

�
p�i
�
,

4Heterogeneous technologies are more complicated because whether actions are strategic substi-
tutes or complements for a given pair of agents may depend on the actions of the other agents.
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it is shown in Appendix B that the coe¢ cient to the term
Q
j 6=i pj is zero when

technologies are homogeneous. Hence, ki
�
p�i
�
is only a polynomial of degree n� 2.

Thus, as already discussed, it is constant when n = 2. When n = 3, ki
�
p�i
�
depends

only on the aggregate expected impact of the competitors, or
P

j 6=i pj.
5

4 Symmetric contests and comparative statics

Consider now the case in which agents are completely symmetric ex ante. Thus, the

type spaces, type distributions, actions sets, valuations, cost functions, and impact

functions are symmetric across agents.

Proposition 3 Consider a mixture contest with n � 2 symmetric agents. Then,

there exists a unique symmetric equilibrium.

For completeness, Appendix B contains an example in which there are asymmetric

equilibria as well. In that example, actions are at the corners of the action set. The

contest organizer may prefer the asymmetric equilibria.

This section and the next two examine the comparative statics of the unique

symmetric equilibrium with respect to changes in a multivariate type distribution.

The main focus is on the expected equilibrium impact, p�. By (5), this satis�es

p� = E�i [pi(Bi(p�; p�; :::; p�j�i)j�i)] : (6)

Thus, comparative statics are determined by how the right hand side is impacted by

changes in the environment. The central argument is simple. First, pi(Bi(p�; p�; :::; p�j�i)j�i)
depends only on �i and p�. Then, imagine that the type distribution changes in such

a way that the right hand side of (6) increases for all p�. Since actions are strategic

substitutes, a decrease in p� further increases the right hand side, but the left hand

side decreases at the same time. This contradiction implies that p� must increase in-

stead. Note that strategic substitutability plays an important role in this argument.

5It is worth pointing out a special feature of contests with homogeneous technologies, n = 3
agents, and complete information. Such contests are linear aggregative games with aggregatorP3

j=1 pj . If agent i knows pi and
P3

j=1 pj , then
P

j 6=i pj can be calculated, which in turn means
that ki

�
p�i
�
can be inferred. Thus, everything that is payo¤-relevant to agent i is captured in pi

and
P3

j=1 pj . See Jensen (2018) for a survey on aggregative games. Acemoglu and Jensen (2013)
discuss comparative statics in aggregative games with strategic substitutes.
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Another way to see this is to observe that strategic substitutability implies that the

right hand side of (6) is monotonically decreasing in p� (which is also what proves

Proposition 3). It is also worth reiterating the implication that the equilibrium action

of any given type moves in the opposite direction to the equilibrium expected impact

and performance.

Only contests in which types can be ordered in a natural and easily interpretable

manner are considered. To this end, assume that types can be ordered in such a way

that pi(Bi(p�ij�i)j�i) is weakly increasing in �i, regardless of p�i. In other words,
higher types have best responses that lead to higher impacts and therefore a stronger

distribution of performance. Examples and applications are in Sections 5 and 6.

To keep notation at a minimum, assume that the type-space is a hyper-rectangle

(when continuous) or a grid (when discrete) that is held �xed when the distribution

of types changes. If types are d-dimensional, write �i = (�1i ; �
2
i ; :::; �

d
i ). Let F

j
� (�

j
i )

denote the marginal distribution of �ji and let F�(�i) denote the joint distribution, i.e.

the probability that the type is component-wise smaller than �i. Let F �(�i) denote

the survival function, which measures the probability that the type is component-

wise larger than �i. It is sometimes convenient to think of the joint distribution as

being a combination of the marginal distributions and a dependence structure. By

Sklar�s lemma, there exists a function, known as the copula, such that F�(�i) =

C(F 1� (�
1
i ); F

2
� (�

2
i ); :::; F

d
� (�

d
i )). Thus, the copula captures the dependence structure.

See Joe (1997), Müller and Stoyan (2002), and Shaked and Shanthikumar (2007) for

more on copulas and multivariate stochastic orders.

4.1 Stochastic improvements and stronger competition

To begin, consider a �stochastic improvement� of the type distribution.6 In the

familiar univariate case (d = 1) it is well known that there are three equivalent ways

to de�ne �rst-order stochastic dominance. Speci�cally, distribution G� dominates

distribution F� in terms of �rst-order stochastic dominance if (i) G�(�i) � F�(�i) for
all �i, (ii) G�(�i) � F �(�i) for all �i, or (iii) any expected-utility maximizer with a
non-decreasing payo¤ function weakly prefers G� to F�.

The equivalence between (i) and (ii) is due to the fact that f�0i 2 �ij�0i > �ig is
the complement to f�0i 2 �ij�0i � �ig when �i is one-dimensional. However, this is no

6The discussion in the next three paragraphs follows Müller and Stoyan (2002).
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longer true in higher dimensions. Then, the �rst set describes an �upper orthant�(�0i
is large along all dimensions) and the second set a �lower orthant�(�0i is small along

all dimensions), but neither accounts for the possibility that �0i is large along some

dimensions and small along others. Thus, it is not the case that F�(�i) = 1�F �(�i)
unless d = 1. In other words, (i) and (ii) are distinct and can each be used to pursue a

di¤erent multivariate extension of �rst-order stochastic dominance. These stochastic

orders are know as the lower orthant order and the upper orthant order, respectively.

When they apply, G� is preferred to F� for a subset of non-decreasing payo¤ functions.

For instance, when (i) applies, G� is preferred to F� for all payo¤ functions that are

indicator functions of the form �1f�0i2�ij�0i��ig (punishing every realization in a lower
orthant), and when (ii) applies for all indicator functions of the form 1f�0i2�ij�0i��ig
(rewarding every realization in an upper orthant).

A third extension to multivariate distributions is based on (iii). Distribution G�
dominates distribution F� in the �usual stochastic order� if the expectation of any

payo¤ function that is non-decreasing in �i is higher under G� than F�. Thus, the

usual stochastic order is stronger than the orthant orders. It can be shown that G�
dominates distribution F� in the usual stochastic order if and only if it is the case

that for any increasing set, G� yields a weakly higher probability of a realization

somewhere in that set compared to F�. A set S is increasing if x 2 S implies x0 2 S
for all x0 that are componentwise greater than x. Intuitively, a change from F� to G�
means that any set of high realizations become more likely, which in turn increases

the expectation of any function that is non-decreasing.

Note that if G� dominates F� in the usual stochastic order, then all the d marginal

distributions of G� �rst-order stochastically dominates the corresponding marginal

distributions of F�. The converse is not true in general but Scarsini (1988) showed

that if G� and F� have the same copula, then G� dominates F� in the usual stochastic

order if and only if the marginal distributions under G� �rst-order stochastically

dominates their counterparts under F�.

Since types are ordered such that pi(Bi(p�ij�i)j�i) is weakly increasing in �i, an
improvement of the type distribution in the usual stochastic order leads the expected

impact to increase, other things equal. By the argument following (6), the equilibrium

value of p� therefore increases. Since actions are strategic substitutes, all types lower

their action in response. This balances out in equilibrium because although each type

works less hard, higher types with higher impacts are now more likely.

14



Proposition 4 If the common type distribution improves in the sense of the usual
stochastic order, then each type�s equilibrium action is weakly lower, yet the expected

equilibrium impact is weakly higher because higher types are more likely.

Proposition 4 implies that the ex ante equilibrium distribution of individual per-

formance improves in the sense of �rst-order stochastic dominance. Since the perfor-

mance of agents are independently distributed, it then follows from Scarsini�s (1988)

result that the joint distribution of the performance of all agents improves in the

sense of the usual stochastic order. Thus, as long as the contest organizers�Bernoulli

utility function is increasing in the performance pro�le, she is made better o¤.

Note that the type ordering does not imply that Bi(p�ij�i) is increasing in �i.
In part for this reason, it cannot be ruled out that the expected action decreases

even though the expected equilibrium impact increases. The application in Section

6 demonstrates this possibility. To reiterate, the mixture model is better geared to

study aggregate performance than aggregate e¤ort in generality.

In applications, more detailed information about the properties of pi(Bi(p�ij�i)j�i)
may be known. Those properties may potentially be used to relax the concept of sto-

chastic dominance in Proposition 4. The upcoming applications focus on bivariate

contests, in which case the orthant orders are particularly tractable and relevant. In-

deed, in the bivariate case, it can be shown that G� dominates F� in the lower orthant

order (G�(�i) � F�(�i) for all �i) if and only if G� is weakly preferred to F� for any
weakly increasing and submodular payo¤ function. Similarly, G� dominates F� in the

upper orthant order (G�(�i) � F �(�i) for all �i) if and only if G� is weakly preferred
to F� for any weakly increasing and supermodular payo¤ function. Supermodular

and submodular functions are discussed in detail in the next subsection. The joint

distribution in Table 1(b) dominates the one in Table 1(a) in both the upper and

lower orthant order, but not in the usual stochastic order even though each marginal

distribution has improved in the sense of �rst order stochastic dominance.7

Proposition 5 Assume that types are bivariate and that the common type distri-
bution becomes stronger in the upper (lower) orthant order. If pi(Bi(p�ij�i)j�i) is
supermodular (submodular) in �i for all p�i, then each type�s equilibrium action is

weakly lower but the expected equilibrium impact is weakly higher.
7The increasing set S = f(M;H) ; (H;M) ; (H;H)g is less likely in (b) than in (a). Hence, the

expected value of the weakly increasing payo¤ function that gives payo¤ 1 from an event in S and
zero otherwise is lower in (b) than in (a). This function is neither supermodular or submodular.
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H 0.10 0.11 0.12

M 0.11 0.12 0.11

L 0.12 0.11 0.10

L M H

H 0.12 0.05 0.22

M 0.13 0.16 0.05

L 0.02 0.13 0.12

L M H

H 0.10 0.10 0.13

M 0.09 0.15 0.10

L 0.14 0.09 0.10

L M H

(a) A joint distribution (b) �Improved�orthants (c) Supermodular order

Table 1: Bivariate distributions with low (L), medium (M), and high (H) outcomes.

4.2 Dependence orders and supermodularity

The previous subsection considered the consequences of increased competition stem-

ming from certain sets of high types becoming more likely. This subsection turns to

the interaction and dependence between di¤erent dimensions of the type space. To

isolate the role of the dependence structure, the marginal distributions are held �xed.

Motivated by the upcoming applications, it is particularly important to under-

stand contests in which pi(Bi(p�ij�i)j�i) is either supermodular or submodular. Thus,
it is worthwhile to pursue a stochastic order known as the supermodular order. By

de�nition, G� dominates or is greater than F� in the supermodular order if and only

if the expected value of any supermodular function is weakly higher under G� than

F�. Note that the function is not required to be monotonic. It is an implication that

G� and F� share the same marginal distributions. Hence, it is only their copula or

dependence structure that di¤er.

To help visualize how G� and F� compare under the supermodular order, consider

the bivariate case, or d = 2. Then, a function u(x; y) is supermodular if

u(x0; y0) + u(x; y) � u(x0; y) + u(x; y0)

whenever x0 > x and y0 > y. Thus, the function is on average higher if both x and y

are small or large at the same time compared to when one is large and the other is

small. Now, for the case of discrete supports, Epstein and Tanny (1980) consider an

aptly named �correlation increasing transformation�that removes an equal amount

of mass from (x0; y) and (x; y0) and moves it to (x0; y0) and (x; y) instead. This

transformation quite clearly increases the expected value of u, meaning that the

newly created distribution dominates the original distribution in the supermodular

order. Indeed, the transformation does not change the marginal distributions of x and
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y, but it does increase their correlation. The distribution in Table 1(c) is obtained

through two correlation increasing transformations of the one in Table 1(a).8 Meyer

and Strulovici (2015) elegantly extend the characterization of the supermodular order

to d � 2 dimensions through a sequence of similar two-dimensional transformations.
Continuing with the bivariate case, allow the supports to be continuous. In the

spirit of correlation increasing transformations, it can be shown that G� is greater

than F� in the supermodular order if and only ifG�(�i) � F�(�i) andG�(�i) � F �(�i)
for all �i. In words, G� assigns more mass to all the lower and upper orthants than

F� does. For example, bivariate normal distributions with �xed means and variances

become greater in the supermodular order if the covariance increases.

Interestingly, the supermodular order is the unique, appropriately de�ned, depen-

dence order in the bivariate case.9 That is, it is the only stochastic order that satis�es

a set of axioms that are reasonable for any notion of stochastic dependence.

