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Abstract

We study competition between hydro and thermal electricity gen-
erators that face uncertainty over demand and water flows where the
hydro generator is constrained by water flows and the thermal genera-
tor by capacity. We compute the Feedback equilibrium for the infinite
horizon game and show that there can be strategic withholding of water
by the hydro generator. When water inflow is relatively low, however,
the hydro generator may use more water than efficient as it faces an
inefficiently low shadow price of water in this case. The inefficiency
of the market outcome is tempered by the capacity constraints: for a
large range of possible thermal production capacities and water flow
levels, welfare loss under the duopoly market structure is much less
than would occur in the absence of water and capacity constraints.
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1 Introduction

A common feature of many electricity markets is the co-existence of a variety
of generation technologies, such as hydro, nuclear and thermal (coal, oil, gas)
generation. Of these technologies, one special characteristic of hydroelectric
power generation is that it is constrained by the dynamics of the availability
of water. Generating now implies less water availability in the next period,
and hence less generation in the future. In some jurisdictions, hydroelectric
power generation is the dominant source of electricity. It accounts for 80%
of generation in New Zealand, 97% in Brazil, 90% in Quebec, and 98% in
Norway (Crampes and Moreaux[4]). In other jurisdictions, such as Ontario
and the Western United States, it is a significant source of electricity, but
not as dominant. It is not uncommon to observe a large hydro competing
with thermal generators. For example, in Honduras, large state-owned hy-
dro generation facilities coexist with privately owned thermal generators.1

Colombia has a similar structure, a large hydro operator with 64% of the
installed capacity coexists with a thermal production sector with the rest of
the capacity.2 Consequently, an interesting situation from the point of view
of the dynamics of competition is when a hydroelectric generator coexists
with a thermal generator. Hydroelectric generation can be characterized by
low marginal cost when operating, but subject to the availability of water to
drive the turbines. In contrast, thermal generation units have more flexibil-
ity in the sense that their inputs (gas, coal, etc.) are not subject to the same
constraints as water in a reservoir, however the marginal cost of generation
is higher as generators need to purchase the fuel inputs.

Another common feature of restructured electricity markets is price volatil-
ity. One reason for the relatively high volatility of electricity prices is the in-
ability to store electricity at a scale that would enable speculation to smooth
prices. However, the ability to store water behind a hydro dam does allow
for some degree of price smoothing. A hydro operator may benefit from
withholding water in periods with low prices in order to have more available
for use in periods with high prices.3 In a perfectly competitive market, it is
likely that the hydro operators would choose their water release in an effi-
cient way. However, in most jurisdictions, hydroelectric generators tend to
be rather large producers, in which case there is no guarantee that water will
be released efficiently in an unregulated environment. We investigate this is-
sue by a dynamic game between a hydro generator and a thermal generator.

1Installed generation capacities are approximately two-thirds hydro and one-third ther-
mal in Honduras (see ENEE at www.enee.hn).

2See www.creg.gov.co.
3A recent paper by Crampes and Moreaux [5] examines the use of hydro reservoirs to

speculate across daily peak and off-peak price fluctuations.
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Comparing the equilibrium of this game to the efficient outcome allows us to
discuss the potential for inefficient water use in an imperfectly competitive
market for electricity.

In light of the fact that hydro producers have relatively large market
shares in many jurisdictions has led some authors to examine the issue of
the use of market power by hydro producers. The papers most relevant
to our work are Bushnell [2] and Crampes and Moreaux [4] as they exam-
ine a Cournot setting in which the hydro producer behaves strategically.4

Bushnell [2] examines a Cournot oligopoly with fringe producers in which
each producer controls both hydro and thermal generation facilities. Both
hydro and thermal units face capacity constraints and the producers must
decide how to allocate the available water over a number of periods. He
solves the model with parameters calibrated to the western United States
electricity market and finds that the dynamic allocation of water under im-
perfectly competitive conditions is not the efficient one. In particular, firms
tend to allocate more water to off-peak periods than is efficient. Crampes
and Moreaux [4] model a Cournot duopoly in which a hydro producer uses a
fixed stock of water over two periods while facing competition from a ther-
mal producer. They find that hydro production is tilted towards the second
period in the closed-loop equilibrium relative to the open-loop, hence there
is strategic withholding of water in the first period by the hydro producer.
Our model differs from these two in a couple of ways. In both Bushnell [2]
and Crampes and Moreaux [4], a fixed stock of water is allocated across a
finite number of periods. In contrast, we examine an infinite horizon setting
with inflows, so our model has a longer-term focus than theirs. Secondly, we
allow for stochastic demand and water flows which, in combination with the
infinite horizon, allows us to examine the implications of market power and
water storage on the distribution of electricity prices.

