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Abstract

Asymmetric information in the form of moral hazard and adverse
" selection can result in sizeable efficiency losses and program costs for
government provided crop insurance plans. We present a methodology
and illustrative simulations to show how these two types of information
problems interact in way to create program costs for the providers of
crop insurance. Qur methodology allows us to ascertain the relative
contributions to program costs of these two types of phenomena, which
is critical for improving the design of such insurance plans at least
possible cost as well as for studying general efficiency considerations
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1 Introduction

There has been substantial empirical research into the effects of crop insur-
ance on producer decisions regarding input use and program participation.
Of particular concern has been the implications of insurance on the phe-
nomena of moral hazard and adverse selection. This literature is very nicely
reviewed in a paper by Knight and Coble (1997) with a particular focus on
the Multiple Peril Crop Insurance program established by the 1980 Federal
Crop Insurance Act. They note that empirical studies have identified that
this insurance program has generated substantial moral hazard and adverse
selection effects but that the size or importance of these effects have not
been well studied.! In this paper we use a model and supporting simulations
to illustrate a methodology for a,na,lyzi_ng a publicly provided crop insurance
program in the presence of both moral hazard and adverse selection. This is
a valuable exercise because the implications on program costs and productive
efficiency are affected quite differently by each of these phenomena. Either
moral hazard or adverse selection complications may on their own create
substantial and undesirable program costs for a public insurance program.
However, identifying the extent to which these costs are generated by moral
hazard or adverse selection is important. The primary concern with moral
hazard is that it generally leads to inefficiencies in production decisions while
the major impact of adverse selection is creation of inefficiency of the insur-
ance market and risk-bearing costs per se (should good risks exit the market).
Moreover, different policies and different approaches to information acquisi-
tion are necessary if one is to try to ameliorate these two problems. Lessons
learned from the empirical work concerning public crop insurance plans in
conjunction with models such as ours which attempt to isolate moral hazard
and adverse selection effects should also provide valuable lessons for other
public insurance programs.

In this paper we demonstrate that the implications of the two phenomena
of moral hazard and adverse selection, when they present themselves jointly,
can be compounding in that they create program costs which are super-
additive. This implies that efforts by the insurer to overcome either one of
the information asymmetries involved (i.e., hidden type or hidden input) may

Lploral hazard and adverse selection effects (combined ... our addition) have been
less extensively examined. Evidence of both has apparently been found whenever sought;
however, only a few studies provide estimates of the magnitude of moral hazard and
adverse selection effects on MPCI indemnities.” ... Knight and Coble (1997)



provide benefits which far exceed those that would be expected if one were
to consider these problems in isolation. Moreover, if it turns out that it isn't
terribly important which problem of asymmetry of information is resolved in
“order to improve efficiency or control program costs, then the insurer may
wish to resolve only one of the information problems and of course choose the
one which is less costly to correct. Although we do not perform any explicit
efficiency analysis in this paper, the welfare implications of our approach are
quite evident. _ ,

.As noted in the paper by Knight and Coble (1997), there is substantial
empirical work concerning the implications of crop insurance on producers’
decisions, both in terms of their input choices and participation in the pro-
gram. To a limited extent we design our simulation model to reflect this
work. In particular, we pay close attention to the functional form for the dis-
tribution of crop yields and the design of the insurance program, Since we are
not attempting to reflect precise real world experience for a particular crop,
and production of different crops requires quite different specific parameter
values, the model should be viewed as providing a general methodological

* framework rather than a specific example of a particular crop. Nonethe-
less, our base case scenario is calibrated to reflect a plausible crop insurance
scenario as gleaned from a number of empirical studies.

There is a very limited theoretical literature on the implications of hidden
effort (moral hazard) and hidden type (adverse selection) both being present
in an insurance market setting®. As noted by Arnott (1992, p. 355), “The-
orists have been deterred by the inherent complexity and messiness of the
problem ... with even only two events and two groups...” Possible nonexis-
tence of a Nash equilibrium, even in the presence of adverse selection only,?
indicates how difficult such an analysis may become. In this paper, however,
these complications are substantially eliminated by the fact that we are an-
alyzing a public insurance program and so existence of equilibrium is not a
concern. The paper which is perhaps closest in spirit to ours is the simulation
- study performed by Stewart (1994). He considers the welfare implications of
the joint presence of moral hazard and adverse selection problems in a com-
petitive insurance market. His results are very different from ours, however,
primarily due to the fact that we are looking at a public insurance program

2See, for example, Picard (1987), Hoy (1989), and the few other references given in
Arnott (1992), .
3See Rothschild and Stiglitz (1976).



which includes subsidization and he is concerned with a competitive, zero
profit, insurance market. There are many other differences as well, includ-
ing the fact that his model has only two states of the world and assumes
a difference in production technologies by type in a manner which is more
restrictive than our approach.?

2 The Basic Model

In this section we develop the basic model to describe the producer’s opti-
mal input choice for both cases in which insurance is and is not provided. '
We illustrate how this model is calibrated to generate our simulations which
demonstrate how one can determine the relative impacts on program costs
of adverse selection and moral hazard.® The simulation results and discus-
sion of them are presented in the following section. Although we choose our
functional forms and parameters in order to reflect knowledge gained from
some of the previous empirical studies that have analyzed the impact of crop
insurance on producer decisions, we keep the model as simple as possible so
that we can demonstrate transparently how to determine the relative con-
tributions of moral hazard and adverse selection to program costs. Actual
applications of cur methodology would require case specific adjustments to
our choice of parameters and other modelling assumptions. -

We assume output, ¥, is a random variable which depends on a single
input chosen, z, the state of nature, w, and an agent type specific parameter,
¢. Higher productivity producers will be associated with a higher value of
¢, which, for example, could reflect higher quality land. The state of nature,
w, which reflects weather and other growing conditions, will be modelled
in such a way that higher values represent better growing conditions and,

1Given these differences, it is not surprising that the results of Stewart (1994) are
different from ours. Most striking is that he obtains a sub-additivity result concerning
the welfare implications of the two types of hidden information being present simultane-
ously while we show program cost, which is also a different characteristic of the insurance
implications, may be super-additive, o

5Comparative static results indicating the effect of changes in various parameters (e.g.,
output price) on input use have been developed by Leathers and Quiggin (1991), Ra-
maswami {1993), and others using theoretical models of insurance. Our simulation moedel
is designed explicitly to demonstirate how to measure the size of program costs due to the
two problems of moral hazard and adverse selection rather than comparative static effects
per se.



hence, higher output. A higher input value, z, is assumed to generate higher
output. We can, therefore, describe the production process as a production
function

v=f(zw,¢) (1)

with f; >0 foe €0, fo >0, and f; > 0.5 For the purpose of our
simulations, we will adopt the following specific production function.

§ =g (2)

- with A € 1. Thus, production is multiplicative in both the random variable
w and the agent type specific parameter ¢. The distribution function for
output, conditional on a given x and ¢, will be inherited from the distribution
function assumed for w. In our simulations, we use the beta distribution
function for w because of its flexibility. We assume only one input in order
to maintain simplicity in this part of the model and, as noted earlier, to
promote transparency regarding the relative effects of adverse selection and
moral hazard on input decisions of producers and program costs for the
‘providers of insurance. It would be interesting to allow for a set of inputs,
some of which would increase and others which would decrease the riskiness
of the production process.” We leave such variations to potential future work.

