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Abstract

The revenue ranking of asymmetric auctions with two heterogenous bidders

is examined. The main theorem identi�es a general environment in which the

�rst-price auction is more pro�table than the second-price auction. By using

mechanism design techniques, the problem is simpli�ed and several extensions

are made possible. Roughly speaking, the �rst-price auction is more pro�table

when the strong bidder�s distribution is �atter and more disperse than the weak

bidder�s distribution. These su¢ cient conditions turn out to have appealing

geometric and economic interpretations. The theorem applies to certain envi-

ronments with multi-dimensional types. It is also possible, for the �rst time, to

extend the ranking to auctions with reserve prices and to auctions with more

bidders. Implications for contests architecture and other auction formats are

also pursued.

JEL Classi�cation Numbers: D44, D82.

Keywords: Asymmetric Auctions, Convex Transform Order, Dispersive Order,

Multi-dimensional types, Revenue Ranking, Star order.

�I would like to thank the Canada Research Chairs programme and the Social Sciences and
Humanities Research Council of Canada for funding this research. I am grateful for comments
and suggestions from Bernard Lebrun and Ruqu Wang and audiences at the University of Arizona,
the University of Guelph, Queen�s University, and the 10th SEAT conference. I thank A. Marcel
Oestreich for research assistance.

1



1 Introduction

Many, if not most, auctions involve bidders that are heterogeneous ex ante. For

example, procurement auctions may involve domestic and foreign �rms; an auction

for a new licence or technology may pit an incumbent against a prospective entrant;

an art collector may be vying for a synergy not relevant to a bidder with unit demand,

and so on. Even if bidders are initially homogenous, asymmetries may be created over

time, as willingness-to-pay in the last auction in a sequence likely depends on how

many items have been won at that time.

The interest in asymmetric auctions dates back to the inception of modern auction

theory, with Vickrey (1961). As Vickrey (1961) �rst discovered, and Myerson (1981)

and Riley and Samuelson (1981) later proved more generally, the �rst-price auction

(FPA) and second-price auction (SPA) yield the same expected revenue in the inde-

pendent private values model when bidders are homogenous. However, Vickrey (1961)

proved by example that revenue equivalence does not hold when bidders are hetero-

geneous. Thus, the question of which auction is more pro�table with heterogenous

bidders is an old and fundamental question.

The objective of this paper is to contribute to the literature on asymmetric auc-

tions in three principal ways. The �rst is methodological; a method that simpli�es

the analysis of the problem is proposed. Second, substantially more general results

are obtained and a more robust intuition is developed. Finally, the pivotal role of a

speci�c stochastic order, the dispersive order, is emphasized and its economic inter-

pretation and application is pursued.

In a seminal paper on auctions with two heterogeneous bidders, Maskin and Riley

(2000) present three seemingly separate classes of environments in which it is possible

to rank the FPA and the SPA in terms of revenue. In two of the cases �if the strong

bidder�s type distribution is either a �shifted�or a �stretched�version of the weak

bidder�s type distribution �the FPA yields higher expected revenue than the SPA.1

1Maskin and Riley�s (2000) paper is the most general treatment of the revenue e¤ects of bidder
heterogeneity in the existing literature. In an earlier paper, Maskin and Riley (1985) assume type
distributions are discrete and prove that the revenue ranking is also ambiguous in that case. The
remaining literature uses analytical or numerical examples to shed light on the problem, almost
always with the conclusion that the FPA is more pro�table. These include Vickrey (1961), Lebrun
(1996), and Cheng (2006), all of which analytically examine special cases of power distributions.
Likewise, Greismer et al (1967), Plum (1992), and Kaplan and Zamir (2010) derive bidding strategies
in such environments but without comparing revenue. Power distributions have also been examined
in the numerical literature, starting with Marshall et al (1994). More recent examples of numerical
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In this paper, I will argue that the latter results should not be viewed as two

separate propositions but rather as corollaries of a more general theorem. Thus,

Maskin and Riley�s (2000) results are uni�ed and extended. Roughly speaking, the

FPA dominates if the strong bidder�s distribution is �atter and more disperse than

the weak bidder�s distribution; �shifting�and �stretching�are special cases. Indeed,

Maskin and Riley�s (2000) assumptions are unnecessarily strong even within each

of these two models. As explained later, the su¢ cient conditions have appealing

geometric and economic interpretations.

Maskin and Riley (2000) use arguments from mechanism design to demonstrate

why the problem is non-trivial. They then abandon the approach with the conclusion

that �mechanism design considerations do not settle the matter of which auction

generates more revenue�.2 Instead, they use the system of di¤erential equations that

describe bidding behavior to derive two technical lemmata that quantify revenue in

the two auctions. Using these lemmata, they prove the superiority of the FPA in the

two environments described above.

In contrast, I will demonstrate that mechanism design can in fact not only be

fruitfully used to address the problem, it also greatly simpli�es the analysis itself.

Thus, the �rst contribution of the paper is methodological. The starting point is

Myerson�s (1981) result that expected revenue is largely determined by the expected

value of the winner�s virtual valuation or marginal revenue. The key step in developing

the main result is to formulate the expected value of the winner�s virtual valuation

as the expected value of a conditional expectation, where the latter is the expected

value of the winner�s virtual valuation conditional on the weak bidder�s type. For the

simple case where bidders�supports have the same lowest end-point, the assumptions

in the theorem ensure that this conditional expectation is greater for the FPA than

the SPA for all types in the weak bidder�s support. When the lower end-points are

di¤erent, the proof is completed by exploiting the fact that the FPA extracts more

rent from the strong bidder than the SPA. Compared to other uses of Myerson�s

(1981) results, the important feature of the method is that it allows comparison of

two auctions when neither auction dominates for all combinations of types.3

revenue comparisons include Fibich and Gavious (2003), Li and Riley (2007), and Gayle and Richard
(2008). Vickrey (1961) and Cheng (2010) provide analytical examples in which the SPA is superior.
See also Gavious and Minchuk (2010).

2To clarify, Maskin and Riley (2000) construct one environment in which they use mechanisms
design to prove the SPA is more pro�table. Their proofs are di¤erent when the FPA dominates.

3Mares and Swinkels (2010a) is a recent example. They compare auctions with handicaps and
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Figure 1: Truncations and horizontal shifts.

Note: Fs has support [�s; �s]. Consider some Fw whose support ends at aw 2 (�s; �s).
Generate the appropriate truncation, F ts , and horizontal shift, F

h
s , of Fs, such that these

end at �w. The FPA dominates if Fw is more disperse than F ts but less disperse than F
h
s .

As in Maskin and Riley (2000), I consider auctions with two bidders. The strong

bidder draws a type or valuation from a distribution, Fs, that dominates the dis-

tribution, Fw, of the weak bidder in terms of the reverse hazard rate. With this

assumption, some inferences concerning bidding behavior in the FPA are possible.

If the strong bidder�s density function is monotonic, the FPA is shown to be more

pro�table than the SPA if it is also the case that Fs is �atter and more disperse

(more �spread out�) than Fw. The main theorem allows the density function to be

non-monotonic by appropriately strengthening these conditions.

To illustrate, consider for the moment the most stringent assumptions in Maskin

and Riley (2000), namely that Fs is convex and log-concave. One way of thinking

about their �stretch�model is that Fw is a truncation of Fs, which I denote F ts . In

their �shift�model, Fw is a horizontal, left-ward shift of Fs, denoted F hs . These cases

are depicted in Figure 1. Of course, Fw can take many other forms. The FPA is

shown to dominate if Fw �lies between�F ts and F
h
s and satis�es certain regularity

conditions. These conditions are satis�ed if Fw is more disperse than F ts , but less

disperse F hs . Similar results obtain if Fs is concave, but with a vertical shift of Fs

show that one auction format dominates another because it is better for all pairs of types. The
di¢ culty in the current paper is that the FPA is not superior for all combinations of types, as
Maskin and Riley (2000) points out.
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taking the place of the horizontal shift. A related result for non-monotonic densities

is also derived.

The su¢ cient conditions have appealing geometric and economic interpretations.

Reverse hazard rate dominance implies that the ratio of the two bidders�distribution

functions move closer to one the larger the stakes are (the larger types are). At

the same time, the assumptions that Fs is �atter and more disperse than Fw imply,

respectively, that the vertical and horizontal di¤erences between the two distributions

grow larger the larger the stakes are. In summary, the main theorem addresses

situations where the relative asymmetry between bidders decreases but the absolute

asymmetry increases as the stakes get higher.

The dispersive order has recently attracted some attention in the theoretical auc-

tion literature. Jia et al (2010) and Katzman et al (2010) examine comparative statics

in symmetric auctions when bidders�distributions become more disperse. Ganuza and

Penalva (2010) consider symmetric auctions in which the seller can in�uence the pre-

cision of bidders�information by making their signals more or less disperse. Johnson

and Myatt (2006) examine a related question in the context of a monopoly. Their

�rotation order� is also used to compare how spread out two distributions are. In

asymmetric auctions, the dispersive order plays a role in determining the qualita-

tive features of revenue-enhancing interventions into particular auction formats, as

demonstrated by Kirkegaard (2010) and Mares and Swinkels (2010a, 2010b). The

results in these papers are particularly strong when densities are monotonic. Hopkins

(2007) describe qualitative features of bidding behavior in auctions where distribution

functions cross and one is smaller than the other in the dispersive order. However,

the current paper is the �rst to explicitly use the dispersive order to rank revenue

across standard auctions with asymmetric bidders.

To further illustrate the usefulness of notions of dispersion or spread to auction

theory, consider the following generalization of Maskin and Riley�s (2000) model of

distribution shifts to permit �stochastic shifts�of the distribution function. Assume

the strong bidder�s valuation is the sum of two components which are independent

draws from distribution functions F and G, respectively. Formally, his valuation is

determined by the convolution of F and G. Assume the weak bidder�s valuation is an

independent draw from F . Maskin and Riley�s (2000) �shift�model �ts this set-up if

G is degenerate. However, the revenue ranking extends to the more interesting case in

which G is non-degenerate. One of the main assumptions needed to ensure this result
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is that F is dispersive. The distribution F is dispersive if and only if the convolution of

F and G is more disperse than F regardless of the distribution of G. A related model

in which the uncertainty is multiplicative rather than additive is also examined. The

results are similar, for both the degenerate and non-degenerate case. An alternative

interpretation of these models is that one bidder su¤ers an externality if the other

bidder wins, but the magnitude of this externality is his private information. See

Jehiel et al (1999) for a discussion of the di¢ culties that arise in such environments.

Their revenue results are con�ned to symmetric environments, however.

The main result can be extended in several directions. Mares and Swinkels (2010a)

point out that it is not known whether reserve prices a¤ect the ranking. An applica-

tion of the main theorem e¤ortlessly demonstrates that reserve prices in fact do not

a¤ect the ranking in any model satisfying the assumptions outlined before. However,

the ranking may be a¤ected in other models. Other implications of the main result

are examined in Section 7.

The revenue ranking can also be extended to certain environments with more

bidders. The FPA is more pro�table when there are many weak bidders, but only one

strong bidder. Such a situation occurs when an incumbent monopolist bids against

several potential entrants for a licence to operate on a market or use a new technology.

However, the method proposed here and in Maskin and Riley (2000) are not powerful

enough to generate a revenue ranking in the general case with many strong bidders.

Nevertheless, a ranking can be obtained if the asymmetry is �large enough�.

2 Small auctions: Preliminaries

There are two risk neutral bidders. Bidder s is strong and bidder w is weak; bidder

s is more likely to value the object being sold more highly. Bidder i draws a type or

valuation from a distribution function, Fi, which is continuously di¤erentiable on its

support, Si = [�i; �i], i = s; w. The density, fi, is strictly positive on (�i; �i], with

�i > �i � 0, i = s; w. Mass points are ruled out. It is assumed that �w � �s and

�w < �s. In the following, it will be necessary to compare the density functions over

certain intervals. To facilitate this comparison, let Fi(v) = fi(v) = 0 for all v < �i,

such that fw(v) � fs(v) for all v < �s. Let C = Ss \ Sw denote common support.
Thus, C = [�s; �w] if the supports overlap.