We model ongoing quantity competition between a hydro and a thermal
generator using a stochastic, dynamic game over an infinite time horizon.
The hydro generator is constrained by water availability and the thermal
generator is constrained by its capacity. We solve the model using collocation
techniques in order to compute approximations to the value function. To our
knowledge, this is the first application of these techniques in this area. We
demonstrate that the hydro producer engages in strategic withholding of
water by comparing the feedback and open-loop equilibria of the game. In

4Scott and Read [12] and Barroso et.al. [1] also examine the behaviour of imper-
fectly competitive hydroelectric producers, but do not consider the dynamic aspects of
the strategic behaviour of hydro producers. Garcia et.al. [7] examine a strategic pricing
game between two hydro producers who have a capacity constraint on their reservoirs,
demonstrating that the Bertrand paradox of marginal cost pricing is mitigated as firms
incorporate the opportunity cost of using water today rather than in a future period.
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addition, we compute the efficient solution to examine the departure from
efficiency caused by market power in this setting. Our simulations show that,
conditional on thermal capacity and water inflow not being too large, the
outcome can be close to efficient. This result is interesting in light of the
empirical work of Kauppi and Liski [11] who find only small welfare losses
for the Nordic power market even though they uncover evidence of market
power for hydro producers.

We turn next to a description of the basic aspects of the model for both
the non-cooperative game between the hydro and thermal producers as well
as the efficient outcome through the solution to a social planner’s problem.
In the third section we present our results via simulations of our numerical
solution to both the game and the planner’s problem. We do this for fixed
thermal capacity and then allow capacity to vary in order to demonstrate
how our model could be used to examine the incentives that the thermal
player may have for investing in capacity.

2 The model

The behavior of consumers of electricity in any period t = 0, 1, 2, ...,∞ is
summarized by the following inverse demand function:

Pt = αt − β(ht + qt), β > 0. (1)

The demand intercept, αt, is stochastic and normally distributed, i.e., αt ∼
N(µ, σ2α), with a variance small enough relative to µ so that the probability
of non-positive demand can be ignored.

There are two types of technologies used in the industry: a hydroelectric
generator owns generation units that use water held behind dams to spin
the electric generators and a thermal electric generator owns thermal units
that burn fossil fuel. Thermal generation costs are quadratic, C(q) = c1q +
(c2/2)q2, up to a capacity constraint, K. This results in a linear marginal
cost up to capacity which is a commonly used functional form for modeling
thermal generation marginal cost.5

Assuming that the hydro producer does not have to pay for the water
it uses, it has a zero marginal cost of production. The hydro producer’s
electricity generation, ht, is determined by a one-to-one relation with the
amount of water it releases from its reservoir.6 Its output is constrained

5Green and Newbery [9] and Wolfram [14] used a similar form for marginal cost in
their empirical analyses of the British electricity market.

6In order to keep the model relatively simple, we are ignoring issues such as water
pressure which can be an important consideration that links reservoir volume to electricity
output.
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by the amount of water available for release, Wt. The transition equation
governing the level of water in the reservoir is

Wt+1 = (1− γ)(Wt − ht) + ωt, (2)

where Wt is the level of the reservoir at the beginning of period t, γ is a
parameter that determines the rate of evaporation/leakage in the reservoir
over an interval of time, and ωt is the rate of inflow into the reservoir over
an interval of time. The rate of inflow is stochastic and distributed ωt ∼
N(µω, σ

2
ω), and is observed after period t decisions are made. There is no

fixed capacity for the reservoir, although evaporation limits the accumulation
of water.

Producers choose their outputs simultaneously in each period and both
producers discount future payoffs with the common discount factor, δ ∈
(0, 1). We next describe the game played by the duopoly, after which we
describe the efficient solution. Following that, we analyse the differences in
the two market structures by way of numerical solutions.