In the absence of insurance the producer chooses the input level, z, to
maximized expected utility of profit. We let p be the price of the product® and
w the input cost. A fixed cost could be included without loss of generality.
Thus, profit with no insurance for a producer of type ¢ is:

m(x,w, ) = pf(z,w;¢) —wa (3)

The producer chooses input z to maximize expected utility of profit. Letting
u(m) be the elementary von Neumann-Morgenstern utility function, g{w) be
the probability density function for the random variable w, and w and & the

8This production function is similar to the one used by Quiggin, et al.(1993). One can
include any constant term within the definition of ¢ as well as the level of any fixed inputs.

"The way we model production implies that an increase in the single input x leads
to greater riskiness in production as well as higher expected output. In a multiple input
model it is quite plausible that some inputs could reduce both expected yield and riskiness.

8For simplicity we assume that price is not random. The possibility of hedging in
combination with a crop insurance plan which allows future spot price to be the basis of
repayment makes this assumption not so critical to the analysis.



upper and lower limits for w, the producer’s optimization problem becomes:

Mgz BUE) = [l .¢) — wely(o)do (@)

where EU,, denotes expected utility with no insurance.

We now model how the insurance program is designed and determine
the relevant optimization problem for a producer conditional on purchasing
insurance. A critical yield is determined by the insurer, which we denote
as ¥, and any shortfall below this level determines the indemnity or payout
(i.e., p(y. — v) if actual output ¥ < y.). Since output depends on the input
chosen, , the type specific productivity parameter, ¢, as well as the random
variable w, if follows that conditional on any pair z, ¢, and critical level y,,
~ there is some critical value of w, which we denote as w,, which triggers an
insurance payment (i.e., ¥ < y. whenever w < w,}. Thus, we can write w, as a
function of x, ¢, and 1y, (i.e., we(z, ¢.4.)). The probability that an indemnity
is received is

wel®,d.ye)
ke, b, 5) = f 9{w)dw (5)

W

with &, < 0, ky <0, and k,, > 0. We let p denote the cost of the insurance
policy to the producer. The profit function for a producer who purchases
insurance is '

(T, w,¢) = pye—wz—p,ify <y - (6)
= pflz,w,¢) —wz—p,ify >y

T'he producer’s decision problem conditional on purchasing insurance is

ﬂ{ oz EUu(z) = k(z, éﬁ,yc)U(py'c —wE —p) -

+ / T @, ) - w - plgw)ds ()
wle(hyc) _

where EU,(z) denotes expected utility with insurance. The first term on
the right hand side of equation (7) represents the utility conditional on an
insurance payout being triggered multiplied by the probability that an in-
surance payment is in fact triggered. The fact that this term is increasing
in y. and decreasing in the level of input used, z, reflects the moral hazard
problem (i.e., the incentive to reduce input in the presence of insurance).
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Since kg < 0, this term is larger the smaller is the type specific productivity
parameter. Thus, as is the case under adverse selection, if lower productivity
producers receive the same insurance terms as do high productivity produc-
ers, the insurance contract will be more valuable to the lower productivity
types. Moreover, since both ky < 0 and u(py, — wz — p) is decreasing in
x, the incentive to decrease the input level is greater for lower productivity
producers. Thus, one can expect a stronger moral hazard effect for low pro-
ductivity producers under adverse selection. We discuss these effects further
‘in the section describing the simulation results.

We consider three alternative scenarios for the insurance scheme based on
what information the insurer has concerning the input levels of the producers
and their productivity type. In all cases we assume the insurer chooses a
coverage level which is some fraction of the average yields for producers who
do not purchase insurance, which in effect represents outcomes in the absence
of insurance. The insurer determines a price of insurance which covers the
actuarial or expected cost of indemnities based on yields generated in the
absence of insurance provision. The purchase of insurance leads to changes
in behaviour and so the actual expected costs of providing insurance will
generally differ from the computed values. This is, of course, the crux of the
problem with publicly provided insurance plans and it is the difference in
these costs, which we call program costs, that are the focus of our attention.

In the first scenario that we model, we assume the insurer can observe
the productivity type of each producer and bases the price of insurance on
that information. Thus, high and low productivity types pay different prices .
for insurance and the probability of an insurance payment being triggered
also depends 0_11 the producer’s type. This scenario is referred to as moral
hazard only. We then consider the operation of the insurance plan on the
basis of inputs being observed but productivity type not known by the in-
surer. We call this an environment of adverse selection only, although this is
something of a misnomer as explained below. The insurer in this scenario is
presumed to have observed the average input level employed in the absence
of insurance and then uses this level as the input requirement for those who
do purchase insurance. Since productivity type is not observable, it wouldn’t
make sense t0 assume that the actual input levels of each productivity type
were observable, Thus, there is a sense in which moral hazard is not entirely
eliminated in this scenarioc even though the average input level that producers
used in the absence of insurance is known and this input level is observable
and enforced once insurance is purchased. The problem is that there remains
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the igsue that the ‘appropriate’ input level depends on the productivity type
and this isn’t enforceable. However, the extent to which a producer can en-
gage in moral hazard by reducing the input level is of eourse limited in this
environment as it cannot fall below the average input level that was used by
producers in the absence of insurance.

The final scenario investigated is that in which the insurer can observe
neither the input level chosen by producers nor their productivity type. The
coverage level for insurance and ifs price is based on the pooled experience
‘of the various productivity types in the absence of insurance. The insurer
cannot determine the type of the producers who do buy insurance and also
cannot observe their input levels. Thus, we refer to this scenario as one of
moral hazard and adverse selection.

In our simulations we compare the program costs, which are defined as
the difference between expected insurance payouts and premium revenue col-
lected for each scenario. In this way we can see the relative importance of
moral hazard and adverse selection in generating these costs. Alternatively,
the premium levels could be adjusted upwards in order to offset these costs,
either fully or partially, and so our calculations also indicate the extent to
‘which this would be required. Of course, increasing the costs of the insur-
ance premiums could affect the selection of ingureds, with higher productivity
types more likely to view insurance as unattractive, thus exacerbating the
impact of adverse selection, possibly leading to even more losses for the in-
surance plan.

