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Abstract

This paper investigates the linear index threshold regression model with endogeneity. We pro-
pose a two-step GMM estimation method to estimate the model, which allows both the threshold
variable and regressors to be endogenous. We show the consistency of the GMM estimator and
derive the asymptotic distribution of the GMM estimator for weakly dependent data. We sug-
gest a test of the exogeneity null hypothesis for both the threshold and the slope regressors.
Monte Carlo simulations are used to assess the finite sample performance of our proposed esti-
mator. Finally, we present an empirical application investigating the threshold effect of a linear
index between external debt and public debt on economic growth for developing countries.
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1 Introduction

Parametric threshold regression models are widely used to characterize nonlinearities in economic

relationships. There are many applications of threshold regression model in both time series and

cross-sectional scenario. Examples include the pricing asymmetry of oil prices and the nonlinear

effect of public debt to GDP ratio on the per capita GDP growth. Threshold models allow us to

identify the unknown threshold variable and draw inferences. It has been well established that

the estimator of the threshold parameter is super-consistent, while the slope regressors estimators

converge at the standard square-n rate. However, there are different approaches to obtain the

asymptotic distribution of the threshold parameter. Firstly, this can be derived using a ”fixed

threshold effect” assumption. Chan (1993) establishes that the threshold parameter estimator con-

verges to a functional of a compound Poisson process. Yet, in that case statistical inference is

impossible to implement in practice due to the presence of nuisance parameters in the joint distri-

bution of the covariates. Secondly, using a ”diminishing threshold effect” assumption, introduced

by Hansen (2000), the limiting distribution involves two independent Brownian motions and is

available through simulations. In that case, inference can be carried out fairly easily.

However, both Chan (1993) and Hansen (2000) rely on the crucial exogeneity assumption for

both the slope regressors and the threshold variable. Recently, there is a growing interest in

threshold models that allows for endogeneity. Using a two-stage least square method, Caner and

Hansen (2004) allow for the slope regressors to be endogenous. In the spirit of the sample selection

methodology of Heckman (1979), with a joint normality assumption, Kourtellos et al. (2016) allow

for an endogenous threshold variable. Seo and Shin (2016) propose a two-step GMM estimator for

the dynamic panel threshold model, which also allows for endogeneity. It is worth noticing that the

GMM method allows for both fixed and small threshold effects and the rate of convergence for the

GMM threshold estimator is not super-consistent. By relaxing the joint normality assumption of

Kourtellos et al. (2016), Kourtellos et al. (2017) propose a two-step estimation method based on a

nonparametric control function approach to correct for threshold endogeneity. The semiparametric

threshold model separates the threshold effect into two parts, namely, an exogeneous threshold effect

and an endogenous threshold effect. Therefore, with a ”small threshold” effect, the convergence

rate of the estimator of the threshold variable depends on diminishing rates of both these two

effects.

Seo and Linton (2007) consider a more general model than Hansen (2000). In the spirit of

Horowitz (1992), they propose a smoothed least square estimator by allowing the threshold to be
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a linear index of regressors. The linear index threshold regression model can capture the joint

threshold effect between two possible threshold variables. Therefore, this model allows empirical

researchers to investigate the threshold effect in a broader setting. Yu (2015) develops the limiting

asymptotic results of the least square estimator for the linear index threshold model in both the

fixed threshold and the diminishing threshold effect framework. However, both the smoothed least

square estimator and the least square estimator rely on the assumption of exogeneity in both the

slope regressors and the threshold variables, which may limit the usefulness of these models.

In this paper, we propose a two-step GMM linear index threshold estimator, which allows both

threshold variables and the regressors to be endogenous. We also relax the fixed threshold effect

assumption by allowing both for fixed and diminishing threshold effects. We develop the estimation

strategy and the limiting results for weakly dependent data. The asymptotic distribution is similar

to Seo and Shin (2016). They concentrate on the dynamic panel threshold model, whereas we focus

on the linear index threshold model. Similar to Seo and Shin (2016), the convergence rate of the

threshold estimators are n
1
2
−α and not super-consistent, where α measures the diminishing rate of

the threshold effect. The slope coefficients converge at the usual root-n rate. We further suggest

a test of the linear index threshold effect and provide a Hausman type test for the exogeneity

of the regressors. The finite performance of the proposed estimator are studied through Monte

Carlo Simulations. We compare our estimator with the smoothed least square estimator of Seo and

Linton (2007) and we report the average bias, mean square error and the standard deviation of the

threshold estimator specifically. Finally, we investigate the threshold effect of a linear index model

between external debt and public debt in economic growth for developing countries. We estimate

the augmented Solow linear index threshold using both GMM method and Seo and Linton (2007).

We find that after correcting for endogeneity, the joint threshold effect becomes insignificant.

The rest of the paper is organized as follows. In section 2, we introduce the linear index threshold

model with endogeneity. In section 3, we propose the two-step GMM estimator of the linear index

threshold model and in section 4 we derive the asymptotic results. Section 5 provides the inference

for the threshold effect and the endogeneity in slope regressors. In section 6 we report the Monte

Carlo results for the proposed estimators. Section 7 presents the empirical application, while section

8 concludes the paper. In the appendix we collect the proofs and we present additional evidence for

the small sample performance of the proposed linearity test and some additional heuristic arguments

for the smoothness of the GMM objective function that we adopt in our analysis.
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2 The Model

Consider the following linear index threshold model suggested by Seo and Linton (2007)

yt = xTt β + δT x̃tI(q1t + qT2tψ > 0) + εt

t = 1, ..., n (1)

where yt is the dependent variable, xt is a k×1 vector and x̃t is an l×1 vector. Also qt = [qT1t, q
T
2t]
T

is an h×1 threshold variable vector. Note that xt, x̃t, qt may have common variables. Many models

in the previous literature can be viewed as a special case of this model. For example, for the case

that xt = x̃t, q1t is a constant and q2t is a scalar, the model becomes the threshold model considered

by Hansen (2000). If we further assume that xt consists of the lagged yt and q2t = yt−d, the model

becomes the self-exciting threshold autoregressive (SETAR) model suggested by Tong and Lim

(1980).

Similar to Seo and Shin (2016), we allow for both ”fixed threshold effect” and the ”diminishing

threshold effect”, of Hansen (2000). That is, we have

δ = δn = δ0n
−α, α ∈ [0, 1/2) (2)

Endogeneity is allowed in both the slope regressors (E(xtεt) 6= 0) and the threshold variables

(E(qtεt) 6= 0). To fix the endogeneity problem, we need to find an m × 1 vector of instrumental

variables, zt, for t = 1, ..., n, where m ≥ k+l+h−1, satisfying the following orthogonality condition:

E(ztεt) = 0 (3)

for all t = 1, ..., n

3 Estimation Strategy

We consider the following moment condition:

E(gt(θn)) = E(ztεt) = 0 (4)
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where θn is the true value with θn = [βT0 , δ
T
n , ψ

T
0 ]T , δn = δ0n

−α, and

gt(θ) = zt[yt − xTt β − δT x̃tI(q1t + qT2tψ > 0)].

Naturally, the sample analogue to E(gt(θ)) is,

gn(θ) =
1

n

n∑
t=1

gt(θ). (5)

Given that the general identification condition hold for E(gt(θn)), the GMM estimators can be

obtained as

θ̂
GMM

= argmin
θεΘ

Qn(θ), (6)

where

Qn(θ) = gn(θ)TWngn(θ) = [
1

n

n∑
t=1

gt(θ)]
TWn[

1

n

n∑
t=1

gt(θ)] (7)

and Wn is a positive definite matrix with Wn
p→ Ω−1, where Ω = E(gt(θn)gt(θn)T ).

For a given ψ, the model is linear in β and δ. Since Qn(θ) is not continuous in ψ, it is more

practical to use a grid search empirically.

For a given ψ and a weight matrix Wn ,

(
β̂
T

(ψ), δ̂
T

(ψ)

)T
= [Ĝ(ψ)TWnĜ(ψ)]−1Ĝ(ψ)TWn[− 1

n

∑
ztyt], (8)

where Ĝ(ψ)
m×2k

= [ĜTβ , Ĝ
T
δ (ψ)]T , Ĝβ

m×k
= − 1

n

∑
ztx

T
t and Ĝδ(ψ)

m×k
= − 1

n

∑
ztx̃

T
t I(q1t + qT2tψ > 0).

Then, the threshold index estimators can be obtained by

ψ̂
GMM

= argmin
ψ∈Θψ

Qn(ψ) = [
1

n

n∑
t=1

gt(β̂(ψ), δ̂(ψ), ψ)]TWn[
1

n

n∑
t=1

gt(β̂(ψ), δ̂(ψ), ψ)] (9)
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and

(β̂
GMMT

, δ̂
GMMT

)T =
(
β̂
T ˆ(ψ), δ̂

T ˆ(ψ)
)T

(10)

Therefore, the 2-step method can be obtained as:

Step 1: Estimate the model with Wn = Im, where Im is an m × m identity matrix, and get

residual ê.

Step 2: Estimate the model with Wn = [ 1
n

∑n
t=1(ztz

T
t ê

2
t )]
−1.

