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Abstract: The Biden Administration has raised its Social Cost of Carbon 
(SCC) estimate about 5-fold based in part on global crop yield decline 
projections estimated on a meta-analysis data base first published in 2014. 
The data set contains 1,722 records but half were missing at least one 
variable (usually the change in CO2) so only 862 were available for 
multivariate regression modeling. By re-examining the underlying sources I 
was able to recover 360 records and increase the sample size to 1,222. 
Reanalysis on the larger data set yields very different results. While the 
original smaller data set implies yield declines of all crop types even at low 
levels of warming, on the full data set global average yield changes are zero 
or positive even out to 5°C warming.   
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1 INTRODUCTION 
Recent estimates of the Social Cost of Carbon (SCC) from the US Environmental 

Protection Agency (EPA) [1] are about 5 times higher than previously [2]. Part of the 

increase is due to an upward revision of the estimated agricultural damages from climate 

warming. The EPA used two damage modules, denoted DSCIM and GIVE, and in the latter, 

of the new 2030 SCC value ($220 under 2% discounting), $103, or nearly half, is attributed 

to projected agricultural damages ([1] pp. 78-81). The GIVE agricultural damage function is 

based on [3] which presents a reanalysis of a database first presented in [4] (herein 

denoted the “C14” dataset), which itself was a meta-analysis of crop model studies 

simulating yield changes for agricultural crops under various climate warming scenarios. 

The underlying models were parameterized based on results from field studies, and the 

authors selected them to be, as much as possible, globally representative.  

In their multivariate model [4] reported results that would imply a moderate global net 

benefit from the warming associated with doubling the atmospheric CO2 level. Despite 

using the same data, [3] reached much more pessimistic conclusions, projecting declining 

global crop yields due to the warming. Since both studies only provided limited reporting 

of regression results and the models are not nested it is difficult for readers to trace the 

sources of the differences. The first purpose of this study is to provide a transparent 
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analysis of the C14 dataset, reproducing both sets of results as closely as possible, then to 

examine the effects of extending the underlying data set.  

The C14 dataset consisted of 1,722 records but only half (N=862) had complete 

observations of all the variables necessary for regression analysis (changes in yield, CO2 

levels, temperature and precipitation matched to information about the climate zone, 

adaptation efforts and crop type). The variable most commonly missing was the change in 

ambient CO2. But re-examination of the underlying sources showed that in many cases 

these could be recovered, for instance by consulting the original climate scenario tables. It 

was thus possible to increase the usable sample size by 40 percent to N=1,222. [3] 

critiqued the regression specification in [4] and estimated a model with many more 

interaction terms, though most were insignificant. The carbon dioxide fertilization benefit 

also differs between the two studies, with [4] treating it as linear and [3] imposing 

concavity (diminishing marginal gains).  

Herein I replicate the results in [3] and [4] on the (incomplete) C14 dataset and I also 

obtain simulation results that qualitatively support the findings in [3] of negative yield 

effects across crop types especially soybeans. But after incorporating the newly-available 

data the conclusions change such that global average yield gains of all crop types under 

CO2-induced warming are positive even out to 5°C warming. Overall I conclude that the  

climate change-related agricultural damage estimates in [3] are too pessimistic and the 

large implied revisions to the SCC are unsupported. 
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2 BACKGROUND  
The main climatic influences on agricultural yields are increased ambient CO2 levels 

(positive effect), higher temperatures (mix of positive and negative effects) and changed 

precipitation (mix of positive and negative effects). Based on laboratory and controlled 

field studies the literature has generated a profusion of yield change estimates that vary by 

region, plant type, adaptation efforts and other covariates [5]. For the purpose of 

computing the SCC we are only interested in the net effect of warming caused by increased 

CO2, not of warming alone. Both [3] and [4] present bivariate graphs of partial yield effects 

from temperature change alone which can be misleading in the anthropogenic climate 

change context. For example [3] Figure 1 shows temperature effects on yields of four major 

crop types excluding the offsetting effect of CO2 fertilization and adaptation. In all cases the 

effects are negative, but by construction such graphs only illustrate the effects of 

unanticipated natural warming trends not CO2-induced warming.  