3 Description of the Simulation Model

In this section we describe the basic model and associated assumptions for the
simulations used to generate our results. We preform a number of sensitivity
analyses by varying the value of key parameters, most notably for the utility
function, u(.), and the density function, g(w). These are described below
and in the following section along with the results of the simulation exercises.
First we describe the base model and compare to assumptions and empirical
results in the literature on crop production and insurance. As noted in the
introduction, we design our simulation model to reflect these results, although -
we are not trying to replicate any particular crop setting. In particular, we.
pay close attention to the functional form for the distribution of crop yields
and the design of the insurance program since these are critically important



factors in determining the moral hazard and adverse selection effects of the
program. ,

Profit from crop production is as indicated in equation (3) with the pro-
duction function, § = z*we, as given in equation (2}). We use the parameter
value A = 0.96 for our base case and also adopt a range of values in our
simulations.? The use of a beta distribution function is used for our random
variable w in the base case, and a truncated normal is also adopted for the

.purpose of sensitivity analysis. The particular beta distribution adopted is
the one with parameter values @ = 2.5 and 8 = 2, which determines the
density function as indicated below. '
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Figure 1

Units of measurement can be defined arbitra'rily'in the sense, for example,
that the variable ¥ could be defined in terms of bushels or tonnes per acre or

9Quiggin, et al. (1993) find that for a heterogeneous collection of grain farmers, one
cannot reject the null hypothesis of constant returns to scale.
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per hundred acres, etc. Moreover, the assumption of a single input is made
to keep the analysis simple and this input reflects an index of a variety of
inputs. Thus, z is not meant to be representative of any particular input
for any particular crop. What is quite important, however, is the shape of
the distribution function for the random variable w and the resulting distri-
bution of y which is inherited from it. The reason this is important is that
the shape of the distribution function, in conjunction with the coverage level
Ye, determine in relative terms: (i) all of the parameters of the insurance
program, {ii) the incentive to purchase insurance, and (iii) the optimal input
level conditional on insurance being purchased. '° Of course, the particular
shape of the distribution function is likely to vary by type of crop, region, etc
In our simulations we adopt the beta distribution and use several different
sets of parameter values in our sensitivity analysis. This allows us to com-
pare outcomes when the distribution is symmetric, asymmetric, more or less
peaked, ete. : _

Note that the production function is multiplicative in w, and so the input
is risk increasing (i.e., an increase in x leads to an increase in the variance
of crop yields). The literature on crop insurance has addressed the quesiion
of the impact of insurance on input use for cases of multiple inputs, with
some being risk increasing and others risk reducing. Use of a multiple input
model with both types of inputs would increase the complexity of our model
beyond what is required to demonstrate the basic issues that we are ana-
lyzing. Nonetheless, since the impact of insurance on inpuf use may well be
qualitatively different for these different types of inputs, this is an interesting
consideration for future work.!!

We assume in our base model that risk preferences arc summarized by
the exponential utility function u{#x) = —e™", where « is profit {from pro-
ducing the crop. This utility function implies constant absolute risk aversion
of degree y. We adopt a range of values of v > 0 in our simulations. A

18The beta distribution and normal distribution have been used extensively in the em-
pirical literature. See Babcock and Hennessy (1996) for an example of use of the beta
distribution and Just and Weninger (1999) for an example of the use of the normal distri-
* bution. Ker and Coble (2002) provide a comprehensive review and critique of the empiri-
cal methods used to choose between these two distributional approaches. Nonparametric
methods have also been used (e.g., Ker and Goodwin (2000).

118ee, for example, Quiggin, et al. {1993) who note that “Pesticides are generally viewed
as a risk-reducing input and fertilizer as a risk-increasing input.” For their study, however,
they go on to note that “testing revealed no significant loss in power from aggregating the
two inputs. ’
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substantial literature has developed trying to measure the risk preferences
of individuals.'?> The most popular functional forms used in empirical esti-
mation of u(.) have been those representing constant absolute and constant
relative risk aversion preferences. Empirical estimates of the degree of risk
aversion vary widely. Choi and Menezes (1992) note that, for those stud-
ies employing a constant relative risk aversion utility function, the range of
the degree of risk aversion has been from 0.05 to more than 1000. Some of
the empirical research has tried to determine which functional form - con-
stant absolute risk aversion or constant relative risk aversion or neither - is
most appropriate. Saha (1993) proposed a flexible form of utility function
- which allows for a combination of properties concerning absolute and rela-
tive risk aversion. There have also been a number of studies found for risk
preferences specifically for farmers.!® These have also found a wide range
of results. Thus, there is no obvious choice for a specific functional form
to model risk preferences, let alone a specific parameter value which accu-
rately reflects the degree of risk aversion. This problem is exacerbated in our
model since we are only considering one aspect (i.e., decisions with respect
to a single crop) of a producer’s portfolio of assets and production streams.'
Of particular relevance to our choice is the recent paper of Guiso and Paiela
(2004) that measured the parameter of absolute risk aversion from revealed
preferences over a hypothetical lottery question. They found a wide range
of values within the population surveyed, with the 10th percentile most risk
averese having a degree of absolute risk aversion equal 10 0.08 while the 90th
percentile most risk averse had a value of 0.20. We choose a variety of pa-
rameter values in our simulations, with the constant absolute risk aversion
utility function with degree v = 0.10 for our base case.

4. Simulation Results

In this section we present our simulation results. As noted above, the spe-
" cific parameter values used in our base case were based broadly on empirical

12Gee, for example, Blake (1996) who refers to much of this literature.

135ee references in Saha (1993). _

HOur objective function reflects an attitude towards risk for a given crop decision and
so the parameter value chosen may not refiect at all the overall risk preferences of the
producer. Bar-Shira, et al. (1997), for example, found that the degres of risk aversion
varied across crops and other aspects of farmers’ decisions.
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studies of crop production and insurance. In particular, the base case para-
meter assumptions and outcomes are consistent with the empirical estimation
by Babcock and Hennessy (1996) for corn production from a group of lowa
farms. As in their model, we adopt a scale assumption reflecting a single
acre of corn.’® We use an output price of p = 2.2, as do they. Our pro-
duction function does. differ from their’s, although our base case has yields
distributed according to the beta distribution, which is the same functional
form that they use. One major difference, however, is that our input, z, is
- intended to reflect an index of various inputs and our production function is
Cobb-Douglas and multiplicative in the random variable w. Thus, we choose
our input price, which doesn’t represent the price of any particular type of
input, to generate similar results to their model. By choice of w = 0.075,
we generate an average yield for our high productivity type of producer of
Fy = 138 (in the absence of insurance), which is a plausible expected yield
for corn (i.e., bushels per acre). It is important to note that since choice of
units can be made arbitrarily, one should not put too much importance on
the particular values of prices or quantities. Nonetheless, having chosen a
base case which generates ‘sensible’ results for some particular crop (corn)
_is helpful from the point of view of interpretation of the model. Moreover,
the implications of our changes in parameter values is more understandable
and potential applicability of the methodology to real world scenarios is also
made more transparent by taking some care with our calibration approach.
One aspect of the simulations differs from the theoretical model outlined
above and represents a constraint on the producer’s decisions. It turns out,
at least in our models, that it is often optimal for producers to choose a
zero input level when offered insurance. By doing so, the producer receives a
payoff equal to the value of the guaranteed output level, which is a substaritial
fraction of the average output that would have been generated if the producer
had employed an input level equal to that used in the absence of insurance.
The net value from this decision is generally very high since zero input costs
are incurred and the revenue, which is substantial, is received with certainty.!®
In the real world it seems unlikely that such extreme moral hazard would

155ee Babcock and Hennessy (1996) for detailed explanations of these assumptions.

16} Jathematically, this is represented hy the fact that the first term of equation (7)
evalutated at = = 0, which is the insurance payment, dominates the second term which
would be profit under x # 0 conditional on an insurance payment not being triggered.
The need and implications of & minimal input requirement are investigated in detail in
another paper (Turvey, Islam, Hoy, 2002).
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be feasible since it would reflect the situation in which the producer does
. not even til the soil or plant any seed, let alone use any amount of fertilizer
whatsoever. It seems plausible that it would not be very costly for an insurer
to monitor at least partially some such minimal level of input usage. Thus,
we assume the insurer can successfully (and at low cost) verify that the
producer uses at least some minimal fraction of the input level that would
be chosen under the scenario of no insurance. This fraction is assumed to
be ¢t = 0.25 (i.e., one quarter of the input level used without insurance) for
our base case.l” (iven this amount, it turns out that an interior optimum
with an input level substantially more than 25% of the input level used with
no insurance applies, as described by the graph in figure 2. The higher the
level of insurance coverage, the more tempting it is for insurers to adopt the
. extreme moral hazard decision (i.e., z = 0).