A counterpart to the results in the previous subsection is now immediate.

Proposition 6 Assume that the common type distribution becomes greater in the
supermodular order. If pi(Bi(p�ij�i)j�i) is supermodular (submodular) in �i for all
p�i, then each type�s equilibrium action is weakly lower (higher) but the expected

equilibrium impact is weakly higher (lower).

Supermodularity ofBi(p�ij�i) in �i does not generally imply that pi(Bi(p�ij�i)j�i)
is supermodular in �i, or vice versa. However, in most of the following applications,

the two functions are supermodular or submodular at the same time.

5 Valuations and action sets

This section studies symmetric contests with private information about valuations

and either budget constraints or starting advantages. The orthant orders and the

supermodular order is particularly well-suited to study such contests.

8Probability 0.01 is added to (M;M) and (H;H) and taken away from (M;H) and (H;M).
At the same time, probability 0.02 is added to (L;L) and (M;M) and removed from (L;M) and
(M;L). In general, however, the events to which mass is added do not have to be on the diagonal.
Note that the marginal distributions are the same in Table 1(a) and 1(c).

9See the discussion leading up to Theorem 3.8.3 in Müller and Stoyan (2002). There are other
dependence orders, such as the concordance order, but they coincide when d = 2. Meyer and
Strulovici (2012) discuss applications of positive dependence in economics and explore the links
between di¤erent notions of greater dependence when d > 2.
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5.1 The bivariate valuation/budget contest

Start by assuming that types are bivariate and that vi(�i) = �
1
i and Ai(�i) = [0; �

2
i ],

with �1i ; �
2
i � 0. Here, �2i represents a privately known budget constraint or some

other resource constraint like a time constraint. Let �
2

i denote the highest possible

budget. Assume that the impact and cost functions are type-independent, and write

these as p(ai) and c(ai), respectively. Any such environment is from now on referred

to as a bivariate valuation/budget contest.

The budget constraint may prevent the agent from taking the action that he would

ideally want. Thus, best responses take the form

Bi(p�ij�i) = min
n
argmax

ai2[0;�
2
i ]
�1i p(ai)ki

�
p�i
�
� c(ai); �2i

o
;

and the resulting impacts are

pi(Bi(p�ij�i)j�i) = min
n
p
�
argmax

ai2[0;�
2
i ]
�1i p(ai)ki

�
p�i
�
� c(ai)

�
; p(�2i )

o
: (7)

The two arguments in the min function are increasing in one dimension of �i and

independent of the other. Thus, since the min function is supermodular, Bi(p�ij�i)
and pi(Bi(p�ij�i)j�i) are not only weakly increasing in �i but also supermodular in
�i. Hence, Propositions 4�6 can be applied.

To understand why Bi(p�ij�i) and pi(Bi(p�ij�i)j�i) are supermodular, note that
there is little good in having a high valuation and a low budget, or vice versa. In

either case, one of the two dimensions drags down the action and impact. In other

words, the agent needs to have both a high budget and a high valuation in order to be

able and willing to achieve a high impact. Thus, what matters are the upper orthants.

Recall that realizations in the upper orthants become more likely if the distribution

improves in the upper orthant order or becomes greater in the supermodular order.

Corollary 1 Consider any bivariate valuation/budget contest. If the type distribution
either improves in the upper orthant order or becomes greater in the supermodular

order, then each type�s equilibrium action is weakly lower and the budget constraint

binds for fewer types. However, the expected equilibrium impact is weakly higher.

Note that there is no change in the expected valuation and the expected budget if

the type distribution becomes greater in the supermodular order (as in Proposition 6).
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The reason is again that the marginal distributions are una¤ected. This is another

way of demonstrating that the comparative statics are driven by the dependence

structure. If the distribution improves in the upper orthant order (Proposition 5),

then there is an added e¤ect from the fact that marginal distributions improve in a

�rst-order stochastic sense, which increases the expected valuation and the expected

budget and spurs a further increase in the expected equilibrium impact.

The upper orthant order and the supermodular order can potentially be used

to study budget constraints even beyond the mixture model of contests. Consider

a second-price auction with bivariate types that re�ect valuations (�1i ) and budgets

(�2i ). In the dominant strategy equilibrium, the bidding strategy is minf�1i ; �2i g in-
dependently of the distribution. When the type distribution improves in the upper

orthant order or becomes greater in the supermodular order, the probability of high

bids therefore increases. Consequently, the distribution of bids improves in the sense

of �rst-order stochastic dominance and the expected revenue increases.

In the second-price auction, beliefs do not impact the equilibrium strategy and

the comparative statics are therefore particularly straightforward. In the mixture

contest, the simple form of (6) similarly leads to easy comparative statics.

5.2 The bivariate valuation/advantage contest

Assume next that vi(�i) = �
1
i and Ai(�i) = [�

2
i ; a], with �

1
i ; �

2
i � 0 and a > max �2i .

Here, �2i captures a privately known starting advantage. As before, the impact func-

tion p(ai) and cost function c(ai) are type-independent. Such environments are termed

bivariate valuation/advantage contests. Comparing the action sets in bivariate valua-

tion/budget contests with those in bivariate valuation/advantage contests, it is clear

that these kinds of contests are in some sense the opposite of each other.

The agent�s problem is

max
ai2Ai(�i)

�1i p(ai)ki(p�i)�
�
c(ai)� c(�2i )

�
:

Note that the agent incurs a cost only if his e¤ort is above his starting advantage.

The starting advantage puts a lower bound on the agent�s action. Hence,

Bi(p�ij�i) = max
�
argmaxai2[0;a] �

1
i p(ai)ki

�
p�i
�
� c(ai); �2i

	
pi(Bi(p�ij�i)j�i) = max

�
p
�
argmaxai2[0;a] �

1
i p(ai)ki

�
p�i
�
� c(ai)

�
; p
�
�2i
�	
(8)
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both of which are increasing in �i. Since the max function is submodular, Bi(p�ij�i)
and pi(Bi(p�ij�i)j�i) are submodular in �i. Proposition 4�6 can be applied.
To understand why valuations and starting advantages are substitutes, note that

a high action can be justi�ed if the valuation is high and that it is automatic if the

starting advantage happens to be large. Thus, it is enough that one of the two charac-

teristics is large. Conversely, it is only when both characteristics are small that actions

are small, which suggests that mass in the lower orthants dampens competition.

Corollary 2 Consider any bivariate valuation/advantage contest. If the type distrib-
ution improves in the lower orthant order then each type�s equilibrium action is weakly

lower, meaning that more types are dissuaded from exerting e¤ort above their starting

advantage. However, the equilibrium impact is weakly higher. The equilibrium e¤ects

are the opposite if the type distribution becomes greater in the supermodular order.

6 Valuations and impact functions

This section shifts the focus onto the impact function. The �rst application gives

clean comparative statics. The predictions of the second application depends more

critically on the primitives. These applications also illustrate the importance of how

types are ordered: Actions may be decreasing along one dimension of the type space,

but impacts never are.

6.1 The bivariate productivity contest

Consider a symmetric bivariate contest where types capture additive and multiplica-

tive productivity types, respectively. Thus, pi(aij�i) can with some abuse of notation
be written as p

�
�1i + ai�

2
i

�
. Valuations, v, are common knowledge and the cost of

e¤ort ai is ai. Such contests are termed bivariate productivity contests.

Assume that best responses are always interior. Agent i�s �rst-order condition is

vp0
�
�1i + ai�

2
i

�
�2i ki(p�i) = 1:

Note that the optimal value of �1i + ai�
2
i is independent of �

1
i . An increase in the

additive type �1i is a bonus to the agent which allows him to proportionally downgrade

his action while maintaining the same marginal product of ai. Thus, pi(Bi(p�ij�i)j�i)
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depends only on, and is increasing in, �2i . It follows that the expected equilibrium

impact is determined entirely by the marginal distribution of �2i . The dependence

structure is irrelevant in this regard.

On the other hand, Bi(p�ij�i) is supermodular in �i. As mentioned, an increase
in �1i leads the agent to downgrade his action. However, the incentive to downgrade

is smaller the higher �2i is. The reason it that the impact is more sensitive to such

a downgrade the higher �2i is. This explains why the two characteristics are comple-

ments in the best response function. Consequently, the expected equilibrium action

is sensitive to the dependence structure. The next corollary summarizes.

Corollary 3 Consider a bivariate productivity contest in which best responses are al-
ways interior. If the type distribution becomes greater in the supermodular order, then

the expected equilibrium impact does not change. However, the expected equilibrium

action and the expected cost of e¤ort increases.

6.2 The bivariate valuation/impact contest

Consider a bivariate valuation/impact contest in which valuations and impact func-

tions are private information. Types are bivariate, with valuations vi(�i) = �1i � 0

and impact functions pi(aij�i) that do not depend on �1i and can be written p(aij�2i ).
Assume that p(aij�2i ) is strictly increasing in each argument, or pa; p�2i > 0 where the
subscripts on p now refer to derivatives. The impact function is strictly concave in a

and the cost function is linear in a and independent of �i.

While pi(Bi(p�ij�i)j�i) is weakly increasing in �1i , stronger assumptions are re-
quired to ensure monotonicity in �2i . As �

2
i increases, the action can be lowered to

keep the impact p(aij�2i ) constant. However, incentives are determined by pa(aij�2i ).
Holding p(aij�2i ) constant, does pa(aij�2i ) increase in �2i ? If so, an incentive is created
to increase ai and thereby the impact p(aij�2i ). This occurs if pa�2i � 0 since the

increase in �2i increases pa, which in turns spurs an increase in ai. Of course, this is

a standard monotone comparative statics result in the vein of Milgrom and Shannon

(1994). The increase in �2i and ai then pulls in the same direction, to increase p(aij�2i ).
However, when pa�2i < 0 the action decreases in �2i , but as long as it decreases

slowly enough compared to �2i , the impact nevertheless increases. Thus, it can be

shown that
@

@a

�
p�2i
pa

�
� 0 (9)
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is su¢ cient for pi(Bi(p�ij�i)j�i) to be weakly increasing in �2i (a formal proof is in
the upcoming Corollary 5). This condition therefore implies that the type-space is

ordered in the desired manner, and Proposition 4 applies to all such environments.

Taking a step back, as noted above the best response is decreasing in �2i when

actions and types are substitutes in the impact function, or pa�2i < 0. Consequently, it

is possible that the equilibrium expected performance and the equilibrium expected

action move in opposite directions when the distribution of types improves in the

usual stochastic order. For completeness, the next result describes a case in which

this occurs. Appendix B contains a fully solved example.

Corollary 4 Consider a bivariate valuation/impact contest that satis�es (9) and
pa�2i < 0. Assume that �1i and �

2
i are independently distributed. Holding �xed the

marginal distribution of �1i , the expected equilibrium impact increases but the expected

equilibrium action decreases if the marginal distribution of �2i improves in the sense

of �rst order stochastic dominance.

Another way of stating the result is that the expected equilibrium performance

may increase while the expected equilibrium costs to agents decrease.10

Turning next to the importance of the dependence structure, assume thatBi(p�ij�i)
is always interior. Then, the agent�s �rst-order condition implies that

@Bi(p�ij�i)
@�2i

= �
pa�2i
paa

;

which as mentioned can be positive or negative. Since Bi(p�ij�i) is increasing in �1i , it
follows that whether Bi(p�ij�i) is supermodular or submodular depends on whether
�
p
a�2
i

paa
increases or decreases in ai. Finally, it is not hard to show that pi(Bi(p�ij�i)j�i)

inherits the modularity properties of Bi(p�ij�i) in this setting.

Corollary 5 The impact pi(Bi(p�ij�i)j�i) is weakly increasing in �i in any bivariate
valuation/impact contest that satis�es (9). Moreover, if Bi(p�ij�i) is always interior
then Bi(p�ij�i) and pi(Bi(p�ij�i)j�i) are submodular (supermodular) in �i if

@

@a

�
�
pa�2i
paa

�
< (>)0: (10)

10If the impact function is normalized to be linear and the cost function is c(aj�2i ) then the best
response is weakly increasing in �2i if and only if marginal costs are weakly decreasing in type, or
ca�2i � 0. However, the costs of the best response are decreasing in �

2
i if c�2i � caca�2i =caa < 0.
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The corollary describes conditions under which Propositions 5 and 6 apply. It is

instructive to consider a special case. Imagine that �2i is a multiplicative productivity

type in the sense that p(aij�2i ) takes the form z(ai�
2
i ), with ai; �

2
i � 0 and z0(x) >

0 > z00(x). Any such function satis�es (9) and a tight characterization of (10) is

possible. The derivative in (10) is proportional to z0(x)z000(x) � 2 (z00(x))2. Hence,
pi(Bi(p�ij�i)j�i) is submodular in �i as long as z0(x) is not �too convex�or, stated
di¤erently, when z000(x) is not too large. With this observation in mind, consider the

transformation � (z0(x))�1, which is a concave transformation of z0(x) and is related
to a notion of ��-concavity�that is explored in more depth in the next section. As long

as the transformed function is strictly concave in x, pi(Bi(p�ij�i)j�i) is submodular.
This is a weaker condition than log-concavity of z0(x) and is satis�ed in the fully

solved example in Appendix B. By Proposition 6, the expected impact then decreases

if the joint distribution becomes greater in the supermodular order.