4 Asymptotic Results

In this section, we develop the asymptotic theory for the GMM estimator of the linear index thresh-

old model. The regularity assumptions required for deriving the limiting results of the proposed

estimator are as follows:

Assumption 1: {(Xt, zt, qt, εt)} is a sequence of strictly stationary strong mixing random

variables with mixing numbers αs, s = 1,2,...... that satisfies αs= o (s−γ/(γ−1)) as s →∞ for some

γ ≥ 1.

Assumption 2: For some η > 1, E||XtX
T
t ||η+γ < ∞, E||ztεt||η+γ < ∞, E||ztXT

t ||η+γ < ∞.

E[ztX
T
t Xtz

T
t |qt] > 0 a.s.

Assumption 3: {(εt,Fn,t))}nt=1 is a martingale difference sequence with E(ε2
t |Fn,t−1) < ∞,

where Fn,t is the smallest sigma-field generated from {(XT
s , z

T
s+1, q

T
s , εs) : 1 ≤ s < t ≤ n}, and

V ar(n−1/2
n∑
t=1

ztεt) is a positive definite matrix.

Assumption 4: The true values of β and ψ are fixed at β0 and ψ0 . The true δ depends on n

such that δn = δ0n
−α for some α ∈ [0, 1

2) and δ0 6= 0. θn = [βT0 , δ
T
n , ψ

T
0 ]T is an interior point of

Θ = Θβ ×Θδ ×Θψ, which is a compact set. Ω = E(gt(θn)gt(θn)T ) is finite and positive definite.
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Assumption 5: E(q2tq
T
2t) is positive definite.

Assumption 6: For all ψ ∈ Θψ, the linear index of the threshold variables, vt(ψ) = q1t + qT2tψ,

has a continuous and bounded density, fvt(ψ)(.), such that fvt(ψ)(0) > 0; E
(
ztδ

T
0 x̃tq

T
2t|vt(ψ) = 0

)
is

continuous at ψ0

Define:

Gβ = −E(ztx
T
t ), (11)

Gδ(ψ) = −E{ztx̃Tt I(q1t + qT2tψ > 0))}, (12)

Gψ(ψ) = −E
(
ztδ

T
0 x̃tq

T
2t|vt(ψ) = 0

)
fvt(ψ)(0), (13)

where Gβ is an m× k matrix, Gδ(ψ) is an m× l matrix, Gψ(ψ) is an m× (h− 1) matrix and

fvt(0) is the density for vt at vt = 0.

Assumption 7: G = (Gβ, Gδ(ψ0), Gψ(ψ0)), then G is a full column rank matrix.

Assumption 1 gives standard conditions on the stochastic process. We can apply the generic

uniform law of large numbers of Andrews (1987) to prove the consistency of our estimator. As-

sumptions 2-4 are regularity assumptions of the generalized method moment method. We assume

εt is the martingale difference sequence. We allow both for fixed threshold effect and for dimin-

ishing threshold effect. If δ0 = 0 (no threshold effect), ψ can not be identified. Assumption 5

corresponds to assumption 1(d) in Seo and Linton (2007) and assumption 6 in Yu (2015). This

assumption is required for the asymptotic uniqueness of the GMM estimator. Assumption 6 is a

smoothness assumption on the distributions of the threshold variables and their linear index and

the conditional moments, which is standard in threshold models. Assumption 7 is the GMM full

rank condition .

Theorem 1: Under assumptions 1-7, as n→∞, we have

θ̂
GMM p→ θn. (14)

Theorem 2: Under assumptions 1-7, as n→∞,√n 0 0
0
√
n 0

0 0 n
1
2
−α

[ β̂ − β0

δ̂ − δn
ψ̂ − ψ0

]
d→ N

(
0,

(
GTΩ−1G

)−1)
, (15)
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where Ω and G are defined in assumption 4 and assumption 7.

The convergence rate for the estimator of the slope parameter is standard root-n. The conver-

gence rate for the threshold variables depends on the unknown α, which determines the decaying

rate of the threshold effect. Intuitively, unlike the smoothed least square of Seo and Linton (2007),

where the smoothness results from the objective funtion, the smoothness of the GMM estimator

relies on the nature of the sample averaging 1.

Gβ and Gδ can be estimated as

Ĝβ = − 1

n

n∑
t=1

ztx
T
t , (16)

Ĝδ = − 1

n

n∑
t=1

ztx̃
T
t I(q1t + qT2tψ̂ > 0). (17)

For Gψ, we can estimate it using a standard Nadaraya-Watson kernel estimator,

Ĝψ = − 1

nh

n∑
t=1

ztδ̂
T
x̃tq

T
2tK(

q1t + qT2tψ̂

b
), (18)

where K(.) is the second-order kernel function and b is the bandwidth.

Let Ω̂ = 1
n

∑n
t=1 gt(θ̂)g

T
t (θ̂). As n→∞, Ĝ and Ω̂ converge in probability respectively to G and

Ω following the uniform law of large number, the consistency of the Nadaraya-Watson estimator

and the kernel density estimator for α mixing data (Robinson (1983), Robinson (1986)).

5 Testing

5.1 Test for Linearity

In equation (2), the threshold effect disappears under the null hypothesis, δn = 0. However, due to

the presence of unidentified parameters under the null, the natural way to test for nonlinearity is

the Sup-Wald test, which is formed as follows,

1We provide a heuristic example in the appendix to explain the smoothness of the GMM and to compare the
limiting behaviors among the least square estimator, the smoothed least square estimator, and the GMM estimator.
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SupWald = sup
ψ∈Θψ

Wald(ψ), (19)

where

Wald(ψ) = n(R[β̂
T

(ψ), δ̂
T

(ψ)]
T )T [R(Ĝ(ψ)T Ω̂−1Ĝ(ψ))−1RT ]−1R[β̂

T

(ψ), δ̂
T

(ψ)]
T , (20)

Ĝ(ψ) = [Ĝβ, Ĝδ(ψ)], (21)

R = [0l×k, Il×l]. (22)

Theorem 3: Suppose that inf
ψ∈Θψ

|G(ψ)TΩ−1G(ψ)| is positive, with assumptions 1,2,and 6 hold,

under the null, we have

SupWald
d−→ sup

ψ∈Θψ

V TΩ−1/2G(ψ)T (G(ψ)TΩ−1G(ψ))−1RT (R(G(ψ)TΩ−1G(ψ))−1)RT )−1

× R(G(ψ)TΩ−1G(ψ))−1G(ψ)Ω−1/2V, (23)

where V ∼ N(0, Il) and Il is an l by l identity matrix.

Thus, the asymptotic distribution of SupWald is the supremum of the “chi-squar” process

and depends upon the covariance function. However, the critical value is non-tabulated in gen-

eral. Following Hansen (1996), the asymptotic critical values and the p value can be generated by

bootstrapping 2.

5.2 Test for Exogeneity

In this section, extending the new Hausman-type test suggested by Kapetanios (2010), we propse a

Hausman test to test for the exogeneity of the slope regressors of the linear index threshold model.

Consider the following null hypothesis, for all t,

H0 : E
(
εt|Xt

)
= 0 (24)

2In the appendix, we provide a small simulation to assess the finite sample performance of the suggested boot-
strapping test.
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Given a consistent threshold estimate ψ̂, let θ̃(ψ̂) = [β̃(ψ̂)T , δ̃(ψ̂)T ]T denote the slope estimator

with moment condition E[Xtεt|ψ̂] = 0, and θ̂(ψ̂) = [β̂(ψ̂)T , δ̂(ψ̂)T ]T denote the slope estimator

with moment condition E[ztεt|ψ̂] = 0. Evidently, with conditional homoskedasticity, if there is no

endogeneity in regressors, both estimators are consistent and θ̃(ψ̂) is more efficient. However, if the

slope regressors are endogenous, only θ̂(ψ̂) is consistent.

Therefore, the test statistic is of the form,

H = (θ̂(ψ̂)− θ̃(ψ̂))T [V ar(θ̂(ψ̂))− V ar(θ̃(ψ̂))]+(θ̂(ψ̂)− θ̃(ψ̂)), (25)

where ” + ” denotes the Moore-Penrose pseudoinverse.

Theorem 4: With assumptions 1-7 and the conditional homoskedasticity (E(ε2
t |Ft−1) = σ2

ε),

under the null hypothesis,

H
d→ χ2

k1 , (26)

where k1 = rank

(
V ar

(
(θ̂(ψ̂)

)
− V ar

(
(θ̃(ψ̂)

))
.

As Kapetanios (2000) has shown, the asymptotic variances of the test statistic
√
n(θ̂ − θ̃) may

be problematic due to the nature of the nonlinear model. Therefore, following Kapetanios (2010),

the properties of the asymptotic tests can be improved using bootstrapping.

6 Monte Carlo Simulation

In this section, we investigate the finite sample performance of the GMM estimator. We use the

following structure to carry out the simulations:

yt = I(q1t + q2t ≤ 0) + et, (27)

et = 0.1εt + k1vq1t + k2vq2t, (28)

q1t = 0.5q1t−1 + vq1t, (29)

q2t = 0.5q2t−1 + vq2t, (30)

where vq1t, vq2t and εt are independently normally distributed with mean zero and variance one.
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We let q1t and q2t follow an AR(1) process, I(.) is the indication function and ψ0 = 1. The

degree of endogeneity of the threshold variable is controlled by k1 and k2. We use q1t−1 and q2t−1

as the instrument for q1t and q2t respectively.