EU,(z)

| | {
0 : C00 © 400 600 8O0

Figure 2

Returning to our base case simulation, the other parameter values chosen
are: (i) ¢, = 1, ¢ = 0.8, which reflect the differences in productivity of
the high and low productivity types, (ii) a coverage level for insurance of

‘7 = (.5, which implies a trigger or guaranteed production level of 50% of
average yields achieved in the absence of insurance, and, as described earlier,
(iii) A = 0.96 (base production function parameter), and (iv) o = 2.5, 8 = 2
(parameters of the beta distribution). The insurance coverage level in the

17, scenarios when producer type is not observable, we adopt the more conservative
assumption that the fraction ¢t applies to the input level chosen by low productivity types.
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base case is quite low in comparison to real world coverage levels. However,
we wanted to start with such a low value to illustrate what happens as we
increase that value. In particular, at r = 0.5, a minimal input requirement
of ¢ = 0.25 is sufficient to guarantee interior optima in all scenarios. As the
level of insurance coverage rises, however, the minimal input requirement
must increase to insure an interior optimum in all cases. For all subsequent
simulations, we use ¢t = 0.5 as our minimal input requirement and indicate in
which cases this turns out to be binding. If we were to relax this constraint
by choosing a smaller value of ¢, the qualitative nature of our results would be
maintained but the impact of moral hazard and adverse selection would be
magnified. The results of our base case, which are explained in detail below,
are provided in the first row of results in Tables 1A, 1B, and 1C. In each
table the results of one particular scenario are given as are the production
outcomes when insurance is not provided. This facilitates seeing the impact
of the incentive effects created by the insurance program for each scenario.

In what follows, when a calculation refers to a high productivity type
we use subscript h and when it refers to a low productivity type we use
subscript . In our base case and when only moral hazard is present the
two producer types (low and high) receive insurance contracts based on the
past experience of producers of their own type when insurance coverage is
not in force. With no insurance, the optimal input levels are z, = 313 and
2; = 310 for high and low productivity types, respectively, with expected
output levels of Ey;, = 138 and Ey, = 110 for high and low productivity
types, respectively. The trigger value (or coverage level) for the two types is
50% of their risk type specific expected yields (i.e., ¥ = 69 and yq = 55).
Using these trigger values and the type specific yield distributions which .
apply under the no insurance scenario, the expected indemnities, and hence
premiums, are p, = 5.23 and p; = 4.15.

With these insurance policies, the producers reduce their input use to
x5, = 280 and z; = 279.!8 With these reduced input levels, expected ocutput
levels fall to Ey, = 124 and Ey; = 100 and the average indemnities, at
Bl = 6.7 and ET; = 5.25, turn out to be higher than the premiums charged,
which were based on yields of producers who did not purchase insurance. The
implications of this moral hazard problem are that claims exceed revenues

18Due to the flatness of the marginal product of input (A = 0.96 implying almost con-
stant returns to scale), it is not surprising that the optimal input choices for the two types
do not vary much. The different productivity parameters, however, do imply significantly
different levels for expected yields, in the ratio of ¢y, /¢;.

14



collected in the amounts of 26.6% for low productivity types and 28.0% for
high productivity types.!® The fact that these losses are approximately equal
for the two productivity types is not surprising since type specific calculations
are used for the insurance premiums and similar input choices by the two
types, in conjunction with output being multiplicative in the random variable
w, means the problems are very similar for the two producer types. Different
methods of modeling the differences in productivity types, which include
quite different relative variances in the yield distributions by type, could
lead to qualitatively different outcomes. Our goal, however, is to investigate
the differences in overall program costs under different information scenarios
(i.e., moral hazard only, adverse selection only, and both combined) and so
we do not focus on altering our assumptions to create divergent outcomes for
the two productivity types. ,

Next we model the implications of adverse selection only. That is, we
assume the insurer can monitor and enforce any specific level of input de-
sired and so chooses the average input level that the two types of producers
use in the absence of insurance. The fact that the insurer cannot distinguish
between producer types, however, means that modeling the implications of
adverse selection in the absence of moral hazard is somewhat artificial, as
discussed in the previous section. This follows because any inefliciency or
program costs created by not requiring different input requirements for the
two types will be inevitable in this scenario and so program costs induced by
insurance will correspond not just to selection problems but also to “inap-
propriate” input use, which is generally considered a moral hazard problem.
Since in our base simulation production is elmest linear in input and the
optimal choices of input level for the two productivity types turn out to be
almost identical, it turns out that requiring the two types to use the aver-
age input level chosen in the absence of insurance is not problematic per se.
Under these conditions, major complications in terms of program costs arise
from adverse selection only when high productivity types drop out of the
insurance market. Our range of simulations, however, cover various issues
associated with adverse selection costs for a public insurance program.

If the insurer is not able to identify which producer is of which type,
the insurer’s observations of production across producers in the absence of

191n the tables we report the probability that insurance is triggered (k; and kp) to
indicate the relative impact of insurance on producers’ decisions on inputs and how these
decisions affect the probability of collecting insurance.
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insurance represents a mixed probability distribution of the two types. In our
base simulation we assume the population of producers is made up of 50%
of each type. The result is that expected output in the absence of insurance
is the average expected output across types (Ey, = 0.5Fy;, + 0.5Ey, = 124)
and so the trigger value of yield is ¥, == 62. The expected indemnity, and
hence the premium charged using the mixed probability distribution, turns
out to be p, = 4.92. Once insurance is introduced, the input required of each
‘producer is the average observed in the population (i.e., z, = 0.5z, +0.5z; =
311.5). This means the high preductivity types end up using less than what
is used in the absence of insurance, while the low productivity types use
more. The low productivity types are more likely to make an insurance
claim since their probability density function is essentially to the left of that
of the high productivity types. It turns out that the high productivity types
make a claim with probability &k, = .09 while the low productivity types
make a claim with probability & = 0.15 and the average indemnities are
EI, = 3.67 and K1, = 6.16. Since both types pay the same premium for
insurance and the input level of each type is constrained to be the same
as the average input level without insurance, it turns out in this case that
the high productivity types subsidize the low productivity types, which is a -
common characteristic of adverse selection. Overall, the program costs turn
out to be negative; that is, the average premium revenue exceeds the average
claim, albeit by the insubstantial amount of 0.24%.2° We checked, as always,
- whether the expected utility for high productivity types is higher with the
insurance plan than without it even though they pay more than the actuarial
cost for the insurance. In this case it is and so high productivity types do
purchase insurance even though'it is offered at terms which are actuarially
unfair to them. Substantial program costs can arise from adverse selection if
the insurance cost for the high productivity type is sufficiently high that they
drop out of the market. If that happens then only low productivity types
purchase the insurance and their expected indemnities are generally much
higher than the premiums which are computed on the basis of aggregate
production when no insurance is available. Of course, the pattern of results
can depend on many factors and parameters and so, as with all statements or

20Roughly speaking, this occus here because, since production is ‘almost’ linear, the
decrease in productivity from high productivity types due to their reduced input level
under insurance is approximately compensated (and can be more than compensated as in
this case) by the increase in production from low productivity types due to their increased
input level.
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conclusions we note from our simulation exercises, these are only suggestive
of what one can expect in an actual market setting.