Table 1 reports summary statistics of both the C14 dataset and the expanded version 

developed herein, columns denoted respectively as “C14” and “All”. When analyzing CO2-

induced warming any assumed temperature change (and induced precipitation change) 

must be based on an associated CO2 change, the computation of which requires an 

assumption about climate sensitivity. For agricultural yield simulations in which CO2 and 

temperature levels change gradually together a common metric is the Transient Climate 

Response (TCR) which estimates the temperature change at year 70 in a simulation in 

which CO2 levels increase by 1% per year, which implies doubling at year 70. The most 
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recent IPCC report [6] provides a best estimate of TCR based on observed temperature and 

ocean heat content records of 1.9°C. Since atmospheric CO2 levels are growing at just under 

0.6% per year since 1990 [7] doubling will take about 120 years. So a transient warming of 

1.9°C is approximately the global average greenhouse gas-induced warming that can be 

expected over the next 120 years if the average annual rate of increase of CO2 over the past 

30 years continues throughout. An alternative metric is Equilibrium Climate Sensitivity 

(ECS) which is the eventual (multi-century) temperature response after all Earth systems 

including the oceans have adjusted to an instantaneous CO2 doubling. It which has 

traditionally been estimated at about 3°C. While TCR is more relevant to the simulations 

herein, I will conservatively employ a 3°C sensitivity estimate which implies less CO2 

increase for a given temperature change.  

The standard, stylized physics of warming [8] [9] is summarized as a logarithmic 

relationship between the change in temperature (Δ𝑇𝑇) and the log CO2 increase such that 

Δ𝑇𝑇𝜏𝜏 = 𝛼𝛼𝜆𝜆−1 ln �𝐶𝐶𝐶𝐶2𝜏𝜏
𝐶𝐶𝐶𝐶20

� where 𝜏𝜏 denotes the interval in years since time 0, Δ𝑇𝑇𝜏𝜏 denotes the 

amount of warming over that interval, 𝐶𝐶𝐶𝐶2𝜏𝜏 denotes the ambient CO2 concentration at time 

𝜏𝜏, 𝐶𝐶𝐶𝐶20 denotes the ambient CO2 concentration at time 0, 𝛼𝛼 parameterizes the relationship 

between log CO2 and radiative forcing and 𝜆𝜆−1 parameterizes the relationship between 

radiative forcing and global average temperature. For the present purpose we do not need 

to separately identify 𝛼𝛼 and 𝜆𝜆 instead we can compute them jointly using 𝛼𝛼𝜆𝜆−1 = ECS/

ln(2).  The change in CO2 required for a given temperature increase Δ𝑇𝑇 is then given by  
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(1)  Δ𝐶𝐶τ ≡ 𝐶𝐶𝐶𝐶2𝜏𝜏 − 𝐶𝐶𝐶𝐶20 = 𝐶𝐶𝐶𝐶20 �exp � 𝛥𝛥𝑇𝑇𝜏𝜏
𝛼𝛼𝜆𝜆−1

� − 1�. 

 

The results shown below are not overly sensitive to the year selected as the baseline. I will 

conservatively assume time zero corresponds to preindustrial conditions hence 𝐶𝐶𝐶𝐶20 =

280 ppm [10]. Thus we have in mind an ongoing scenario with approximately 1°C of 

warming having taken place already. A key implication of the standard model is that a 

linear increase in temperature requires an exponential increase in CO2: if for example 100 

ppm yields 1°C warming, the next 1°C warming requires 200 ppm, then 400 ppm, etc.  