Clearly, this DGP is a simpler version of the general model, yt = xTt β+δT x̃tI(q1t+q
T
2tψ > 0)+et,

with β = 0, δ = 1 and xt = x̃t = 1 for all t = 1, 2, ... We estimate the model both with the GMM

and the smoothed least square (LS) method of Seo and Linton (2007). For the smoothed LS, we

use the same kernel function and the bandwidth choice with the simulations reported in Seo and

Linton (2007). We use 2000 replications with sample sizes n = 100, 300 and 500 respectively. To

investigate the endogeneity in threshold variable, we vary k1 and k2 with values 0, 0.3 & 0.5. All

simulations are executed in Matlab. For each simulation, we report the average MSE, Bias and the

standard deviation of the threshold estimates. Tables 1 - 5 report the simulation results. Tables 2-3

reports the results with exogenous q2t and endogenous q1t. Finally, Tables 4-5 presents the results

with exogenous q1t and endogenous q2t.

Table 1 shows the results with both exogenous threshold variables. For the linear threshold

estimate ψ, the smoothed least square estimator achieves a better performance than the GMM

estimator. This results from the super-consistency of the threshold estimate of the smoothed LS.

Since the DGP is designed with a fixed threshold effect, the GMM estimator converges at the

normal
√
n rate, which implies a slower convergence speed than smoothed LS estimator.

Tables 2-3 report the results with exogenous q2t and endogenous q1t. Tables 4-5 presents the

results with exogenous q1t and endogenous q2t. Therefore, for both cases, as expected the smoothed

least square has an asymptotic bias. The average biases of the smoothed LS estimator are much

larger than the GMM estimators for all cases. In addition, the stronger the endogeneity, the larger

the average bias. For the GMM estimator, as the sample size increases, all MSEs of the GMM

estimator decrease and converge to zero confirming the consistency of the GMM estimator.
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Table 1: Simulation Performance of the GMM and the smoothed least square estimators, k1=k2=0
(exogenous case)

MSE

GMM Smoothed LS

n ψ β δ ψ β δ

100 0.0279 0.0007 0.0019 0.0060 0.0009 0.0021
300 0.0070 0.0002 0.0006 0.0013 0.0002 0.0005
500 0.0030 0.0001 0.0003 0.0006 0.0001 0.0003

Bias

GMM Smoothed LS

n ψ β δ ψ β δ

100 -0.0360 0.0100 -0.0195 0.0005 0.0132 -0.0260
300 -0.0053 0.0058 -0.0121 0.0009 0.0057 -0.0115
500 -0.0028 0.0045 -0.0092 0.0006 0.0038 -0.0074

Standard Error

GMM Smoothed LS

n ψ β δ ψ β δ

100 0.1631 0.0255 0.0389 0.0776 0.0276 0.0382
300 0.0835 0.0127 0.0206 0.0363 0.0138 0.0197
500 0.0550 0.0089 0.0142 0.0252 0.0101 0.0144

This table reports the simulation results of the GMM estimator and the smoothed least square estimator for
the DGP defined by equation (27) with exogenous threshold variables. The first column shows the sample size
that the simulation used. The second to the fourth columns report the results of the GMM estimator for ψ,
β & δ respectively. The fifth to the last column show the results of the smoothed LS estimator.

11



Table 2: Simulation Performance of the GMM and the smoothed least square estimators, k1=0.3,
k2=0

MSE

GMM Smoothed LS

n ψ β δ ψ β δ

100 0.0747 0.0281 0.1099 0.1605 0.0269 0.1058
300 0.0209 0.0242 0.0961 0.0501 0.0237 0.0935
500 0.0089 0.0237 0.0940 0.0296 0.0228 0.0904

Bias

GMM Smoothed LS

n ψ β δ ψ β δ

100 0.0606 0.1604 -0.3228 0.3453 0.1586 -0.3192
300 0.0491 0.1538 -0.3079 0.2111 0.1520 -0.3038
500 0.0354 0.1530 -0.3054 0.1657 0.1501 -0.2995

Standard Error

GMM Smoothed LS

n ψ β δ ψ β δ

100 0.2666 0.0487 0.0755 0.2032 0.0415 0.0630
300 0.1360 0.0242 0.0361 0.0741 0.0238 0.0355
500 0.0874 0.0182 0.0267 0.0467 0.0177 0.0268

This table reports the simulation results of the GMM estimator and the smoothed least square estimator for
the DGP defined by equation (27) with small endogenous effect from q1t. The first column shows the sample
size that the simulation used. The second to the fourth columns report the results of the GMM estimator for
ψ, β & δ respectively. The fifth to the last column show the results of the smoothed LS estimator.
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Table 3: Simulation Performance of the GMM and the smoothed least square estimators, k1=0.5,
k2=0

MSE

GMM Smoothed LS

n ψ β δ ψ β δ

100 0.2606 0.0753 0.2971 4.9297 0.4247 1.7088
300 0.1087 0.0631 0.2505 4.7556 0.3820 1.5278
500 0.0759 0.0623 0.2491 4.6673 0.3666 1.4681

Bias

GMM Smoothed LS

n ψ β δ ψ β δ

100 0.1510 0.2588 -0.5192 -1.4815 0.5910 -1.1884
300 0.1882 0.2487 -0.4977 -1.3859 0.5549 -1.1114
500 0.1503 0.2480 -0.4975 -1.3964 0.5422 -1.0854

Standard Error

GMM Smoothed LS

n ψ β δ ψ β δ

100 0.4877 0.0914 0.1659 1.6541 0.2747 0.5447
300 0.2707 0.0360 0.0526 1.6841 0.2722 0.5410
500 0.2310 0.0277 0.0395 1.6488 0.2695 0.5386

This table reports the simulation results of the GMM estimator and the smoothed least square estimator for
the DGP defined by equation (27) with large endogenous effect from q1t. The first column shows the sample
size that the simulation used. The second to the fourth columns report the results of the GMM estimator for
ψ, β & δ respectively. The fifth to the last column show the results of the smoothed LS estimator.

13



Table 4: Simulation Performance of the GMM and the smoothed least square estimators, k1=0,
k2=0.3

MSE

GMM Smoothed LS

n ψ β δ ψ β δ

100 0.0577 0.0283 0.1093 0.0739 0.0278 0.1071
300 0.0121 0.0243 0.0965 0.0324 0.0237 0.0939
500 0.0060 0.0235 0.0933 0.0212 0.0226 0.0897

Bias

GMM Smoothed LS

n ψ β δ ψ β δ

100 -0.1024 0.1622 -0.3240 -0.2476 0.1615 -0.3210
300 -0.0554 0.1539 -0.3086 -0.1728 0.1522 -0.3044
500 -0.0359 0.1521 -0.3043 -0.1417 0.1492 -0.2984

Standard Error

GMM Smoothed LS

n ψ β δ ψ β δ

100 0.2173 0.0449 0.0661 0.1122 0.0411 0.0636
300 0.0951 0.0238 0.0351 0.0504 0.0229 0.0348
500 0.0685 0.0188 0.0272 0.0342 0.0179 0.0268

This table reports the simulation results of the GMM estimator and the smoothed least square estimator for
the DGP defined by equation (27) with small endogenous effect from q2t. The first column shows the sample
size that the simulation used. The second to the fourth columns report the results of the GMM estimator for
ψ, β & δ respectively. The fifth to the last column show the results of the smoothed LS estimator.
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Table 5: Simulation Performance of the GMM and the smoothed least square estimators, k1=0,
k2=0.5

MSE

GMM Smoothed LS

n ψ β δ ψ β δ

100 0.1783 0.0660 0.2564 1.7022 0.0496 0.1871
300 0.0666 0.0632 0.2509 1.4350 0.0518 0.2024
500 0.0373 0.0630 0.2505 1.3642 0.0529 0.2090

Bias

GMM Smoothed LS

n ψ β δ ψ β δ

100 -0.2466 0.2484 -0.4966 -1.1965 0.2148 -0.4241
300 -0.1669 0.2487 -0.4981 -1.0766 0.2250 -0.4471
500 -0.1195 0.2496 -0.4989 -1.0327 0.2286 -0.4556

Standard Error

GMM Smoothed LS

n ψ β δ ψ β δ

100 0.3429 0.0658 0.0988 0.5204 0.0587 0.0852
300 0.1969 0.0360 0.0526 0.5255 0.0343 0.0495
500 0.1519 0.0277 0.0401 0.5458 0.0255 0.0372

This table reports the simulation results of the GMM estimator and the smoothed least square estimator for
the DGP defined by equation (27) with large endogenous effect from q2t. The first column shows the sample
size that the simulation used. The second to the fourth columns report the results of the GMM estimator for
ψ, β & δ respectively. The fifth to the last column show the results of the smoothed LS estimator.
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7 Empirical Application

For many countries, especially certain advanced economies, public debt has been steadily increasing

over the past decades, and there is a growing concern about its impact on long-term growth.