2.1 Duopoly

Each producer is assumed to maximize the discounted present value of prof-
its, where each discounts the future using the common discount factor δ ∈
(0, 1). We focus on the case in which producers use Feedback strategies,
which are functions of the current state (Wt, αt) only. Denote the strate-
gies of the two producers by sH(αt,Wt) and sT (αt,Wt). We assume that
both producers observe Wt and αt before making decisions in period t. The
Feedback equilibrium is a Nash equilibrium in Feedback strategies.

Given the hydro producer’s strategy, sH(αt,Wt), the problem for the
thermal producer is then

max
{qt}

E
∞∑
t=0

δt
[
(αt − β(sH(αt,Wt) + qt))qt − c1qt − (c2/2)qt

2
]

(3)

subject to
0 ≤ qt ≤ K.

The thermal producer’s problem is simplified by the fact that the thermal
producer does not influence the future state through its actions. Since its
production decision does not affect its continuation payoff, thermal produc-
tion is governed by its “static” best response function for an interior solution.
Incorporating the capacity and non-negativity constraints, we have

sT (αt,Wt) = max

[
0,min

[
αt − c1 − βsH(αt,Wt)

2β + c2
,K

]]
(4)
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Given the thermal producer’s strategy, sT (αt,Wt), the problem faced by
the hydro producer is

max
{ht}

E
∞∑
t=0

δt
[
(αt − β(ht + sT (αt,Wt)))ht

]
(5)

subject to
0 ≤ ht ≤Wt

and
Wt+1 = (1− γ)(Wt − ht) + ωt,

The hydro producer’s best response to the thermal producer’s strategy, sT , is
determined by the solution to a dynamic optimization problem. The Bellman
equation for the hydro producer’s problem is

V (αt,Wt) = max
ht∈[0,Wt]

{
(αt − β(ht + sT (αt,Wt)))ht + δEtV (αt+1,Wt+1)

}
(6)

subject to (2). The solution to this problem yields sH(αt,Wt).
Define ψ(ht) as the derivative of the objective in the maximization prob-

lem in (6) with respect to ht, i.e.,

ψ(ht) = αt−2βht−βsT (αt,Wt)−δ(1−γ)EtVW (αt+1, (1−γ)(Wt−ht)+ωt).
(7)

Let b0t and bWt be the Lagrange multipliers on the non-negativity and water
availability constraints for the maximization problem in (6). The necessary
conditions for optimal hydro output are then

ψ(ht) + b0t − bWt = 0 (8)

bWt(Wt − ht) = 0, bWt ≥ 0, (Wt − ht) ≥ 0 (9)

and
b0tht = 0, b0t ≥ 0, ht ≥ 0. (10)

We can illustrate the strategic effect by expanding the EtVW (αt+1,Wt+1)
term in (7). Evaluating (6) at t+ 1 and differentiating with respect to Wt+1

yields (when the derivative exists)

EtVW (αt+1,Wt+1) = Et

[
(ψ(ht+1) + b0t+1 − bWt+1)s

H
W (αt+1,Wt+1)

− βsTW (αt+1,Wt+1)s
H(αt+1,Wt+1)

+ bWt+1 + δ(1− γ)Et+1VW (αt+2,Wt+2)

]
(11)
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Using (8) this simplifies to

EtVW (αt+1,Wt+1) = Et

[
−βsTW (αt+1,Wt+1)s

H(αt+1,Wt+1)

+ bWt+1 + δ(1− γ)Et+1VW (αt+2,Wt+2)

]
(12)

Applying the same process for VW (αT+2,Wt+2), VW (αT+3,Wt+3), ... yields

EtVW (αt+1,Wt+1) = Et

[
−β

∞∑
i=0

δi(1−γ)isH(αt+1+i,Wt+1+i)s
T
W (αt+1+i,Wt+1+i)

+

∞∑
i=0

δi(1− γ)ibWt+1+i

]
. (13)

The strategic effect works through the influence of hydro output on future
thermal output via future water availability. Since we expect sTW (α,W ) ≤ 0,
the hydro producer produces less output in the Feedback equilibrium relative
to the Open Loop equilibrium. This will result in more water available in
future periods and hence lower thermal output in those future periods.