The relationship between Fs and Fw plays two distinct roles. The �rst is to
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determine the properties of the interaction between bidders in the FPA. The second

is to enable a comparison between the revenue that di¤erent mechanisms generate. In

this respect, the relative strength of the bidders and the relative slope and dispersion

of their distributions, respectively, are key.

2.1 Strength and bidding strategies

The sense is which bidder s is stronger than bidder w needs to be made more precise.

There are at least four ways in which bidder heterogeneity can be modelled, depending

on how Fs and Fw are related on C:

1. Fs dominates Fw i.t.o. the likelihood ratio, Fw �lr Fs: fs(v)
fw(v)

is increasing on C.4

2. Fs dominates Fw i.t.o. the reverse hazard rate, Fw �rh Fs: fs(v)
Fs(v)

� fw(v)
Fw(v)

; 8 v 2 C.

3. Fs dominates Fw i.t.o. the hazard rate, Fw �hr Fs: fs(v)
1�Fs(v) �

fw(v)
1�Fw(v) ; 8 v 2 C.

4. Fs �rst order stochastically dominates Fw, Fw �st Fs: Fs(v) � Fw(v); 8 v 2 C.

See Krishna (2002) for an introduction to these stochastic orders and their use in

auction theory. See Shaked and Shanthikumar (2007) for an in-depth treatment. The

�rst order implies the other orders. The second and third both imply the fourth.

Maskin and Riley (2000) assume that Fw �rh Fs.5 In the �rst part of their paper,
this assumption enables them to derive rather tight bounds on equilibrium strategies.

To be more speci�c, let r(v) = F�1s (Fw(v)), v 2 Sw. By de�nition, bidder s is just
as likely to have a type below r(v) as bidder w is to have a type below v; the two

bidders have the same rank, or Fs(r(v)) = Fw(v). Since Fw �st Fs, r(v) � v for all
v 2 Sw. Given Fw �rh Fs, Maskin and Riley (2000) show that in a FPA, bidder w
with type v either submits a non-serious bid (one that is so low that it never wins)

or he submits a bid of the same magnitude as a bid submitted by the strong bidder

4In this paper, increasing is taken to mean non-decreasing; decreasing means non-increasing.
The abbreviation i.t.o. stands for �in terms of�.

5Since Fw(v)=Fs(v) is decreasing and strictly larger than one at v = �w, it follows that Fs
strictly �rst order stochastically dominates Fw in the sense that Fs(v) < Fw(v) for all v 2 (�w; �w].
Maskin and Riley (2000) assume something slightly stronger than reverse hazard rate dominance.
However, reverse hazard rate dominance is strong enough to deliver the key implication on bidding
strategies, namely that the weak bidder is at least as aggressive as the strong bidder for comparable
types in the �rst-price auction (see e.g. Kirkegaard (2009)). Hence, reverse hazard rate dominance
is assumed in this paper.
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of some type, k1(v), somewhere in the interval [v; r(v)].6 In other words, the weak

bidder is more aggressive than the strong bidder, but not aggressive enough to make

up for the di¤erence in strength. Using three di¤erent techniques, these properties

have been proven in (i) Lebrun (1999) and Maskin and Riley (2000), (ii) Milgrom

(2004) and Hopkins (2007), and (iii) Kirkegaard (2009), respectively.

The bid is strictly increasing in type for those that submit serious bids. Moreover,

bidder w with type �w submits the same bid as bidder s with type �s. Hence,

k1(�w) = �s = r(�w).

In a SPA, it is a weakly dominant strategy to submit a bid equal to the bidder�s

type. Since the auction is e¢ cient, bidder w with type v wins if and only if bidder s

has a type below k2(v) = maxf�s; vg.

2.2 Dispersion and price sensitivity

In the second part of Maskin and Riley (2000), the bounds on bidding strategies

help them to infer that the FPA is more pro�table than the SPA if Fs is either a

�shifted�or a �stretched�version of Fw. What is less obvious is that their additional

assumptions in fact imply

fw(v) � fs(x) for all x 2 [v; r(v)] and all v 2 Sw: (1)

Coupled with �rst order stochastic dominance, fw(v) � fs(v) implies Fw �hr Fs.
Thus, hazard rate dominance is implicit in Maskin and Riley (2000).

I will explicitly assume that (1) is satis�ed. As just mentioned, (1) is weaker than

the assumptions in Maskin and Riley (2000). Nevertheless, it is su¢ cient for the main

result. Moreover, the assumption has a clear and intuitive economic interpretation.

Bulow and Roberts� (1989) analogy to monopoly pricing is useful to interpret

(1) and understand its implications. Thinking of v as a price, the survival function

qi(v) � 1�Fi(v) has the properties of a demand curve in a market with a continuum
of consumers of mass one, distributed on Si, i = s; w. Since Fw �st Fs, qs(v) � qw(v).
The slope of the demand curve is q0i(v) = �fi(v), i = s; w. Thus, condition

(1) implies that the weak bidder�s demand curve is steeper than the strong bidder�s

6A non-serious bid is made only if bidder w�s type, v, is su¢ ciently far below �s. A non-serious
bid wins with probability 0 = Fs(�s). Since �s 2 [v; r(v)] when v � �s, letting k1(v) = �s for all v
that submit non-serious bids implies that k1(v) 2 [v; r(v)] for all v 2 Sw.
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demand curve. At the other end of the [v; r(v)] interval, recall that at price r(v) and v,

respectively, demand would be the same in the markets described by demand curves

qs and qw. Hence, (1) also means that the weak bidder�s demand curve is steeper at

comparable quantities. Since fw(v) � fs(x) for all x 2 [v; r(v)], the implication is that
the weak bidder�s demand curve at a given price is steeper than the strong bidder�s

demand curve on a range of prices above v.7 Figure 2 illustrates the assumption.

In summary, the weak bidder�s demand responds more in absolute terms to a

marginal price change. In this sense, the market with the lowest willingness-to-pay

is also the most price sensitive. The relative change in demand following a marginal

price increase can be measured by����q0i(v)qi(v)

���� = fi(v)

1� Fi(v)
and "i(v) =

����vq0i(v)qi(v)

���� = vfi(v)

1� Fi(v)
: (2)

Since Fw �hr Fs, the weak bidder is also more price sensitive than the strong bidder
in relative terms, at comparable prices. For future reference, de�ne marginal revenue

evaluated at price v as

Ji(v) = v

�
1� 1

"i(v)

�
= v � 1� Fi(v)

fi(v)
:

The interpretation of Ji as marginal revenue is due to Bulow and Roberts (1989).

Myerson (1981) refers to Ji as bidder i�s virtual valuation. Hazard rate dominance

implies that Jw(v) � Js(v) for all v 2 C.
It is also instructive to examine the implications of fw(v) � fs(r(v)). To do so,

another small detour into order statistics is useful. The following orders of �spread�

are relevant for the current paper, in descending order of importance:

1. Fw is smaller than Fs in the dispersive order, Fw �disp Fs: r(v) � v is increasing
on Sw.

2. Fw is smaller than Fs in the star order, Fw �� Fs: r(v)v is increasing on Sw.

3. Fw is smaller than Fs in the convex transform order, Fw �c Fs: r(v) is convex on
Sw.

7Recall that both markets has a set of consumers of mass one, so q 2 [0; 1] on both markets.
With the assumption that demand in the strong market is more �spread out�, or �s��s � �w��w,
it must necessarily be the case that ps is steeper than pw locally, for some q. Thus, (1) can be viewed
as a regularity condition, roughly saying that ps is steeper than pw globally.
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Figure 2: Demand curves for �w = �s = 0.

Note: The demand curve of bidder s is �atter on the fat segment than bidder w �s demand

curve at the highlighted point (Panel a). Bidder s has a steeper inverse demand curve (b).

Shaked and Shanthikumar (2007) review these stochastic orders.8 In words,

Fw �disp Fs if the distance between the types that are at the same percentile is
increasing. Thus, geometrically, the dispersive order means that the horizontal di¤er-

ence between Fs and Fw (or qw(p) and qs(p)) is increasing. Since r(v) = F�1s (Fw(v)),

r0(v) =
fw(v)

fs(r(v))
;

and Fw �disp Fs if and only if fw(v) � fs(r(v)) for all v 2 Sw, or r0(v) � 1. Thus, (1)
implies dispersion, which is therefore also implicit in Maskin and Riley (2000). The

dispersive order has some intuitive properties. If Fs is more disperse than Fw then

it has larger variance and wider support, �s � �s � �w � �w. I write Fw =disp Fs if
r(v)� v is constant.
The dispersive order, star order, and convex transform order have natural eco-

nomic interpretations, all related to various notions of price sensitivity. A discussion

of these interpretations are postponed until Section 6, however.

8The literature on the star order and convex transform order should be read with some care. In
this literature, it is often assumed that �s = �w = 0, and a number of results rely on this assumption
(for example, if �s = �w = 0 then �c=)��). In the current paper, �s and �w are allowed to be
strictly positive.
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Although Fw �disp Fs is required, it will sometimes be assumed that Fs is not too
much more disperse than Fw. For instance, it is possible that Fw �disp Fs and yet
Fs �� Fw. The assumption that Fs �� Fw plays a role in Kirkegaard�s (2010) analysis
of favoritism in asymmetric all-pay auctions. Mares and Swinkels (2010) consider

favoritism in procurement auctions in which the buyer has a preference for a speci�c

bidder (seller). Translating their procurement setting into a standard auction, one of

their assumptions is that Fs �c Fw.

2.3 An interpretation of the joint assumptions

Since condition (1) implies that Fw is steeper than Fs on C, the vertical distance

between the distributions, Fw � Fs, is increasing on C. Dispersion implies that the
horizontal di¤erence between the distributions is increasing as well. Thus, the ab-

solute di¤erence between bidders is larger the larger the stakes are.

First order stochastic dominance implies that Fw(v)
Fs(v)

� 1 for all v 2 C. Reverse
hazard rate dominance requires the ratio Fw(v)

Fs(v)
to be decreasing on C. Thus, as the

stakes get higher, the relative di¤erence between the bidders diminishes.

In summary, the auction environment is one in which the absolute di¤erence be-

tween bidders grows but the relative di¤erence diminishes as the stakes get higher.

Given the interpretation of (1) in terms of price sensitivity, the joint assumptions

are similar to the assumption used in the textbook explanation of third degree price

discrimination that the market with the lowest willingness-to-pay is also the most

price sensitive. Recall that the reason for student discounts, say, is not that students

have lower demand or willingness-to-pay per se, but rather that their demand responds

more to a price change. The common assumption is that low demand and high price

sensitivity go hand-in-hand. It is an assumption of this nature that is made here.

3 Analysis and the main result

A mechanism that �favors�the more price sensitive bidder a bit might be expected

to be more pro�table than one that does not. In a SPA, the bidder with the highest

type or willingness-to-pay wins. In contrast, the weak bidder wins more often in a

FPA, which is reminiscent of a monopolist o¤ering a price discount on the weak, price

sensitive, market. However, the price discount may be too steep.

11



-

6

vw

vs

�w

�s

�w

�s

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

��

��

��

��

��

��

��r(v)

�(v)

45
a

k1(v)

-

6

vw

vs

�w

�s

�w

�s

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

%
%
%
%
%
%
%
%
%
%
%
%
%
%%

r(v)

�(v)

45
a

(a) �s = �w (b) �s > �w

Figure 3: Comparing di¤erent mechanisms.
Note: The allocation in the FPA, k1(v), (the dashed curve in Panel a) falls between the

two thick curves, the lower of which describes the allocation in the SPA, k2(v).

Maskin and Riley (2000) discuss this point, using a �gure similar to Figure 3,

above. To begin, consider the simpler case with �w = �s = �, as in Figure 3a.

Recall that the weak bidder has higher marginal revenue than the strong bidder for

comparable types, or Jw(v) � Js(v) for all v 2 C. However, when v is close to �w, it
is also the case that Jw(v) < Js(r(v)). For instance, Jw(�w) = �w < �s = Js(�s) =

Js(r(�w)). Assume for the moment that Ji is strictly increasing, i = s; w, and let

�(v) = J�1s (Jw(v)) (whenever it exists) denote the type the strong bidder must have

for his marginal revenue to coincide with that of the weak bidder. By hazard rate

dominance, �(v) � v, but when v is su¢ ciently large, �(v) < r(v). In an optimal

auction (subject to the constraint that the object is sold), the weak bidder should

win if and only if the strong bidder�s type is below �(v), thereby ensuring that the

object is allocated to the bidder with the highest marginal revenue.