A delineating case arises if z(x) = ln(� + �x), with parameter restrictions that

imply �; � > 0 and �+�x 2 [1; e]. Even though z0(x) is convex, � (z0(x))�1 is linear.
Indeed, Bi(p�ij�i) = �1i ki(p�i) � �

�
��2i
��1

and pi(Bi(p�ij�i)j�i) = ln �1i + ln �
2
i +

ln �ki(p�i) are additively separable in �
1
i and �

2
i . Hence, the dependence structure

between �1i and �
2
i is irrelevant for the expected performance and the expected action.

It is equally possible to construct examples in which pi(Bi(p�ij�i)j�i) is supermod-
ular. This is the case if z(x) = 1

16
(18x� 3x2 + x3), x 2 [0; 1]. There are admittedly

simpler examples, such as when z(x) = x�, x 2 [0; 1] and � 2 (0; 1). However, this
example hardly captures multivariate incomplete information in an interesting way.

The reason is that z(x) is a homogeneous function, and the agent�s problem is then

to maximize �1i
�
�2i
��
z(ai)ki(p�i) � ai. This problem depends on the single number

�1i
�
�2i
��
, which can be thought of as an adjusted valuation. Note that �1i

�
�2i
��
is

supermodular, so when the joint distribution of �i becomes greater in the supermod-

ular order, the expected value of the adjusted valuation increases and this alone helps

explain why the equilibrium impact increases.

7 Valuations and (a)symmetric mixture contests

Consider a symmetric contest with univariate types (written �i rather than �i) and

imagine that the �amount�of uncertainty increases in the sense that the type distri-

bution undergoes a mean-preserving spread. If pi(Bi(p�ij�i)j�i) is concave (convex)
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in �i, then the mean-preserving spread causes the expected impact to decrease (in-

crease), other things equal. This e¤ect pushes down (up) the expected equilibrium

impact, which then causes actions to move in the opposite direction.

Proposition 7 Consider a symmetric contest with univariate types. Assume that the
common type distribution undergoes a mean-preserving spread. If pi(Bi(p�ij�i)j�i) is
concave (convex) in �i for every p�i then each type�s equilibrium action is weakly

higher (lower), yet the expected equilibrium impact is weakly lower (higher).

To illustrate, assume that budgets are private information but that everything

else is known. Then, pi(Bi(p�ij�i)j�i) in (7) is concave in the budget. Consequently,
a mean-preserving spread of the budget causes each type�s equilibrium action to

weakly increase, meaning that the budget constraint binds for more types. However,

the expected impact is weakly lower.

The remainder of the section zeroes in on the role of valuations in symmetric and

asymmetric contests.

7.1 Symmetric contests with private valuations

Assume that agents are symmetric and that types are univariate, with private in-

formation only about the valuation, and vi(�i) = �i. Action sets, impact functions,

and cost functions are type-independent. Assume that the impact function is thrice

di¤erentiable and write it as p(ai). Assume for simplicity that the cost function is

c(ai) = ai. Such contests are termed private values contests.

Although a mean-preserving spread does not change the expected valuation, Propo-

sition 7 implies that the expected performance may increase or decrease, depending on

the curvature of p(Bi(p�ij�i)). Since p(�) is a concave transformation, p(Bi(p�ij�i))
is concave in �i if Bi(p�ij�i) is concave in �i. On the other hand, it is also possible
that Bi(p�ij�i) is so convex that p(Bi(p�ij�i)) is convex in �i. Either case can arise,
depending on the curvature of the marginal impact function, p0(a).

The relevant measure of concavity is �-concavity. Recall that the positive function

p0(a) is �-concave if the transformation T �(a) = 1
�
(p0(a))� is concave in a, � 6= 0 (and

log-concave if � = 0). This is satis�ed if and only if p0(a)p000(a)� (1� �) (p00(a))2 � 0.
Note that higher values of � are more stringent, with e.g. � = 0 coinciding with
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log-concavity and � = 1 with regular concavity. For the present problem, it is �-

concavity of order � = �1 and � = �2 that are important. See Ewerhart (2013) for
an introduction to �-concavity and some applications.

Lemma 1 Consider any private values contest in which best responses are always
interior. Then, Bi(p�ij�i) is concave (convex) in �i if T�1(a) is concave (convex)
and p(Bi(p�ij�i)) is concave (convex) in �i if T�2(a) is concave (convex). Hence,
Bi(p�ij�i) is convex in �i but p(Bi(p�ij�i)) is concave in �i whenever T�1(a) is convex
and T�2(a) is concave.

Thus, Proposition 7 applies if T�2(a) is concave or convex. As demonstrated

shortly in an example, either case is possible. Hence, the expected impact may

decrease or increase when the type distribution undergoes a mean-preserving spread.

The last part of Lemma 1 identi�es conditions under whichBi(p�ij�i) and p(Bi(p�ij�i))
have opposing curvatures. This suggests that the expected impact and the expected

action can move in opposite direction when valuations become more spread out. How-

ever, there is also a level e¤ect to account for. As it turns out, the level e¤ect some-

times works in the same direction: If p(Bi(p�ij�i)) is concave in �i, then p� decreases
following the mean-preserving spread, which then causes Bi(p�; :::; p�j�i) to increase
for all �i. Hence, if the conditions in the last part of the lemma are satis�ed then

(i) convexity of Bi(p�ij�i) in �i means that the expected action increases for any
given p�i and (ii) the equilibrium level of Bi(p�ij�i) increases for any �i because p�

decreases. The two e¤ects reinforce each other.11 Thus, the expected equilibrium

action and the expected equilibrium impact move in opposite directions. In other

words, agents expend more resources in expectations, yet are less productive.

Corollary 6 Consider any private values contest in which best responses are always
interior and where T�1(a) is convex and T�2(a) is concave. Then, the expected equi-

librium impact weakly decreases but the expected action weakly increases if the common

type distribution undergoes a mean-preserving spread.

Thus, it should not be taken for granted that total expected performance moves

in the same direction as total e¤ort when the competitive environment changes. Of

course, this insight is not necessarily unique to mixture contests. In the standard

11The proof of Corollary 4 is in the same vein and also relies on two reinforcing e¤ects.
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formulation of rank-order tournaments a la Lazear and Rosen (1981), the agent�s

action, impact, and expected productivity all coincide. However, non-linear cost

functions open the door for the possibility that higher total output may or may

not come at higher total costs. Relatedly, Fang et al (2020) consider a symmetric,

complete information, all-pay auction with convex costs but several prizes. Making

the prizes more unequal does not change expected costs, but it does reduce expected

total e¤ort.

Example 1: Consider a symmetric private values contest with n � 3 agents and

�i � [0; 1], p(ai) = ari , r 2 (0; 1), and action set A = [0; 1] for all �i 2 �i. Note that
p0(a) = rar�1 and � (p0(a))�1 are convex functions but that �1

2
(p0(a))�2 is concave

if r � 1
2
. It is readily veri�ed that Bi(p�ij�i) =

�
�irki

�
p�i
�� 1

1�r . Although the best

response is convex in �i, the resulting impact

pi(Bi(p�ij�i)j�i) =
�
�irki

�
p�i
�� r

1�r (11)

is convex in �i when r > 1
2
but concave when r < 1

2
. In either case, from (11),

p� = (rki (p
�; p�; :::; p�))

r
1�r E�i

h
�

r
1�r
i

i
: (12)

The solution depends on the type distribution only through the last term.

Assume �rst that r > 1
2
. Then, p� increases if the type distribution undergoes

a mean-preserving spread, since the last term in (12) increases. The case in which

r < 1
2
is more interesting. Here, the argument is reversed and p� decreases. By the

argument leading to Corollary 6, the expected equilibrium action must increase. In

summary, when r < 1
2
, the expected action increases, but the expected impact and

the expected performance decreases in response to the mean-preserving spread. N

7.2 Asymmetric contests and the discouragement e¤ect

This subsection allows agents to be heterogeneous ex ante but leans on the examples

and insights in the previous subsection. In particular, the e¤ects of making a common

type distribution more spread out in symmetric contests is echoed when agents are

made more asymmetric ex ante. To facilitate comparison with the existing literature,

assume that information is complete.

The contest literature has long asked whether increased heterogeneity discourages
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competition. Drugov and Ryvkin (2022) note that the answer depends on how het-

erogeneity is de�ned. If the asymmetry takes the form of di¤erent valuations then the

literature on Tullock contests suggests a discouragement e¤ect. In particular, Konrad

(2009) considers a two-player Tullock contest with known valuations v1 = v � z and
v2 = v + z, respectively, where v > 0 and z 2 [�v; v]. The impact function takes
the form ari . In his setting, total e¤ort decreases in jzj, meaning that total e¤ort is
maximized when agent are symmetric, or z = 0.

In the mixture contest, there is no strategic interaction with just two players.

Lemma 1 implies that there are impact functions for which the agent�s best response

is concave in his valuation, and others for which it is convex in his valuation. In

the former case, increasing z leads to the same conclusion as in Konrad (2009), i.e.

that total e¤ort decreases. However, the opposite occurs when the best response is

convex in valuations. Then, total e¤ort is larger when valuations are more spread out.

In other words, total e¤ort is minimized when the agents are symmetric, or z = 0.

This occurs with the impact function ari , as in Example 1. However, that example

also illustrates that increased asymmetry may increase or decrease the total impact,

depending on whether r > 1
2
or r < 1

2
.

Appendix B considers three agents with asymmetric valuations and r = 1
2
. Al-

though strategic interaction complicates the analysis, it is shown that if (v1; v2; v3) =

(v � z; v; v + z) then total e¤ort is minimized when agents are symmetric, or z = 0.

7.3 Asymmetric contests and the exclusion principle

Baye et al (1993) consider a complete information all-pay auction where agents di¤er

only in their valuations. They demonstrate an �exclusion principle� � a contest

organizer who is interested in maximizing aggregate e¤ort may want to exclude a

number of the �strongest�agents. By excluding strong agents, a more evenly balanced

contest among the remaining agents may be created, to the bene�t of the organizer.

Fang (2002) shows that exclusion can never improve aggregate e¤ort in a Tullock

contest in which the impact and cost of an action coincide.

In contrast, in the mixture model with homogeneous technologies it can be optimal

to exclude �weaker�agents, i.e. those with low valuations. This is most obvious in

a contest with n = 3 agents. Excluding any agent means that the remaining two

have dominant strategies, and so they work harder the higher their valuations are.
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Therefore, if it is optimal to exclude anyone, it must be the weakest agent.

Proposition 8 Consider a complete information mixture contest with three agents
that di¤er only in their valuations, with v1 � v2 > v3. Excluding agent 3 leads to a
weakly larger increase (or smaller decrease) in total expected e¤ort and total expected

impact than excluding either agent 1 or agent 2.

Example 2: Consider a complete information contests with three agents with valu-

ations v1 = 120, v2 = 9, and v3 = 6, respectively. In an all-pay auction, total e¤ort is

then 4:8375, but this increases to 5 if agent 1 is excluded. Assume now instead that

the contest is a mixture contest with impact function p(ai) = ari with r =
1
2
, and cost

function c(ai) = ai. Hence, the equilibrium analysis in Appendix B applies. Finally,

assume that H(x) = G(x)
, where 
 = 17
16
. The role of 
 is explored in much more

detail in Appendix B. Brie�y, the fact that 
 is close to 1 means that H is �close to�

G, which in turn means that incentives are weak. It also implies that performance is

mostly noise, and that agent 3 has a good chance of winning the contest even with

minimal e¤ort. Hence, agent 3�s presence discourages agents 1 and 2. In equilibrium,

the total impact is 0:92, but this increases to 0:98 when agent 3 is excluded. The

total action increases from 0:67 to 0:83.12 In summary, it is optimal to exclude agent

1 in the all-pay auction but to exclude agent 3 in the mixture contest. N

8 Extensions and discussion

8.1 Non-concave mixture contests

It is possible to extend the equilibrium characterization to contests in whichBi(p�ij�i)
is not necessarily single-valued. That is, Bi(p�ij�i) is a correspondence. This may
occur if the utility maximization problem is not strictly concave (pi(aij�i) is not
concave or ci(aij�i) is not convex) or if the action set is not an interval. Equilibrium
may now involve mixed strategies.