Therefore, one of the most active areas of research recently has been to test whether debt has a

nonlinear effect on growth. To investigate the potential threshold effect of public debt on growth,

many researchers have carried out empirical studies to examine its magnitude of this effect and

estimate the level beyond which debt will be detrimental to growth (threshold level of debt). By

using Hansen’s (2000) threshold regression model, Cecchetti et al. (2011), Caner et al. (2011)

and Afonso & Jalles (2013) find that the public debt will have an adverse effect on economic

growth when the public debt to GDP ratio exceeds 85%, 77%, and 59% respectively. By correcting

for endogeneity in both slope regressors and the threshold variable with a structural threshold

regression model of Kourtellos et al. (2016), Kourtellos et al. (2013) fail to find the significant

threshold effect for the public debt.

However, the above findings ignore country heterogeneity. Moreover, all results in the literature

estimate the threshold effect by assuming the nonlinearity exists only in public debt. For developing

countries, it is natural to expect a threshold effect from external debt. For example, Patillo et al.

(2002) show that there is a U shape relationship between external debt and growth in developing

countries. In contrast to Patillo et al. (2002), Schclarek (2004) fails to detect any nonlinearity in

foreign debt on growth for developing countries.

One of the methodological problems in the past literature is that the model only allows for

one threshold variable. Furthermore, most research relies on the homogeneity assumptions in both

slope regressors and the threshold variable, which is highly dubious. It may be useful to conjecture

that nonlinearity of growth in developing countries could originate from the joint linear threshold

effect between both public debt and external debt. As such, we apply the linear index threshold

model to investigate this issue. We examine the following linear index threshold Solow growth

model:

gt = xTt β + δTxtI(d1t + d2tψ1 + ψ2 ≤ 0) + εt, (31)

where gt is the growth rate, d1t is the demeaned public debt to GDP ratio, d2t is the demeaned
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external debt to GDP ratio, x is the Solow controlling set including constant & five Solow variables,

namely, initial income per capita, schoolings, investment, population growth, and openness. It also

includes public debt to GDP ratio and external debt to GDP ratio. A detailed data resource

description of all variables is given in Table 7. We also account for time fixed effects. We observe

that, according to the heavily indebted poor countries (HIPC) initiative, 33 out of 37 HIPC in our

dataset are from the Sub-Saharan African area. Therefore, we also include the regional effects with

the Latin-American dummy and the Sub-Saharan dummy.

We employ an averaged ten-year period panel data covering 54 developing countries in 1980-

1989, 1990- 1999, 2000-2009 and 2010-2016. The growth rate of real per capita GDP is from PWT

9.0. The public debt and external debt to GDP ratio are from the IMF Historical Public Debt

Database and the data bank of the world bank. In this paper, all variables are instrumented by

their lagged values. We estimate the model using both smoothed least square method of Seo and

Linton (2007) and our proposed GMM method. We test the nonlinearity by using the sup-wald

statistic. As suggested by Hansen (2000), we use the bootstrap method to test for the existence of

the threshold effect.

We present the results in Table 6. The smoothed least square estimate shows the presence

of the significant threshold effect at 1% level with the bootstrap P value equaling 0.0001. It is

worth noting that, with all else being equal, higher external debt leads to higher growth if the

country is in the low debt regime and lower growth if the country is in the high debt regime. The

finding supports for the inverted-U relationship of the external debt with growth. Furthermore, the

positive effect of the external debt on growth in low debt regime is insignificant while the adverse

impact in high debt regime is significant at 1% level.

Surprisingly, after correcting the endogeneity in both slope regressors and the threshold vari-

ables, the nonlinearity result of the GMM method becomes insignificant with the bootstrap P value

equals 0.2727. Therefore, our finding suggests there is little evidence of nonlinearity in the effects

of debt on growth and any finding to the contrary may be the result that the effects of possible

self-selection or endogeneity by various countries is ignored in how they behave towards their debt

obligations. The linear index threshold effect in external debt is found to be endogenous and the

main reason of the heterogeneity in the debt-growth relationship is not the level of public debt

and/or external debt.
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Table 6: Estimation and Testing Results of the Linear Index Threshold Solow Growth Model

Method GMM-Index Smoothed LS Linear-GMM Linear-LS
ψ1 0.57 0.90
ψ2 0.24 0.12

Low High Low High

Constant -0.0713 -0.1609 -0.0135 0.0608 -0.1639 0.0695
(0.8059) (0.2534) (0.8844) (0.5344) (0.1763) (0.1019)

Initial income -0.0009 -0.0044 -0.0017 -0.0013 -0.0036 -0.0033
(0.8742) (0.4905) (0.8234) (0.8532) (0.4571) (0.2108)

Schooling 0.0027 0.0013 0.0002 -0.0039 0.0021 0.001
(0.7179) (0.8526) (0.9835) (0.6108) (0.7109) (0.7669)

Investment 0.0101 −0.0092∗∗ -0.001 0.0044 -0.0013 -0.0011
(0.3219) (0.0188) (0.9294) (0.4331) (0.7442) (0.7541)

Population -0.0233 -0.0757 -0.016 0.00253 -0.0732 0.0153
(0.8385) (0.2019) (0.5920) (0.5281) (0.1434) (0.2630)

Public debt 0.0110 0.1320 −0.0300∗∗ −0.0231∗ -0.0006 -0.0068
(0.6240) (0.1587) (0.0191) (0.0998) (0.9159) (0.1172)

External debt 0.0265∗∗ -0.0354 0.0056 −0.0899∗∗∗ -0.0076 -0.0033
(0.0452) (0.2132) (0.7034) (0.0046) (0.6059) (0.7117)

Openness 0.0085 0.0123∗∗ -0.0028 0.0166∗∗∗ 0.0075∗ 0.0090∗∗∗

(0.2322) (0.0463) (0.7577) (0.0068) (0.0665) (0.0050)

SupWald 29.6561 80.2709
SupWald Boot P value 0.2727 0.0001∗∗∗

Observations 216 216 216 216
This table presents the estimation of the smoothed least square threshold index model of Seo and Linton
(2007) and the GMM threshold index model. The first column shows the slope regressors. The second and
third column give the results of the GMM method. The fourth and the fifth column report the the results
of the smoothed least square method. The last two columns report the GMM and LS results that ignores
the presence of a threshold. All variables are instrumented by the lag values. Time dummies and regional
dummies are included but not reported. ”***” denotes significantly different from zero at the 1% level, ”**”
denotes significantly different from zero at the 5% level, and ”*” denotes significantly different from zero at
the 10% level.
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8 Conclusion

In this paper, we propose a GMM estimator for the linear index threshold model. The GMM

estimator allows for the endogeneity of the threshold variable as well as the slope regressors. We

show the consistency of the GMM estimator and derive the limiting distribution. We study the

finite sample performance of the proposed estimator through Monte Carlo simulation. We compare

the performance of the GMM estimator with the smoothed least square estimator of Seo and Linton

(2007) under both exogenous and endogenous threshold variable design. The simulation results are

consistent with the theory. We use the linear index threshold model to investigate the threshold

effect of the linear index combined by the public debt and the external debt on the economic growth

in developing countries. The nonlinearity testing result of the GMM estimator shows the threshold

effect is insignificant.
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Appendices

Throughout the proof, let ||.|| denote the Euclidean norm. The integral is taken over (−∞, ∞)

unless specified otherwise. All limits are taken as n → ∞.
a.s→,

p→, and
d→ denote almost sure

convergence, convergence in probability, and convergence in distribution respectively.
∧

and
∨

denote the minimum and maximum operators.

By definition, we have

g(θ) = E(gt(θ)) = E[zt(yt − xTt β − δT x̃tI(q1t + qT2tψ > 0))] (32)

= E[ztyt − ztxTt β − ztδT x̃tI(q1t + qT2tψ > 0)],

and the sample analogue is

gn(θ) =
1

n

n∑
t=1

gt(θ) =
1

n

n∑
t=1

[ztyt − ztxTt β − ztδT x̃tI(q1t + qT2tψ > 0)].

A Proof of Lemma

Lemma 1: Under assumptions 1 and 2, it can be shown that:

Sup
ψ∈Θψ

|| 1
n

n∑
t=1

ztx̃t
T I(q1t + qT2tψ > 0)− E[ztx̃t

T I(q1t + qT2tψ > 0)]|| p→ 0. (33)

Sup
ψ∈Θψ

|| 1
n

n∑
t=1

xtx̃t
T I(q1t + qT2tψ > 0)− E[xtx̃t

T I(q1t + qT2tψ > 0)]|| p→ 0. (34)

Proof. Under assumptions 1 and 2, E||ztx̃Tt || and E||xtx̃Tt || are bounded. Then, the proof is

straightforward by applying lemma 1 of Seo & Linton (2007).
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Lemma 2: Under assumptions 1, 2, and 6, there is a C < ∞ such that for any ψ1, ψ2 ∈ Θψ,

we have

‖E
(
Xt

(
I(ψ1)− I(ψ2)

))
‖ ≤ C||ψ1 − ψ2||,

‖E
(
Xtεt

(
I(ψ1)− I(ψ2)

))
‖ ≤ C||ψ1 − ψ2||, (35)

where I(ψ) = I(q1t + qT2tψ > 0).