On the C14 dataset [4] estimated the linear regression model 

 

(2) 𝑑𝑑𝑌𝑌𝑖𝑖 = 𝛼𝛼0 + 𝛼𝛼1𝐴𝐴𝐷𝐷𝑖𝑖 + 𝛼𝛼2𝑇𝑇𝑅𝑅𝑖𝑖 + 𝛼𝛼3𝐶𝐶4𝑖𝑖 + 𝛼𝛼4𝑑𝑑𝑃𝑃𝑖𝑖 + 𝛼𝛼5𝑑𝑑𝑇𝑇𝑖𝑖 + 𝛼𝛼6𝑑𝑑𝐶𝐶𝑖𝑖 + 𝑒𝑒𝑖𝑖  

 

where 𝑑𝑑𝑌𝑌𝑖𝑖 is the % change in yield for region i, 𝐴𝐴𝐷𝐷𝑖𝑖 is a dummy variable denoting that the 

study incorporated adaptative behaviour, 𝑇𝑇𝑅𝑅𝑖𝑖 is a dummy variable denoting the region is in 

the tropics as opposed to a temperate zone, 𝐶𝐶4𝑖𝑖 is a dummy variable indicating that the 

crop type in the study is C4 (maize, millet or sorghum) rather than C3 (rice, wheat, 
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soybeans and other crops)1, 𝑑𝑑𝑃𝑃𝑖𝑖  denotes change in precipitation, 𝑑𝑑𝑇𝑇𝑖𝑖 denotes change in 

temperature, 𝑑𝑑𝐶𝐶𝑖𝑖 denotes the change in the CO2 concentration and 𝑒𝑒𝑖𝑖 is the regression 

residual. The coefficient estimates in [4] (see Table 2 below) imply a partial temperature 

effect on yield of -4.9% per °C and a partial CO2 effect of +0.06% per part per million (ppm), 

both of which were reported to be highly significant (p<0.01).  These coefficients imply that 

if the atmospheric concentration of CO2 doubles from 280 ppm to 560 ppm and causes 3°C 

warming, the combined effect on yields would be, on average, -14.7% (due to warming) 

plus 16.8% (due to CO2 fertilization) for a net effect of +2.1%.  

[4] included 𝑑𝑑𝐶𝐶𝑖𝑖 as a linear term in their estimating equation, which implies that 

marginal benefits of CO2 fertilization do not attenuate. By contrast [3] used a concave 

function  

 

(3) 𝑓𝑓𝐶𝐶(𝑑𝑑𝐶𝐶𝑖𝑖,𝐶𝐶4𝑖𝑖) = 𝑑𝑑𝐶𝐶𝑖𝑖
𝐴𝐴+(1−𝐶𝐶4𝑖𝑖)𝐵𝐵+𝑑𝑑𝐶𝐶𝑖𝑖

 

 

with A and B chosen to equal 50. This dampens the marginal benefit of additional CO2. [3] 

(Supplement) report a CO2 fertilization benefit of only 8—12% from CO2 doubling 

 

1 The labels C3 and C4 refer to the photosynthesis process, specifically the carbon compounds produced 

within the plant.  
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depending on crop type. Another methodological difference introduced by [3] was to argue 

that the regression specification should restrict yield changes to zero if no climate change 

takes place (𝑑𝑑𝑇𝑇𝑖𝑖 = 𝑑𝑑𝑃𝑃𝑖𝑖 = 𝑑𝑑𝐶𝐶𝑖𝑖 = 0). In the specification in [4], adaptation without climate 

change would generate a gain of about 7% in the temperate zone and about 4% in the 

tropics, which indicates that the constant and dummy terms in equation (2) are not strictly 

measuring variables of interest for estimating the SCC. [3] included adaptation as an 

interaction with climate variables, however they also included the adaptation dummy on 

its own to measure yield gains due to non-climate-related adaptation activity, which they 

then subtracted back out from the predicted yield changes, an approach I also use herein.  