In a FPA, bidder w with type v wins if his opponent�s type is below k1(v), which

is somewhere in the interval [v; r(v)]. In contrast, the SPA is e¢ cient, k2(v) =

maxf�s; vg. Thus, �xing bidder w�s type at v, the di¤erence between a FPA and

SPA is that the weak bidder wins in the former but loses in the latter if the strong
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bidder�s type is in [v; k1(v)] � [v; r(v)] (a vertical distance in Figure 3). If k1 � �,

the allocation in the FPA is more pro�table; the weak bidder is eating his way into

an area where his marginal revenue exceeds the strong bidder�s marginal revenue.

However, if k1 > �, the trend reverses �the weak bidder is now winning too often,

beating the strong bidder even though he has a comparably low marginal revenue.

This occurs when v is close to �w, since k1(�w) = r(�w) = �s, but �(�w) < �s.

Hence, depending on the strong bidder�s actual type, switching from the SPA to the

FPA may or may not increase the winner�s marginal revenue. Therefore, Maskin

and Riley (2000) conclude that mechanism design is of no use in determining which

auction generates more revenue.

However, the concern is with expected revenue. All that is required is to determine

which of the two con�icting e¤ects dominates in expectation. Mechanism design can

in fact be used to address this question, as follows.

Myerson (1981) shows that expected revenue in any mechanism is equal to the

expected value of the winning bidder�s marginal revenue, less any rent earned by

the lowest types. Starting with this principle, the key step is to formulate expected

revenue to capture the trade-o¤ discussed above. Speci�cally, the trick is to write the

expected value of the winner�s marginal revenue as the expected value of a conditional

expectation.

Consider some mechanism where bidder w with type v wins if and only if bidder

s�s type is below k(v), and let uki (�i) denote bidder i�s expected utility if his type is

�i, i = s; w. If bidder w loses (wins) with probability one, then k(v) = �s (k(v) = �s).

Then, expected revenue can be written

ERk =

Z �w

�w

�
Jw(v)Fs(k(v)) +

Z �s

k(v)

Js(x)dFs(x)

�
dFw(v)� ukw(�w)� uks(�s): (3)

The term in parenthesis is the expected value of the winning bidder�s marginal rev-

enue, conditional on the weak bidder�s type being v.

Equation (3) is the counterpart to Lemma 4.1 and Lemma 4.2 in Maskin and Riley

(2000), in which they derive expressions for revenue in the two particular auctions

they study. The proofs of these lemmata are somewhat technical and o¤er little

economic insight.

Whether the auction is a FPA or SPA, the weak bidder wins with probability zero

and earns zero rent if his type is �w. The same is true for the strong bidder with type

13



�s in the case where �s = �w.

However, the strong bidder earns positive rent if �s > �w. In this case,

u2s(�s) =

Z �s

�w

(�s � v)dFw(v) (4)

in the SPA, assuming that bidders use the weakly dominant strategy of submitting a

bid that equals the bidder�s type. In a FPA, the strong bidder with type �s receives

expected payo¤ of

u1s(�s) = (�s � b�)Fw(b�) (5)

where b� is the bid submitted by the strong bidder with type �s, where b� 2 (�w; �s).
Such a bid wins with probability Fw(b�) because the weak bidder does not bid above

b� if his type is at or below b�. Thus, the strong bidder with type �s prefers the SPA

if �s > �w. Subtracting (5) from (4) yields

u2s(�s)� u1s(�s) =
Z b�

�w

(b� � v) dFw(v) +
Z �s

b�

(�s � v) dFw(v): (6)

Since bidder w wins more often in the FPA than the SPA, k1(v) � k2(v). Let

D(vjk1; k2) =
Z k1(v)

k2(v)

(Jw(v)� Js(x)) dFs(x): (7)

D(vjk1; k2) measures the consequences of the change in allocation for a �xed value of
v �the seller obtains Jw(v) by sacri�cing Js(x) when he moves from a SPA to a FPA.

From (3),

ER1 � ER2 =
Z �w

�w

D(vjk1; k2)dFw(v) + u2s(�s)� u1s(�s): (8)

The allocation is the same in both auctions if bidder w�s type falls below b� since he

loses with probability one (k1(v) = k2(v) = �s). Thus, D(vjk1; k2) = 0 for v 2 [�w; b�].
Using (6), (8) can then be expanded to

ER1 � ER2 =

Z b�

�w

(b� � v) dFw(v) +
Z �s

b�

(�s � v +D(vjk1; k2)) dFw(v)

+

Z �w

�s

D(vjk1; k2)dFw(v): (9)
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The �nal step of the proof is to show that each term is positive by showing that

the function under the integration sign is positive for every value of v in the relevant

range. This is trivially true for the �rst term. It turns out to also be true for the last

term, because (1) implies that D is positive in this case. However, for v 2 [b�; �s), D
may be negative. The reason is illustrated in Figure 3b. When �w < �s it is possible

that Jw(�w) < Js(�s), meaning that the weak bidder should ideally never win if his

type is close to �w, yet he may do so in a FPA. However, the extra rent the seller

appropriates from the strong bidder with type �s in the FPA is more than enough

to compensate for this particular drawback. The case with �s > �w (no overlap) is

handled in a similar manner.

Theorem 1 Assume Fw �rh Fs and condition (1) holds. Then, the FPA generates
strictly higher expected revenue than the SPA.

Proof. Assume �rst that �s � �w. If v 2 [�s; �w] then k1(v) 2 [v; r(v)] and k2(v) = v,
in which case

D(vjk1; k2) = Jw(v)(Fs(k1)� Fs(v)) + k1(1� Fs(k1))� v(1� Fs(v))

= �1� Fw(v)
fw(v)

(Fs(k1)� Fs(v)) + (k1 � v) (1� Fs(k1))

=
1� Fs(k1)
fw(v)

�
fw(v)(k1 � v)�

1� Fw(v)
1� Fs(k1)

(Fs(k1)� Fs(v))
�

� 1� Fs(k1)
fw(v)

[fw(v)(k1 � v)� (Fs(k1)� Fs(v))]

=
1� Fs(k1)
fw(v)

Z k1

v

(fw(v)� fs(x)) dx � 0;

where the �rst inequality follows from Fs(k1) � Fw(v) when k1(v) � r(v), and the

second inequality from condition (1). Since k1(v) < r(v) almost always, the �rst

inequality is strict almost always. If v 2 [b�; �s] then k2(v) = �s, while k1(v) 2
[�s; r(v)]. Hence,

�s � v +D(vjk1; k2) = �s � v + Jw(v)Fs(k1) + k1(1� Fs(k1))� �s

=
1� Fs(k1)
fw(v)

�
fw(v)(k1 � v)�

1� Fw(v)
1� Fs(k1)

Fs(k1)

�
� 1� Fs(k1)

fw(v)

Z k1

v

(fw(v)� fs(x)) dx;
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which is positive, by assumption. The last step uses the fact that fs(x) = 0 for

x 2 [v; �s). In conclusion, every term in (9) is positive (and strictly positive almost

always). Hence, the FPA is strictly more pro�table than the SPA.

If �s > �w (no overlap),

u2s(�s)� u1s(�s) =

Z �w

�w

(�s � v)dFw(v)� (�s � b�)Fw(b�)

=

Z b�

�w

(b� � v) dFw(v) +
Z �w

b�

(�s � v) dFw(v):

Since k2(v) = �s and k1(v) 2 [�s; r(v)], with k1(v) = �s for v � b�,

ER1 � ER2 =

Z �w

b�

D(vjk1; k2)dFw(v) + u2s(�s)� u1s(�s)

=

Z b�

�w

(b� � v) dFw(v) +
Z �w

b�

(�s � v +D(vjk1; k2)) dFw(v):

The remainder of the proof is identical to the �s � �w case. Maskin and Riley (2000)
point out that if �s is much larger than �w, the equilibrium of the FPA has the strong

bidder always bidding �w and winning. This case corresponds to b� = �w.

4 Intermediate dispersion, mixtures, and rank-mixtures

The purpose of this section is to illustrate both the scope and limitations of Theorem

1. Maskin and Riley�s (2000) two propositions in which the FPA dominates are shown

to be corollaries of Theorem 1. Their propositions turn out to be useful benchmarks,

because they lie on opposite boundaries of Theorem 1�s �domain�.

The section begins with some preliminary observations related to the conditions

in Theorem 1. First, condition (1) is particularly simple to check if fs is monotonic.

The proof of the following Lemma is trivial and is therefore omitted.

Lemma 1 Condition (1) is satis�ed if:

1. fs is increasing on Ss and fw(v) � fs(r(v)) for all v 2 Sw, or

2. fs is decreasing on Ss, fw(v) � fs(v) 8v 2 C, and fw is decreasing on [�w; �s).
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For any v 2 C;

d

dv

�
Fw(v)

Fs(v)

�
=
d

dv

�
Fs(r(v))

Fs(v)

�
/ fs(r(v))r

0(v)

Fs(r(v))
� fs(v)

Fs(v)
: (10)

Dispersion requires r0(v) � 1. Thus, if Fs is locally log-convex ( fs(v)Fs(v)
is locally increas-

ing) the right hand side may easily be positive, thereby violating Fw �rh Fs. Thus,
the dual assumption of Fw �disp Fs and Fw �rh Fs is more likely to be satis�ed when
Fs is log-concave, when C 6= ;. Incidentally, Lebrun (2006) has shown that equilib-
rium in the FPA is essentially unique if �s > �w, or if �s = �w and Fi is strictly

log-concave close to �s, i = s; w. Maskin and Riley (2000) assume Fs is log-concave

in their examples in which the FPA dominates. This assumption will typically also

be imposed here, but the following example shows that it is not necessary.

Example 0 (concave vs. convex): Assume Fw is concave and Fs is convex, with

fw(�w) � fs(�s). Fs need not be log-concave. Note that r(v) must be concave, or

Fs �c Fw. The curvature assumptions imply Fw �lr Fs and therefore Fw �rh Fs.
Condition (1) is satis�ed since densities are monotonic and fw(�w) � fs(�s). N

At times, a stronger assumption will be imposed, namely that Fs(ev) is log-

concave. Since Fs(ev) is log-concave if and only if the function v
fs(v)
Fs(v)

is decreasing,

log-concavity of Fs(ev) requires that the reverse hazard rate falls su¢ ciently rapidly.

Both Fi(ev) and Fi(v), i = s; w, play a role in this paper, in part because

Fw(v) �� Fs(v)() Fw(e
v) �disp Fs(ev):9 (11)

For any � 2 (�s; �s), de�ne

F ts(vj�) =
Fs(v)

Fs(�)
; v 2 [�s; �]: (12)

Since F ts(�j�) has the same reverse hazard rate as Fs, F ts(�j�) �rh Fs. Thus, F ts(�j�)
may serve as a benchmark against which other distributions can be compared. Indeed,

in one of Maskin and Riley�s (2000) examples, Fw can be thought of as a truncation of

Fs (see below). The next result links dispersion and reverse hazard rate dominance.