Now consider the scenario in which both adverse selection and moral
hazard are present; that is, the insurer can observe neither the input level
beyond the minimal that can be required nor the productivity type of any
given producer. The insurance premiums, etc., are computed in the same
way as above for the adverse selection only case. However, when insurance
is offered, the insurer cannot require that the producers use the average pre-
insurance amount of input but rather can only enforce the minimal standard
requirement, which in this case is the fraction £ = 0.25 of the minimum input
any producer uses in the pre-insurance scenario. Thus, program costs can be
exacerbated by the fact that producers may substantially reduce their input
levels due to the presence of insurance. This will tend to be the case espe-
cially for low productivity types since their insurance coverage is particularly
attractive given that the coverage level is based on the average production
of all productivity types. In comparison to the case when only moral hazard
is present and the trigger value of yield was 55 bushels per acre, in this sce-
nario it is 62 bushels per acre, meaning the set of states of the world under
which insurance claims are made is broadened and so the expected marginal
_ benefit from any increase in input is reduced. We see this is the case in this
“example ag insurance induces low productivity types to reduce their input’

level to z; = 270 compared to the level 279 in the scenario of moral hazard
only. High productivity types, on the other hand, have an incentive to use
a higher input level than under moral hazard only as their trigger value of
yield was higher at 69 in the presence of moral hazard only. The result is
that their optimal input choice in this scenario is z; = 285 rather than 280
as it was in the presence of moral hazard only. '
The result in this example is that program costs for low productivity
types is 70% of premiums collected while the high productivity types sub-
sidize the programi in the amount of 9% of premiums. Overall, the average
insurance claims represent 30.6% more than premiums collected. This turns
out to be higher than for the case of moral hazard, which had a program cost
of 26.6% of premiums collected. The program costs as a percentage of premi-
ums collected could, of course, be much higher for the case of moral hazard
and adverse selection combined if high productivity types, who subsidize the
program, decided to leave the insurance pool.?! Nonetheless, an interesting

21Tn all cases we check whether expected utility with insurance is higher than without.

17



aside is that this example, as well as many others, demonstrates that the
implications of moral hazard and adverse selection may be super-additive in
that the program costs generated by both types of asymmetric information
may exceed the sum of the program costs of the two information problems
taken in isolation. :

We perform ‘sensitivity’ analysis on our base case by changing the pa-
rameter values for the distribution function g(w) (i.e., & and (), the value
of the exponent of the production function (), and the risk aversion coef-
ficient (-y). The results are reported in Tables 1A, 1B, and 1C. Although
the implications of all of these changes have economic interest, we focus on
the implications of changing parameters of the insurance program and those
parameters which are likely to change in a qualitative way the implications of
insurance being available. However, a few remarks about the overall results
_of the sensitivity analysis are in order.

We see that increasing A to 1 leads to increased input levels in all scenarios
while decreasing A leads to reduced input levels, as would be expected. The
effects of changes in the parameter values-« and 3 on the distribution function
are illustrated in the figures in Appendix A. The original function g(w) is
skewed to the left while increasing 3 to 3 creates a substantially fatter left
tail. This reduces the marginal value of increasing = while increasing the

.advantage to insurance. In the moral hazard only scenario, the result of
increasing the probability of bad outcomes has the effect of increasing the
probability of claims, enhancing the moral hazard effect (i.e., the reduction in
input level resulting from insurance is greater than the base case), and leading
to higher program costs. In all simulations there are insubstantial effects on
program costs for the scenario of adverse selection only. The intuition for
this is the same as described for the base case. The one simulation that gives
substantially higher program costs in the scenario with moral hazard and
adverse selection is for the case of 8 = 3. This follows for the same reasons
as for the case of moral hazard only. In fact, this change to the base case has
the greatest impact on the program costs of all the changes investigated. The
other changes to the parameters of g(w) can also be observed in the figures
in Appendix A and these have effects which are also not surprising.??

Changing the risk aversion coefficient has implications that are also fairly

If this isn't the case, we re-compute the implications of insurance when removing the
relevant decison makers who would leave the insurance pool.

22That is, making the left tail thinner (i.e., reducing the probability of bad outcomes)
leads to somewhat higher input levels and lower program costs.
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intuitive, although one cannot trust intuition too much with so many factors
present in such models. However, we see that a less risk averse producer (y =
0.05) engages more intensively in this risky activity while a more risk averse
person (v = 0.15) opts for lower input levels. It turns out that changing the
degree of risk aversion has little impact on the implications of insurance in
-terms of percentage reduction in inputs and program costs. We don’t report
effects of changing the price of the input or output. As noted earlier, prices
are of course unit dependent and our stylized model is not designed to be
calibrated to a particular crop or set of units. Moreover, changing price, for
example, increases both the variance of the distribution of revenues for any
given input level, z, as well as the mean. Hence, an increase in price increases
both the mean {marginal) return to increasing # but also the riskiness. Thus,
intuition isn’t strong as to what one would expect to happen when changing
p. We did, however, find that for the case of A = 0.8 an increase in p or a
decrease in w did lead to an increase in input levels chosen for all scenarios,
although we have not reported these results. Ifor the case of A = 0.96 the
effect was insubstantial.

‘We now consider changes to parameter values which we anticipate will
affect in an important way the relative program costs of insurance in the
various scenarios. Results of these simulations are presented in Tables 24,
2B, and 2C. To begin, increasing the coverage level enhances the incentive
to engage in moral hazard and so is expected to increase program costs in
the scenario with moral hazard only or with both moral hazard and adverse
selection problems persisting simultancously. We considered the impact of
increasing the coverage rate to 70% and 90%. When we increase the coverage
level to 70% of average yield, both the high and low productivity types reduce
their inputs relative to the no insurance scenario even more than with 50%
coverage, as expected. The reduction in input was approximately 10% in
the case with 50% coverage, for both types, and 22% in the case of 70%
coverage. When the insurance coverage rate is increased to 90%, both types
reduce their inputs as much as possible (i.e., the minimal required input
level constraint, which is set at 50% of the input level used in the absence
of insurance, becomes binding). This is not surprising since 90% coverage of
average output is guaranteed and substantial cost savings are obtained by
reducing the input level as much as is possible. In the case of moral hazard
and adverse selection, the input level is constrained to be the average for
the population in the no ingurance scenario and so, for the same reasons as
were indicated earlier, the program cost created by the lack of information is
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insubstantial. In fact, this turns out to be the case for all but the last of the
simulations (see Table 2B), and so we address this possibility only for this
case.

In the case with moral hazard and adverse selection, the terms for insur-
ance cover are based on the mixed distribution of yields in the no insurance
scenario and so are relatively more favourable for low productivity types than
for high productivity types. The result is that, with 70% coverage, the low
productivity types choose the lowest possible input level (i.e., that minimally
required that can be enforced) and create very high program costs. The high
productivity types choose even a higher inpuf level (261 vs. 245) than in the
situation of moral hazard only because the insurance terms are less favourable
in this case.?® The program costs are almost triple what they would be in the
scenario of moral hazard only (i.e., 185% of premiums collected vs. 67%).