The details are in Appendix B, along with an example. The main novelty is that

there may exist multiple equilibria with the same expected impact. However, all such

equilibria are payo¤ equivalent.

12However, note that excluding an agent at a minimum means foregoing his base level of output
stemming from G, �G. In other words, excluding agent 3 can increase the total impact and total
e¤ort but decrease total performance if �G is large enough.
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8.2 Enlarging the contest

Increasing the number of agents may have surprisingly subtle e¤ects in the mixture

model. Other things equal, adding more symmetric competitors lowers the chance

of any given agent winning the contest. However, incentives are determined by the

agent�s ability to change the probability that he wins, rather than by the level of said

winning probability itself. In the mixture model, the winning probability may be more

sensitive to the agent�s e¤ort in a larger contest, thus heightening his incentives.

In fact, incentives may be non-monotonic in the number of ex ante symmetric

agents. Whether this is the case is determined by the relationship between the mix-

ture components. Starting from a small contest, adding more symmetric agents may

intensify competition to such a large extent that it forces both the action and the

expected performance of any individual agent to increase. Appendix B demonstrates

this possibility in contests in which the expected performance is low to start with.

In contrast, in symmetric complete-information all-pay auctions, the distribution

of e¤ort in the mixed strategy equilibrium worsens in the sense of �rst-order stochastic

dominance when more agents participate. In complete-information Tullock contests,

equilibrium e¤ort likewise declines under standard assumptions.

However, the comparative statics are richer in rank-order tournaments, and more

closely related to the results of the mixture model. Ryvkin and Drugov (2020, Corol-

lary 1) show that individual equilibrium e¤ort may be hump-shaped in the number

of agents. They also show that total e¤ort may decrease in the number of agents.

8.3 Endogenous entry

The base model studied thus far assumes that participation in the contest is manda-

tory or alternatively that the set of participants is known before actions are taken.

Consider instead a contest with endogenous and simultaneous entry from among a

�xed set of potential participants. Endogenous entry is accommodated by expanding

the action set to include an option to �stay out�. It is well known that endogenous

entry complicates the analysis of contests by adding an extra dimension to agents�

decisions. See e.g. Fu et al (2015) for a discussion.

In the mixture model with endogenous entry, the summary uncertainty measure

becomes two-dimensional. More precisely, pj = (p
out
j ; p

in
j ) where p

out
j is the probability

of exit and pinj is the probability of entry and a performance draw from Hj. Agent j
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enters and draws from Gj with probability 1� poutj � pinj . Hence, if agent i enters, the
ex ante probability that he outperforms agent j is

poutj + pinj Hj(x) +
�
1� poutj � pinj

�
Gj(x)

when agent i�s own performance is x. Note that as in the base model, incomplete

information does not add to the dimensionality of the problem.

The interim winning probability for agent i upon entry takes the same form as in

(2), but with

ti
�
p�i
�
=

Z �Q
j 6=i
�
poutj + pinj Hj(x) +

�
1� poutj � pinj

�
Gj(x)

��
� gi(x)dx

ki
�
p�i
�
=

Z �Q
j 6=i
�
poutj + pinj Hj(x) +

�
1� poutj � pinj

�
Gj(x)

��
(hi(x)� gi(x)) dx:

Incentives upon entry are still determined by ki
�
p�i
�
, but note that ti

�
p�i
�
in�uences

the utility from entering.

With homogenous technologies and two potential entrants, agent i�s optimal action

upon entry is still independent of pinj . Similarly, with more potential entrants it

remains the case that productive actions are strategic substitutes in the sense that

agent i�s best response contingent on entering is decreasing in pinj . In either case,

agent i is less likely to enter the larger pinj is.

The role of poutj is more nuanced. With two agents, agent i�s best response upon

entry is decreasing in poutj for the intuitive reason that there is little reason to take

costly actions if the sole opponent is likely to stay out. However, as noted above for

the case of exogenous participation, incentives are not necessarily monotonic in the

number of competitors. For similar reasons, agent i�s best response upon entry is not

necessarily monotonic in poutj when the number of potential entrants exceeds two.

To illustrate how the analysis is enriched with endogenous entry, Appendix B

describes a mixture contest in which the value of the outside option is private infor-

mation. A solution method as well as an example is provided.

8.4 Empirical falsi�cation of competing contest models

With a set of contest models with stochastic performance like the rank-order tourna-

ment, the Tullock contest, and the mixture model, it is natural to ask which (if any)
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model is appropriate. This is likely to depend on the application, and the following

discussion therefore centres around the empirical falsi�cation of these various models.

To �x ideas, assume that information is complete and that agents are symmetric.

A change in the contest environment occurs, either because the prize increases or

marginal costs decrease. Thus, the prediction is that equilibrium actions increase,

although the magnitude of the increase cannot be observed. Assume that performance

in several contests have been observed both before and after the change. Thus, the

outside observed has obtained empirical distributions of performances. Now, di¤erent

contest models yield di¤erent predictions on how these distributions compare.

In the rank-order tournament, noise is additive and a change in the equilibrium

action simply shifts the location of the distribution of performance. This testable

implication also means that the variance is unchanged. Hirschleifer and Riley (1992)

and Jia (2008) provide microfoundations for the Tullock contest. In their settings,

noise is multiplicative. Thus, the distribution of performance is scaled up when

the equilibrium action and mean performance increases. If the mean performance

increases from � to t�, then the variance increases from �2 to t2�2, t > 1.

Fullerton and McAfee (1999) provide another microfoundation for the Tullock

contest. Here, the distribution of the performance of an agent with impact p takes

the form F (xjp) = H(x)p, where H is some distribution function (unknown to the

outside observer). A change in the equilibrium action or impact does not necessarily

change the variance of the performance in the same direction as the mean. However,

a testable implication is that
lnF (xjp)
lnF (xjp0) =

p

p0

is independent of the performance.

In the mixture model, the variance of performance does not necessarily move in the

same direction as the mean either. Given impact p, the distribution of performance is

F (xjp) = pH(x)+(1�p)G(x). Imagine now that three di¤erent contest environments
are observed, and denote the respective equilibrium impacts p; p0, and p00 (unknown

to the outside observer). In this case,

F (xjp)� F (xjp0)
F (xjp)� F (xjp00) =

p� p0
p� p00

is independent of performance.
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9 Conclusion

This paper introduces a general version of the mixture model of contests. A chief

bene�t of the model is that any uncertainty about a competitor�s action as a conse-

quence of private information is captured by a single uncertainty measure. In this

sense, private information does not increase the dimensionality of the problem. More-

over, the structure of the mixture model is such that all types react the same way to

changes in the competitive environment, whereas this is not the case in other models.

Naturally, this feature also adds to the tractability of the model.

It is challenging to incorporate incomplete information into existing contest models

in a tractable manner. Moreover, in part because di¤erent types typically react

di¤erently to changes in the contest environment, it is hard to reach conclusions

about the aggregate e¤ects of such changes. In contrast, the mixture model is ideally

suited to shed light on how one particularly important aggregate statistics �namely

expected performance �is a¤ected by changes to the contest.

There is a simple trick to determine whether the expected performance in a sym-

metric mixture contest increases or decreases following a change in the contest envi-

ronment. In particular, it is su¢ cient to determine whether the change in the type

distribution would cause the expected impact to increase, other things equal. This is a

counterfactual question because other things are not equal when equilibrium changes,

but it is a question that is usually fairly easy to answer. Indeed, it boils down to

understanding how the impact of best responses depends on types.

Likewise, it is possible to predict the direction in which any given type changes

his action, but it is rarely possible to determine how expected e¤ort is impacted.

Nevertheless, it is demonstrated repeatedly that expected performance and expected

e¤ort can move in opposite directions. Depending on the stochastic order involved,

this can happen for several reasons, e.g. because the mapping from types into best

responses has di¤erent modularity properties (Corollary 3), di¤erent slopes (Corollary

4), or di¤erent curvature (Corollary 6) than the mapping from types into equilibrium

impacts. Thus, it should not be taken for granted that higher expected actions or

higher expected expenditures necessarily implies higher expected performance.

A main contribution of the mixture model is that it allows for a systematic explo-

ration of the role of the dependence structure between multivariate characteristics.

The bivariate case is particularly interesting, because in this case there is a unique
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stochastic order that captures positive dependence in the �correct� way. Thus, a

series of bivariate applications are examined.

Perhaps the most clear-cut application is to contests with private valuations and

budgets. Here, the two characteristics are complements in the most archetypical way

in the sense that the impact of best responses take a Leontief form. That is, the impact

is the minimum of what the budget allows and what an agent with the given valuation

would choose if not budget constrained. It is thus intuitive that the more positively

dependent the two characteristics are, the higher is the expected performance. This

intuition is correct, at least in the mixture model.

Similar intuition explains the conclusions of other applications. The key is to ask

whether characteristics are complements or substitutes. In an application with private

valuations and starting advantages, the two characteristics are substitutes. On the

other hand, in a setting with bivariate productivity characteristics, the two dimensions

do not interact in the agent�s equilibrium impact. In the former application, greater

positive dependence thus decreases expected performance, whereas the dependence

structure is irrelevant in the latter.

However, not all applications lead to unambiguous comparative statics. This

is demonstrated in an contest with private valuations and impact functions. Here,

greater positive dependence can push expected performance in either direction, be-

cause the properties of the impact function determines whether the characteristics

are complements or substitutes in equilibrium.

Finally, the mixture model o¤ers a way to check the robustness of the common

workhorse models. The rank-order tournament and the Tullock contest (or its micro-

foundations) merely describe di¤erent ways to map an agent�s action into stochastic

performance via a parameterized distribution function. It is di¢ cult a priori to say

whether one such mapping is more accurate than another. Absent a completely gen-

eral analysis of all distribution functions, it is therefore bene�cial to have a portfolio of

tractable models. A bigger portfolio hopefully contributes to a better understanding

of when to expect di¤erent comparative statics. Understanding comparative statics

are important because they feed into design choices and policy recommendations. To

name but one example, it is known that capping the number of agents may intensify

competition, but it remains important to know which agents to admit and which ones

to exclude, lest the intervention back�res. The mixture model cautions that existing

models may identify the wrong agents to exclude when agents are asymmetric.
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Appendix A: Omitted proofs

Proof of Proposition 1. Existence follows from Brouwer�s �xed-point theorem.

Given a solution (p1; p2; :::; pn) 2 �ni=1
�
pmini ; pmaxi

�
to (5), the best response to p�i is

Bi(p�ij�i). This implies that agent i�s expected impact is pi = E�i
�
pi(Bi(p�ij�i)j�i)

�
.

Thus, agents are mutually best responding.

Proof of Proposition 2. The main body of the text contains a proof which aims

to bring out the intuition. A more direct proof is provided here.

In two-player contests, integration by parts yields

@ki(pj)

@pj
=

Z x

x

(H(x)�G(x)) (h(x)� g(x)) dx

=

�
1

2
(H(x)�G(x))2

�x
x

= 0;

which proves the result. For larger contests,

@ki
�
p�i
�

@pj
=

Z �Q
l 6=i;j (plH(x) + (1� pl)G(x))

�
(H(x)�G(x)) (h(x)� g(x)) dx:

Let !(x) denote the product in the �rst parenthesis. This is strictly increasing in x,

with !0(x) > 0. Thus, the proposition follows from

@ki
�
p�i
�

@pj
=

Z
!(x) (H(x)�G(x)) (h(x)� g(x)) dx

= �
Z
!0(x)

1

2
(H(x)�G(x))2 dx < 0;

where integration by parts was used once again.