9Consider two random variables, X and Y . By Theorem 4.B.1 in Shaked and Shanthikumar
(2007), X �� Y () logX �disp log Y . The relationship in (11) comes from the fact that if X is
distributed according to F (x) then logX is distributed according to F (ex).
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Lemma 2 Assume the upper end-point of Fw�s support is �w 2 (�s; �s). Then:

1. If Fs is log-concave then F ts(�j�w) �disp Fs; if F ts(�j�w) �disp Fw then Fw �rh Fs.

2. If Fs(ev) is log-concave then F ts(�j�w) �� Fs; if F ts(�j�w) �� Fw then Fw �rh Fs.

Proof. Assume �rst that Fs is log-concave. F ts can be written in one of two ways,
F ts(vj�w) =

Fs(v)
Fs(�w)

or F ts(vj�w) = Fs(rt(v)). Thus, Fs(rt(v)) =
Fs(v)
Fs(�w)

and so

rt0(v) =
1

Fs(�w)

fs(v)

fs(rt(v))
=
fs(v)

Fs(v)

Fs(r
t(v))

fs(rt(v))
� 1

by log-concavity, as rt(v) � v. Thus, F ts(�j�w) �disp Fs. Next, F ts(�j�w) �disp Fw =)
Fw �st F ts(�j�w) since the upper bound of the supports, �w, are the same. Thus,
Sw � C. Since F ts(�j�w) �disp Fw, fw(v) � f ts(xj�w) must hold for any v 2 Sw, where
x satis�es Fw(v) = F ts(xj�w). Since Fw �st F ts(�j�w), x � v. Thus, for any v 2 C,

fw(v)

Fw(v)
=

fw(v)

F ts(xj�w)
� f ts(xj�w)
F ts(xj�w)

=
fs(x)

Fs(x)
� fs(v)

Fs(v)
;

where the second inequality comes from the log-concavity of Fs. This proves the �rst

part of the Lemma. By (11) and the assumed log-concavity of the function Fs(ev),

the proof of the �rst part can be applied to prove the second part.

4.1 Examples on the boundary of Theorem 1

To provide a �rst illustration of Theorem 1, consider the following three examples.

Each is at a �boundary�of Theorem 1. Examples 1 and 3 are somewhat generalized

versions of the models examined in Maskin and Riley (2000).

Example 1 (horizontal shifts): Assume that Fs is convex and that Fw is ob-

tained by shifting Fs to the left. That is, Fw(v) = Fs(v + a), for v 2 [�w; �w], where
a = �s � �w = �s � �w > 0 and �w � 0. Since r(v) = v + a, Fw =disp Fs. By Lemma
1, (1) is satis�ed. Assume that Fs is log-concave, which implies that

fw(v)

Fw(v)
=
fs(v + a)

Fs(v + a)
� fs(v)

Fs(v)
, for all v 2 C.

Hence, both assumptions of the theorem are satis�ed. N
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Remark 1: Maskin and Riley (2000) assume that Jw(v) � 0 for v close to �w.

This assumption is not necessary here; the bounds on revenue are tighter because (9)

makes better use of the fact that the seller appropriates more rent from the strong

bidder with type �s in the FPA. On the other hand, Maskin and Riley (2000) allow

for a mass point at �i, or Fi(�i) � 0. 4

Example 2 (vertical shifts): Assume Fs and Fw are concave and that Fw is a

vertical shift of Fs on C 6= ;. That is, Fw(v) = Fs(v) + 1 � Fs(�w) for v 2 [�s; �w],
where �s > �w > �s > 0. On [�w; �s), Fw is some (unspeci�ed) concave function,

with �w � 0. For v 2 C,
Fw(v)

Fs(v)
=
1� Fs(�w)
Fs(v)

+ 1;

which is decreasing. Hence, Fw �rh Fs. By concavity, fw(v) � fs(x) for all x 2 [v; �s],
implying that (1) is satis�ed as well. N

Remark 2: Comparing Examples 1 and 2, the former satis�es fw(v) = fs(r(v)) and

the latter fw(v) = fs(v) on C. Hence, (1) is satis�ed �with equality�at one of the

endpoints of the interval [v; r(v)]. 4

Example 3 (truncations and stretches): Assume Fs is log-concave and that

Fw is a truncation of Fs, i.e. Fw = F ts as de�ned earlier. It has already been

established that F ts �rh Fs. By log-concavity,

fw(v)

Fw(v)
=
fs(v)

Fs(v)
� fs(x)

Fs(x)

for any x 2 [v; r(v)]. For any x in this range, Fs(x) � Fw(v). The above inequality
then necessitates that fs(x) � fw(v) for all x 2 [v; r(v)], implying (1). N

Remark 3: Maskin and Riley�s (2000) set-up is slightly di¤erent. They say that Fs is

obtained by �stretching�Fw, so that Fs(v) = �Fw(v) on [�w; �w], for some � 2 (0; 1).
This leaves the problem of what Fs looks like on [�w; �s], and they are then forced to

make restrictive assumptions on this as well (compare (4.13) in their paper to (1) in

the current paper). Unfortunately, their conditions rule out the much-studied class

of convex power distributions, where Fs(v) = (v=�s)
s for some 
s > 1, v 2 [0; �s],
and all other distribution functions for which fs(�s) = 0. In contrast, the power

distribution satis�es all the assumptions in Example 3 of the current paper. 4
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The more interesting and challenging case is when C 6= ; since both conditions in
Theorem 1 then comes into play. Therefore, consider Fs �xed and assume �w > �s.

For any � 2 (�s; �s), let F hs (vj�) = Fs(v+�s��) denote a horizontal and left-ward
shift of Fs, such that the new distribution�s support ends at �. The weak bidder�s

distribution in Example 1 takes this form. Let �h denote the lowest end-point of

this distribution�s support. Technically, it is possible that �h < 0 (depending on �),

in which case the distribution does not satisfy the assumptions made in Section 2.

Nevertheless, it remains a useful benchmark. Let rh(vj�) = F�1s (F hs (vj�)). Similarly,
let F vs (vj�) denote a vertical shift of Fs (as in Example 2), with the added requirement
that f vs (vj�) = fs(�s) for all v 2 [�v; �s]. Here, it is also possible that �v < 0. Finally,
as in Lemma 2, let rt(vj�) = F�1s (F ts(vj�)).
Whenever Fs is log-concave, F hs (�j�) �rh F ts(�j�) and F vs (�j�) �rh F ts(�j�). Since

the upper end-points of the supports coincide, F ts(vj�) � minfF hs (vj�); F vs (vj�)g,
for all v 2 [�s; �]. Next, consider a distribution function, Fw(v), with support

[�w; �w], where �w 2 (�s; �s) and �w 2 [maxf0; �h; �vg; �s]. Assume that Fw(v) �
minfF hs (vj�w); F vs (vj�w)g for all v 2 Sw and Fw(v) � F ts(vj�w) for all v 2 C. Let
Fw(�w) denote the set of distributions with these properties. It is now possible to
more precisely characterize Theorem 1�s �domain�.

Proposition 1 Fix Fs and �w 2 (�s; �s). Assume Fs is log-concave. If the conditions
in Theorem 1 are satis�ed then Fw 2 Fw(�w).

Proof. Assume Fw(x) < F ts(xj�w) for some x 2 [�s; �w). Then, Fw(�w) = F ts(�wj�w)
necessitates fw(v) > f ts(vj�w) for some v 2 [x; �w] where Fw(v) < F ts(vj�w). Since
F ts(�j�w) has the same reverse hazard rate as Fs, Fw violates the �rst condition in
Theorem 1.

If Fw(x) > F hs (xj�w) for some x 2 (�w; �w) then Fw cannot be less disperse than
F hs and still satisfy Fw(�w) = F hs (�wj�w). Since F hs =disp Fs, condition (1) is then
violated. For similar reasons, condition (1) is violated if Fw(x) > F vs (xj�w) for some
x 2 (�w; �w).
Proposition 1 means that Theorem 1 cannot be used to compare revenue in the

FPA and SPAs unless Fw �lies between�a truncation and a shift of Fs.10 The re-

mainder of the section describes environments where a ranking can be obtained.
10There are two distinct reasons why it is di¢ cult to extend the revenue ranking to Fw =2 Fw(�w).

First, if Fw lies anywhere below F ts(�j�w) then reverse hazard rate dominance is violated, and
behavior in the �rst-price auction becomes harder to describe. Second, if Fw is anywhere above
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4.2 fs is monotonic

If fs is increasing then F vs (vj�w) �st F hs (vj�w). The opposite holds if fs is decreasing.
In either case, Lemma 1 makes it simpler to check condition (1).

Corollary 1 (Intermediate dispersion) Fix Fs and �w 2 (�s; �s). Assume Fs is
convex but log-concave. Then, the FPA yields strictly higher expected revenue than

the SPA if F ts(�j�w) �disp Fw �disp F hs (�j�w) =disp Fs.11

Proof. Lemma 1 implies (1) is satis�ed. Lemma 2 establishes Fw �rh Fs.
Figure 1 in the introduction illustrates Corollary 1. It applies if, for instance,

Fw(v) =
Fs(v + �s � �w)
Fs(�w + �s � �w)

; v 2 [�w; �w]; (13)

such that Fw is obtained by �rst shifting Fs leftward, and then truncating it.12 Maskin

and Riley (2000, p. 423) allude to this possibility, but do not provide any details or

proof.

Using the logic of Proposition 1, Theorem 1 is violated if either Fw �disp F ts(�j�w)
or F hs (�j�w) �disp Fw. Thus, Corollary 1 signi�es that intermediate dispersion of Fw,
compared to the benchmarks, are �almost�necessary and su¢ cient for the conditions

of Theorem 1 to hold when Fs is convex and log-concave. The quali�er is due to the

fact that the dispersive order is not a complete order.

Corollary 1 relates Fw to the benchmark distributions F hs (vj�w) and F ts(vj�w). It is
also of interest to compare Fw directly to Fs. In the following, the assumption that Fs
is log-concave is strengthened. It is then possible to describe qualitative relationships

between Fw and Fs that are su¢ cient for the FPA to dominate the SPA. Recall that

if Fw �disp Fs, then the absolute distance between r(v) and v is increasing. The
implication of the next result is that the FPA is superior if the asymmetry between

bidders do not increase too fast with type, or r(v)
v
is decreasing.

minfFhs (vj�); F vs (vj�)g then condition (1) is not strong enough. This is a more manageable problem,
as (1) only needs to be satis�ed �on average�. See Section 4.3 for a strengthening of Theorem 1.

11The assumptions in the proposition imply that �w 2 [�hw; �s]. It should be understood from
the description of the model in Section 2 that it is also required that �w � 0.

12Write Fw(v) = F ts(br(v)j�w). If Fw is described by (13) then br(v) � v + �s � �w and
br0(v) = fs(v + �s � �w)

Fs(v + �s � �w)
Fs(br(v))
fs(br(v)) � 1;

by log-concavity. Thus, F ts(�j�w) �disp Fw. The proof that Fw(v) �disp Fhs (�j�w) is similar.
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Corollary 2 Assume Fs(v) is convex and Fs(ev) is log-concave. Then, the FPA yields
strictly higher expected revenue than the SPA if Fw �disp Fs �� Fw.13

Proof. Assume �w � �s. By Lemma 2, Fs �� Fw implies F ts(�j�w) �� Fs �� Fw and
therefore Fw �rh Fs. Since Fw �disp Fs and Fs is convex, condition (1) is satis�ed
as well. The result also holds if �w < �s, since only condition (1) is required in that

case.

A counterpart to Corollary 2 exists when Fs is concave.

Corollary 3 Assume Fs is concave and that Fw(v) = G(Fs(v)), v 2 [�s; �w], with
�w > �s and G

0(�) � 1. If G(x)=x is decreasing then the FPA yields strictly higher

expected revenue than the SPA. G(x)=x is decreasing if G is concave.14

Proof. Fw(v)
Fs(v)

= G(Fs(v))
Fs(v)

is decreasing by assumption, implying Fw �rh Fs. Since
fw(v) = G

0(Fs(v))fs(v) � fs(v), Lemma 1 ensures condition (1) is satis�ed.
For both concave and convex Fs, the �rst price auction dominates when Fw satis�es

a natural regularity condition. By Lemma 2, rt0(vj�w) � 1 = rh0(vj�w) for all v 2 C
when Fs is log-concave. Likewise, f ts(vj�w) � f vs (vj�w) for all v 2 C.

Proposition 2 (Mixtures and rank-mixtures) Fix Fs and �w 2 (�s; �s). Then,
the FPA yields strictly higher expected revenue than the SPA if either:

1. Fs is convex but log-concave and r(vj�w) is steeper than rh(vj�w) but �atter
than rt(vj�w); r0(vj�w) � rh0(vj�w) for all v 2 Sw and r0(vj�w) � rt0(vj�w) for
all v 2 C.