Proof. Note that, for any random variable w, we have

∂E

(
wI(q1t + qT2tψ > 0)

)
∂ψi

= E

(
wq2it|vt(ψ) = 0

)
fvt(ψ)(0),

where vt defines in Assumption 7.

Thus, applying the first-order Taylor approximation, we have,

‖E
(
Xt

(
I(ψ1)− I(ψ2)

))
‖ ≤ ‖E(Xtq

T
2t|vt(ψ2) = 0)‖fvt(ψ2)(0)||ψ1 − ψ2||+O(1)

‖E
(
Xtεt‖

(
I(ψ1)− I(ψ2)

))
≤ ‖E( Xtεtq

T
2t|vt(ψ2) = 0)‖fvt(ψ2)(0)||ψ1 − ψ2||+O(1).

(36)

Appying assumptions 2 and 6, we can show that there exists a C such that ‖E(Xtq2t|vt(ψ2) =

0)‖fvt(ψ2)(0) < C <∞ and ‖E( Xtεtq
T
2t|vt(ψ2) = 0)‖fvt(ψ2)(0) < C <∞. This completes the proof

of the Lemma.

B Proof of Theorem 1:

First, under assumptions 1, 2, and 3, by applying lemma 1, we have

Sup
β∈Θβ ,δ∈Θδ,ψ∈Θψ ,

|| 1
n

n∑
t=1

(ztyt−ztxTt β−ztδT x̃tI(q1t+q
T
2tψ > 0))−E[(ztyt−ztxTt β−ztδT x̃tI(q1t+q

T
2tψ > 0)]|| p→ 0.

(37)

That is
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Sup
θ∈Θ
||gn(θ)− E(gt(θ))||

p→ 0. (38)

Evidently, E(gt(θ)) is continuous in θ.

Next, we show that E(gt(θ)) = 0 iff θ = θn.

Applying simple calculations gives

Gβ = −E(ztx
T
t ), (39)

Gδ(ψ) = −E(zt{x̃tI(q1t + qT2tψ > 0)}T ), (40)

Gψ(ψ) = −E
(
ztδ

T x̃tq
T
2t|vt(ψ) = 0

)
fvt(ψ)(0), (41)

Now, suppose β = β0, δ = δn but ψ 6= ψ0, we have

E(gt(θ)) = E(gt(β0, δn, ψ)) = E(gt(β0, δn, ψ))− E(gt(β0, δn, ψ0))

= E{ztx̃Tt [I(q1t + qT2tψ0 > 0)− I(q1t + qT2tψ > 0)]}δn = [Gδ(ψ)−Gδ(ψ0)]δn. (42)

Let A = {−qT2tψ < q1t < −qT2tψ0}
⋃
{−qT2tψ0 < q1t < −qT2tψ}.

Under assumptions 5 and 6, the set A has a positive probability. Therefore, we have

E[I(q1t + qT2tψ0 > 0)− I(q1t + qT2tψ > 0)|A] 6= 0. (43)

Under equation (43), assumption 2, and 4, we obtain

E[ztx̃
T
t (I(q1t + qT2tψ0 > 0)− I(q1t + qT2tψ > 0))|A]δn 6= 0, (44)

which implies the unconditional expectation

E[ztx̃
T
t (I(q1t + qT2tψ0 > 0)− I(q1t + qT2tψ > 0))]δn 6= 0. (45)
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If β 6= β0 or δ 6= δn but ψ = ψ0, we have

E(gt(θ)) = E(gt(β, δn, ψ0)) = E(gt(β, δn, ψ0))− E(gt(β0, δn, ψ0))

= −E(ztx
T
t )(β − β0) = Gβ(β − β0) 6= 0, (46)

and

E(gt(θ)) = E(gt(β0, δ, ψ0)) = E(gt(β0, δ, ψ0))− E(gt(β0, δn, ψ0))

= −E(zt{x̃tI(q1t + qT2tψ0 > 0)}T )(δ − δn) = Gδ(ψ0)(δ − δn) 6= 0 (47)

where the inequality follows assumption 7.

If β 6= β0 or δ 6= δn and ψ 6= ψ0, with almost same arguments, we have

E(gt(θ)) = E(gt(β, δ, ψ)) = E(gt(β, δ, ψ))− E(gt(β0, δn, ψ0))︸ ︷︷ ︸
E(gt(θn))=0

= [Gδ(ψ)−Gδ(ψ0)]δn +Gβ(β − β0) +Gδ(ψ)(δ − δn) 6= 0. (48)

Hence, we obtain E(gt(θ)) = 0 if and only if θ = θn.

Therefore, Q(θ) = E(gt(θ))
TWE(gt(θ)) has a unique minimum at θ = θn, where W is a positive

definite matrix.

Last, we show Qn(θ) converges uniformly in probability to Q(θ).

Sup
θ∈Θ
|Qn(θ)−Q(θ)| = Sup

θ∈Θ
|gn(θ)TWgn(θ)− g(θ)TWg(θ)|

= Sup
θ∈Θ
|(gn(θ)− g(θ))TW (gn(θ)− g(θ)) + 2(gn(θ)− g(θ))TWg(θ)|

≤ Sup{
θ∈Θ

||gn(θ)− g(θ)||2 ||W ||+ 2||gn(θ)− g(θ)|| ||W || ||g(θ)||}. (49)

Applying equation (38), we have Sup
θ∈Θ
|Qn(θ)−Q(θ)| p→ 0, which completes our proof by following

theorem 2.1 of Newey and McFadden (1994).
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C Proof of Theorem 2

To derive the asymptotic normality with nonsmooth objective function, we follow theorm 7.1 of

Newey and McFadden (1994).

First, by central limit theorem (CLT), we have
√
ngn(θn)

d→ N(0, Ω) , whereΩ = E(gt(θn)gt(θn)T ).

Now, let kn be a k+ l+ h− 1 dimensional diagonal matrix whose first k+ l diagonals are ones

and the other element is nα, Wn
p→W = Ω−1, and

Dn = k−1
n GTWngn(θn), (50)

H = k−1
n GTWGk−1

n , (51)

R(θ) = (
Qn(θ)−Qn(θn)−Q(θ)−DT

n (θ − θn)

||θ − θn||
). (52)

Next, we show the stochastic differentiability condition hold.

That is, for any γn → 0, we have

Sup
||θ−θn||≤γn

|
√
nR(θ)

1 +
√
n||θ − θn||

| = op(1). (53)

Define

εn(θ) =
gn(θ)− gn(θn)− g(θ)

1 +
√
n||θ − θn||

(54)

.

For γn → 0 and U = {||θ − θn|| ≤ γn}, Sup{
θ∈U

√
n||εn(θ)||} p→ op(1) if empirical process

√
n(gn(θ) − g(θ)) is stochastically equicontinuous. Note that gt(θ) is linear in β and δ, which

are bounded by the assumption 4. Therefore, we only need to check the stochastic equiconti-

nuity of the empirical process 1√
n

∑n
t=1[ztx̃tI(q1t + qT2tψ > 0) − E{ztx̃tI(q1t + qT2tψ > 0)}]. Let

F = (||ztx̃t||) sup
||ψ−ψ0||≤γn

I(q1t > −qT2tψ
∧
−qT2tψ0) be the envelope function. Since the indicator func-

tions of half intervals constitute a type I class or a Vapnik Chervonenkis (VC) class, by assumptions
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1, 2, and 4, the stochastic equicontinuity follows the Theorem 1 of Andrews (1994) and the Theorem

2.14.1 of Van der Vaart and Wellner (1996). Evidently, εn(θn) = 0.

Following proof of theorem 7.2 of Newy & MaFadden (1994), we decompose |
√
nR(θ)

1+
√
n||θ−θn|| | into

5 terms,

|
√
nR(θ)

1 +
√
n||θ − θn||

| ≤
5∑
j=1

rnj(θ), (55)

where

rn1(θ) =

√
n(2
√
n||θ − θn||+ ||θ − θn||2)

∣∣εn(θ)TWnεn(θ)
∣∣

||θ − θn||(1 +
√
n||θ − θn||)

=
(2n+

√
n||θ − θn||)|εn(θ)TWnεn(θ)|
(1 +

√
n||θ − θn||)

, (56)

rn2(θ) =

√
n|[g(θ)−Gk−1

n (θ − θn)]TWngn(θn)|
||θ − θn||(1 +

√
n||θ − θn||)

, (57)

rn3(θ) =
n|[g(θ) + gn(θn)]TWnεn(θ)|

(1 +
√
n||θ − θn||)

, (58)

rn4(θ) =

√
n
∣∣g(θ)TWnεn(θ)

∣∣
||θ − θn||

, (59)

rn5(θ) =

√
n
∣∣g(θ)T [Wn −W ]g(θ)

∣∣
||θ − θn||(1 +

√
n||θ − θn||)

. (60)

By the consistency of θ and Sup{
θ∈U

√
n||εn, (θ)||}

p→ op(1), we have

Sup{
θ∈U

rn1(θ)} = Sup
θ∈U
{

(2 + ||θ−θn||√
n

)
∣∣(√nεn(θ))TWn

√
nεn(θ)

∣∣
(1 +

√
n||θ − θn||)

} = op(1).
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Next, note that, by the differentiability of g(θ), we can show

Sup{
θ∈U

||
√
ng(θ)||

(1 +
√
n||θ − θn||)

} ≤ Sup{
θ∈U

||g(θ)||
||θ − θn||

} ≤ Sup{
θ∈U

||g(θn) +Gk−1
n (θ − θn) + o(||θ − θn||)||
||θ − θn||

} = O(1),

Sup{
θ∈U

||g(θ)−Gk−1
n (θ − θn)||

||θ − θn||(1 +
√
n||θ − θn||)

} ≤ Sup{
θ∈U

||g(θ)−Gk−1
n (θ − θn)||

||θ − θn||
}

= Sup{
θ∈U

||g(θ)− g(θn)−Gk−1
n (θ − θn)||

||θ − θn||
} = o(1).