3 RESULTS 
Yield change predictions for each crop type were generated using the slope coefficient 

estimates from replication regressions (see Methods section) conditioned on sequential 

values of 𝑑𝑑𝑇𝑇 from 1.0 to 5.0 and the corresponding changes in CO2 fertilization from 

equation (1) and precipitation. To project the warming-induced change in precipitation, 

𝑑𝑑𝑃𝑃𝑖𝑖  was regressed on 𝑑𝑑𝑇𝑇𝑖𝑖, 𝑑𝑑𝑇𝑇𝑖𝑖2 and 𝑑𝑑𝑇𝑇𝑖𝑖 interacted with national baseline temperatures with 

no intercept, separately by crop type. The coefficients were then used to generate 𝑑𝑑𝑃𝑃�𝑖𝑖 

conditioned on the assumed value of 𝑑𝑑𝑇𝑇 and the mean baseline temperatures for each 

region. 2𝜎𝜎 error bars were computed using bootstrap resampling with 1,000 replications.  

Table 2 compares the projected yield changes for 1—3°C warming as computed by [3] 

suppressing CO2 fertilization and adaptation (F. Moore pers. comm.) and the same 
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computed using the method herein on the C14 dataset. While the results are not identical 

the columns are sufficiently similar (correlation = 0.96) to establish the validity of the 

replication.  

Yield change estimates for warming of 1°C to 5°C (in %) based on the C14 and “All” 

datasets taking account of CO2 fertilization and adaptation are shown in Table 3 and Figure 

1. Rice, wheat and soybean were simulated separately. Figure 1 shows the results with the 

lines labeled, respectively, “C14” (blue) and “All” (green).  

 [3] Supplementary figures 2—5 show regional yield changes are a mix of positive and 

negative globally at 1°C for maize, rice and wheat but go negative almost everywhere by 

3°C. For soybeans yield changes are globally negative even at 1°C and rapidly worsen from 

there. The blue lines in Figure 1 match these expectations. But adding in the missing data 

noticeably changes the results. We now observe insignificant but positive average output 

gains for all crop types across the warming scenarios even up to 5 °C (at 5°C wheat drops 

slightly below zero). The negative temperature effects are fully offset by gains from CO2 

fertilization and adaptation. In the Supplement I show that virtually identical results are 

obtained using any configuration of the two key parameters, climate sensitivity (1.9°C or 

3.0°C) and the CO2 base case level (280 ppm or 370 ppm).   

4 DISCUSSION  
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In a climate change scenario relevant to policymaking temperature changes in response 

to CO2 increases, and precipitation changes in response to temperature changes. 

Consequently the analysis needs to be done using multivariate modeling, which 

unfortunately disqualified half the C14 dataset. On that version of the dataset I replicated 

the regression results of [4] and generated regression results and yield change simulations 

approximately matching those in [3]. But after rebuilding and extending the dataset I find 

different and much more optimistic results, namely that net crop yield changes are zero or 

positive even out to 5°C for all crop types, even soybean.  

I focus herein on global average outcomes which are the relevant ones for computing 

the SCC. Dividing crops by zone shows that warming in tropical regions is more harmful to 

crops than warming in temperate regions (results shown in Supplement). But climate 

change simulations, including in [3], generally predict relatively greater warming in 

temperate regions compared to the tropics. Since relatively less warming happens where it 

is relatively more harmful and vice-versa, the global average yield change remains a 

suitable and informative metric for assessing global outcomes even considering regional 

variations in outcomes.  

The welfare changes in [3] are not based solely on the yield equations, but on feeding 

the agricultural output changes into a global computable general equilibrium model called 

GTAP. When output of a crop increases it can generate welfare reductions in some regions 

based on terms of trade effects. An increase in global agricultural productivity means 
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exporting regions might lose revenue if the price falls by enough, while importing regions 

benefit and the net effect will be positive. If over the next 100-200 years yields of all crop 

types increase it does not stand to reason that a global trade model could generate global 

welfare reductions. Consequently the large global welfare losses associated with 

agricultural damages under climate warming as presented in [3] are not supported by the 

analysis of a more complete version of the crop yield meta-analysis data base, and neither 

therefore is a large part of the recent upward SCC revision by the US EPA [1].  