In order to describe the Feedback equilibrium strategies we need to find
the value function for the hydro producer, which we do using numerical
approximation techniques. Rather than approximate the value function it-
self, we solve the problem by approximating EtV (αt+1,Wt+1), which has the
benefit of allowing us to approximate a function of one state variable only
(Wt+1) since the future demand shock is integrated out.7

2.1.1 Numerical algorithm: duopoly

We approximate the hydro producer’s expected value function using the
collocation method.8 In particular,

EtV (αt+1,Wt+1) ≈
n∑
i=1

diφi(Wt+1) ≡ Ṽ (Wt+1) (14)

where the φi are known basis functions. Collocation proceeds by determining
the di, i = 1, ...n, in order for the approximation to hold exactly at n collo-
cation nodes, W 1

+,W
2
+, ...,W

n
+. The algorithm we use to solve the problem

is described as follows:
7This is a consequence of the assumption that the demand states are i.i.d. If we were

to allow any serial correlation in this process, the expected value function would be a
function of two state variables as well.

8See Judd [10], Chapter 11.
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0. Choose a starting approximation of Ṽ 0(Wt+1), i.e., starting values
d0i , i = 1, 2, ..., n.

1. Given the current approximation, Ṽ k(Wt+1) compute the value func-
tion at the collocation nodes, W 1

+,W
2
+, ...,W

n
+. In order to do this,

we determine the Nash Equilibrium quantities for each producer. At
every node i, conditional on the demand state, α+:

a) Use a root-finding algorithm to solve ψ(h) = 0 in which the ther-
mal producer’s strategy, (4), has sH replaced with h (i.e. we re-
place the thermal producers strategy in (7) with its best-response
to h). If a root does not exist on (0,W i

+), determine whether
h = 0 or h = W i

+ is appropriate.

b) Given the value found for h, compute q from (4).

Use these quantities to compute V k(α+,W
i
+). This step yields the

value in the next period as a function of the demand state for each
W i

+.

2. Integrate the new value function numerically over demand states to
update Ṽ (W k+1

t ), i.e. find new values d1i , i = 1, ..., n.

3. If convergence achieved, stop. Else, return to step 1.

2.1.2 Constraint thresholds

Although EtV (αt+1,Wt+1) is likely to be a smooth function of Wt+1, the
value function itself will exhibit kinks at the thresholds where a constraint
begins to bind. Finding expressions for these thresholds can aid the numer-
ical integration step of the approximation algorithm. We will not concern
ourselves with the non-negativity constraints as they are not binding in any
of the situations that we examine, so the constraints of interest are qt ≤ K
and ht ≤ Wt. From the necessary conditions for the optimization problems
of the two generators we can derive the following:

• If q∗t < K then h∗t = Wt if

αt ≥
β(3β + 2c2)Wt − βc1 + (2β + c2)δ(1− γ)ṼW (ωt)

β + c2
≡ H1 (15)

• If q∗t = K then h∗t = Wt if

αt ≥ 2βWt + βK + δ(1− γ)ṼW (ωt) ≡ H2 (16)
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• If h∗t = Wt then q∗t = K if

αt ≥ c1 + (2β + c2)K + βWt ≡ T1 (17)

• If h∗t < Wt then q∗t = K if

αt ≥ c1 + (2β + c2)K + βh∗t ≡ T2 (18)

Given an approximation Ṽ (and hence ṼW ), the values H1, H2, and T1 are
straightforward to compute and can be used to aid the numerical integration
step of the algorithm. However, since h∗t depends on αt when h∗t < Wt, T2
is relatively difficult to compute. Consequently, we use H1 and T1 to aid in
the numerical integration of the value function, but not H2 and T2.

2.2 Efficient solution

We wish to compare the outcome under duopoly to what is efficient. To
this end, we solve the problem faced by a social planner choosing thermal
and hydro generation with the objective of maximizing the expected present
value of the stream of consumer surplus less generation costs:

max
{ht,qt}

∞∑
t=0

δt
(
αt(ht + qt)−

β

2
(ht + qt)

2 − c1qt −
c2
2
qt

2

)
(19)

subject to
Wt+1 = (1− γ)(Wt − ht) + ωt,

0 ≤ ht ≤Wt,

0 ≤ qt ≤ K,

and
αt+1 ∼ N(µ, σ2α).