2. Fs is concave and Fw is steeper than F vs but �atter than F
t
s ; fw(v) � f vs (vj�w)

for all v 2 Sw and fw(v) � f ts(vj�w) for all v 2 C.

13If Fs is a convex power distribution with �s = 0 then lnFs(e
v) is linear and the conditions in

Theorem 1 are satis�ed if and only if r(0) = 0, r0(v) � 1, and r(v)=v is decreasing. It is possible
to construct examples where fs is increasing but fw has a peak. Assume fs(v) = 2v, v 2 [0; 1] and
r(v) = 4ve�v, v 2 [0; 0:357]. Then, fw(v) = 2r(v)r0(v) is non-monotonic. This result should be
contrasted with Maskin and Riley�s (2000) two models, in which fw never has more peaks than fs
(see remark 4, below).

14The transformation in Example 3 is linear and thus a special case of the one in Corollary 3.
However, with the linear transformation in Example 3 it is possible to weaken the assumption that
Fs is concave and instead assume only that it is log-concave.
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Proof. For the �rst part, the assumptions that r0(vj�w) � rh0(vj�w) = 1 and Fs
is convex mean that condition (1) is satis�ed, by the �rst part of Lemma 1. The

assumptions in the proposition also imply that rt(vj�w) � r(vj�w) � rh(vj�w) on C.
Thus, for v 2 C,

fw(v)

Fw(v)
=
fs(r(vj�w))
Fs(r(vj�w))

r0(vj�w) �
fs(r

t(vj�w))
Fs(rt(vj�w))

r0(vj�w) �
fs(r

t(vj�w))
Fs(rt(vj�w))

rt0(vj�w) =
fs(v)

Fs(v)
;

where the �rst inequality comes from r(vj�w) � rt(vj�w) and the log-concavity of Fs.
The second inequality comes from r0(vj�w) � rt0(vj�w).
By Lemma 1, the concavity of Fs and fw(v) � f vs (vj�w) � fs(maxfv; �sg) for

all v 2 Sw ensures condition (1) is satis�ed. Since fw(v) � f ts(vj�w) for all v 2 C,
Fw �st F ts(�j�w) and therefore

fw(v)

Fw(v)
� f ts(vj�w)
F ts(�j�w)

=
fs(v)

Fs(v)
;

thereby proving Fw �rh Fs.
The second part of Proposition 2 applies if Fw is a convex combination (a mixture)

of F vs and F
t
s on C, (with an appropriate di¤erentiable extension on Sw=C). Similarly,

the �rst part applies if Fw is a �rank-mixture�of F hw and F
t
w. Clearly, this part of

Proposition 2 has a similar �avor as Corollary 1. However, neither implies the other.

4.3 fs is non-monotonic

Example 3 does not require fs to be monotonic. In this sub-section it is demonstrated

that a strengthening of Theorem 1 can be used in other environments with non-

monotonic densities. A counterpart to Corollary 1 is also derived.

To begin, it is clear from the proof of Theorem 1 that condition (1) is not necessary;

it can be replaced with the weaker condition thatZ k1(v)

v

(fw(v)� fs(x)) dx � 0 for all v 2 Sw.15 (14)

Assume from now on that Fs(ev) is convex but log-concave.16 Hence, vfs(v) is

15The inequality is satis�ed for any v < b�, since k1(v) = �s and fs(x) = 0 for all x 2 [v; k1(v))
in that case.

16If F is the uniform distribution then F (ev) is both strictly convex and strictly log-concave
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increasing but vfs(v)
Fs(v)

is decreasing. The density need not be monotonic.

Lemma 3 Assume Fs(ev) is convex, Fw �� Fs, and Fw �rh Fs if C 6= ;. Then,
condition (14) is satis�ed.

Proof. Assume v 2 C. Since fw(v) = fs(r(v))r0(v), the left hand side of (14) equals

fs(r(v))r(v)

"
r0(v)

r(v)
(k1(v)� v)�

Z k1(v)

v

fs(x)x

fs(r(v))r(v)

1

x
dx

#
;

where the �rst term under the integration is less than one because vfs(v) is increasing

(since Fs(ev) is convex) and x � k1(v) � r(v) (since Fw �rh Fs). The sign of the
above expression is determined by the terms inside the square brackets, which is no

smaller than

r0(v)

r(v)
(k1(v)� v)�

Z k1(v)

v

1

x
dx = (k1(v)� v)

�
r0(v)

r(v)
� ln k1(v)� ln v

k1(v)� v

�
� (k1(v)� v)

�
r0(v)

r(v)
� 1
v

�
� 0;

where the �rst inequality is due to concavity of the ln function and the second to

Fw �� Fs. Hence, condition (14) is satis�ed. The argument is similar if v =2 C.

Example 4 (rescaling): Assume Fs(ev) is convex but log-concave. Assume Sw =h
�s


; �s



i
, where 
 > 1. Thus, either �s = �w = 0 or �s > �w > 0. Finally, assume

r(v) = 
v, which implies Fw =� Fs. If C 6= ;, then by Lemma 2, F ts �� Fs =� Fw
and therefore Fw �rh Fs. Lemma 3 implies condition (14) is satis�ed. Thus, the FPA
dominates the SPA. N

Remark 4: The di¤erence between Examples 3 and 4 is signi�cant. In the former,

the truncation changes the shape of the density. For example, fw may be monotonic

even if fs is not. In contrast, the rescaling in Example 4 preserves the shape of the

whenever �s > 0. Write Fs(v) = (1 � ")F (v) + "H(v), " 2 (0; 1), where F (v) is the uniform
distribution and H(v) is a distribution on Ss. Assume H has �nite density. If �s > 0, Fs(ev) is
then convex and log-concave when " is su¢ ciently small. Note that fs may have arbitrarily many
peaks. As another example, assume Fs is obtained by truncating a Normal distribution with mean
:5�s + :5�s. If �s > 0 and the variance is su¢ ciently large, then Fs(e

v) is convex and log-concave
(the truncated Normal distribution converges to the uniform distribution as the variance increases).
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density. The examples coincide only if Fs is a power distribution with �s = 0. There

are two ways of transforming Fs to get Fw; Fw can be written Fw(v) = G(Fs(v)) or

Fw(v) = Fs(r(v)). G is a linear transformation in Example 3. On the other hand, it

is r that is linear in Example 4.17

In Maskin and Riley�s (1985) �rst paper on asymmetric auctions, each bidder

has one of two types, �i or �i, �i > �i � 0, i = s; w. The probability that bidder

i has type �i is pi. They show that the FPA dominates the second price auction if

�w = �s = 0, �s > �w and ps = pw. Since a truncation would change the probabilities,

this model is inconsistent with a truncation. Instead, the model (and the conclusion)

is consistent with Example 4. As Maskin and Riley (1985) state, the FPA dominates

�when bidders have distributions with the same shape (but di¤erent supports).�

However, Examples 1 and 4 are intimately related. The di¤erence between bidders�

valuations is an additive term in Example 1, r(v) = v+a. Thus, Fw =disp Fs; r(v)�v is
constant because the dispersive order is location free. In Proposition 3, the di¤erence

is a multiplicative term, r(v) = 
v. Therefore, Fw =� Fs;
r(v)
v
is constant because

the star order is scale free. An extension of these models is considered in the next

section. For completeness, note that the convex transform order is scale and location

free; if r(v) = 
v + a then Fw =c Fs. 4

Let F rs (vj�w) denote a rescaling of Fs such that �s


= �w. A counterpart to

Corollary 1 can now be derived. Recall from Example 4 that F ts �� F rs =� Fs.

Proposition 3 Fix Fs and �w 2 (�s; �s). Assume Fs(ev) is convex but log-concave.
Then, the FPA yields strictly higher expected revenue than the SPA if F ts(�j�w) ��
Fw �� F rs (�j�w).

Proof. Since F ts(�j�w) �� Fw, Lemma 2 ensures Fw �rh Fs. Lemma 3 guarantees
condition (14) is satis�ed.

Proposition 3 applies if Fw is obtained by �rst scaling down Fs, and then truncating

it, Fw(v) =
Fs(
v)
Fs(
�w)

, where �w =
�s


, �w 2

�
�s


; �s



i
, and 
 � 1.

17Bagnoli and Bergstrom (2005, Section 5.3) write that a truncation is a �linear transformation�
of the original distribution function. Unfortunately, they appeal to a result that relies on r, not
G, being linear in order to �prove� their Theorem 9, which is erroneous. It is easy to construct
examples where their claims concerning log-convex functions are untrue.
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4.4 Other rankings

Obviously, the conditions in the Theorem are su¢ cient, but not necessary. Cheng

(2006) provides an example in which the FPA dominates, even though (1) is not

satis�ed. In Cheng�s (2006) example, distribution functions are power distributions

of the form Fi(v) = (v=�i)

i, v 2 [0; �i], with 
s > 
w > 0 and �s > �w > 0. When


s � 1, Theorem 1 applies whenever �s
w � �w
s. This restriction is violated in

Cheng�s (2006) model. However, by imposing another restriction on the parameters,

he is able to characterize bidding strategies explicitly and thus calculate expected

revenue. In particular, he hypothesizes linear bidding strategies and then �backwards

engineer� to get the conditions that provide such an outcome. Cheng (2006) also

extends the revenue ranking to situations with many weak and strong bidders.

Lebrun (1996) also considers power distributions, but he assumes �s = �w. In

this case it is immediately clear that Theorem 1 does not apply; the combination of

�rst order stochastic dominance and dispersion necessitates �s > �w. In fact, when

�s = �w, Lebrun (1996) shows that it is always the case that D(vjk1; k2) is negative
for v close to �s = �w, but positive for small values of v. Remarkably, Lebrun

(1996) is able to prove that, on balance, the FPA is more pro�table than the SPA

whenever 2
s
w � 1, as it is when both distributions are convex. However, his proof
relies heavily on the speci�c functional form of the distribution functions, and does

unfortunately not generalize.

Vickrey (1961) derives strategies and expected revenue in a model where bidder 1

draws a type from a uniform distribution with support [0; 1] while bidder 2�s type is

known to be a > 0 (his distribution is degenerate). The FPA is more pro�table than

the SPA as long as a � 0:43, with the reverse ranking obtaining otherwise. Vickrey�s
(1961) paper remains the only one to obtain theoretical results for cases where �rst

order stochastic dominance does not apply. Theorem 1 does not work because k1(v)

and k2(v) will cross in such cases.

Maskin and Riley (2000) presents a class of models in which the SPA dominates.

In that model, the two distribution functions share the same support, Fw has a

mass point at �w, and it is �atter than Fs. Maskin and Riley (1985) contains the

discrete counterpart to this model, with the same conclusion. Clearly, (1) is violated.

Returning to the monopoly analogy, Fw�s mass point in a sense implies that it is

no longer the case that two �markets�with the same mass of consumers are being

compared; the mass at �w never wins the auction and so might as well not have been
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there. In Figure 2(b), where �w = 0, the weak bidder�s inverse demand curve would

be steeper and hit the horizontal axis before the strong bidder�s inverse demand curve.

That is, the market with the lowest willingness-to-pay is the market that is the least

price sensitive. Favoring the weaker market would then be a mistake, which explains

why the FPA performs poorly in that set-up. See Cheng (2010) and Gavious and

Minchuk (2010) for more examples of situations in which the SPA dominates.

5 Multi-dimensional types

Example 1 can be interpreted as follows: Both bidders draw a valuation, v, from the

same distribution, Fw. For the weak bidder, this valuation constitutes his type. For

the strong bidder, however, it is only a component of his type. For instance, the strong

bidder may have additional uses of the object, or he may expect synergies between

existing objects and the object for sale. Alternatively, he may su¤er a negative

externality should the weak bidder win. Let the additional component be worth a

known constant a. The strong bidder�s willingness-to-pay is then us(v; a) = v + a,

a � 0. The model in Example 4 can be interpreted in a similar way, except the

di¤erence is multiplicative. Here, the strong bidder�s willingness-to-pay is us(v; 
) =

v
, 
 � 1. Examples 1 and 4 identify conditions under which the FPA dominates

the SPA. However, it is natural to ask whether this ranking extends if a or 
 is not

known. What if a or 
 is privately known and drawn from some distribution, G?