‘When we increase insurance coverage to 90%, we find that both low and
high productivity types choose the lowest possible input level that they can
and so program costs are very large at 236% of premiums collected. With
moral hazard and adverse selection, it is also the case that both productivity
types choose the lowest possible input level and program costs are approx-
imately the same as for the moral hazard case only. Thus, if the minimal
input requirement becomes binding for both productivity types, we find that
" adding the information problem of adverse selection to moral hazard.does

not increase program costs. In fact, using 80% coverage level we find, but
do not report in Table 2, that in the case of both moral hazard and adverse
selection, the insurance terms are sufficiently unfavourable to the high pro-
ductivity types, in comparison to the case of moral hazard only, that high
productivity types do not choose the minimally required input level.?* The
result is that program costs actually fall quite substantially, from 264% of
premiums collected to 174%, when one adds the problem of adverse selection
(hidden type) to moral hazard (hidden action). Thus, program costs may
-also be sub-additive, as well as super-additive (as demonstrated in an earlier

case), in the information problems faced by the insurer. ,

The way we have parameterized the difference between high and low pro-

23Note that in the scenario with both moral hazard and adverse selection, the second
term on the right side of equation (7), which represents the producer’s expected payoll
- when no insurance is collected, becomes more important to high productivity types than
in the scenario with moral hazard only. _
15 the case of moral hazard only 2, = 156.5 while in the case with moral hazard and
adverse selection, =, = 239.
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ductivity types, using parameters ¢, and ¢,, leads to the outcome that, given
the same input level, the low productivity types output is the fraction ¢;/¢,
of the high productivity types. For all the scenarios discussed above, the low
productivity type parameter was 80% of that of the high productivity type.
If we increase the degree of heterogeneity between the two types by reducing
¢;, one might expect that the problems caused by adverse selection, whether
on its own or in conjunction with moral hazard, would be exacerbated. This
is seen to occur when we set ¢; = 0.6, with program costs being 50% of pre-
miums collected in the case of moral hazard and adverse selection problems
combined, compared to 27.5% in the case of moral hazard only. The rea-
son this happens is that, with low productivity types facing a substantially
worse technology than high productivity types, the low productivity types
are that much more likely to collect insurance when the insurance coverage
is based on average output across types. Note in Table 2 for this case that,
when going from the scenario of moral hazard only to that of moral hazard
and adverse selection, the low productivity type’s probability of collecting
insurance increases from 14% to 34% when cover is based on average pro--
duction while the high productivity types probability of collecting insurance
only falls from 14% to 8%. When we increase the difference between types
to ¢; = 0.4 (i.e., assuming low productivity types are only 40% as productive
as high productivity types), this phenomenon is exacerbated substantially.
The low productivity types choose the minimally required input level when
both information problems are present, but not in the case of moral hazard
only. The result is that program costs rise from 27.5% in the case of moral
hazard only to 214% when both information problems are present.

All of the above simulation cases have involved a population of producers
made up of an equal number of high and low productivity types. Since
adverse selection problems may be sensitive to the precise make-up of the
population, we consider what happens to the base case when increasing the
proportion of high productivity types to 80%, and then reducing it to 20%.
We find the results of these cases to be fairly similar to the base case. With a
population composed of 80% high productivity types, low productivity types
reduce their input level (from 279 to 264) when both information problems
are present compared to the case when only moral hazard is an issue. The
reason is that insurance cover for low productivity types is higher when both
information problems are present. This increases program costs. However,
the majority of producers in this case are high productivity types and they
find insurance terms less favourable when both information problems are
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present and so choose a higher input level than for the case of moral hazard
only (i.e., 282 versus 280). The overall result is that program costs are
almost identical to the base case for all information scenarios (i.e., the two
" contrary effects balance out). We also have reported the results of increasing
the fraction of low productivity types to 80% (see second last row in Table
2). In this scenario we actually have slightly lower program costs for the
moral hazard and adverse selection scenario than in the base case. This may
seem peculiar at first glance since increasing the fraction of low productivity
types might be expected to lead to an increase in program costs when types
cannot be identified. However, when the population is composed of 80%
low productivity types, the insurance terms with both information problems
present are not so favourable to low productivity types (i.e., compared to
the base case with only 50% low productivity types). This leads to the
result that, in the scenario with both adverse selection and moral hazard,
low productivity types choose a somewhat higher input level (276 vs. 270)
than in the base case. Of course, the insurance terms are also worse for high
productivity types in this case and they also choose a higher input level than
in the base case (288 vs. 285). Thus, the information costs imposed on the
insurer due to adverse selection and moral hazard combined can actually be
smaller when the fraction of low productivity types is higher.

In all cases discussed thus far, the high productivity types have never been
“forced” out of the market when adverse selection persists, whether on its own
or in conjunction with the moral hazard problem. One reason-this is so is that
in our model of a public insurance plan, insurance terms are determined by
the yield distribution of producers in the absence of insurance and no change
is made once experience on claims is acquired. In a private market setting, of

" course, this would not be the case and so ‘excess claims’ due to information
problems would lead to rising prices. This may induce high productivity
types to leave the insurance pool and drive prices even higher, leading to
an adverse selection death spiral.?® Nonetheless, it is certainly possible in
our model of public insurance to create cases in which high productivity
types find insurance terms too unfavourable to participate in the program.
Our last simulation case demonstrates this possibility. By simultaneously
adopting the changes to the base case as indicated by the parameter change

25T'his may be especially sc if there is heterogeneity in preferences among high produc-
tivity types, with the less risk averse being less willing to pay an excess premium and so
being ‘first’ to leave the market, with more risk averse high productivity types to follow
their lead once price starts to rise. '
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noted set #1 in Table 2 (last row), we generate an example in which high
productivity types do not participate in the market both in the scenario of
adverse selection only and in the case of moral hazard and adverse selection
problems arising simultaneously. In this case we have low productivity types
having very poor technology (¢, = 0.08), a large fraction of low productivity
types (g = 0.8), along with a fairly high coverage level of 7T0% of average
yield. Thus, program costs are not insignificant for the scenario of adverse
selection only, and this is the only instance in which we have such an outcome
for this scenario. For this example a cautionary note in interpreting the
results in the table is necessary. Since for this simulation low productivity
types pay such a small premium in the moral hazard only case, the percentage
program costs-are misleading in that the absolute program costs are not very
high. In fact, the absolute program costs are much higher in the adverse
selection only scenario (4.0 vs. 1.0 per acre per contract), and higher yet
for the scenario with both moral hazard and adverse selection (10.2 per acre
per contract). For all other simulation results reported, the percentage cost
figures are not misleading in this way.