5 METHODS 
I obtained the C14 dataset from A. Challinor (personal communication) the baseline 

ambient temperatures as used in [3] from Thomas Hertel (personal communication) and 

the [3] regression results and some simulation data from F. Moore (personal 

communication). [4] report 𝑁𝑁 = 882 complete records but I found only 862 in the data set 

as supplied, so while I refer to it as the “C14” dataset the results are not identical to those 

they reported. In the Supplement I describe the process by which an additional 360 entries 

were obtained. In all cases where the change in ambient CO2 was the only missing variable 

the underlying paper was re-examined. Often the name of the climate change scenario 

being used as an input into the crop model was given and the start and end dates of the 

model experiment were also given so the change in CO2 could be recovered by consulting 

past IPCC reports where the scenarios were developed. Where many or most explanatory 

variables were missing in the C14 dataset these were not re-examined or the attempt to 
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recover the missing data was unsuccessful. Data and code sufficient to reproduce all 

reported results are in the data archive listed below the references. 

Table 4 lists the regression results reported in [4] (column 1), the results of estimating 

equation (2) on the C14 dataset as supplied (column 2) and the results on the extended 

data (“All”, column 3). The estimations were done using R version 4.2.3 [11] and the 

lm_robust package [12] clustering errors on the Study variable. P-values are shown in 

parentheses below the coefficients. In columns 2 and 3 they are computed using t-statistics 

based on robust standard errors. Adaptation and CO2 fertilization are clearly beneficial 

while temperature has a negative effect. Precipitation is significant only in the C14 

reported results. The coefficient magnitudes are reasonably similar across the columns 

although significance levels are lower in the replication.  

[3] estimated a panel regression model with crop-specific quadratic temperature terms: 

(4) 𝑑𝑑𝑌𝑌𝑖𝑖 = 𝑎𝑎1𝑀𝑀𝑍𝑍𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖 + 𝑎𝑎2𝑀𝑀𝑍𝑍𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖2 + 𝑎𝑎3𝑅𝑅𝐶𝐶𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖 + 𝑎𝑎4𝑅𝑅𝐶𝐶𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖2 + 𝑎𝑎5𝑊𝑊𝑇𝑇𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖 + 𝑎𝑎6𝑊𝑊𝑇𝑇𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖2 +

𝑎𝑎7𝑆𝑆𝐵𝐵𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖 + 𝑎𝑎8𝑆𝑆𝐵𝐵𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖2 + 𝑎𝑎9𝑀𝑀𝑍𝑍𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖𝐵𝐵𝑇𝑇𝑖𝑖 + 𝑎𝑎10𝑀𝑀𝑍𝑍𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖2𝐵𝐵𝑇𝑇𝑖𝑖 + 𝑎𝑎11𝑅𝑅𝐶𝐶𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖𝐵𝐵𝑇𝑇𝑖𝑖 + 𝑎𝑎12𝑅𝑅𝐶𝐶𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖2𝐵𝐵𝑇𝑇𝑖𝑖 +

𝑎𝑎13𝑊𝑊𝑇𝑇𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖𝐵𝐵𝑇𝑇𝑖𝑖 + 𝑎𝑎14𝑊𝑊𝑇𝑇𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖2𝐵𝐵𝑇𝑇𝑖𝑖 + 𝑎𝑎15𝑆𝑆𝐵𝐵𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖𝐵𝐵𝑇𝑇𝑖𝑖 + 𝑎𝑎16𝑆𝑆𝐵𝐵𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖2𝐵𝐵𝑇𝑇𝑖𝑖 + 𝑎𝑎17𝐶𝐶3𝑖𝑖𝑓𝑓𝐶𝐶�𝑖𝑖 +

𝑎𝑎18𝐶𝐶4𝑖𝑖𝑓𝑓𝐶𝐶�𝑖𝑖 + 𝑎𝑎19𝑑𝑑𝑃𝑃𝑖𝑖 + 𝑎𝑎20𝐴𝐴𝐷𝐷𝑖𝑖𝑑𝑑𝑇𝑇𝑖𝑖 + 𝑎𝑎21𝐴𝐴𝐷𝐷𝑖𝑖 + 𝑒𝑒𝑖𝑖 

 