Here, the ranking will be shown to remain unchanged when G is non-degenerate.

However, a technical point must be addressed �rst. For the additive case, what

matters when describing the strong bidder is the distribution of the sum of the two

components, v and a. The distribution, Fs, of this summary type, x = v + a, is

characterized by the convolution of Fw and G. For the remainder of the section,

assumeG is a non-degenerate distribution with no mass-points, density g, and support

[�; �], 0 � � < � <1. Then, the density of the convolution of Fw and G is

fs(x) =

Z �

�

fw(x� z)g(z)dz; x 2 [�s; �s] (15)

where �s = �w + �; �s = �w + �, and fw(v) = 0 if v =2 Sw. It is important to note
that fs(�s) = fs(�s) = 0, which has two implications that are reviewed in turn.

First, fs(�s) = 0 violates the assumptions that are typically imposed to analyze
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the FPA. Nevertheless, this complication a¤ects only the known proofs of uniqueness,

such as that in Lebrun (2006). Existence of an equilibrium is still guaranteed, since the

proofs in Athey (2001) and Lebrun (1996) are una¤ected. Likewise, since equilibrium

can be characterized by a set of di¤erential equations (see e.g. Athey (2001)) the

properties of any equilibrium are una¤ected; it remains the case that k1(v) 2 [v; r(v)]
in any equilibrium. Thus, although the property that fs(�s) = 0 is unusual it does

not invalidate Theorem 1.18,19

Second, fs(�s) = fs(�s) = 0 implies fs(v) and vfs(v) are non-monotonic. Thus,

Lemma 1 and Lemma 3 are inadequate. In the following, a function is said to be

unimodal if it is monotonic or has an inverse U shape (it may have regions where it

is �at). If fs is unimodal but not monotonic, let bv denote the smallest type at the
peak, such that fs(bv) > fs(v) for all v < bv.
Lemma 4 Condition (1) is satis�ed if:

1. Fw is increasing on Sw and fw(v) � fs(r(v)) for all v 2 Sw, or

2. �w = �s, fs and fw are unimodal on Ss and Sw, respectively, fw(v) � fs(v) and
fw(v) � fs(r(v)) for all v 2 Sw, and bv � �w.

Proof. The assumptions in the �rst part imply fw(v) � fw(x) � fs(r(x)) for all

x 2 [�w; v] and any v 2 Sw. Hence, fw(v) � fs(z) for all z � r(v). The second part
follows from Lemma 1 if fs is monotonic. Hence, assume fs is not monotonic; bv is in
the interior of Ss. By assumption, bv 2 Sw. Since Fw �disp Fs, fw(v) � fs(r(v)) for all
v 2 [�w; r�1(bv)], an interval on which fs is increasing since r�1(bv) < bv. Thus, recalling
Lemma 1, condition (1) is satis�ed for all v 2 [�w; r�1(bv)]. Since fw(r�1(bv)) � fs(bv),
fw(bv) � fs(bv), and fw is itself unimodal, it must hold that fw(v) � fs(bv) for all
v 2 [r�1(bv); bv], and since fs attains its peak at bv, condition (1) must also be satis�ed
on the interval [r�1(bv); bv]. As in Lemma 1, for v > bv, fw(v) � fs(v) combines with
the monotonicity of fs on that region to ensure that (1) is satis�ed here as well.

18There are several ways in which the model could be perturbed to obtain fs(�s) > 0. One is
to introduce a negligible mass-point into G at a = �. Doing so causes the density fs to become
strictly positive at x = �s, but without introducing a mass-point into Fs. In the same vein, imagine
that the strong bidder�s preferences are derived as above with probability 1� ", but that his type is
drawn from some other distribution function on [�s; �s] with probability ", where " is an arbitrarily
small but strictly positive number.

19However, the weak bidder�s type must be one-dimensional. If his valuation is obtained by
convoluting two distributions the resulting density will be zero at �w, making it impossible to
satisfy condition (1).
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A density is unimodal if it is log-concave, for example.20 As documented by

Bagnoli and Bergstrom (2005) and An (1998), many common distributions have

log-concave densities. Mares and Swinkels (2010a) assume densities are log-concave

throughout their paper.

Since log-concavity is preserved under integration (Prékopa (1971, 1973), An

(1998) and Bagnoli and Bergstrom (2005)), the distribution F is log-concave if its

density is log-concave. Moreover, if f(ev) is log-concave, the function

F (ev) =

Z ev

�

f(x)dx =

Z v

ln�

f(ez)ezdz

is log-concave as well since it integrates a log-concave function. If f(ev) is log-concave,

then f(v) is also log-concave if it is increasing, but not necessarily if it is decreasing

(for instance, let f(v) = e�
p
v). In any case, f(v) is unimodal if f(ev) is log-concave.

There is a deep and well-known connection between log-concave density functions

and the dispersive order. Likewise, there is a less well-known but equally important

relationship between the log-concavity of f(ev) and the star order. These relationships

are explored next, in the additive and multiplicative models, respectively.

5.1 The additive model

A random variable, F , is said to be dispersive if the convolution of F and any other

distribution is more dispersive than F is. In other words, F is dispersive if adding

more noise makes the resulting distribution more disperse. A fundamental result due

to Droste and Wefelmeyer (1985), building on Lewis and Thompson (1981), says that

F is dispersive if and only if its density is log-concave. Thus, in the following it will

be assumed that fw is log-concave. It is then automatic that Fw �disp Fs.
If C 6= ; then for any v 2 C = [�w + �; �w],

Fs(v)

Fw(v)
=

Z minf�;v��wg

�

Fw(v � z)
Fw(v)

g(z)dz;

is increasing in v because Fw(v) is log-concave. Thus, Fw �rh Fs. Using tools from

20A function f is log-concave if f(�x1+(1��)x2) � f(x1)�f(x2)1�� for all x1; x2 in the support,
S, of f and all � 2 [0; 1]. As An (1998) emphasizes, if f is log-concave on S then the �extended�
function (with f(x) = 0 if x 2 RnS) is also log-concave on R. In the following, any reference to the
support of a log-concave function will therefore be suppressed
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total positivity, Miravete (2010) provides a di¤erent proof of this property under

slightly di¤erent conditions. A �rst extension of Example 1 can now be made.

Proposition 4 The FPA yields strictly higher expected revenue than the SPA in the
additive model if fw is increasing and log-concave.

Proof. Fw �rh Fs has already been established. Since Fw �disp Fs, Lemma 4 implies
condition (1).

In order to generalize Example 1 to permitG to be non-degenerate, the assumption

that Fw is log-concave need only be replaced with the slightly stronger assumption

that fw is log-concave. By imposing more conditions on g, the assumption that fw is

increasing can also be relaxed. The intention is to use the second part of Lemma 4.

However, the convolution of two unimodal densities is not necessarily unimodal.

Ibragimov (1956) has shown that the convolution of a log-concave density with any

unimodal density is itself unimodal. Hence, a log-concave function is sometimes

referred to as strongly unimodal. Since it has already been assumed that fw is log-

concave, unimodality of fs is then guaranteed if g is unimodal.21 It will also be

assumed that � = 0, implying that �w = �s. Log-concavity of fw also implies that

Fw �disp Fs, as mentioned above. However, to apply the second part of Lemma 4, it
is also necessary that Fw is steeper than Fs on Sw. Unfortunately, a convolution may

increase the density locally. Thus, additional assumptions are required.

Proposition 5 The FPA yields strictly higher expected revenue than the SPA in the
additive model if fw is log-concave, � = 0, g is decreasing and satis�es

fw(�w) �
Z �

0

fw(�w � z)g(z)dz: (16)

Proof. For v 2 C = Sw,

fs(v)

fw(v)
=

R �
0
fw(v � z)g(z)dz

fw(v)
=

Z �

0

fw(v � z)
fw(v)

g(z)dz;

where fw(v � z) = 0 if v � z � �w. Thus,

d

dv

�
fs(v)

fw(v)

�
�
Z �

0

�
f 0w(v � z)
fw(v � z)

� f
0
w(v)

fw(v)

�
fw(v � z)
fw(v)

g(z)dz;

21Miravete (2010) examines the properties of convolutions of two log-concave densities. He em-
phasizes their relevance to models of asymmetric information, including multidimensional screening.
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which is positive since fw is log-concave. Hence, Fw �lr Fs (this conclusion relies on
� = 0). Condition (16) is equivalent to fs(�w)

fw(�w)
� 1. Thus, since fs(v)

fw(v)
is increasing

on Sw, fw(v) � fs(v) for all v 2 Sw. Since the convolution of fw and g is unimodal,
Lemma 4 applies if fs peaks to the left of �w. However, when v > �w,

fs(v) =

Z �w

maxf�w;v��g
g(v � z)fw(z)dz;

which in decreasing in v when g is decreasing. Consequently, fs peaks at or before

�w, and the proof is now complete.

Condition (16) requires that fw(�w) exceeds a weighted average of fw over the

interval [�w��; �w] (on which fw may be zero if �w�� � �w). Thus, if � is small it
rules out that fw is decreasing. However, fw may be non-monotonic as long as it does

not �dip down�too much after it has passed its peak. The condition is less restrictive

if � is large, such that the asymmetry between bidders is large.

5.2 The multiplicative model

Cuculescu and Theodorescu (1998) examine multiplication of random variables. For

non-negative random variables, they show that log-concavity of fw must be replaced

by log-concavity of fw(ev) to obtain results that mirrors those for addition of random

variables.22 That is, if a random variable with this property is multiplied with another

random variable with unimodal density, then the resulting variable also has unimodal

density. Likewise, the multiplicative convolution of Fw and a non-degenerate random

variable G is more star disperse than Fw itself.

Assume � � 1, such that �s � �w and Fs (the multiplicative convolution of Fw
and G) �rst order stochastically dominates Fw. Then, Fw �� Fs implies Fw �disp Fs.
Turning to reverse hazard rate dominance, note �rst that for any v 2 C,

Fs(v)

Fw(v)
=

Z �

�

Fw
�
v
z

�
Fw(v)

g(z)dz:

Since fw(ev) is log-concave, Fw(ev) is log-concave as well. Equivalently, vfw(v)=Fw(v)

22Jewitt (1987, footnote 15) makes a related observation in a model of risk aversion with two
sources of uncertainty. Jewitt (1987) uses tools from total positivity, as in Miravete (2010).
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is decreasing. Thus, since z � 1,

d

dv

 
Fw
�
v
z

�
Fw(v)

!
=
1

v

Fw
�
v
z

�
Fw(v)

 �
v
z

�
fw
�
v
z

�
Fw
�
v
z

� � vfw(v)
Fw(v)

!
� 0

and Fw �rh Fs follows. A counterpart to Proposition 4 is now immediate.

Proposition 6 The FPA yields strictly higher expected revenue than the SPA in the
multiplicative model if fw(ev) is increasing and log-concave.

Proof. Identical to the proof of Proposition 4.
To relax the assumption that fw is monotonic it is necessary to impose more

restrictions on g instead. As in the additive model, the second part of Lemma 4 is

used. The proof of the following proposition is omitted since it is analogous to the

proof of Proposition 5.

Proposition 7 The FPA yields strictly higher expected revenue than the SPA in the
multiplicative model if fw(ev) is log-concave, � = 1, g is decreasing and satis�es

fw(�w) �
Z �

1

fw

��w
z

� g(z)
z
dz (17)

6 Interpretation & application of �disp;��; and �c
The three orders of dispersion are related to various notions of price sensitivity, as

summarized in the next proposition. For the third part it is assumed that densities are

di¤erentiable. Most of the results in this section do not require �rst order stochastic

dominance.

Proposition 8 For any v 2 Sw:

1. r(v)� v increasing ()
��� q0w(v)qw(v)

��� � ��� q0s(r(v))qs(r(v))

��� :
2. d

dv

�
r(v)
v

�
� 0() "w(v) � "s(r(v)):

3. r00(v) � 0() J 0w(v) � J 0s(r(v)):

32



Proof. The �rst part follows directly from (2) and fw(v) � fs(r(v)). The second

part follows from

d

dv

�
r(v)

v

�
/ r0(v)v�r(v) = fw(v)

fs(r(v))
v�r(v) / fw(v)v�fs(r(v))r(v) / "w(v)�"s(r(v));

while the third part is due to

r00(v) � 0() f 0w(v)

(fw(v))
2 �

f 0s(r(v))

(fs(r(v)))
2 () J 0w(v) � J 0s(r(v)):

In the monopoly interpretation, Proposition 8 implies that, starting at comparable

quantities, a marginal price increase would have a greater impact on the less disperse

market.