5 Conclusions

The model and simulations in this paper show that the implications of the
information problems associated with moral hazard and adverse selection
can combine in quite complex ways to affect the program costs of a publicly
~ provided crop insurance plan. By comparing the program costs under the in-
formation scenarios of (i) moral hazard conditions only, (ii) adverse selection
conditions only, and (iii) both conditions persisting simultaneously, we have
shown that the costs of these two information problems can be either sub-
additive or super-additive. By adopting a wide variety of examples which use
different sets of parameters and assumptions, we have given some guidance
regarding how one can attribute program costs to these various information
problems. It is important to note that such advice is very provisional due to
consideration of all the factors that can affect our results. However, one novel
and useful finding of our work has been to show that since program costs may
be superadditive, then solving one or the other information problem may be
more effective than one might have expected. Thus, suppose it is not very
costly to solve one of these information problems but very costly to solve
the other. If it is the joint influence of these problems that is creating large

23



costs then it may not matter which of the two information asymmetries is
corrected and so the cheaper problem to solve becomes the obvious candidate
for attention. '

Regarding the lessons we have learned from this work, perhaps most
important is the recognition that in order to understand or anticipate pro-
gram costs of a public insurance program one must pay careful consideration
to many aspects and parameters of the activity being insured. These in-
clude those aspects regarding production technologies (or the activity being
insured), population proportions of different types of producers, design fea-
tures of the insurance plan, and the risk preferences of the clients. One must
also pay close attention to the design features of the insurance plan and how
all of these factors interact in creating an insurance environment and set of
outcomes. Of particular interest, we believe, are our results associated with
combining the information problems of moral hazard and adverse selection.
In our simulations, we found program costs of adverse selection on its own to
be minimal. Although this is duc in part to the fact that we adopted certain
symmetries in the production relations of the two types of producers in our
model, these results were nonetheless quite robust to variations in our para-
meter choices. Only in the case when higher productivity types are driven
from the market did we see substantial program costs resulting from adverse
selection problems occurring in isolation. If only the problem of adverse se-
lection persists in an insurance setting, then this problem could eventually
be corrected if the insurance provider were to base its claim frequency on the
data of those insured, rather than using data based on a population of non-
insured producers. However, when both adverse selection and moral hazard
problems persist in an insurance setting, then the program costs that can
be assigned to the information problem giving rise to adverse selection may
be quite large even when high productivity types are not driven out of the
insurance market.
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Appendix
Following are graphs of the various cases of the beta, distribution used in

~ the simulations.

a=25 p=2

goy 1

5 ) '

o) 1 o |

a5 .




1.5
N

- 05

EONI

0.5

28



1.5

B )

05

29




8 | 9T | ¥ a0 v [ L9 8T | 981 | 6 vL 602 L0T STo=4
8T | LT | AT} T 1T 61 | 65§ | 86 | 69T ez 99 179 S0'0=4
0 43 | oI | o) sz 3€€ LEE 1 | o €LE LS £=m
T 4 6T 61" 06 1L €T 12C 001 | 08 0SZ 84T =0
A S TR S R 4 S 14 811 867 67 | oI §Z1 | €1€ | #Ig ci=4¢
IS s .| o 0z 6 €L ese | cosz | 1| ss L0g +0€ c=¢
17 Iz | vT0o | vTO | Ty | €€ | 92 "o o | 9¢ _.omm PP 80=1
0¢- oc | stTo | sto | zo1 | ezt | w6z 16T | 281 vl Lze | 9ze | 1=%
8z |- 1T pI0 |- ¥T0 | e 66 | 08¢ 617 €T 011 £1¢ 01¢€ aseq
Aqu_. - oy by g g iy , NR. g (g _ ' cm
(%) $150D %o& swire[o Jo "qoig | mdinQ ﬁouoomx,m | _ Emﬁ, nding payoedxg | . mndug MMMM
A[uQ prezeH [EION , _ souBInSU] OF 03 s8uryD)

(%08 “2D g0 =4 “(S9SED 1210 [[8 10§ G°() ST'0 =7 (4 - [9A9] 98RI0A02 pUE ‘1 - Justronnbar yndur reuriutur) s1sjewered sousIasuy
T0=460="8'c0="P'g0="0'T="0"960=" USIO1II00 VOISIOA® JSLI PUE stojemreIed UONOUNS UONONPO1]
'6L'0 =m ‘7’7 = d andino pue ndur jo s901g

sz=dcz=2g “‘0)erog ~ (@)3 :0 2qeries Eowcﬁ Jo uonnqQLISI(Y

S5E) oseq 0] SIajotIeleq

A[aQ prezef] [eI0
SISATeUY A)ARISUIS PUE I5B)) 9sey.
ViaqeL



\..m..o- 60 T - 08 T os0e - 08 60T Loz | STo=+4
5T0 607 | ST 0T ¥'EC9 01¥T 979 170 | SO0=+4
or’ 90 T - T6ST S'CLE TSI €LE | PLE €=10
€10 €T 61" | 8'68 | 6'84CT 6'63 05T 8% z=m
500~ W e | gort LI £ovl 413 pIg s1=9
A [T | o | ves Cogsoe | 566 0 | vos £=9
850~ 60" | ST B § LvT I ¢ . 0T e 8'0=Y
¥00- 600 | ST peal L'9T€ ¥ i LTE 9Z¢ =%
€T0- 60" ST 8'€T1 TIe 6'€TT €1 01¢ - aseq

eI9A0 iy ly a8BI0AY - EEES ofemay w |

(9) s1500 wreISor | - SEUIB[O JO "QOI] ._,. mdmno vB_oomxm nduy E&n_o ﬁo,uoo&nm. wnduy MMMM

ATUQ UORIR[SS ISTAPY Q0uBINSU] ON] 01 23uey)

(9506 “2'1) §°0 = 4 ‘(Sase2 1210 :m 101 ¢°0) sTo=1 (4 - [0AQ] 98EI2A02 PUE 7 - EoEHEm.E yndur Jewmiun) siejourered souRINSUY
‘To=4'co="0¢co= ip w g=0‘1="d‘9g0="% EoGEuoo UOISIoA® YSU pue sIojeurered uonounj UoLONpPoId
: ‘c10 = m ‘77 = d :indino pue mndur jo saolg

m u ¢ N D ‘(d ‘v)eIog.~ (0)3 0 J[qeLieA WOPHEI JO UONNGMSLT -

3587 35eg 10 ﬁopo&ﬁam

&{uQ uonwRS ISIAPY
sisfjeuy ApanIsuag pue ase) aseq
4l 9lqeL



0g T | o | 98 | o | 16l | 18T | 6 vL 60c | Loz | s1o=+4
e | Ir o | o | 81 | s | s | e | €1z |-o9zo | 129 | s00=+4
9¢ o |oor | wer | wer | we | ocze | 1 | ot | e | wLE g="
Vo st | sz | 16 69 | tez | stz oor | 08 05z 8 7="
p1 80" ST | ost | LIt | 10e | e6T | o<1 szl | gl¢ pie | si=9
o st | oe | s6 80 | 79t | ezez | 111 | 88 | LoE | #O€ £=9g
sz T o | 61 | e ze | oz | iz | b oc | osz | we | 80=Y
2 I | or | sor | ot | 6T | €8z | s st | e | oce =Y
e T | o | st | e | ss¢ | ow | st | omr | e | ot sseq
[[e39A0 ty by | g g e Eant smm, 1 g tx x o
(2) 150 wreaSorg | - sured Jo ‘qoid | wndmQ poroadxy | ndup H&ﬂo paoadxyg ndug mem |
UOT03[aS 9SISAPY Pue pIezeH [eIO QOUBINSUF ON 01 28uegyn)

“(950€ ©*3°1) ¢'0 = < “(59582 19WI0 {2 JOJ "0} §TO =7 (4 - [943] 28810400 PUE 7 - yrowrarinbar ndus fewriura) srajaurered asugInsuy
. ‘To=4 ‘50="0¢0 =% g0 =0T =" ‘96'Q = JUIOYJI02 UOISIOAE JSU pue siojowrered UONOUNY UOTONPOL]

_ : . _ ©s¢pr0 =m ‘77 = d indino pue indur Jo sa0Ld

‘2 =g cz="0"g Dereg ~ Aevw 1M 2[qQELRA WOPULI JO UONNYISI

5587y o528 10J SIojelieled

UON)IAS ISIAPY pue Emnmm Ted05Al
sisAfeuy AMAIHSUAS pue ase)) aseg
D1 21qe) .