Proof of Proposition 3. The result is trivial in the case of two-player contests,

since equilibrium is then in strictly dominant strategies. Thus, consider contests with

n � 3 agents. In a symmetric equilibrium, pj = p� for all j. At such a symmetric

impact pro�le,

ki (p
�; p�; :::; p�) =

Z
(p�H(x) + (1� p�)G(x))n�1 (h(x)� g(x)) dx:
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Following the same argument as in the last part of the proof of Proposition 2, the

derivative with respect to p�,Z
(n� 1) (p�H(x) + (1� p�)G(x))n�2 (H(x)�G(x)) (h(x)� g(x)) dx;

is strictly negative. Hence, taking the possibility of corner solutions into account,

Bi(p
�; p�; :::; p�j�i) is weakly decreasing in p�. It follows that pi(Bi(p�; p�; :::; p�j�i)j�i)

is weakly decreasing in p� for all �i, and therefore that E�i [pi(Bi(p�; p�; :::; p�j�i)j�i)]
is weakly decreasing in p�. However, a symmetric equilibrium must satisfy

p� = E�i [pi(Bi(p�; p�; :::; p�j�i)j�i)] :

The left hand side is strictly increasing in p�, whereas the right hand side is weakly

decreasing. Thus, one and only one solution exists.

Proof of Proposition 4. The two-player case is trivial because the equilibrium

strategy does not change, but higher types are more likely. Thus, consider contests

with more than two agents. Given how the type space is ordered, E�i [pi(Bi(p�; p�; :::; p�j�i)j�i)]
weakly increases for any p� when the distribution of types improves in the sense of

the usual stochastic order. Thus, using the argument following (6), the equilibrium

value of p� weakly increases and equilibrium actions weakly decrease for any given

type.

Proof of Proposition 5. First, E�i [pi(Bi(p�; p�; :::; p�j�i)j�i)] increases for any p�

if pi(Bi(p�ij�i)j�i) is weakly increasing and supermodular (submodular) in �i for all
p�i and the joint distribution becomes stronger in the upper (lower) orthant order.

The argument following (6) then implies that the p� weakly increases and actions

weakly decrease for any given type.

Proof of Proposition 6. E�i [pi(Bi(p�; p�; :::; p�j�i)j�i)] increases for any p� if
pi(Bi(p�ij�i)j�i) is supermodular in �i for all p�i and the joint distribution becomes
greater in the supermodular order. Using the argument after (6) then implies that

the p� weakly increases and actions weakly decrease for any given type.

If pi(Bi(p�ij�i)j�i) is submodular in �i for all p�i then �pi(Bi(p�ij�i)j�i) is su-
permodular in �i for all p�i. Hence, E�i [pi(Bi(p�; p�; :::; p�j�i)j�i)] weakly decreases
for any p� if the joint distribution becomes greater in the supermodular order. The
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right hand side of (6) further decreases if p� increases, while the left hand side in-

creases. This is a contradiction, which thus implies that p� must weakly decrease.

Equilibrium actions in turn weakly increase for any given type.

Proof of Corollary 1. Since pi(Bi(p�ij�i)j�i) is increasing and supermodular in
�i for all p�i, the corollary follows from Propositions 5 and 6.

Proof of Corollary 2. Since pi(Bi(p�ij�i)j�i) is increasing and submodular in �i
for all p�i, the corollary follows from Propositions 5 and 6.

Proof of Corollary 3. From the �rst-order condition �1i+Bi(p�ij�i)�2i is a function
only of �2i and p�i. Thus, it is possible to write

�1i +Bi(p�ij�i)�2i = b(�2i ;p�i)

pi(Bi(p�ij�i)j�i) = p
�
b(�2i ;p�i)

�
:

Hence, the right-hand side of (6) depends only on p� and the marginal distribution

of �2i . However, this is unchanged when the type distribution becomes greater in the

supermodular order, and it follows that the solution, p�, to (6) is unchanged. This

proves the �rst part of the corollary.

For the second part, Bi(p�ij�i) =
b(�2i ;p�i)��1i

�2i
is supermodular in �i =

�
�1i ; �

2
i

�
since @2Bi(p�ij�i)

@�1i @�
2
i

= 1=
�
�2i
�2
> 0. Since p� does not change when the type distribution

becomes greater in the supermodular order, E�i [Bi(p�; p�; :::; p�j�i)] increases. Indeed,

E�i [Bi(p�; p�; :::; p�j�i)] = E�i
�
b(�2i ; p

�; p�; :::; p�)� �1i
�2i

�
= E�i

�
b(�2i ; p

�; p�; :::; p�)

�2i

�
+ E�i

�
��

1
i

�2i

�
:

The �rst term is una¤ected since the marginal distribution of �2i does not change.

The second term is the expectation of a supermodular function, which increases.

Proof of Corollary 4. Since the (independence) copula is held �xed, it follows

from Scarsini (1988) that the improvement in the marginal distribution of �2i causes

the joint distribution to improve in the usual stochastic order. By Proposition 4 and

(9), the equilibrium value of p� therefore increases and each type takes a weakly lower

action. Fixing �1i and taking the expectation over �
2
i , the latter e¤ect means that the
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expected action decreases for a (counterfactually) �xed marginal distribution of �2i .

Since pa�2i < 0 implies that the equilibrium action is decreasing in �2i , the expected

action further decreases as the marginal distribution of �2i improves in the sense of �rst

order stochastic dominance. Thus, conditional on �1i , the expected action decreases.

Since the marginal distribution of �1i has not changed, it follows that the equilibrium

expected action decreases.

Proof of Corollary 5. For the �rst part, a marginal increase in �2i must be met

with a marginal change in ai of
�p

�2
i

pa
if p(aij�2i ) is to be held constant. As a result,

pa(aij�2i ) changes at a rate of

paa
�p�2i
pa

+ pa�2i =
pa�2i pa � paap�2i

pa
;

which is positive, by (9). Hence, pa(aij�2i ) increases at the action that holds p(aij�2i )
constant, meaning that the agent is incentivized to increase ai and thus p(aij�2i ).
This proves that pi(Bi(p�ij�i)j�i) is weakly increasing in �2i . It is trivial to see that
pi(Bi(p�ij�i)j�i) is weakly increasing in �1i , as higher �1i means that the agent is more
interested in winning the contest.

For the second part, the agent�s �rst-order condition must be satis�ed since

Bi(p�ij�i) is interior. Hence, �1i pa(Bi(p�ij�i)j�2i ) is constant, which implies that

@Bi(p�ij�i)
@�1i

= � pa

�1i paa
> 0

@Bi(p�ij�i)
@�2i

= �
pa�2i
paa

;

where the inequality utilizes pa > 0 > paa. From the second expression, the sign of

@2Bi(p�ij�i)
@�1i@�

2
i

=
@

@�2i

�
�
pa�2i
paa

�
� @Bi(p�ij�i)

@�1i

is thus determined by (10). Finally,

@2p(Bi(p�ij�i)j�2i )
@�1i@�

2
i

=
@

@�2i

�
pa(Bi(p�ij�i)j�2i )

@Bi(p�ij�i)
@�1i

�
= pa(Bi(p�ij�i)j�2i )

@2Bi(p�ij�i)
@�1i@�

2
i

;
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where the last equality follows from the fact that pa(Bi(p�ij�i)j�2i ) does not depend
on �2i because �

1
i pa(Bi(p�ij�i)j�2i ) is the same for all �i for which the optimal action

is interior. In short, p(Bi(p�ij�i)j�2i ) is submodular (supermodular) in �i if and only
if the action Bi(p�ij�i) is submodular (supermodular) in �i.

Proof of Proposition 7. The two-player case is trivial once again. In contests with

more than two agents, if pi(Bi(p�ij�i)j�i) is convex (concave) in �i for all p�i, then
the mean-preserving spread leads E�i [pi(Bi(p�; p�; :::; p�j�i)j�i)] to increase (decrease).
The argument following (6) then completes the proof.

Proof of Lemma 1. From the agent�s �rst order condition it follows that

p0(Bi(p�ij�i)) =
1

�iki
�
p�i
�

and therefore that

p00(Bi(p�ij�i))
@Bi(p�ij�i)

@�i
= � 1

�2i ki
�
p�i
�

and

p000(Bi(p�ij�i))
�
@Bi(p�ij�i)

@�i

�2
+ p00(Bi(p�ij�i))

@2Bi(p�ij�i)
@�2i

=
2

�3i ki
�
p�i
� :

Simplifying the last expression,

@2Bi(p�ij�i)
@�2i

=
�1

p00(Bi(p�ij�i))

 
p000(Bi(p�ij�i))

�
@Bi(p�ij�i)

@�i

�2
� 2

�3i ki
�
p�i
�!

=
�1

�3i ki
�
p�i
�
p00(Bi(p�ij�i))3

 
p000(Bi(p�ij�i))

1

�iki
�
p�i
� � 2p00(Bi(p�ij�i))2

!

=
p000(Bi(p�ij�i))p0(Bi(p�ij�i))� 2p00(Bi(p�ij�i))2

��3i ki
�
p�i
�
p00(Bi(p�ij�i))3

;

which proves that Bi(p�ij�i) is concave in �i if p0(a) is �-concave of order � = �1.
The proof that p(Bi(p�ij�i)) is concave in �i if p0(a) is �-concave of order � = �2 is
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similarly based on the fact that

@2p(Bi(p�ij�i))
@�2i

/ p000(Bi(p�ij�i))p0(Bi(p�ij�i))� 3p00(Bi(p�ij�i))2:

The last part of the lemma follows immediately.

Proof of Corollary 6. By Proposition 7, the expected equilibrium impact weakly

decreases. Since Bi(p�ij�i) is convex in �i, its expected value increases due to the
mean-preserving spread, for any given p�i. This on its own drives the expected action

up, and Proposition 7 in addition reveals that the action increases type-for-type. The

two forces work in the same direction, implying that the expected equilibrium action

weakly increases.

Proof of Proposition 8. In the two-player contest, ki(p�i) is constant and identity-

dependent. Hence equilibrium strategies are independent of who the competitor is

and they are weakly increasing in valuations. Thus, agent 3�s expected action and

expected total impact if he is a participant in a two-player contest is lower than that

of agents 1 and 2 if they participate. Hence, replacing agent 3 with whichever agent

was excluded in the two-player contest weakly increases total expected e¤ort and total

expected impact.
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Appendix B: Homogeneous technologies

Table of contents:

B.1 Properties of the polynomial ki
�
p�i
�
(supplement to Section 3)

B.2 Asymmetric equilibria of symmetric contests (supplement to Section 4)

B.3 A valuation/impact contest (supplement to Section 6)

B.4 A contest with three heterogeneous agents (supplement to Section 7.2 and 7.3)

B.5 Non-concave mixture contests (supplement to Section 8.1)

B.6 Varying the number of agents (supplement to Section 8.2)

B.7 Endogenous entry with private outside options (Supplement to Section 8.3)

B.1 Properties of the polynomial ki (p�i)

With homogenous technologies, ki
�
p�i
�
is a symmetric polynomial in the n� 1 vari-

ables p1; :::; pi�1; pi+1; :::pn. Expanding ki
�
p�i
�
gives

�
n�1
1

�
terms involving a single

element of p�i,
�
n�1
2

�
terms involving the product of two elements of p�i,

�
n�1
3

�
terms

involving the product of three elements, and so on. By symmetry, the coe¢ cient to

each term depends only on the number of elements in the product. Thus, ki
�
p�i
�

can alternatively be written as

ki
�
p�i
�
= �n0+�

n
1

X
j 6=i
pj+�

n
2

X
j 6=i

X
j0 6=i;;j0>j

pjpj0+:::+�
n
n�1p1�:::�pi�1�pi+1�:::�pn;

where �nm is the coe¢ cient to the terms of degree m, m = 0; 1; :::; n� 1. The quali�er
that j0 > j in the summation after �n2 prevents double-counting. For notational

simplicity, the superscript in �nm will be omitted when no confusion arises as a result.

Lemma 2 Any contest with homogeneous technologies has the following properties:

1. ki
�
p�i
�
is a polynomial of degree n� 2, or �n�1 = 0.

2. The coe¢ cients alternate in sign, with �m positive if m is even and negative if

m is odd, and �m 2 (�1; 1).

3. The coe¢ cients diminish in magnitude, or �0 > j�1j > �2 > j�3j > ::: > �n�1 =
0.

44



Proof. It is easy to see that

�m =

Z
G(x)n�m�1 (H(x)�G(x))m (h(x)� g(x)) dx; m = 0; 1; :::; n� 1: (13)

Thus, �m is the di¤erence between the expectation of G(x)n�m�1 (H(x)�G(x))m

under H and G, respectively. It follows that �m 2 (�1; 1). Using integration by
parts,

�n�1 =

Z
(H(x)�G(x))n�1 (h(x)� g(x)) dx

=

�
1

n
(H(x)�G(x))n

�x
x

= 0

and

�m = �
Z
n�m� 1
m+ 1

(H(x)�G(x))m+1G(x)n�m�2g(x)dx; m = 0; 1; :::; n� 2:
(14)

First, the fact that �n�1 = 0 implies that ki
�
p�i
�
is a polynomial of only degree

n�2. This is consistent with the conclusion in Proposition 2 that ki
�
p�i
�
is constant

when n = 2. Second, recall that since H �rst order stochastically dominates G,

H(x) � G(x) � 0. Hence, it follows from (14) that �m is positive if m is even and

negative if m is odd. Thus, �0; �2; �4::: are positive while �1; �3; �5::: are negative.