where 𝑀𝑀𝑍𝑍𝑖𝑖 , 𝑅𝑅𝐶𝐶𝑖𝑖, 𝑊𝑊𝑇𝑇𝑖𝑖 and 𝑆𝑆𝐵𝐵𝑖𝑖 are dummy variables for, respectively, maize, rice, wheat and 

soybean, 𝐵𝐵𝑇𝑇𝑖𝑖 is the average national baseline temperature (in °C) and 𝑓𝑓𝐶𝐶�𝑖𝑖 are the predicted 
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values from equation (3) above with 𝐴𝐴 = 𝐵𝐵 = 50. [3] estimated equation (4) using 

ordinary least squares (OLS) and obtained standard errors using the block bootstrap with 

the blocks defined at the study level. The first column of Table 3 reports the coefficient 

point estimates obtained by [3] M17 (p-values were not supplied). Column 2 (“C14”) 

reports the results of estimating equation (4) on the supplied version of the C14 dataset 

using OLS with cluster-robust errors. Column 3 (“All”) reports the results using the 

extended data set. Maize was taken to include millet and sorghum though there were only 2 

observations of each of these. Columns 1 and 2 exhibit considerable similarity. Column 2 

shows very few coefficients are statistically significant, although the regression itself is 

highly significant. The coefficients associated with soybean (“sb”) change considerably 

between the C14 and All datasets. The others remain more stable (correlation = 0.72).  
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7 TABLES 
 

 Mean Med 
Std 
Dev Min Max 

C14 (N = 862)      
Chg in Yield (%) -4.82 -4.00 20.30 -81.80 62.30 
Chg in Temperature (°C)  2.72 2.42 1.37 0.00 8.67 
Chg in Precip (mm) 6.50 6.00 16.76 -46.00 194.00 
Chg in CO2  (ppm) 161.23 192.50 137.66 0.00 504.50 
Tropics 0.52 1.00 0.50 0.00 1.00 
Adaptation 0.40 0.00 0.49 0.00 1.00 
C4 0.34 0.00 0.47 0.00 1.00 
Baseline Temp (°C) 20.95 21.25 5.17 10.10 27.69 
 
ALL (N = 1,222)      
Chg in Yield (%) -3.81 -4.00 23.11 -90.50 135.00 
Chg in Temperature (°C)  2.67 2.43 1.39 -1.21 8.67 
Chg in Precip (mm) 5.50 5.00 16.16 -46.00 194.00 
Chg in CO2  (ppm) 176.18 202.00 132.94 0.00 504.50 
Tropics 0.46 0.00 0.50 0.00 1.00 
Adaptation 0.38 0.00 0.49 0.00 1.00 
C4 0.32 0.00 0.46 0.00 1.00 
Baseline Temp (°C) 20.83 21.25 5.55 7.85 27.69 

Table 1: Summary statistics of C14 dataset and extended (“All”) data set. 
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M17 

result 
Replication 

on C14 Data 
Maize, Millet and Sorghum 

 dY = 1C -6.1 -7.9 
             2C -14.0 -14.9 
             3C -23.7 -21.0 

 
Rice 

dY = 1C -5.6 -9.4 
             2C -10.3 -16.1 
             3C -14.1 -20.1 

 
Wheat 

dY = 1C -4.0 -6.1 
2C -10.5 -12.8 

             3C -19.3 -19.9 
 

Soybean 
 dY = 1C -14.2 -16.1 

2C -26.4 -31.0 
            3C -36.7 -44.9 

Table 2: Comparison of Temperature- and Precipitation-only yield changes computed by [3] 
(column 1) with the same computed on the C14 dataset as supplied using the method described in 
the text (column 2).  
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 C14  All  

Maize, Millet and Sorghum 
 dY = 1C -0.9 6.8 

             2C -3.7 5.7 
             3C -7.4 3.7 
             4C -10.7 1.8 
             5C -13.5 0.5 

 
Rice 

dY = 1C -4.0 5.9 
             2C -5.1 7.0 
             3C -5.5 7.5 
             4C -4.2 8.6 
             5C -0.7 10.6 