The planner’s value function then satisfies the Bellman equation:

V P (αt,Wt) = max
ht,qt

{
αt(ht + qt)−

β

2
(ht + qt)

2 − c1qt −
c2
2
qt

2 + δEtV
P (αt+1,Wt+1)

}
(20)

subject to the above constraints.
The necessary conditions for the maximization problem are

αt − β(ht + qt)− δ(1− γ)EtV
P
W (αt+1,Wt+1)− bWt + b0t = 0 (21)

and
αt − β(ht + qt)− c1 − c2qt − aKt + a0t = 0 (22)
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where bWt and b0t are the Lagrange multipliers on hydro production’s capacity
and non-negativity constraints and aKt and a0t are the multipliers on thermal
production’s capacity and non-negativity constraints. Equations (21) and
(22) imply

aK − a0 + c1 + c2qt = δ(1− γ)EtV
P
W (αt+1,Wt+1) + bW − b0 (23)

which for an interior solution simplifies to

δ(1− γ)EtV
P
W (αt+1,Wt+1) = c1 + c2qt, (24)

the marginal value of retained water is equalized with the marginal cost of
thermal production.

The numerical algorithm used to solve the planner’s problem is simi-
lar to that described for the duopoly, using collocation to approximate the
planner’s expected value function.

3 Results

We analyse the model by computing solutions numerically for particular
parameter values. We focus on demand uncertainty and water inflow un-
certainty separately, beginning with the former. We will use thermal cost
function parameters of c1 = 10 and c2 = 0.025. These are chosen to be
roughly consistent with the ratio of these two parameters that was used in
Green and Newbery [9]. The demand parameters are chosen so that there is
a relatively small demand elasticity when used to compute the unconstrained
(Cournot) solution. Setting β = 20 and µα = 200 gives a demand elasticity
of 0.54 at the Cournot solution.9 Finally we choose δ = 0.9, and γ = 0.3.

A useful benchmark to keep in mind is what the equilibrium of an uncon-
strained situation would be. If neither producer were ever constrained (i.e.,
K and ω sufficiently large) the model would be a simple repeated Cournot
game with random demand and firms having asymmetric costs. For these
parameters, the hydro producer would produce approximately 3.5 units and
the thermal producer 3 units on average resulting in an average price of 70.

We also present results for the Open Loop equilibrium for comparison.
For the Open Loop solution we use the S-adapted open loop concept in
which producers are able to respond to the realization of the demand state
(αt) but the hydro producer does not strategically adjust future water levels
(essentially, the EtVW term in (7) is absent), so the strategies are functions
of the demand shocks only (sH(αt) and sT (αt)). This results in the Open
Loop solution being the Cournot equilibrium for the particular realizations
of the random demand and inflow variables.

9This is near the upper end of the range of demand elasticities examined by Green and
Newbery [9]
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3.1 Demand uncertainty

To analyse the model with demand uncertainty only, we set σω = 0 and
choose the standard deviation for αt to be 10% of the mean, so we have
σα = 20. We present results for alternative values of µω and a large capacity
for the thermal producer (K = 6.0, which is twice the average level of thermal
output in the unconstrained game). After presenting results for this level of
capacity we will demonstrate the effects of varying the thermal capacity on
the equilibrium outcome of the game.

Table 1 displays statistics for variables of interest under equilibrium
strategies. They are created by generating 100 simulations of the model
over 1,000 periods each.10 The values in Table 1 are averages over the 100
runs. To compute the equilibrium strategies we use Chebyshev polynomials
for the φi functions and n varies by example and market structure.11 We
report n as well as an estimate of the maximum approximation residual for
each case in the last two rows of Table 1.

3.1.1 High inflow

The high inflow case represents a benchmark in which neither of the con-
straints (water or capacity) are binding for the duopoly. For this scenario,
we choose an inflow of water that is double mean hydro production in the
unconstrained game discussed above (µω = 7.0). In this case the approxima-
tion residual is very small (of the order 10−9) with n = 2, which is expected
given that the value function is quadratic if the constraints do not bind.

Not surprisingly, the duopoly equilibrium outcomes are what occur in the
repeated Cournot game. Neither producer operates at capacity, so we just
have an interior solution that replicates the Cournot outcome. This is not
efficient, since the planner would like to use more of the low cost technology,
having the hydro producer at capacity in all periods. This scenario results
in the largest welfare loss of the three examined. The duopoly price is seven
times the efficient level and there is substantial under-utilization of water,
the water level being more than double the efficient level on average. This
results in a shadow price of water that is zero for the duopoly hydro producer
but significant (approximately one-third of the price level) for the planner.