Fw �disp Fs implies that the inverse demand curve pw(q) = F�1w (1 � q) is �atter
than ps(q) = F�1s (1�q), as in Figure 2(b). In contrast, ps(q)

pw(q)
is decreasing if Fw �� Fs.

Expressing marginal revenue as a function of quantity,

MRi(q) � Ji(F�1i (1� q)) = fi(F
�1
i (1� q))F�1i (1� q)� q
fi(F

�1
i (1� q))

; (18)

for q 2 [0; 1], it follows that

MR0i(q) = J
0
i(F

�1
i (1� q)) �1

fi(F
�1
i (1� q))

: (19)

Assuming Fw �disp Fs, cases in which either Fs �� Fw or Fs �c Fw also hold have
interesting interpretations.

Corollary 4 If Fw �disp Fs �c Fw then jMR0s(q)j � jMR0w(q)j. If Fw �disp Fs �� Fw
then MRs(q) �MRw(q) whenever MRw(q) � 0.23

Proof. For the �rst part, if rs(v) = F�1s (Fw(v)) satis�es r0(v) � 1 and r00(v) �
0 then f1(F�11 (1 � q)) � f2(F

�1
2 (1 � q)) and J 01(F�11 (1 � q)) � J 02(F

�1
2 (1 � q)),

respectively. The result then follows from (19). For the second part, Fs �� Fw
23Mares and Swinkels (2010a) consider procurement auctions in which bidders� costs, c, are

private information. Bidder i�s virtual cost is !i(c) = c +
Fi(c)
fi(c)

. Counterparts to Corollary 4 exist
for �marginal costs� if (i) F2 �disp F1 and F2 �c F1 or (ii) F2 �disp F1 and F2 �� F1. Mares and
Swinkels (2010a) assume (i).
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implies f1(F�11 (1�q))F�11 (1�q) � f2(F�12 (1�q))F�12 (1�q). The result then follows
from (18).

Wang (1993) compares auctions and posted-price selling in a model where other-

wise symmetric bidders arrive sequentially. One of his comparative statics results is

that if the marginal revenue curve is steeper for distribution F1 than distribution F2,

then auctions are more likely to dominate posted-price selling when all bidders draw

types from F1 rather than F2. Wang (1993) proves that for this to hold, F1 must

necessarily be more disperse than F2. Corollary 4 implies that F2 �disp F1 combined
with F1 �c F2 is su¢ cient. First order stochastic dominance is not required for this
result.

Although Johnson and Myatt�s (2006) focus is very di¤erent from Wang�s (1993),

many of the �ingredients� in their analysis are similar. Two distributions satisfy

Johnson and Myatt�s (2006) rotation order if they cross precisely once.24 They are

also interested in distributions whose marginal revenue curves coincide at most once,

which is obviously the case if one marginal revenue curve is steeper than the other.

Both Wang (1993) and Johnson and Myatt (2006) explicitly mention variance ordered

distributions, where Fi can be written Fi(v) = F
�
v��i
�i

�
. In this case, r(v) is linear,

with r0(v) > 1 whenever �1 > �2. Thus, F2 �disp F1 but F1 =c F2. The result in the
previous paragraph therefore applies.

Moreover, assuming non-negative marginal costs, the important comparison of

marginal revenues is at quantities where they are positive. It is irrelevant how many

times marginal revenue curves cross below zero. Corollary 4 implies that marginal

revenues are ordered in the positive quadrant if F2 �disp F1 �� F2. However, F2 �disp
F1 �� F2 implies F2 �st F1.

7 Extensions and implications

Theorem 1 can be extended to auctions with reserve prices and to certain other

auction formats. These extensions are presented below. Implications of Theorem 1

for contest architecture are also discussed. Auctions with more bidders are considered

in Section 8.

24The rotation order and the dispersive order are related. If two distributions cross and r(v)� v
is strictly increasing then they cross exactly once. However, as Ganuza and Penalva (2010) point
out, dispersion only requires r(v) � v to be weakly increasing, which permits the two distributions
to coincide on an interval.
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7.1 Reserve prices

Reserve prices are often employed in practice. However, as Mares and Swinkels

(2010a, footnote 33) recently note, the �degree to which Maskin and Riley�s ranking

depends on the absence of a reserve price is open�. The method developed in Section

3 can be used to address the question. Let � denote the reserve price.

Assume �s = �w. Then, the proof of Theorem 1 establishes the superiority of the

FPA for all values of the weak bidder�s type. The only thing a reserve price does

is to �shut out�some types, but this e¤ect is the same in both types of auctions.25

For those types that are not excluded, it remains the case that the FPA dominates

contingent on the weak bidder�s type. Thus, the revenue ranking is intact.26

More generally, assume that �w � �s < �w, or C 6= ;. The FPA is then strictly
more pro�table than the SPA for a �xed reserve price as long as the reserve price has

�bite�, or � 2 [�s; �w). The two auctions are revenue equivalent if � � �w because in
that case the winner is the same in the two auctions and u1s(�s) = u

2
s(�s) = 0.

Proposition 9 Assume (i) Fw �rh Fs, (ii) for all v 2 [� ; �w], fw(v) � fs(x) for all
x 2 [v; r(v)], and (iii) � 2 [�s; �w). Then, the FPA with reserve price � generates

strictly higher expected revenue than the SPA with the same reserve price.

Proof. Because � � �s � �w, uki (�i) = 0 for i = s; w and k = 1; 2. A bidder stays
out of the auction if and only if his type is below � . Modifying (3) yields

ERk(�) =

Z �

�w

�
Jw(v)� 0 +

Z �s

�

Js(x)dFs(x)

�
dFw(v)

+

Z �w

�

�
Jw(v)Fs(k(v)) +

Z �s

k(v)

Js(x)dFs(x)

�
dFw(v):

Hence,

ER1(�)� ER2(�) =
Z �w

�

D(vjk1; k2)dFw(v);

which, as shown in the proof of Theorem 1, is positive since � � �s.

25Bidders with type exceeding the reserve price will change their bidding strategy in the FPA.
Thus, k1(v) depends on � , although that dependence is suppressed here. The important point is
that the reserve price does not change the property that k1(v) 2 [v; r(v)] for all v 2 [� ; �w]. See
Lebrun (1999).

26If the reserve price exceeds �w then all the weak bidder�s types are excluded. In this case, the
two auctions are revenue equivalent (i.e., the revenue ranking is not strict).
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If (F1; F2) do not satisfy the assumptions of the proposition then it is possible that

a reserve price may reverse the ranking. For instance, in Lebrun�s (1996) model the

FPA dominates in the absence of a reserve price. However, in that model D(vjk1; k2)
is negative for v close to �w. Thus, if the reserve price is large only types for which

D(vjk1; k2) � 0 will remain active and the SPA will therefore be superior.

7.2 Other auction formats

The conclusion in Theorem 1 is made possible because the allocation in the SPA can

be described precisely, while the possible allocations in the FPA can be narrowed

down to a relatively small set. It is not necessary to know the exact allocation in the

FPA.

Aside from the issue of how much rent is extracted from �i types, Theorem 1

therefore really says that the SPA is a poor auction format if the objective is to

generate high expected revenue. For instance, if �w = �s and uw(�w) = us(�s) = 0,

any auction with k(v) 2 [v; r(v)] is more pro�table than the SPA if (1) is satis�ed.
In other words, it is pro�table to design an auction that favours the weak bidder

moderately.

It has long been understood that optimal auctions typically favor the weak bidder;

see e.g. McAfee and McMillan (1989).27 Based on this property, Klemperer (1999)

argues that �it is plausible that a �rst-price auction may be more pro�table [...] than

a second-price auction�. However, this paper establishes a bound on the amount of

favoritism that can safely be extended to the weak bidder. Speci�cally, any mechanism

where the weak bidder wins more often than is e¢ cient but less often than he would

in a counterfactual symmetric auction against another weak bidder is more pro�table

than a SPA.

To illustrate, de�ne a winner-pay auction to be an auction in which the winner

pays a proportion 
 of his own bid and (1 � 
) of the losing bid, and the loser does
not pay, 
 2 [0; 1]. The FPA corresponds to 
 = 1, the SPA to 
 = 0.

Proposition 10 Assume (i) Fw �rh Fs, (ii) condition (1) holds, and (iii) �s = �w.
Then, the SPA yields strictly the lowest expected revenue of all winner-pay auctions.

27In Maskin and Riley�s (2000) one model where the SPA is superior to the FPA, the optimal auc-
tion would in fact discriminate against the weak bidder. In contrast, (1) implies that Fs dominates
Fw in terms of the hazard rate. An optimal auction therefore favors the weak bidder.
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Proof. Consider 
 2 (0; 1], i.e. an auction that is not a pure SPA. In this case, the
two bidders must share the same maximal bid, b. Let �i(b) denote bidder i�s inverse

bidding strategy, i = s; w, where b 2 [�w; b]. Assume for the moment the bidding
strategy is strictly increasing and di¤erentiable. If bidder i has type v, his problem is

max
b

Z b

�w

[v � (
b+ (1� 
)x)] dFj(�j(x));

where j 6= i denotes bidder i�s rival. The �rst order condition is

fj(�j(b))

Fj(�j(b))
�0j(b)) =




v � b:

In equilibrium, bidder i bids b if his type is v = �i(b). Substituting into the �rst order

conditions produces the system of di¤erential equations

fw(�w(b))

Fw(�w(b))
�0w(b) =




�s(b)� b
;

fs(�s(b))

Fs(�s(b))
�0s(b) =




�w(b)� b
:

The only di¤erence from the FPA is that 
 2 (0; 1] (the boundary conditions are the
same). The proofs in Maskin and Riley (2000) can then be repeated to conclude that

the auction has the same features as a FPA, k
(v) 2 [v; r(v)] for all 
 2 (0; 1]. Since
bidders with type �i earns zero rent for all 
 2 [0; 1], Theorem 1 applies directly.

Not all auctions have the property that k(v) 2 [v; r(v)]. The most prominent

example is probably the all-pay auction for which k(v) < v when v is small. The

reason is that a weak bidder with a low type is deterred from bidding (which is a

sunk cost in an all-pay auction) when facing a rival he perceives as strong. Thus, it

is not possible to rank the SPA and the all-pay auction using the method developed

in this paper.

7.3 An order statistics result: Contest architecture

Theorem 1 can be used to derive a new order statistics result, the implications of

which are discussed momentarily. Let E[Mi;j] denote the expected value of the second

highest type from one draw from Fi and one draw from Fj, where i; j 2 fs; wg may or
may not be identical. Note that E[Mi;j] equals the expected revenue in a SPA with

bidders i and j.
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Proposition 11 Assume condition (1) holds. Then,

1

2
E[Ms;s] +

1

2
E[Mw;w] � E[Ms;w]:

28 (20)

Proof. Consider an auction with a strong and a weak bidder. De�ne a rank-

symmetric mechanism as a mechanism in which k(v) = r(v) and uki (�i) = 0, i = s; w.

In such a mechanism, bidder i with type v wins with probability Fi(v). From Theo-

rem 1, the expected revenue in a rank-symmetric mechanism is strictly greater than

expected revenue in a SPAs, where it equals E[Ms;w] (the right hand side of (20)).

To see this, let b� = �w in Theorem 1 and replace k1(v) with k(v) = r(v). Note

that b� = �w implies u
k
s(�s) = 0 because the strong bidder with type �s wins with

probability zero.