 
Wheat 

 dY = 1C -0.8 7.3 
             2C -1.8 8.0 
             3C -5.3 6.4 
             4C -10.4 3.4 
             5C -16.5 -0.3 

 
Soybean 

dY = 1C -10.7 3.2 
             2C -20.0 2.2 
             3C -30.4 1.3 
             4C -40.6 1.6 
             5C -50.3 3.6 

Table 3: Point estimates of yield changes (%) estimated on C14 dataset and expanded data set 
(“All”).  
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C14 
Reported 
Results C14 Data All Data 

Intercept -5.40 -5.67 -3.60 
 (0.44) (0.63) (0.71) 

 
Adaptation 7.16** 7.42* 7.17** 

 (0.02) (0.06) (0.04) 
 
Tropics -2.83 -4.09 -3.36 

 (0.47) (0.43) (0.48) 
 
C4 0.00 -0.02 -2.27 

 (0.99) (0.99) (0.59) 
 
dPrecip 0.53*** 0.25 0.26 

 (0.00) (0.35) (0.14) 
 
dTemp -4.90*** -4.20** -4.69*** 

 (0.00) (0.02) (0.01) 
 
dCO2 0.06*** 0.06* 0.06* 

 (0.00) (0.10) (0.07) 
 
R-sq NA 0.21 0.172 
Adj R-sq NA 0.21 0.168 
F-stat NA 2.44** 2.920** 
N 882 862 1,222 

Table 4: Coefficients from estimation of equation [1] on C14 dataset and expanded data set (“All”) 
compared to results reported in [4] (column 1). p-values of robust t-statistics in parentheses. 
Significance: < * 10%, ** 5%, *** 1%.  
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M17 

Coefs 
C14 

Data All Data 
mz.dT 3.714 2.635 5.490 

  (0.882) (0.662) 
mz.dT2 -0.887 0.165 -1.613 

  (0.967) (0.596) 
rc.dT 50.374 45.240* 23.450 

  (0.093) (0.523) 
rc.dT2 -12.778 -11.819* -6.397 

  (0.071) (0.479) 
wt.dT -5.595 -6.672 -3.068 

  (0.618) (0.751) 
wt.dT2 1.871 2.676 0.665 

  (0.335) (0.815) 
sb.dT -144.926 -107.181 42.830 

  (0.278) (0.664) 
sb.dT2 61.710 41.417 0.735 

  (0.364) (0.975) 
mz.dT.bt -0.403 -0.532 -0.625 

  (0.404) (0.183) 
mz.dT2.bt 0.038 0.013 0.089 

  (0.942) (0.539) 
rc.dT.bt -2.223 -2.140* -1.247 

  (0.057) (0.372) 
rc.dT2.bt 0.521 0.499* 0.272 

  (0.058) (0.438) 
wt.dT.bt 0.161 0.064 -0.219 

  (0.902) (0.647) 
wt.dT2.bt -0.180 -0.199 -0.062 

  (0.166) (0.693) 
sb.dT.bt 5.818 4.075 -2.570 

  (0.332) (0.550) 
sb.dT2.bt -2.723 -1.839 0.008 

  (0.371) (0.993) 
c3.fC 17.20 23.929* 25.254** 

  (0.061) (0.027) 
c4.fC 10.82 19.708 18.900 
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  (0.153) (0.082) 
dP 0.21 0.211 0.210* 

  (0.243) (0.087) 
ad.dT 0.17 0.799 2.655 

  (0.683) (0.178) 
ad NA 5.487 -0.901 

  (0.263) (0.850) 
 
R-sq 

 
0.418 0.399 

Adj-R-sq  0.404 0.388 
F  6749.509 568.225 
N  862 1222 

Table 5: Column 1: estimated coefficients from F. Moore (pers. comm.) and [3] Supplement. 
Columns 2 and 3: coefficients from estimation of equation [3] on C14 dataset and expanded data set 
(“All”). p-values of robust t-statistics in parentheses. Significance: < * 10%, ** 5%, *** 1%.  
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Figure 1. Yield change simulations based on indicated data sets. Blue: C14 data. Green: All data.  
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