The comparison between the duopoly and efficient outcomes in this case
represents a measure of the effect of “static” market power alone. The open
loop solution is the same as the Feedback one as there are no strategic effects
when the constraint on water availability does not bind.

10An initial run of 100 periods precedes the 1,000 period sample to minimize any effects
of starting values.

11The computations are done with C++ and make use of routines for Chebyshev ap-
proximation, numerical integration, and root finding from the Gnu Scientific Library. [6]
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Low inflow Medium inflow High Inflow
(µω = 1.75) (µω = 3.5) (µω = 7.0)

Duopoly Efficient Duopoly Efficient Duopoly Efficient

Quantities:
E(h) 1.74 1.72 3.26 3.46 3.50 7.00
E(q) 3.87 5.99 3.11 5.67 3.00 2.49
%(h = W ) 81.20 78.36 1.04 46.85 0.00 100.00
bW 9.99 17.33 0.04 6.67 0.00 3.80
%(q = K) 0.00 100.00 0.00 55.84 0.00 0.02
aK 0.00 35.51 0.00 7.16 0.00 0.00

Price:
E(p) 87.58 45.66 72.36 17.30 70.00 10.06
st.dev.(p) 9.58 17.09 7.08 11.04 6.66 0.05
skew.(p) 0.18 0.64 0.09 1.79 0.00 4.37

Water:
E(W ) 1.77 1.83 4.05 3.59 15.17 7.00
st.dev.(W ) 0.05 0.19 0.26 0.08 0.32 0.00
min(W ) 1.75 1.75 3.50 3.50 13.81 7.00
max(W ) 2.37 3.77 5.27 3.69 16.51 7.00

Payoffs:
EΠH 1533.72 807.69 2389.12 617.44 2479.76 705.68
EΠT 3061.57 2146.08 1973.80 449.80 1825.34 0.95
E(Welfare) 7787.57 8918.52 8485.45 9444.03 8583.69 9848.04

Open Loop:
E(h) 1.77 3.48 3.50
E(q) 3.86 3.01 3.00

Approx.Res. 10−7 10−5 10−4 10−5 10−9 10−9

n 10 10 13 4 2 2

Table 1: Simulated Descriptive Statistics

12



3.1.2 Low inflow

For a low water inflow scenario, we choose µω = 1.75, which is half of the
average level of hydro production in the unconstrained version of the game
(the high inflow case above). In this example, we expect hydro production
to be frequently constrained by water availability.

For this low water inflow case, the hydro producer exhausts the available
water 81% of the time which is actually more frequent than is efficient (78%)
and we see that the average hydro output is actually higher than efficient.
The reason for this is that the planner places a substantially higher value
on water: the shadow price of water (bW ) is 17.3 for the planner vs. 9.99
for the hydro duopolist. This results in the planner wishing to maintain a
higher average reservoir level (E(W ) of 1.83 vs. 1.77) for which it needs to
produce less hydro electricity on average. As thermal production is always at
capacity, higher levels of available water are desirable to smooth out the more
substantial price volatility (the standard deviation of price for the planner
is 17.09 vs. 9.58 for the duopoly).

The low water inflow reduces hydro producer payoffs and welfare relative
to the high-inflow scenario. The thermal producer is better off, as it produces
more output at a higher price relative to the high inflow case.

3.1.3 Medium inflow

In order to relax the constraint on hydro production somewhat, we now
set ω = 3.5 which is the hydro producer’s average level of output in the
unconstrained game. This guarantees that there is enough water in any
period for the hydro producer to produce the same output as it would in the
Open Loop game. Hence, this case allows the sharpest view on the extent
to which the hydro producer will strategically withhold water.

Now the hydro producer chooses output that drains its reservoir only
1% of the time, whereas the planner would have it do so 46% of the time.
This reduction of output by the hydro producer, along with the thermal
producer’s inefficiently low output now results in a larger price gap between
the duopoly and efficient outcomes. The duopoly price falls compared to
the low inflow case, but not by as much as is efficient. Furthermore, average
hydro production in this case is 3.26, lower than what it would produce on
average in the unconstrained case (3.5). Even though the thermal producer
produces more (3.11 vs. 3.0), average price is higher (72.36 vs. 70.0). Even
though the water inflow is sufficient to generate the Open Loop output for
the hydro producer, it chooses to produce a lower quantity than this in
equilibrium. The difference between the Open Loop output of 3.48 and the
equilibrium output of 3.26 represents the strategic effect.
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Again, in this scenario, the average water level exceeds the efficient level
(4.05 vs. 3.59) with a substantially lower value put on water by the hydro
duopolist than is efficient (bW of 0.04 vs. 6.67).