Third, using (13) to calculate �m + �m+1 and then using integration by parts as in

(14) reveals that �m + �m+1 > 0 when m is even and that �m + �m+1 < 0 when m is

odd. This in turn implies that the coe¢ cients diminish in magnitude, or �0 > j�1j >
�2 > j�3j > ::: > �n�1 = 0.13

The �rst part of the lemma provides one possible way to quantify how the com-

plexity of the problem increases as the number of agents grows. With homogenous

technologies, any equilibrium �just� involves handling polynomials of degree n � 2.
The next example further illustrates and discusses the implications of the lemma.

Example 3: Assume that agents have homogeneous power technologies: H and G are

generated from a parent distribution F0, with H(xi) = F0(xi)� and G(xi) = F0(xi)�,

13From (14), note that �m can be bounded above or below (depending on the sign ofm) by letting
H(x)! 0. The economic interpretation of H(x)! 0 is that H approaches a degenerate distribution
in which the top performance is guaranteed. Thus, letting H(x) ! 0 yields the conclusion that
0 < �m <

n�m�1
n(m+1) if m is even and 0 > �m > �n�m�1

n(m+1) if m is odd, m = 0; 1; :::; n� 2.
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where � > � > 0. Equivalently, H(xi) = G(xi)
, where 
 = �
�
> 1. Then, from (14),

�nm = �
Z
n�m� 1
m+ 1

(G(x)
 �G(x))m+1G(x)n�m�2g(x)dx:

Letting z = G(x) and thus dz = g(x)dx, integration by substitution yields

�nm = �
Z 1

0

n�m� 1
m+ 1

(z
 � z)m+1 zn�m�2dz:

Expanding (z
 � z)m+1 using the Binomial Theorem produces

�nm = �
Z 1

0

n�m� 1
m+ 1

m+1X
j=0

�
m+ 1

j

�
(z
)m+1�j (�z)j zn�m�2dz

= �
Z 1

0

n�m� 1
m+ 1

m+1X
j=0

�
m+ 1

j

�
z
(m+1�j)+j+n�m�2 (�1)j dz

= �n�m� 1
m+ 1

m+1X
j=0

�
m+ 1

j

�
(�1)j 1


 (m+ 1� j) + j + n�m� 1

= �n�m� 1
m+ 1

m+1X
j=0

�
m+ 1

j

�
(�1)j 1

(
 � 1) (m+ 1� j) + n:

Using this formula, it is easy to see that

ki(pj) =
(
 � 1)
2 (
 + 1)

when n = 2. In comparison, when n = 3;

ki(pj; pj0) =
2 (
 � 1)
3 (
 + 2)

� (
 � 1)2

3 (
 + 2) (2
 + 1)
(pj + pj0);

and when n = 4,

ki(pj; pj0 ; pj00) =
3 (
 � 1)
4 (
 + 3)

� (
 � 1)2

4 (
 + 1) (
 + 3)
(pj + pj0 + pj00)

+
(
 � 1)3

4 (
 + 1) (
 + 3) (3
 + 1)

�
pjpj0 + pjpj00 + pj0pj00

�
;

46



where j, j0, and j00 are agent i�s competitors. If 
 = 2 then �20 =
1
6
, (�30; �

3
1) =

�
1
6
;� 1

60

�
,

and (�40; �
4
1; �

4
2) =

�
3
20
;� 1

60
; 1
420

�
. In line with the previous result, note that the

sequence of coe¢ cients alternate in sign and rapidly diminish in numerical magnitude.

The latter property suggests the idea that a good �initial guess� for a solution

might be obtained by ignoring the terms of higher degree. This may prove to be

a useful starting point in complicated environments where numerical methods are

required to obtain a solution. For an analytical demonstration of this point, assume

that 
 = 2 and that there are n = 4 symmetric agents with known valuation v, impact

function pi(ai) =
p
ai, and cost function, ci(ai) = ai, ai 2 [0; 1]. A symmetric and

interior equilibrium exists as long as v 2 (0; 56
3
), in which case it is characterized by

p4
�
=
1

2v

�
7v �

p
35 (112v � v2 + 2240) + 280

�
, i = 1; 2; 3; 4:

A guess based on �42 = 0 instead yields p
� = 3v

v+40
, which is no more than 5% o¤ the

true value (depending on v). In this case, the guess underestimates the true value

of pi because the guess underestimates the magnitude of ki
�
p�i
�
. For instance, if

v = 10 then the true pi is 0:611 whereas the underestimate is 0:6. In the same setting

but with n = 5 agents, p5
�
is 0:533. By setting �52 = �53 = 0 the underestimate

0:519 is obtained. Setting only �53 = 0 but keeping the correct �
5
2 instead gives the

overestimate 0:534. These examples demonstrate that it is often possible to bound

the true solution by examining simpler but arti�cial problems where the higher-degree

terms are eliminated from ki
�
p�i
�
. N

B.2 Asymmetric equilibria of symmetric contests

Example 4 illustrates that symmetric contests may have asymmetric equilibria.

Example 4: There are three symmetric agents and information is complete. Hence,

types are suppressed from the notation. Assume that vi = 132, pi(ai) = ai, ci(ai) =

20ai + a
2
i , ai 2 [0; 1], i = 1; 2; 3. Assume that the mixture components satisfy

H(xi) = G(xi)
2. It is then easy to verify that there is a symmetric equilibrium

in which (a1; a2; a3) = (p1; p2; p3) = (
5
16
; 5
16
; 5
16
). However, there are also asymmetric

equilibria. For instance, (a1; a2; a3) = (p1; p2; p3) = (0; 0; 1) is also an equilibrium. In

the symmetric equilibrium, any agent faces a total rival impact of 10
16
= 5

8
, whereas

agents 1 and 2 in the asymmetric equilibrium faces a total rival impact of 1. Given
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the high rival impact in the latter case, agents 1 and 2 are deterred from taking a

positive action.

The total action and the total impact coincide in this setting, or
P
ai =

P
pi(ai).

If the contest organizer only cares about the aggregate values, then she is better o¤

in the asymmetric equilibria than the symmetric equilibrium. N

B.3 A valuation/impact contest

The next example describes a bivariate valuation/impact contest. The example is

used to illustrate Propositions 3�6 and Corollaries 4 and 5 in a more direct and

concrete way.

Example 5: Assume that agents are ex ante symmetric with vi(�i) = �1i and

pi(aij�i) = p(aj�2i ) = 1�e�a�
2
i , where �2i > 0 measures how productive the agent�s ac-

tion is. Assume also that ci(aij�i) = ai and Ai(�i) = [0; ai], with ai > 0. Note that (9)
is satis�ed and that �

p
a�2
i

paa
is strictly decreasing in a. Hence, Corollary 5 implies that

pi(Bi(p�ij�i)j�i) is increasing and submodular in �i, as will be veri�ed more directly
in the following. However, with Corollary 4 in mind, note that pa�2i = (1� a�

2
i )e

�a�2i

can be positive or negative.

Assume that ai � max �1i , meaning that it is never pro�table to take the highest
possible action. Similarly, assume that ki(p�i)�

1
i �
2
i � 1 > 0 for all �i when p�i =

(1; 1; :::; 1). This rules out low valuations and unproductive impact functions. It

implies that ai = 0 is never a best response, because it is not a best-response even in

the worst-case scenario where all rivals have the highest possible impacts. Thus, the

best response is always interior. For type �i, the �rst-order condition reveals that

�
1� pi(Bi(p�ij�i)j�i)

�
ki(p�i) =

1

�1i �
2
i

:

Taking the expectation over �i yields (1�pi)ki(p�i) = �, where � = E�i [
�
�1i �

2
i

��1
] > 0.

A symmetric equilibrium impact, p�, solves

(1� p�)ki(p�; p�; :::; p�) = �: (15)

The left-hand side is decreasing in p�. Thus, the solution is unique, as implied by

Proposition 3. It also follows that p� is decreasing in �. In this sense, � is a su¢ cient
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statistics of the multivariate uncertainty faced by agents. Now, �� is increasing and
submodular. Hence, �� increases when the type distribution becomes stronger in the
lower orthant order. In other words, � decreases and p� increases. This illustrates

Proposition 4, as the usual stochastic order is stronger than the lower orthant order.

Another way to understand Proposition 4 in this context begins by noting that

pi(Bi(p�ij�i)j�i) = 1�
1

�1i �
2
i ki(p�i)

(16)

is increasing in �1i �
2
i . Hence, even though types are multivariate, what matters in

this particular example is the distribution of the univariate random variable �1i �
2
i .

The set of �i for which �
1
i �
2
i exceeds some threshold is an increasing set. As the type

distribution improves in the usual stochastic order, this increasing set is assigned more

mass. Hence, the distribution of �1i �
2
i improves in the sense of (univariate) �rst-order

stochastic dominance, implying that its expected value increases.14

To apply Propositions 5 and 6, note from (16) that pi(Bi(p�ij�i)j�i) is increasing
and submodular in �i. By Proposition 5, p� increases when the type distribution

becomes stronger in the lower orthant order, as already mentioned above. By Propo-

sition 6, p� decreases when the type distribution becomes greater in the supermodular

order.

Next, the left-hand side of (15) is a polynomial of degree n� 1. Polynomials can
be solved analytically up to quartic equations, which means that (15) can be solved

analytically for n � 5. The case with n = 3 is considered next.
Given that n = 3, each ki(p�i) is a polynomial of degree 1. By symmetry, it can

therefore be written ki(p�i) = �0 +
P

j 6=i �1pj. Thus, ki(p
�; p�) = �0 + 2�1p

�. Note

that �0 > 0 since it equals ki(p�i) when p�i = (0; 0). By Proposition 2, �1 < 0.

The assumption that ki(p�i)�
1
i �
2
i � 1 > 0 for all �i when p�i = (1; 1) implies that

�0+2�1 > �, which in turn implies that �0 > �. The correct root to (15) can now be

identi�ed. The expected equilibrium impact is

p� =
��0 + 2�1 +

q
(�0 + 2�1)

2 � 8��1
4�1

: (17)

14If the distribution of �1i �
2
i undergoes a mean-preserving spread, then p

� decreases because
pi(Bi(p�ij�i)j�i) is concave in �1i �2i . See also Proposition 7 in Section 7.
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Combining the �rst-order condition with (15) and (17), the equilibrium strategy is

si(�i) =
1

�2i
ln
�
�1i �

2
i ki(p

�; p�)
�

=
1

�2i
ln

�
�1i �

2
i

1

2

�
�0 + 2�1 +

q
(�0 + 2�1)

2 � 8��1
��

, i = 1; 2; 3.

As mentioned, the equilibrium impact pi(si(�i)j�i) is monotonic in �1i �2i . Thus, two
types with the same �1i �

2
i value have the same equilibrium impacts but not necessarily

the same equilibrium actions. In fact, si(�i) is generally hump-shaped in �
2
i . The

underlying reason is that pa�2i may change sign. However, if �
2
i is large for all �i, then

the equilibrium action is decreasing in �2i because it then holds that pa�2i < 0. The

same is true if the action set and type space is such that a�2i > 1 for all actions and

types. In the latter case, Corollary 4 applies. N

B.4 A contest with three heterogeneous agents

This subsection presents a contest with three heterogenous agents in which equilib-

rium is unique and strategies can be characterized in closed form. Types are univariate

and written as �i rather than �i. Technologies are homogeneous. Impact and cost

functions are also symmetric across agents, with

pi(aij�i) =
p
ai; ci(aij�i) = ai; Ai(�i) = [0; 1] for all �i 2 �i and all i = 1; 2; 3: (18)

This speci�cation is isomorphic to a setting with a linear impact function but quadratic

cost function. Types capture private information about valuations, vi(�i). Let �i de-

note the expected value of agent i�s valuation, i = 1; 2; 3. Thus, agents are allowed

to have di¤erent type distributions. Given that ki
�
p�i
�
� �0 for all p�i, the best

response for all types is strictly below 1 regardless of p�i if

max
�i2�i

�
1

2
�0vi(�i)� 1

�
< 0; (19)

which is henceforth assumed. For future reference, note that since �0 > j�1j, it holds
that 2 + �1vi(�i) > 0 for all types, and therefore it holds that 2 + �1�i > 0.