TO="b R0 0="0 L Q=1 [#195
‘[oaa] 1ndut panmbar Ajpewrrur o) st (249 Idy] 4 ‘SHLON
L9 062 8€°0 80 601 I S¢4 97 8¢l Z €ig r4s #7125
8T LT #1°0 1450 Vel 66 082 6LT et Ol1 €Ie 0l1¢ zo="b
87 [z- | #1o | vro | ¥el | 66 08T | 6.7 g€l o1l €1¢g org | so="
82 LT #1°0 ¥1°0 174! 8% 087 LT €1 1% €le €0€ yo="0
82 Lz | v 10 vTl - L 08z LLT el 8 glg 80€ 90 =
9t7. | 9gT 66°0 660 L | 9s LLST SS1 g€l o11. €1g 0l¢ 60=1
19 L9 8€0 | 80 | 601 18 | siz mmw 8¢l | oOI1 c1g 0LE Lo=1
8T LT P10 | Y10 | . ¥Tl 66 08¢ | 6L 8¢l . Ol 1€ 01¢ aseq
) M,.u "y Iy s.ﬁm ., Koy _xk. Iy | "y g Y x ‘
(o) s1500) weidoig | SUIE(d JO .n_opm, wmding payoadxy nding paroadxyg nduy MM“M
AuQ E..mmmm [BION 90URINSU[ ON 01 aduey)

‘o= »mo

=b¢o=

AfaQ prezey E&E

II SnSY uonenuIg
VZ ?IqeL

(9506 2T C0 = v ‘(soseo 1210 [B I0f ') $T0= -7 :(4 - [aA9] 9512400 wcd 47 - juowrasmbear mndut _QEEEV &oﬁEﬁmm 20URINSU]
He g 0 ="d7 =" ‘96" =\ MSIOIJJS0I UOISISAR HSUI pUe s1ajowered UonOUNJ UONONPOL]

‘¢L 0= 7’7 =d mdno pue indut Jo s34
= g ‘c'7 =1 (g “O)erog ~ ()3 :® 2[qeLieA WOPUEI JO UOHNQLISI(

25e) IsEY p.O...w. Sisjauieled



‘93 rew ay; Jo 1no Surddoip sadAy Kyranonpoid ysiy o3 Spes| sonjea Ioyswwered Jo 105 SIYY, 70 ="b‘gop="d ‘L0 =1 “M% 135

21 | VN I b ='6g Yo1 =" 62 £lg z$ I# 125
£ro- 800 | €I'0 ST1 R S11 £Ig ol | zo="p
LU0 010 LTO el 413 - Z€l ©ogle | oig go=">0
97 - S00 | 8£0 6 | .soe . 96 ¢1e I ogoe | vo=70
68°0- 100 | 2o 011 S sore ort | ere | goe | 90="4
81°0- 1. TE0 0c0 | 8'ECl . e . 6'€Tl ele 0l¢ 60=41
12°0- 61°0 0£°0 8°€ZI e 6€21 €1¢ o1 |- Lo=1
€20~ 60" | SI° . 8€T1 ZIE _ 6€Tl £lg olg aseg

1A - . oy | Iy - ofereAy =i , R TR oy _ %
@L $1500) Eﬁw_oﬂ SuITe[S JO "qO1g nding pawadyg | wndoy | ndinQ pevoadyy | nduy. MHU
| b:O_mowuoﬁow o_w.ﬁwvf _ 20URINST ON 01 omcmpu

(908 *9'T) §'0 = 4 (59585 1910 {[€ 10§ ') G7'0 =1 :(4 - [9AS] a5BISA0D U ‘1 - Juswalinbal ndur [ewrunw) siojewered 20UBINSU]
‘TO0=4C0="0Co="b"g0 =0 =% ‘96'0 =Y JUSIOIIO0O UOISIAAE YSLI PUE SI915Weled UONOUN] UONOAPOI]

. o L 6L =m ‘7 = d andino pue indui jo seoLlg

z=9dct =n ‘{d “0)e19g ~ ()3 :® 2[qElIEA WOPURI JO UOLINGIIISI(]

.DmmU ase{ I0] slalalivled

A[UQ uon9Ig @EPFWQ
II S}nsay uonemumIs
. d¢21qs1



1oxIeW 213 Jo 1o Surddosp sadfy Qbﬁu@o& Y31y 01 speof sonfea Iejewreied J0 198 SIYY, ‘7O =P ‘RO =0 ‘L Q=1 [#13S
, "[9A9] Indut parmber Ajrewuiut oy st {oas] 1ndu] “mm. 1ON

1€ CVN I | VN I <Z 9t 8t [4 £le (23 I# 12§
8T 600 | 910 | 8zl 86 88T | 9.7 ger | orr | €1 olIg | TO="F
1€ | €U0 | vTO | STl | 6 8 | v9T | 8el | oIl cle | o0lc | 80="P
pic 900 1 o€l 8T | ¢S67 ST 3T %S €1 €0€ vo='0
0s | 800 vE0 8zI 99 | 067 LYT g€l 8 | <ig 80€ 90="2
9Tc 60 | 1 on. 9¢ se1 | 581 8el o1l £le 0l¢ 60=1
e8I L0 | T60 | w.: 9¢ 19 &Sl mmﬁ 011 ere 0l¢ L0=1

e . I 0T A% 9 | S8C 0LT 8cl 011 89 ol€ - oseg

I[BIOAQD y Iy (g (g T Iy g KT x Ix

(9} s130p urerdold | SwIepo Jo ‘qoig |- idingp @Buomx,m ~mdyy mding vuuuoaxm induy mem

HONDA[AS 9SIOAPY Pue pIezef] JelOJA QOURINSUJ ON 01 23ueyD

(050G 2'1) "0 =4 ($9580 ISYI0 [[8 10] §°() §Z°0 = 7 :(4 - [9a3[ 981000 pue ‘7 - Juetrarinbar yndur fewiur) sieewrered souRINSU]
‘qro=4A ‘co="bc0="b‘g0="0*] ="d ‘960 = Y ITSIOLJI0D UOISIaAE YSLI PUE SIjourered UOHOUN] UOTIONPOL]

‘¢1'0 = m ‘77 = d mdino pue ndur o $9011g

‘z=4°c7 =0 g V)ereg ~ (0)F :0 S[qrIIeA WOPULI JO UOTINGLISI(]

25y o5ed I10] sIojolleled

UOI)II[IS ISIFAPY pue Enu.«m [eJOTA .
II s}nsay uopenuILS
DT 219