As this is the case with the largest approximation residuals for the
duopoly, we plot the residual function in the Appendix. The residuals display
the oscillatory nature expected of Chebyshev approximation.

3.1.4 Price volatility

From the solutions presented in Table 1, we see that price volatility, as
measured by the standard deviation in price, is lower under the duopoly
than is efficient when the water inflow is relatively low. However, the reverse
occurs in the high inflow case. One force at work is the under-use of water by
the hydro producer. When it is efficient to be using as much hydro generation
as possible, water is not used for price smoothing in a significant way in the
efficient solution. When constrained by water availability, there is simply
no role for using water to smooth demand fluctuations. In contrast, under
the duopoly market structure, the hydro producer is less often constrained
by water availability and so reacts more to demand fluctuations resulting in
smoother prices.

The effect of the water-availability constraint on price volatility works
in the opposite direction of market power. As shown in Thille [13], in a
Cournot model with uncertainty, duopolists will not adjust output as much
as is efficient in response to demand shocks. This effect dominates the effect
of the constraint on price volatility in the high inflow case, resulting in the
duopoly producing higher price variability than is efficient in that case.

3.1.5 Effects of Thermal Capacity

In order to analyse how thermal generation capacity, K, affects the equi-
librium outcome under the two market structures, we examine the medium
inflow case of section 3.1.3 allowing for different levels of K. We solve the
model for 20 different capacities ranging between zero and five units. For
each solution, we simulate the model as above and plot some of the resulting
statistics in Figures 1 and 2.

The top row of Figure 1 plots the average outputs of each producer by
market structure. At low levels of thermal capacity, the thermal producer
is essentially always operating at capacity, which is efficient. At large lev-
els of capacity the thermal producer reduces output below capacity more
frequently, resulting in inefficiently low output at higher capacities. In con-
trast, the hydro producer’s average output is below capacity for any level K,
although the size of the difference to the efficient level is not large.
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Figure 1: Average model values for alternative thermal capacities: Duopoly
(solid line) and Efficient (dashed line)
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The bottom left graph in Figure 1 demonstrates that price is very close
to the efficient level until thermal capacity reaches approximately 2.5. After
this point, price levels off and slowly falls to the Cournot price of 70.0,
whereas the planner has price falling until thermal capacity is beyond 5.0.
The implications for price volatility are demonstrated in the bottom right
graph in Figure 1. The duopoly results in prices that are less volatile than
is efficient. It is notable that the gap between price volatility is largest for
intermediate values of K.

We plot payoffs and social welfare in Figure 2. Each payoff is very close
to the efficient one for thermal capacities less than 2.5. From the above
discussion we know that this is because the thermal constraint frequently
binds under both market structures and the hydro producer does not reduce
output greatly under duopoly.

An interesting question to now address is what thermal capacity would
be chosen if the thermal producer could choose capacity in a previous period?
Consider allowing the thermal producer to make a one time investment in
capacity before time 0. The slope of the thermal producer’s payoff (solid
line) in Figure 2 measures the benefit to the producer of a marginal addition
to capacity. The thermal producer would choose a level of capacity that
results in a significant departure from efficiency only if the the marginal cost
of capacity is relatively low. Notice that for the outcome to be significantly
inefficient in this case would require a capacity investment that exceeds the
“average” Cournot output of the thermal producer (3.0 in this case). Since
the region of capacity levels for which the thermal producer’s payoff is rela-
tively steep coincides with the region where the equilibrium is near efficiency,
we can suggest that conditional on the level of capacity chosen, the equilib-
rium in the dynamic duopoly game can be “close” to the efficient one if the
marginal cost of capacity is not too low. Of course the planner may wish
to choose a higher level of capacity, so an interesting extension of this game
would be to examine optimal versus actual capacity choices.12

3.2 Water inflow uncertainty

An important characteristic of hydroelectric generation is that the flow of
water into the system is often uncertain.13 We now examine the case in which
demand is certain, but water inflows contain a random component: σ2α = 0
and σ2ω > 0. A simplifying feature of this case is that the dimension of the

12The efficiency of thermal investment decisions is examined for a two-period version of
this game in Genc and Thille [8]. They find that equilibrium investment may be higher
or lower than efficient.