In the rank-symmetric mechanism, bidder s wins with probability Fs(v), just

as he would in a SPA facing another strong bidder. In such a balanced SPA, the

expected payment from each bidder would be 1
2
E[Ms;s]. In both mechanisms, the

bidder earns zero rent if his type is �s. By the Revenue Equivalence Theorem, the

expected payment from bidder s in the rank-symmetric mechanism is therefore exactly
1
2
E[Ms;s]. The same argument proves that bidder w�s expected payment in the rank-

symmetric mechanism is precisely 1
2
E[Mw;w]. Thus, the expected revenue of the

proposed mechanism is 1
2
E[Ms;s] +

1
2
E[Mw;w] (the left hand side of (20)).

Consider a seller who has some limited control over the composition of a two-

bidder auction. Proposition 11 implies that he would be better o¤ �ipping a coin

between two symmetric SPAs �one with two strong bidders, the other with two weak

bidders �than to settle for an asymmetric SPA with one weak and one strong bidder.

This result is another manifestation of the fact that asymmetric SPAs are relatively

unpro�table. It is better to gamble on symmetric auctions, even at the risk of ending

up with one consisting of two weak bidders. By the Revenue Equivalence Theorem,

this result holds for any e¢ cient mechanism, but it may not hold for other auction

formats. Cantillon (2008) also argues that bidder asymmetry is unpro�table, but her

alternative symmetric auction is di¤erent.

Proposition 11 is directly relevant for �contest architecture�. Moldovanu and Sela

(2006) show that with symmetric bidders it is more pro�table to stage one grand

28The assumption that �s � �w and fw(v) � fs(v) implies that Fw(v) � Fs(v). The inequality
in (20) is strict as long as the two distributions are not identical.
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auction than to stage smaller, same-sized, auctions in which a fraction of the total

prize is up for grabs in each. Order statistics play a dominant role in the analysis in

that paper and a related paper on contests for status, Moldovanu et al (2007). The

symmetry assumption makes it easier to apply known order statistics results.

Proposition 11 complements Moldovanu and Sela (2006). Suppose the contest

designer is forced to stage smaller auctions (a grand auction may be unmanageable).

Then, Proposition 11 means that it is better to stage two symmetric auctions, one with

two weak bidders, the other with two strong bidders, than to stage two asymmetric

(but e¢ cient) auctions.

8 Larger auctions

It is straightforward to extend the revenue ranking to allow for more weak bidders.29

However, allowing more strong bidders is considerably more di¢ cult. As explained

below, extending the ranking to this case is possible if the asymmetry between bidders

is �large enough�.

Let m � 1 and n � 1 denote the number of strong and weak bidders, respectively.
With symmetric and monotonic strategies within each group, the auction winner must

have the highest type within his group. Hence, (3) becomes

ERk =

Z �w

�w

�
Jw(v)Fs(k(v))

m +

Z �s

k(v)

Js(s)dFs(x)
m

�
dFw(v)

n � nukw(�w)�muks(�s);

where the term in parenthesis is expected value of the winner�s virtual valuation

conditional on the highest type among the n weak players being equal to v. The

counterpart to (7) is

Dm(vjk1; k2) =
Z k1(v)

k2(v)

(Jw(v)� Js(x)) dFs(x)m:

The method of proof in Maskin and Riley (2000) or in Kirkegaard (2009) can be

used to prove that k1(v) 2 [v; r(v)] holds in larger FPAs as well. A proof is omitted.
However, if there are several strong bidders who are much stronger than the weak

bidder(s), the former may compete so hard among themselves that the latter would

29Using the same approach as in Maskin and Riley (2000), Amann and Qiao (2008) have shown
that Maskin and Riley�s (2000) results extends to the case with many weak bidders.
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be content to submit relatively low bids, even with types close to �w. Let bi denote

the bid submitted by a bidder of strength i, if his type is �i, i = s; w. When m = 1,

all bidders share the same maximal bid, bw = bs or k1(�w) = �s, but when m > 1

it is possible that bw < bs or k1(�w) < �s (see Lebrun (2006)). Another di¤erence is

that when m > 1, a strong bidder with type �s earns zero rent because he is certain

to be outbid by another strong bidder.

8.1 One strong bidder, more weak bidders

Assume that n � m = 1. As before, ukw(�w) = 0 in both the FPA and SPA. For the

strong bidder, (6) is as before, but with Fw(v)n in place of Fw(v). Hence, ER2�ER1

takes the exact same form as (9), with Fw(v)n in place of Fw(v). Thus, the proof of

Theorem 1 applies to the situation with n > 1 weak bidders as well.

Proposition 12 Assume that Fw �rh Fs and condition (1) holds. Then, the FPA
generates strictly higher expected revenue than the SPA when n � m = 1.

8.2 More strong bidders

The strict revenue ranking in Theorem 1 does not generalize to m � 2. To see this,
consider the case with C = ;. In both auctions, competition between bidders ensure
that the winning bid must be at least �s. Thus, the winner is the strong bidder with

the highest type in both auctions. Moreover, uki (�i) = 0 in both auctions, i = s; w.

Hence, the FPA and the SPA are revenue equivalent when �s � �w.
Assume for the remainder of the section that �s < �w. Assume, for now, that the

asymmetry is so small that bw = bs, or k1(�w) = �s. Since Jw(�w) = �w, evaluating

Dm at v = �w then yields

Z �s

�w

(Jw(�w)� Js(x)) dFs(x)m = �w (1� Fs(�w)m)�
Z �s

�w

Js(x)dFs(x)
m:

The last term on the right is equal to the expected value of an auction amongm strong

bidders with a reserve price of �w. Clearly, such an auction would yield revenue in

excess of �w if it results in a sale, which occurs with probability 1�Fs(�w)m. Hence,
Dm(�wjk1; k2) < 0 when m � 2 (when m = 1, the auction with reserve price �w
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generates revenue of exactly �w if the object is sold, implying thatD1(�wjk1; k2) = 0).
It follows that the approach in this paper and in Maskin and Riley (2000) will not

work in general. Thus, the complication identi�ed by Lebrun (1996) for the case with

�w = �s and n = m = 1 is endemic to auctions with many strong bidders, even if

�w < �s.

It is the assumption that all bidders share the same maximal bid that leads to the

negative conclusion. In the following, I will demonstrate that a revenue ranking can

sometimes be obtained if the asymmetry is �large�, such that bs > bw.

8.2.1 Small overlap

Assume that �w is �close�to �s such that there is little overlap between the supports.

As a starting point, if �s = �w then (i) Jw(�w) = �w = �s > Js(�s) and (ii) bs > bw
in a FPA (a strong bidder with type �s bids �s = �w � bw, and his strategy is strictly
increasing). If �w is �slightly above� �s, it must remain the case that bs > bw, or

k1(�w) < �s, with Jw(�w) > Js(x) for all x 2 [�s; k1(�w)]. Moreover, by continuity,

Jw(v) > Js(x) for all v 2 [�s; �w] and x 2 [�s; k1(�w)] ; (21)

when �s and �w are su¢ ciently close.
30 In the following, when the overlap is said to

be �small�, it should be taken to mean that (21) is satis�ed.

In this case, the FPA yields higher expected revenue than the SPA because the

weak bidders are winning more often against strong bidders with inferior marginal

revenue. Recall that the two are revenue equivalent if there is no overlap.

Proposition 13 Assume Fw �rh Fs and the overlap is small. Then, the FPA gen-
erates strictly higher expected revenue than the SPA when m � 2, n � 1.

Proof. Both auctions ensure that uki (�i) = 0, i = s; w. A weak bidder with type

below �s loses both auctions (competition between the strong bidders ensures that

any serious bid must be at least �s). By (i), a weak bidder with type v 2 (�s; �w]
wins more often in the FPA than in the SPA. By (ii) or (21), the winner�s marginal

revenue is no lower in the FPA, and may be higher. In other words, Dm is positive.

This concludes the proof.

30Fs need not be more disperse then Fw. For instance, the former could have a smaller support
than the latter. It is a general property that Ji(�i) = �i and Ji(�i) < �i, i = s; w.

41



Example 1, continued: Consider a many-bidder extension of Example 1, with

m � 2. If Fs is shifted far to the right such that there is no overlap between supports,
then the two auctions are revenue equivalent. The same is true if a = 0, in which

case bidders are homogenous. Proposition 13 then states that the FPA is superior for

large �interior�values of a. A comparison cannot be made for small values. Recall

that Proposition 13 does not require Fs to be a �shifted�version of Fw.

8.2.2 Large stretches

Assume the asymmetry between bidders is so large that bs > bw. De�ne �s � k1(�w)
as the highest strong type that competes with the weak bidders. A strong bidder

outbids the weak bidders with probability one if his type exceeds �s, �s < �s.

Consider the consequences of �stretching�the strong bidder�s distribution, trans-

forming Fs with support [�s; �s] to F
�
s with support

�
�s; �

�
s

�
, ��s > �s, such that

F �s = �Fs on the subinterval v 2 [�s; �s], with � 2 (0; 1). More concisely, Fs is

a truncation of F �s . Importantly, Fs and F
�
s have the same reverse hazard rate on

[�s; �s] and therefore on [�s; �s]. Thus, if Fs dominates Fw in terms of the reverse haz-

ard rate, so does F �s . Likewise, the system of �rst order conditions from the bidders�

maximization problems is unchanged at bids below bw. This can be seen by examining

the systems in Maskin and Riley (2000) or Lebrun (2006). The implication is that

weak bidders regardless of type and strong bidders with type below �s use the exact

same strategy in either case. Consequently, k1 is the same in both environments.

For types in [�s; �s], the strong bidders�marginal revenue is

J�s (v) = v �
1� F �s (v)
f�s (v)

= v �
1
�
� Fs(v)
fs(v)

as a function of �. The important property is that J�s decreases without bound as Fs
is stretched more and more (that is, as � decreases and goes to zero). Thus,

Jw(v) � J�s (x) for all v 2 [�w; �w] and x 2 [�s; �s] (22)

when Fs is stretched su¢ ciently much. In the following, when Fs is said to be stretched

�a lot�, it should be taken to mean that (22) is satis�ed.

Proposition 14 Assume Fw �rh Fs and Fs is stretched a lot. Then, the FPA gen-
erates strictly higher expected revenue than the SPA when m � 2, n � 1.
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Proof. The proof is identical to the proof of Proposition 13.

Example 3, continued: Proposition 14 applies directly if Fw is a truncation of Fs,

in which case Fs(v) = �Fw(v) on v 2 [�w; �w]. As with Example 1, the two auctions
are revenue equivalent if the bidders are homogenous, or � = 1. A comparison cannot

be made if � is close to one, or the asymmetry is small. By Proposition 14, however,

the FPA is superior when � is close to zero. Note that Proposition 14 does not require

Fs and Fw to be related in any way other than through reverse hazard rate dominance

(it does not imply one is a truncation of the other), nor does it require log-concavity.

9 Conclusion

This paper identi�es the most general conditions to date under which the FPA is

more pro�table than the SPA when bidders are heterogenous. It is argued that the

su¢ cient conditions have natural and appealing economic interpretations. Thus, the

paper complements mounting evidence that a seller who is unsure of bidders�beliefs,

preferences, and opportunities is better o¤ using a FPA rather than a SPA. For

example, Holt (1980) �nds that the FPA is more pro�table than the SPA if bidders

are homogeneous but risk averse. Che and Gale (1998, 2006) prove that this is also the

case if bidders are �nancially constrained. Hafalir and Krishna (2008) show the same

ranking holds if resale is possible after the auction, even if bidders are potentially

heterogenous. The obvious and not inconsiderable quali�er is Milgrom and Weber�s

(1982) well-known result that the SPA is better when values are a¢ liated.

Mechanism design methods are used to simplify the analysis. Speci�cally, a simple

reformulation of Myerson�s (1981) expression for expected revenue allows the conclu-

sion that the FPA dominates if the strong bidder�s distribution dominates the weak

bidder�s distribution in terms of the reverse hazard rate and, in addition, the for-

mer is �atter and more disperse than the latter. The central role played by the

dispersive order complements recent �ndings by Mares and Swinkels (2010a, 2010b)

in other asymmetric auction settings. Thus, the dispersive order may prove to be as

useful for auction design as the usual stochastic orders of strength. The dispersive

order and a related order of spread, the star order, appear naturally in settings with

multi-dimensional types where valuations are constructed by summing or multiplying

independent random variables.
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