Therefore, by Cauchy-Schwarz inequality, we have

Sup{
θ∈U

rn2(θ)} = Sup
θ∈U
{
∣∣[g(θ)−Gk−1

n (θ − θn)]TWn
√
ngn(θn)

∣∣
||θ − θn||(1 +

√
n||θ − θn||)

} = op(1), (61)

Sup{
θ∈U

rn3(θ)} ≤ Sup
θ∈U
{
√
n||g(θ) + gn(θn)|| ||Wn|| ||

√
nεn(θ)||

(1 +
√
n||θ − θn||)

} = op(1).

Sup{
θ∈U

rn4(θ)} = Sup{
θ∈U

=

√
n||g(θ)TWnεn(θ)||
||θ − θn||

} ≤ Sup{
θ∈U

||g(θ)||
||θ − θn||

||Wn|| ||
√
n||εn(θ)||} = op(1).

Sup{
θ∈U

rn5(θ)} = Sup{
θ∈U

√
n|g(θ)T [Wn −W ]g(θ)|

||θ − θn||(1 +
√
n||θ − θn||

} ≤ Sup{
θ∈U

||g(θ)||
||θ − θn||

||Wn −W ||
||g(θ)||
||θ − θn||

} = op(1).

To sum up, we obtain

Sup{
θ∈U
|

√
nR(θ)

1 +
√
n||θ − θn||

|} ≤
5∑
j=1

Sup{
θ∈U

rnj(θ)} ≤
5∑
j=1

op(1) = op(1). (62)
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Next, we show k−1
n (θ̂ − θn) = Op(n

−1/2), where θ̂ = argmin
θ∈Θ

Qn(θ)

By Taylor expansion, we have

Q(θ) = Q(θn) + (θ − θn)TH(θ − θn) + o(||θ − θn||2), (63)

where Q(θ) achevies minimum at θ = θn, and H is positive definite.

This implies we can find a constant C > 0 such that

(θ − θn)TH(θ − θn) + o(||θ − θn||2) ≥ C||θ − θn||2 ≥ λmin(H)||θ − θn||2 (64)

where λmin(H) is the smallest eigenvalue of H.

Therefore,

Q(θ)−Q(θn) ≥ C||θ − θn||2. (65)

Since Qn(θ̂) ≤ Sup
θ∈Θ

Qn(θ) + op(n
−1), we have

0 ≥ Qn(θ̂)−Qn(θn)− op(n−1) = Q(θ̂)−Q(θn) +DT
n (θ̂ − θn) + ||θ̂ − θn||R(θ̂)− op(n−1). (66)

For θ ∈ U , we have |R(θ)| = (1 +
√
n||θ − θn||)op(n−1/2).

Therefore,

0 ≥ C||θ̂−θn||2+||GTWngn(θn)|| ||k−1
n (θ̂−θn)||−||θ̂−θn||(1+

√
n||θ̂−θn||)op(n−1/2)−op.(n−1) (67)

By the fact that GTWngn(θn)
p→ Op(n

−1/2), we have

0 ≥ C||θ̂ − θn||2 +Op(n
−1/2) ||k−1

n (θ̂ − θn)|| − ||θ̂ − θn||op(n−1/2)− ||θ̂ − θn||2op(1)− op(n−1)

≥ [C + op(1)]||θ̂ − θn||2 +Op(n
−1/2)||k−1

n (θ̂ − θn)|| − op(n−1). (68)
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Since C + op(1) is bounded away from zero, we have

||θ̂ − θn||2 +Op(n
−1/2)||k−1

n (θ̂ − θn)|| ≤ op(n−1). (69)

Hence,

[||k−1
n (θ̂− θn)||+Op(n

−1/2)]2 ≤ ||(θ̂− θn)||2 +Op(n
−1/2)||k−1

n (θ̂− θn)||+Op(n
−1) ≤ Op(n−1). (70)

Taking square root for both sides yields,∣∣∣||k−1
n (θ̂ − θn)||+Op(n

−1/2)
∣∣∣ = Op(n

−1/2). (71)

Therefore, by the triangle inequality, we have

||k−1
n (θ̂ − θn)|| ≤

∣∣∣||k−1
n (θ̂ − θn)||+Op(n

−1/2)
∣∣∣+ | −Op(n−1/2)| = Op(n

−1/2), (72)

which completes the proof that k−1
n (θ̂ − θn) is

√
n consistent.

Next, let

θ̃ = θn − [k−1
n GTWGk−1

n ]−1(k−1
n GTWn)gn(θn). (73)

Therefore, with W = Ω−1 and Wn
p→W , we have

√
n[k−1

n (θ̃ − θn)] = −[GTWG]−1(GTWn)
√
ngn(θn)

d→ N(0, [GTΩ−1G]−1). (74)

Since

Qn(θ)−Qn(θn) ≈ 2DT
n (θ − θn) + (θ − θn)TH(θ − θn), (75)
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we have

Qn(θ)−Qn(θn) +Q(θn)︸ ︷︷ ︸
=0

= (θ− θn)Tk−1
n GTWGk−1

n (θ− θn) + 2(θ− θn)k−1
n (GTWn)gn(θn) +op(n

−1).

(76)

By the definition of θ̃, we have

−(GTWG)[k−1
n (θ̃ − θn)] = (GTWn)gn(θn). (77)

Therefore,

Qn(θ)−Qn(θn) = (θ−θn)Tk−1
n GTWGk−1

n (θ−θn)−2(θ−θn)k−1
n GTWGk−1

n (θ̃−θn)+op(n
−1). (78)

Similarly, we can get

Qn(θ̃)−Qn(θn) = (θ̃ − θn)Tk−1
n GTWGk−1

n (θ̃ − θn) + 2(θ̃ − θn)Tk−1
n (GTWn)gn(θn) + op(n

−1)

= (θ̃ − θn)Tk−1
n GTWGk−1

n (θ̃ − θn)− 2(θ̃ − θn)Tk−1
n GTWGk−1

n (θ̃ − θn) + op(n
−1)

= −(θ̃ − θn)Tk−1
n GTWGk−1

n (θ̃ − θn) + op(n
−1). (79)

Since θ̃ ∈ Θ, we have

Qn(θ̃)−Qn(θ̂) = Qn(θ̃)−Qn(θn)− (Q(θ̂)−Qn(θn)) = op(n
−1). (80)

Therefore,

−(θ̃−θn)Tk−1
n GTWGk−1

n (θ̃−θn)−(θ̂−θn)Tk−1
n GTWGk−1

n (θ̂−θn)+2(θ̂−θn)k−1
n GTWGk−1

n (θ̃−θn) = op(n
−1),

(81)

which implies

−(k−1
n (θ̂ − θn)− k−1

n (θ̃ − θn))T (k−1
n GTWGk−1

n )(k−1
n (θ̂ − θn)− k−1

n (θ̃ − θn)) = op(n
−1). (82)
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Since GTWG is positive definite, we can find a constant C ≥ 0 such that

−C||k−1
n (θ̂ − θn)− k−1

n (θ̃ − θn)||2 = op(n
−1). (83)

Therefore,

||k−1
n (θ̂ − θn)− k−1

n (θ̃ − θn)|| = op(n
−1/2). (84)

Hence,
√
nk−1

n ||θ̂ − θ̃||
p→ 0. (85)

Following
√
nk−1

n (θ̃ − θn)
d→ N(0, (GTΩ−1G)−1), (86)

we have
√
nk−1

n (θ̂ − θn)
d→ N(0, (GTΩ−1G)−1), (87)

D Proof of Theorem 3:

For a fixed ψ ∈ Θψ,(
β̂(ψ)− β0

δ̂(ψ)− δn

)
=

(
Ĝ(ψ)T Ω̂(ψ̂)−1Ĝ(ψ)

)−1

Ĝ(ψ)T Ω̂(ψ̂)−1

(
gn(θn) +

1

n

n∑
t=1

ztδ
T
n x̃t(I(ψ0)− I(ψ))

)
(88)

Under the null, δn = 0, we have

δ̂(ψ) = R
(
Ĝ(ψ)T Ω̂(ψ̂)−1Ĝ(ψ)

)−1
Ĝ(ψ)T Ω̂(ψ̂)−1gn(θn), (89)
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where R is defined in (23).

First, by applying lemma 1, it is straightforward to show that Ĝ(ψ)
p−→ G(ψ) uniformly in

ψ ∈ Θψ.