Proposition 9 Consider a three-player contest with symmetric mixture components
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and which satis�es (18) and (19). In the unique equilibrium,

pi =
�0�i (�1�j + 2) (�1�j0 + 2)

8� 2 (�1)2 (�1�2 + �1�3 + �2�3)� 2 (�1)3 �1�2�3
, i = 1; 2; 3 (20)

and the equilibrium strategies are given by

si(�i) =

�
vi(�i)

�i

�2�
�0�i (�1�j + 2) (�1�j0 + 2)

8� 2 (�1)2 (�1�2 + �1�3 + �2�3)� 2 (�1)3 �1�2�3

�2
, i = 1; 2; 3

(21)

where agents j and j0 are agent i�s competitors.

Proof. If vi(�i) = 0, then the best response of agent i with type �i is Bi(p�ij�i) = 0.
More generally, Bi(p�ij�i) can be derived from the �rst-order condition as in Example
1. This satis�es q

Bi(p�ij�i) =
1

2
vi(�i)ki

�
p�i
�
;

where the left-hand side is pi(Bi(p�ij�i)). Thus, in equilibrium,

pi =
1

2
�i
�
�0 + �1(pj + pj0)

�
, i = 1; 2; 3; (22)

where agents j and j0 are agent i�s competitors. The unique solution to this system

of equations is (20). With this in hand, the equilibrium strategy is

si(�i) =

�
1

2
vi(�i)ki

�
p�i
��2

=

�
vi(�i)

pi
�i

�2
by (22),which thus gives (21). Using (19), it can be readily con�rmed that si(�i) 2
[0; 1).

Using (20), it is easy to verify that pi is increasing in �i but decreasing in �j and

�j0. Thus, agent i is discouraged and lowers his e¤ort if agent j�s mean valuation

increases. The reason is that actions are strategic substitutes. When agent j�s value

increases, his incentives to work harder increases, which in turn lowers agent i�s

incentives. However, it is clear from Example 1 that �j is a good measure of how

agent i perceives of agent j�s expected impact only because pi(aij�i) =
p
ai.
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The last observation in Section 7.2 implies that when pi(aij�i) =
p
ai, total output

in two-player contests does not depend on how the �total valuation� is distributed

across agents. Does this result extend to three-player contests? The complication is

that adding a third agent opens the door to strategic interactions that are absent in

the two-player contest with strictly dominant strategies.

Total output in the three-player contest is proportional to
P3

i=1 pi, which in turn

depends on �1; �2 and �3. Thus, write
P3

i=1 pi as w(�1; �2; �3) and note that

w(�1; �2; �3) =
4 (�1 + �2 + �3) + 4�1 (�1�2 + �1�3 + �2�3) + 3 (�1)

2 �1�2�3

8� 2 (�1)2 (�1�2 + �1�3 + �2�3)� 2 (�1)3 �1�2�3
�0:

Next, compare a set of contests with the same �xed �total strength�,
P3

i=1 �i = 3v >

0. Assume that in all the contests that are being compared, the pro�le of mean

valuations can be written (�1; �2; �3) = (v � z; v; v + z) for some z 2 [�v; v].

Corollary 7 w(v � z; v; v + z) is u-shaped in z and minimized at z = 0. Thus,

the lowest total expected performance among all contests in which (�1; �2; �3) =

(v � z; v; v + z) and (19) is satis�ed occurs when agents have the same expected valua-
tion, or z = 0. Moreover, in complete-information contests in which (19) is satis�ed,

the sum of actions is also u-shaped in z and minimized at z = 0.

Proof. Simple di¤erentiation yields

@w(v � z; v; v + z)
@z

=
�2�0�1 (v�1 + 2)3�

4 + (z2 � 3v2) (�1)2 + v (z2 � v2) (�1)3
�2 z:

Since the �rst term is positive whenever (19) holds, the entire expression has the same

sign as z. Thus, w(v � z; v; v + z) is �rst decreasing in z and then increasing in z
on [�v; v]. Consequently, it is minimized at z = 0, i.e. when agents have symmetric
strengths.

In complete-information contests, agent i�s action is simply p2i . Thus, the sum of

actions is
P3

i=1 p
2
i . Di¤erentiating this sum with respect to z yields

2�20 (v�1 + 2)
2 �z2�21 (v2�21 + 2)� (v2�21 + 4v�1 � 2) (v�1 + 2)2��
4 + (z2 � 3v2) (�1)2 + v (z2 � v2) (�1)3

�3 z;
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where (v2�21 + 4v�1 � 2) < 0 since v�1 2 (�2; 0) as a consequence of (19). Hence,
both numerator and denominator are positive and the derivative therefore has the

same sign as z. It now follows that the sum of actions is u-shaped in z as long as (19)

is satis�ed.

If x > 0 then �3 > �2 > �1 and p3 > p2 > p1 as a consequence. Hence, agent 1

faces a greater aggregate expected impact from his competitors than agent 3 does, or

p2 + p3 > p1 + p2. This means that agent 1 has less of an incentive to provide e¤ort.

Thus, p1 is less sensitive to a small change in z than p3 is. In other words, a further

increase in z causes p1 to decrease less than p3 increases. Thus, p1+p3 increases when

z > 0 increases. This is the direct e¤ect of a change in z. A secondary and indirect

e¤ect comes from the fact that the increase in p1 + p3 causes agent 2 to work less

hard, which in turn tends to increase the incentives for both agents 1 and 3 to work

hard. The indirect e¤ects are smaller and overall the fact that agent 2 works less

hard cannot overcome the fact that agents 1 and 3 jointly work harder than before.

Fang (2002) characterizes total e¤ort in complete information lottery contests with

linear impact functions and an arbitrary number of agents. Using his results, it can

be veri�ed that total e¤ort in a three-player contest is maximized when z = 0.

The exclusion result for mixture contests in Example 2 in Section 7.3 can be

veri�ed by comparing w(120; 9; 6) with the dominant strategy equilibrium when agent

3 is excluded, while using 
 = 17
16
and the characterization in Example 3. This

subsection concludes with another example of the exclusion principle.

Example 6: Assume that (18) applies, and that technologies are power technologies

with 
 2 (1; 2). Assume also that information is complete and that (�1; �2; �3) =
(v; v; 0), with v > 0 and v < 3(
+2)


�1 . The last part ensures that (19) is satis�ed. The

total impact is w(v; v; 0). It is straightforward to compute the total impact if agent

3 is excluded. Such exclusion increases the total impact if

v < min

�
2 (2
 + 1) (2� 
)

(
 � 1)2
;
3 (
 + 2)


 � 1

�
:

Since (i) agents 1 and 2 are symmetric and information is complete and (ii) agent 3�s

action is zero even if he is included, the total action moves in the same direction as

the total impact. Hence, total e¤ort also increases when agent 3 is excluded. N
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B.5 Non-concave mixture contests

This section considers an extension to a more general mixture contests in which

Bi(p�ij�i) is not necessarily single-valued. That is, Bi(p�ij�i) is allowed to be a
correspondence.

Fixing �i and recalling that Bi(p�ij�i) is a closed set, the impact of any action in
Bi(p�ij�i) is somewhere betweenminai2Bi(p�ij�i) pi(aij�i) andmaxai2Bi(p�ij�i) pi(aij�i).
Since the agent is indi¤erent between any action inBi(p�ij�i), he is willing to random-
ize between argminai2Bi(p�ij�i) pi(aij�i) and argmaxai2Bi(p�ij�i) pi(aij�i). By varying
the mixed strategy, any expected impact for type �i between minai2Bi(p�ij�i) pi(aij�i)
and maxai2Bi(p�ij�i) pi(aij�i) can therefore be obtained. Note that there is no loss of
generality in assuming that the agent randomizes between only these two actions.

However, there may be multiple equilibria because the same expected impact may be

achieved by assigning positive probability to other best responses as well. Neverthe-

less, these equilibria are payo¤ equivalent. A fully solved example is given momen-

tarily.

Repeating this argument for every �i 2 �i, the ex ante expected impact of agent
i can be made to be any number in the interval�

E�i
�

min
ai2Bi(p�ij�i)

pi(aij�i)
�
;E�i

�
max

ai2Bi(p�ij�i)
pi(aij�i)

��
:

Thus, starting from the correspondenceBi(p�ij�i) that maps p�i into actions, then al-
lowing randomization, and �nally integrating over types gives another correspondence

that maps p�i into the uncertainty measure pi. Since there is one such correspondence

for each agent, the aim is now to �nd a �xed-point p where

pi 2
�
E�i
�

min
ai2Bi(p�ij�i)

pi(aij�i)
�
;E�i

�
max

ai2Bi(p�ij�i)
pi(aij�i)

��
for all i = 1; :::n: (23)

Proposition 10 Any solution p to (23) has one or more associated Bayesian Nash
Equilibria. These equilibria have the same interim expected payo¤s and ex ante win-

ning probabilities.

Proof. The �rst part is in the text. Interim payo¤ equivalence holds because the

only di¤erence between equilibria with the same p = (p1; p2; :::; pn) is that agents are

varying the randomization probabilities between actions they are indi¤erent between
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in the �rst place. Ex ante winning probabilities are the same because p is the same

across the equilibria in question.

The following example illustrates Proposition 10.

Example 7: There are two agents. Assume that agents have heterogenous power

technologies, with Hi(xi) = F0(xi)
�i and Gi(xi) = F0(xi)

�i, where F0 is a parent

distribution common to both agents and �i > �i > 0, i = 1; 2. For concreteness, let

�1 = 10, �1 = 1, �2 = 5, �2 = 1. Since technologies are heterogenous, equilibrium is

not in strictly dominant strategies even though there are only two agents. In fact,

k1(p2) =
9

22
+
1

11
p2 and k2(p1) =

1

3
� 1

11
p1:

Agent 1 has one of two types, �01 and �
00
1, both of which are equally likely. The two

types are characterized by

v1(�
0
1) = v01, p1(a1j�01) = a1, c1(a1j�01) = a1, A1(�01) = f0; 1g

v1(�
00
1) = v001 , p1(a1j�001) = a1 +

1

2

�
a21 � a31

�
, c1(a1j�001) = a1, A1(�001) = [0; 1]:

Here, type �01 has a discrete action set. Type �
00
1 has a continuous action set but

p1(a1j�001) is not globally concave. As a result, the utility maximization problem is not
concave and some actions can never be best responses. This impact function is taken

from Kirkegaard (2017), who (in a moral hazard context) explains why it can never

be optimal to take an action in (0; 1
2
). It can be veri�ed that

B1(p2j�01) =

8><>:
0 if v01k1 (p2) < 1

f0; 1g if v01k1 (p2) = 1

1 if v01k1 (p2) > 1

,

and

B1(p2j�001) =

8>>>><>>>>:
0 if v001k1 (p2) <

8
9

f0; 1
2
g if v001k1 (p2) =

8
9

1
3
+ 1

3

q
7v001 k1(p2)�6
v001 k1(p2)

if v001k1 (p2) 2 (89 ; 2)
1 if v001k1 (p2) � 2

:

Note that there are values of v01k1 (p2) and v
00
1k1 (p2) for which each of the two types

would be willing to randomize. Indeed, if v001 =
8
9
v01 then there may even be k1 (p2)
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values for which both types are willing to randomize at the same time.

Agent 2 has only one type (complete information) with v2(�2) = v2, p2(a2j�2) =p
a2, c2(a2j�2) = a2, and A2(�2) = [0; 1]. Thus, B2(p1j�2) =

�
1
2
v2k2 (p1)

�2
.

It remains to specify v01, v
00
1 , and v2. These will now be chosen in such a way

that an equilibrium is generated in which p1 = p2 =
1
2
and both types of agent 1

randomize. First, note that k1(12) =
5
11
. Thus, if v01 =

11
5
and v001 =

8
9
v01 =

88
45
then

both types are willing to randomize if p2 =
1
2
. Second, note that k2(12) =

19
66
. Thus,

if v2 = 66
19
, the best response to p1 =

1
2
is a2 = 1

4
, with impact p2(a2j�2) = 1

2
. This in

turns means that agent 1 is willing to randomize for both his types.