13See Bye et.al [3] on the effects of inflow uncertainty on prices in the Nordic power
market.
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state space is reduced to one. Since the random inflow is observed only after
production decisions have been made, both hydro and thermal strategies
are now functions of Wt alone. This means that the hydro producer’s value
function is also a function of only one state variable, which simplifies the
approximation routine.

Our solution strategy is similar to that described above for the case of
demand uncertainty, but now we approximate the value function, V (Wt),
directly. Since V (Wt) is likely to be kinked, we use splines for the collocation
functions rather than Chebyshev polynomials. For our solution we now set
µω = 3.5, σ2ω = 0.35, and σ2α = 0. All other parameter values remain the
same as in the previous subsection.

In order to compare with the results from the demand uncertainty case
in Table 1, we present the simulated statistics for the duopoly outcome in
Table 2 for the medium water inflow (µω = 3.5) case.

Most of the statistics are roughly similar to those in Table 1 with the ex-
ception of price skewness. In periods with a relatively high inflow realization,
the amount of water available often exceeds the hydro producer’s Cournot
level of output. In these periods, neither producer varies output much with
the water level, consequently price does not vary much. However, when there
is a low realization of the random water inflow, the hydro producer becomes
constrained and the adjustment of output to water level is more significant.
These periods of low water availability result in a price “spike” which shows
up as the high skewness in the price distribution.

The increased price skewness will is not as pronounced under the plan-
ner’s solution. As in the demand uncertainty case, it is efficient to use hydro
generation as much as possible in most cases. This results in hydro gen-
eration constrained much more frequently than occurs under the duopoly.
Hence, prices will be less skewed, although more volatile.

4 Conclusion

We have studied dynamic competition between thermal and hydroelectric
producers under both demand and water inflow uncertainty. In an infinite
horizon game between the two producers, we have demonstrated that the hy-
dro producer does have a strategic incentive to withhold water for sufficiently
large water inflows, but with low inflow the hydro producer may overuse wa-
ter. We find that when capacities of both producers are frequently binding
the duopoly outcome is not far from the efficient one. Examination of the
payoffs to the thermal producer at various capacity levels suggests that if
capacity were to be chosen by the thermal player, it would not choose a
capacity so that it is rarely constrained. This results in a welfare loss lower
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Duopoly Efficient

Quantities:
E(h) 3.27 3.50
E(q) 3.11 5.85
%(h = W ) 1.40 100.00
bW 0.07 4.82
%(q = K) 0.00 49.66
aK 0.00 2.76

Price:
E(p) 72.35 12.91
st.dev.(p) 0.60 4.07
skew.(p) 3.86 1.64

Water:
E(W ) 4.06 3.50
st.dev.(W ) 0.42 0.35
min(W ) 2.57 1.84
max(W ) 5.37 4.93

Payoffs:
EΠH 2375.69 441.50
EΠT 1923.06 172.30
E(Welfare) 8390.12 9364.97

Open Loop:
E(h) 3.48
E(q) 3.00

Table 2: Simulated Descriptive Statistics: Inflow uncertainty
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than that under unconstrained Cournot duopoly.
Our examination of uncertain water flows suggests that prices will be

more skewed than when there is relatively certain water inflow. This effect
is stronger under the duopoly market structure than under a more competi-
tive one. Price skewness also varies by market structure under demand un-
certainty. These results on price skewness are particularly interesting given
concerns about price spikes in electricity markets.
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5 Appendix

Figure 3 shows the approximation residuals for the model in Table 1 with the
largest approximation error, which is the duopoly with the medium inflow
(µ = 3.5). These residuals are the difference between our approximation,
Ṽ (W+), and the computed EV (α+,W+) for a set of W+ 20 times larger
than is used in computing the approximation. The residuals display the
oscillations expected with Chebyshev approximation. Although a smaller
maximal residual would be preferred, attempts at using larger values of n
resulted in a lack of convergence of the algorithm.
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Figure 3: Approximation residual plot for case with demand uncertainty and
medium inflow
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