Next, we show that Ω̂(ψ̂)
p−→ Ω.

Simple calculation shows

ε̂t = εt −
(
β̂ − β0

)T
xt − δTn x̃t

(
I(ψ̂)− I(ψ0)

)
−
(
δ̂ − δn

)T
x̃tI(ψ̂). (90)

Hence,

Ω̂(ψ̂)− 1

n

n∑
t=1

ztz
T
t ε

2
t

= − 2

n

n∑
t=1

ztz
T
t εtx

T
t

(
β̂ − β0

)
− 2

n

n∑
t=1

ztz
T
t εtx̃

T
t I(ψ̂)

(
δ̂ − δn

)
− 2

n

n∑
t=1

ztz
T
t εtδ

T
n x̃t

(
I(ψ̂)− I(ψ0)

)
+

1

n

n∑
t=1

ztz
T
t

(
β̂ − β0

)T
xtx

T
t

(
β̂ − β0

)
+

1

n

n∑
t=1

ztz
T
t δ

T
n x̃tx̃

T
t δn

(
I(ψ̂)− I(ψ0)

)
+

1

n

n∑
t=1

ztz
T
t

(
δ̂ − δn

)T
x̃tx̃

T
t

(
δ̂ − δn

)
I(ψ̂).

(91)

For the first term, we have

1

n
||

n∑
t=1

ztz
T
t εtx

T
t

(
β̂ − β0

)
|| ≤ 1

n

n∑
t=1

||zt||2 ||εt|| ||xt|| ||β̂ − β0||
p−→ 0, (92)

because the boundedness assumption and the consistency of β̂.
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Similarly, we can show

1

n
||

n∑
t=1

ztz
T
t εtx̃

T
t I(ψ̂)

(
δ̂ − δn

)
|| ≤ 1

n

n∑
t=1

||zt||2 ||εt|| ||x̃t|| ||δ̂ − δn||
p−→ 0

1

n
||

n∑
t=1

ztz
T
t

(
β̂ − β0

)T
xtx

T
t

(
β̂ − β0

)
|| ≤ 1

n

n∑
t=1

||zt||2 ||xt||2 ||β̂ − β0||2
p−→ 0

1

n
||

n∑
t=1

ztz
T
t

(
δ̂ − δn

)T
x̃tx̃

T
t

(
δ̂ − δn

)
I(ψ̂)|| ≤ 1

n

n∑
t=1

||zt||2 ||x̃t|| ||δ̂ − δn||2
p−→ 0 (93)

Next, under assumptions 1, 2, 3 and applying lemma 1, we obtain

|| 1
n

n∑
t=1

ztz
T
t εtδ

T
n x̃t

(
I(ψ̂)− I(ψ0)

)
− E

(
ztz

T
t εtδ

T
n x̃t

(
I(ψ̂)− I(ψ0)

))
|| p−→ 0.

By applying lemma 2, we have,

E

(
||ztzTt εtδTn x̃t

(
I(ψ̂)− I(ψ0)

)
||
)
≤ C||ψ̂ − ψ0||

p−→ 0, (94)

where C <∞ and ||ψ̂ − ψ0||
p−→ 0.

Similarly, we can show,

1

n
||

n∑
t=1

ztz
T
t δ

T
n x̃tx̃

T
t δn

(
I(ψ̂)− I(ψ0)

)
− E

(
ztz

T
t δ

T
n x̃tx̃

T
t δn

(
I(ψ̂)− I(ψ0)

))
|| p−→ 0

E

(
||ztzTt δTn x̃tx̃Tt δn

(
I(ψ̂)− I(ψ0)

)
||
)

p−→ 0 (95)

Due to 1
n

∑n
t=1 ztz

T
t ε

2
t
a.s−−→ Ω, to sum up, we have Ω̂(ψ̂)

p−→ Ω.

Then, applying the continuous mapping theorem on equation (89), we have,

√
nδ̂(ψ)

d−→ R(G(ψ)TΩ−1G(ψ))−1G(ψ)TΩ−1/2V, (96)

where R and V are defined in (23). This completes the proof.

36



E Proof of Theorem 4

Let θ0 = [βT0 , δ
T
n ]T . By theorem 2, we have

√
n(θ̂(ψ̂)− θ0)−

√
n(θ̂(ψ0)− θ0) = op(1), (97)

√
n(θ̄(ψ̂)− θ0)−

√
n(θ̄(ψ0)− θ0) = op(1). (98)

For the purposes of this theorem, we assume knowledge of ψ0. Therefore, we can show that

( √
n(θ̂(ψ0)− θ0)√
n(θ̃(ψ0)− θ0)

)
=

( (
Ĝ(ψ0)T Ω̂(ψ0)−1Ĝ(ψ0)

)−1

Ĝ(ψ0)T Ω̂(ψ0)−1 0

0
(
G̃(ψ0)T Ω̃(ψ0)−1G̃(ψ0)

)−1

G̃(ψ0)T Ω̃(ψ0)−1

)

×
( 1√

n

∑n
i=1 ztεt

1√
n

∑n
i=1 xtεt

)
,

where

G̃(ψ0) = [− 1

n

n∑
t=1

xtx
T
t ,−

1

n

n∑
t=1

xtx̃
T
t I(ψ0)],

Ω̃(ψ0) =
1

n

n∑
i=1

xtx
2
t ε̃t,

ε̃t = yt − θ̃(ψ0)T (xt, x̃
T I(ψ0)).

Following the proof of of lemma 1 of Kapetanios (2000), we have( 1√
n

∑n
i=1 ztεt

1√
n

∑n
i=1 xtεt

)
d−→ N

(
0,

Ω Ωzx
Ωxy Ωxx

)
, (99)

where Ω = E(ztz
T
t ε

2
t ), Ωzx = E(ztx

T
t ε

2
t ), Ωxy = E(xtz

T
t ε

2
t ), and Ωxx = E(xtx

T
t ε

2
t ).

Next, similar to the proof of Ω̂(ψ̂)
p−→ Ω, it is straightforward to show Ω̂(ψ0)

p−→ Ω and

Ω̃(ψ0)
p−→ Ωxx. By lemma 1, we have Ĝ(ψ0)

p−→ G(ψ0) and G̃(ψ0)
p−→ Gxx(ψ0), where Gxx(ψ0) =

[−E(xtx
T
t ),−E(xtx̃

T
t I(ψ0))].
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Therefore, under the null hypothesis of no endogeneity in regressors, we have( √
n(θ̂(ψ0)− θ0)√
n(θ̃(ψ0)− θ0)

)
d−→ N

(
0,

(
Υzx ΥzxG(ψ0)TΩ−1ΩzxΩ

−1
xxGxx(ψ0)Υxx

ΥxxGxx(ψ0)TΩ−1
xxΩzxΩ

−1G(ψ0)Υzx Υxx

))

where Υzx =
(
G(ψ0)TΩ−1G(ψ0)

)−1
and Υxx =

(
Gxx(ψ0)TΩ−1

xxGxx(ψ0)
)−1

This implies

√
n

(
θ̂(ψ0)− θ̃(ψ0)

)
d−→ N

(
0, V

)
,

where

V = Υzx + Υxx −ΥzxG(ψ0)TΩ−1ΩzxΩ
−1
xxGxx(ψ0)Υxx −ΥxxGxx(ψ0)TΩ−1

xxΩzxΩ
−1G(ψ0)Υzx

= V ar(θ̂(ψ0)) + V ar(θ̃(ψ0))− 2Cov(θ̂(ψ0), θ̃(ψ0)).

Evidently, with conditional homoskedasticity, Υxx = σ2
εGxx(ψ0)−1 and Υzx = σ2

ε

(
G(ψ0)Txx(ψ0)−1G(ψ0)

)−1
,

which implies θ̃(ψ0) is more efficient. Hence, following Hausman (1978), V = V ar(θ̂(ψ0)) −
V ar(θ̃(ψ0)), which completes our proof.
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F Finite Sample Performance of the Test for Linearity

To assess the finite sample performance of the linearity test, we use a model similar to (27),

yt = bI(q1t + q2t ≤ 0) + εt,

q1t = 0.5q1t−1 + vq1t,

q2t = 0.5q2t−1 + vq2t,

where vq1t, vq2t and εt are independently normally distributed with mean zero and variance one.

The simulations are done for five sample sizes, n = 50, n = 100, n = 200, n = 300, n = 500,

and five threshold effects, b = 0, b = 0.2, b = 0.5, b = 0.8, b = 1. We report the results in Table

8. The replication number is 2000. Throughout the analysis, we use a significance level of 5%.

As expected, size is approaching to 5% as sample size increases. Power is increasing in b, and

increasing in n.