Let q0 and q00 be the probability that type �01 and �
00
1 assign to a1 = 1 and a1 =

1
2
,

respectively (the remaining probability is assigned to a1 = 0). Since each type is

equally likely,

p1 =
1

2
q0p1(1j�01) +

1

2
q00p1(

1

2
j�001) =

1

2

�
q0 + q00

9

16

�
:

Since p1 =
1
2
in equilibrium, this means that any (q0; q00) for which q0+ q00 9

16
= 1 forms

an equilibrium strategy for agent 1. Thus, there is a continuum of equilibria, but they

are all interim payo¤ equivalent. Note that agent 1�s expected action is 1
2
q0 + 1

4
q00,

which di¤ers from equilibrium to equilibrium.

Next, assume instead that v01 = 2 and v
00
1 =

16
9
and observe that k1(1) = 1

2
. This

means that both types of agent 1 are willing to randomize if p2 = 1. A range of p1
values can thus be sustained as long as p2 = 1. Conversely, p2 = 1 is optimal for

agent 2 for low enough p1 values if v2 > 6. Thus, if v01 = 2, v001 =
16
9
, and v2 > 6,

then there are multiple equilibria that have varying p1 but all with p2 = 1. These

equilibria are not payo¤ equivalent to agent 2 and agent 1�s expected performance

di¤ers from equilibrium to equilibrium as well. N

B.6 Varying the number of agents

Assume agents are ex ante symmetric. Consider the problem from agent i�s point of

view, assuming that all his competitors have identical expected impacts. Write this

scalar as pn and de�ne Kn(pn) = ki(p
n; pn; :::; pn) as the value of ki(p�i) when all the

n � 1 competing agents have the same expected impact, pn. Consider the extreme
case in which the agent�s competitors has zero impact, or pn = 0. Note that this does
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not mean that the competitors necessarily perform poorly, since there is a chance

that even a draw from the bad mixture component may be high. In particular, an

agent with zero impact wins the contest with positive probability regardless of other

agents�strategies. Hence, the strategic considerations in a mixture contest depends

on the number of rivals, even if some of them are inactive. Incidentally, recall that it

is also the case that an inactive agent contributes expected performance of �G. For

the contest organizer, excluding an inactive agent may therefore come at a cost if she

is interested in total performance.

Given that all rivals have zero impacts, agent i�s incentives are determined by

Kn(0) =

Z
G(x)n�1 (h(x)� g(x)) dx =

Z
G(x)n�1h(x)dx� 1

n
;

which is the increase in winning probability when agent i�s performance is drawn from

the good mixture component rather than the bad mixture component, given all rivals�

draws are known to be from the bad components. Imagine now that G is a very bad

distribution in which outcomes close to x are extremely likely, while H is a very good

distribution in which outcomes close to x are extremely likely. Then, the probability

that agent i wins is near one if his draw comes from the good component, and this

does not change much when the number of rivals changes. However, the probability

that he wins if his draw comes from G is 1
n
, which decreases rapidly in the number of

rivals when n is small. Thus, the di¤erence between the two probabilities increases

when the contest is small to start with and another agent joins the fray. In other

words, agent i�s incentives actually increase when another competitor shows up.

To be more speci�c, �x any bad component G and any two integers m and n,

with m > n � 2. For any such combination, there exists a good component H such

that Km(0) > Kn(0). The proof is by construction. Assume agents have power

technologies, with 
 > 1. Then, integration by substitution yields

Kn(0) =
(
 � 1) (n� 1)
n (
 + n� 1)

and

Km(0)�Kn(0) =
(m� n) (
 � 1) (
 � (n� 1) (m� 1))

mn (
 +m� 1) (
 + n� 1) (24)

is positive when 
 is large enough, i.e. when H assigns enough mass to very high
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realizations. This construction works for more values of 
 the smaller n or m are.

For a �xed 
, Kn(0) is either decreasing in n or hump-shaped in n. Thus, incentives

may be non-monotonic in the number of agents.

Let pm
�
and pn

�
denote the individual expected equilibrium impacts of the two

contests. If some type takes a strictly higher action in the m player contest, then all

types must take a weakly higher action. The reason is that the incentives of all types

are determined by the same number in the two settings, Km(pm
�
) and Kn(pn

�
).

Of course, it is endogenous whether the competitors work so little that equilibrium

impacts are near zero. Propositions 4�6 and Corollaries 1�5 reveal when the expected

impact may be expected to be low. For instance, this is the case if valuations are low

or if valuations and budgets are very negatively dependent. An additional competitor

may then increase incentives and cause all types to take higher actions.15

Proposition 11 For any bad component G and any integers m and n, with m >

n � 2, there exists a good component H for which Km(0) > Kn(0). Whenever

Km(0) > Kn(0), there exists preferences and abilities such that individual actions

and impacts are strictly higher in a contest with m than with n players, or pm
�
> pn

�

and Km(pm
�
) > Kn(pn

�
).

Proof. The �rst part is proven in the text. The intuition for the second part is
also explained in the text. A more formal proof follows. In equilibrium, Km(pm

�
) >

Kn(pn
�
) is necessary for individual actions to be higher in the m player contest, and

su¢ cient if actions are in the interior of the action set. By continuity, and given

Km(0) > Kn(0), there exists a number bp � 1 such that Km(p) > Kn(p) for all

p 2 [0; bp].
Now construct preferences and abilities such that actions are interior for all types

in the n player contest and the equilibrium impact satis�es pn
�
< bp. For example,

this can be achieved with univariate types by letting pi(aj�i) =
p
ai, ci(aij�i) = ai,

Ai(�i) = [0; 1], and vi(�i) be strictly positive but small for all �i 2 �i. It follows that
best responses are strictly higher type-for-type in the m player contest than in the n

player contest, given that the expected impact by the competitors in the two settings

is the same and below bp. In other words, the right hand side of (6) is now strictly
15With power technologies, Kn(1) always decreases in n, meaning that if equilibrium impacts are

high to start with, then the addition of more competitors lowers incentives. However, it is possible
to �nd examples that do not use power technologies and where Kn(1) may increase in n.
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greater in the m player contest than in the n player contest for impacts below bp. The
�xed point thus occurs at a higher value, or pm

�
> pn

�
. This in turn requires that

actions are higher in the m player contest, or Km(pm
�
) > Kn(pn

�
).

Example 8: Building on Example 1, assume that agents are symmetric and that

vi(�i) = �i, with ci(aij�i) = ai, pi(aij�i) =
p
ai, and Ai (�i) = [0; 1] for all �i 2 �i. Let

� denote the expected valuation.

Assume that agents have power technologies and consider an increase in n from 2

to 3. With (24) in mind, assume that 
 > 2. This means that any agent�s incentives

are higher if he faces two rather than one competitor, and highest if his competitors

have zero impact. His best response in this case is characterized by the �rst-order

condition as long as �i 12K
3(0) � 1 � 0, or �i � 3(
+2)

(
�1) � �. Thus, assume that

�i � [0; �]. Then,
p2

�
=
1

4

� (
 � 1)

 + 1

and

p3
�
=

� (
 � 1) (2
 + 1)
3 (2
 + 1) (
 + 2) + (
 � 1)2 �

:

It is now easy to verify that the expected equilibrium impact strictly increases when

the third agent joins the contest if and only if

0 < � <
(
 � 2) (2
 + 1)

(
 � 1)2
; (25)

where the term on the right hand side can be veri�ed to be less than �. In either case,

the equilibrium strategy is si(�i) =
�
�i
�
pn

��2
. Hence, actions are higher type-for-type

in the three-player contest than in the two-player contest when (25) holds. N

Example 9: Consider the environment in the previous example, but allow for an

arbitrary number of agents. Assuming best responses are interior, the symmetric

equilibrium impact is found by solving

pn
�
=
1

2
�ki
�
pn

�
; pn

�
; :::; pn

��
;

which requires solving a polynomial of degree n�2. As noted in Example 5, polynomi-
als can be solved analytically up to quartic equations, which means that an analytical

solution can in principle be obtained for n = 2; 3; :::; 6. Once the correct root has been
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identi�ed, the strategy is again given by si(�i) =
�
�i
�
pn

��2
, as in Example 8. Thus,

there is not the same curse of dimensionality as Ryvkin (2010) identi�es in Tullock

contests with private information. Of course, this example is made easier by the fact

that an analytical solution to each type�s maximization problem can be obtained for

any value of ki. However, even if numerical solutions for each type must be relied

upon, it is still the case that the complexity of each type�s maximization problem is

independent of the number of competitors (and the cardinality of the type space),

for any given pn. Thus, with ex ante symmetric agents, the only minor headache of

increasing n is that the mapping from pn
�
to ki

�
pn

�
; pn

�
; :::; pn

��
is a higher-degree

polynomial.

Assume next that agents have power technologies with 
 = 2 and valuations are

commonly known to equal 10 (there is no incomplete information). Table 2 reports

equilibrium values of pn
�
and other comparative statics. The impact and action of

an individual agent decreases when he faces more competitors. Nevertheless, the

total impact, n � pn�, increases, which in turns implies that total expected output
increases as long as �G � 0. What is perhaps more surprising is that total e¤ort,

n� a� = n� (pn�)2, decreases. Thus, the total e¤ort and the total performance can
go in opposite directions. Whether it is in the contest organizer�s interest to grow the

contest therefore depends on what exactly it is she is trying to maximize. N

n = 2 n = 3 n = 4 n = 5 n = 6 n = 10

pn
�

0:8333 0:7143 0:6107 0:5334 0:4744 0:3326

n� pn� 1:6667 2:1429 2:4426 2:6670 2:8462 3:325

a� 0:6944 0:5102 0:3729 0:2845 0:2250 0:1106

n� a� 1:3889 1:5306 1:4916 1:4225 1:3501 1:1060

Table 2: Equilibrium properties as a function of n.

B.7 Endogenous entry with private outside options

Consider a contest in which types are univariate and capture the value of the outside

option. Assume that the ensuing reservation utility, u(�i) is continuous and strictly

monotonic. For expositional simplicity, assume the type distribution is continuous

and has no mass points. These assumptions rule out that there is a mass of types

that are indi¤erent between entry and exit. Write the impact and cost functions as

p(a) and c(a), respectively, and let v denote the valuation.
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Assume agents are symmetric ex ante and search for a symmetric equilibrium. Let

n be the commonly known number of potential entrants. For any (pout; pin) candidate,

de�ne Qi(ai; pout; pin) as the (type independent) value of (2) when pj = (p
out; pin) for

all j 6= i. Let

a�(pout; pin) = argmax
ai
vQi(ai; p

out; pin)� c(a)

�out = f�i 2 �jvQi(a�(pout; pin); pout; pin)� c(a�(pout; pin)) � u(�i)g;

both of which are unique given (pout; pin). Then, any symmetric equilibrium (pout; pin)

solves

pout = Pr
�
�i 2 �out

�
pin =

�
1� pout

�
� p(a�(pout; pin)):

The second part clari�es that pin is the expected impact before knowing whether the

agent entered or not. Thus, there are two clues for �nding equilibrium: (i) pout is

determined by an indi¤erence condition (when interior) and (ii) pin is determined by

the best response upon entry.

Example 10: Assume p(a) =
p
a, c(a) = a, a 2 [0; 1] and that H(x) = x2, G(x) = x,

x 2 [0; 1]. Assume that v = 8 and that reservation utility is uniformly distributed

on [4; 5]. These values are calibrated to produce a nice solution when n = 2 in the

sense that pout and pin are rational numbers. For n > 2, the system described above

can be solved numerically. Table 3 reports equilibrium values for various values of

n (details are available upon request). In this contest, the more potential entrants

there are the more likely each individual agent is to stay out, and any agent who

does enter works less hard. While pout increases rapidly in n, the expected number of

entrants decreases only slowly from 1:5 to 1:45. The action and impact upon entry

also decline at a slow pace. Since both the expected number of entrants and the

impact of entrants decrease in n, the expected aggregate performance in the contest

decreases in n. More formally, the expected total performance is

n�
�
pin�H +

�
1� pout � pin

�
�G
�
= n�

�
1� pout

�
(p(a�)�H + (1� p(a�))�G)

and both n� (1� pout) and p(a�) decrease with n. Thus, the contest organizer may
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have an incentive to limit the set of potential participants. N

n = 2 n = 3 n = 4 n = 5 n = 6 n = 10

pout 0:25 0:509 74 0:634 96 0:708 85 0:757 71 0:854 81

pin 0:375 0:234 41 0:172 47 0:136 81 0:113 48 0:067 48

p(a�) 0:5 0:478 13 0:472 47 0:469 89 0:468 35 0:465 93

Table 3: Equilibrium of a contest with endogenous entry.
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