Table 8: Rejection Probabilities of the Linearity Test for the GMM Estimator
Sample Size

n = 50 n = 100 n = 200 n = 300 n = 500

b = 0 0.0955 0.077 0.0705 0.0645 0.0565
b = 0.2 0.088 0.1304 0.1959 0.2749 0.4313
b = 0.5 0.2699 0.5112 0.8446 0.9615 0.999
b = 0.8 0.5972 0.9115 0.9975 0.9995 0.9995
b = 1 0.8186 0.9945 0.9995 0.9995 0.9995

This table presents the rejection rate of the linearity test for the GMM estimator. The first column gives the
different settings of the sample splittings. With b = 0, there is no threshold effect. Higher value of b gives
higher degree of the threshold effect.
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G A Heuristic Example to Illustrate the Smoothness of the GMM
Estimator

To provide more intuition for the Theorem 2, we use a simple example to explain the smoothness

of the GMM and how the smoothness determines the asymptotic normality. Furthermore, this

section also aims to provide some background on the different asymptotic forms of the least square

estimator (LSE), the smoothed least square estimator (SLSE), and the GMM estimator (GMM).

The model considered is defined as follows,

yi = I(q1i + q2iψ0 ≤ 0) + εi,

where q1i, q2i ∼ U [0, 1], and εi ∼ N(0, σ2).

Hence, in this example, we assume all threshold variables are exogenous, and the threshold

effect is fixed.

G.1 The LSE

As shown in Yu (2015), the LSE can be obtained as,

ψ̂ = arg min
ψ∈Θψ

Sn(ψ),

where Sn(ψ) = 1
n

∑n
i=1(I(ψ0) + εi − I(ψ))2 and I(ψ) = I(q1i + q2iψ ≤ 0).

Assuming the knowledge of the consistency and the convergence rate, let ψ = ψ0 + v
n . Following

Yu and Phillips (2018), we can show the centered process as,

DLSE
n (v) = Sn(ψ)− Sn(ψ0) = n−1

n∑
i=1

(I(ψ0 +
v

n
)− I(ψ0))2 + 2n−1

n∑
i=1

(I(ψ0 +
v

n
)− I(ψ0))εi.

This implies,

n(ψ − ψ0) = arg min
v
nDLSE

n (v) =

{∑N1n(|v|)
i=1 z̄1i, if v ≤ 0∑N2n(v)
i=1 z̄2i, if v > 0

,

where N1n(|v|) =
∑n

i=1(I( vn ≤ −
q1i+q2iψ0

q2i
≤ 0), N2n(v) =

∑n
i=1(I(0 ≤ − q1i+q2iψ0

q2i
≤ v

n), z̄1i =

1 + 2εi, and z̄2i = 1− 2εi
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Note that for any finite number v, N2n(v) ∼ B(n, Pn(v)) where B(., .) is a binomial process,

Pn(v) = F (0)− F ( vn) ≈ f(0) vn , where F (.) and f(.) are CDF and PDF of (- q1i+q2iψ0

q2i
) respectively.

Let λ = nPn(v). Hence, λ → fz(0)v. As n → ∞, Pn(v) → 0, which implies N2n(v) → N2(v).

Similarly, we have N1n(|v|) → N1(|v|), where N1(|v|), N2(v) are two independent Poisson process

with intensity fz(0).

As a result,

n(ψ̂ − ψ0)
d−→ arg min

v
DLSE(v), (100)

where DLSE(v) is a compound Poisson process with the form,

DLSE(v) =

{∑N1(|v|)
i=1 z1i, if v ≤ 0∑N2(v)
i=1 z2i, if v > 0

,

where z1i = lim∆↑0 z̄1iI(∆ ≤ − q1i+q2iψ
q2i

≤ 0), and z2i = lim∆↓0 z̄2iI(0 ≤ − q1i+q2iψ
q2i

≤ ∆).

G.2 The SLSE

Following Seo and Linton (2007), the SLSE can be obtain as,

ψ̂
SLSE

= arg min
ψ∈Θψ

SSLSn (ψ),

where SSLSn (ψ) = 1
n

∑n
i=1(yi − K(ψ, σn))2, K(ψ, σn) = K( q1i+q2iψσn

), K(.) is a kernel function as

defined in assumption 3 of Seo and Linton (2007), and σn is the bandwidth parameter.

Note that, unlike the LSE, the objective function in this case is smoothed in ψ. Hence, we can

apply the standard first order Taylor series to obtain the asymptotic normality.

By simple calculation, we have,

Tn(ψ, σn) =
∂SSLSn (ψ)

∂ψ
= − 2

n

n∑
i=1

I(ψ0)K ′(ψ, σn)
q2i

σn
+

2

n

n∑
i=1

K(ψ, σn)K ′(ψ, σn)
q2i

σn
− 2

n

n∑
i=1

K ′(ψ, σn)
q2i

σn
εi

= A(ψ) +B(ψ) + C(ψ),

where K ′(ψ, .) = ∂K(.,.)
∂ψ .

First, by assmuption 3(b) of Seo and Linton (2007), we can show,

σ−hn A(ψ0)
p−→ σ−hn E(I(ψ0)K ′(ψ0, σn)

q2i

σn
) = O(1),
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where h defines hth order kernel.

This implies, as long as
√
nσnσ

−h
n → 0,

√
nσnA(ψ0) = op(1). Similarly, we can show

√
nσnB(ψ0)

p−→
0.

Next, similar to the proof of lemma 3 of Seo and Linton (2007), we have,

√
nσnC(ψ0)

d−→ N(0, V ψ),

where V ψ = 4V ar(K ′(ψ0, σn)q2iεi).

Hence, we have,

√
nσnTn(ψ0, σn)

d−→ N(0, V ψ).

Then, by the first order Taylor series,

Tn(ψ̂
SLSE

, σn) = Tn(ψ0, σn) +Qn(ψ̃, σn)(ψ̂
SLSE

− ψ0) = 0,

where Qn(ψ) = ∂Tn(.,.)
∂ψ , and ψ̃ is between ψ̂

SLSE
and ψ0.

As a result, this provides the asymptotic normality,

√
nσn(ψ̂

SLSE
− ψ0)

d−→ N(0, Q−1V ψQ−1),

where Q = K ′(0)E(q2
2i|zi = 0)fz(0), zi = q1i + q2iψ0, and fz(.) is the density of zi.

G.3 The GMM

Consider the moment condition E(q2iεi) = 0 for all i = 1, ..., n. Therefore, the GMM estimator can

be obtained as,

ψ̂
GMM

= arg min
ψ∈Θψ

SGMM
n (ψ),

where SGMM
n = [ 1

n

∑n
i=1 q2i(I(ψ0) + εi − I(ψ))]2.

Note that, similar to the LSE, the objective function is non-smooth in ψ. Now, assuming the

knowledge of the consistency and the converge rate 3, let ψ = ψ0 + v
n1/2 . Hence, the centered

3The example is designed with a fixed threshold effect. Hence, the theoretical convergence rate of threshold
estimator is

√
n.
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process can be shown as,

DGMM
n (v) = SGMM

n (ψ)− SGMM
n (ψ0) = n−2[

∑n
i=1 q2i(I(ψ0)− I(ψ0 + v

n1/2 ))]2

+2n−2
∑n

i=1 q2i(I(ψ0)− I(ψ0 + v
n1/2 ))

∑n
i=1 q2iεi.

Note that, by comparing DLSE
n with DGMM

n , it is obvious that the second term is quite different.

For the DLSE
n , the sum of error cannot be isolated from v. As a result, we cannot directly apply

the central limit theorem (CLT) 4. On the contrary, for the DGMM
n , the CLT can be applied to∑n

i=1 q2iεi as long as the multiplier is bounded. The reason comes from the nature of the sample

averaging condition.

This implies,

n1/2(ψ − ψ0) = arg minv nDGMM
n (v) = arg minv n−1[

∑n
i=1 q2i(I(ψ0)− I(ψ0 + v

n1/2 ))]2

+2n−1/2
∑n

i=1 q2i(I(ψ0)− I(ψ0 + v
n1/2 )) 1

n1/2

∑n
i=1 q2iεi = arg minv A

GMM (v) +BGMM (v).

Then, by the Glivenko-Cantelli theorem, for any v,

AGMM (v)
p−→ n[E

(
q2i

(
I(ψ0)− I(ψ0 +

v

n1/2
)
))

]2 = Gψ(ψ0)2v2,

where Gψ(ψ0)=dE(q2iI(ψ))
dψ |ψ=ψ0 .

Similarly, we can show that,

n−1/2
n∑
i=1

q2i(I(ψ0)− I(ψ0 +
v

n1/2
))

p−→ n1/2E(q2i(I(ψ0)− I(ψ0 +
v

n1/2
)) = Gψ(ψ0)v.

Hence, by applying the CLT and the continous mapping theorem,

BGMM (v)
d−→ Gψ(ψ0)vN(0, Ω),

4With diminishing threshold framework, the functional central limit theorem can be applied to DLSE
n , which leads

to a limiting distribution formed by a two-sided Brownian motion (Hansen (2000)).Yu and Philips (2018) explains
on how compound Poisson process can be approximated by two-sided Brownian motion.
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where Ω = V ar(q2iεi).

This follows that,

n1/2(ψ̂
GMM

− ψ)
d−→ v̂ = arg min

v
[2Gψ(ψ0)2v2 + 2Gψ(ψ0)vW ],

where W ∼ N(0, Ω).

Obviously, v̂ = −W/Gψ(ψ0). This provides the asymptotic normality,

n1/2(ψ̂
GMM

− ψ0) ∼ N
(

0,
(
Gψ(ψ0)Ω−1Gψ(ψ0)

)−1
)
.
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