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Abstract

In this paper, we propose of a test of bivariate stochastic domi-

nance using a generalized framework for testing inequality constraints.

Unlike existing tests, this test has the advantage of utilizing the co-

variance structure of the estimates of the joint distribution functions.

The performance of our proposed test is examined by way of a Monte

Carlo experiment. We also consider an empirical example which uti-

lizes household survey data on income and health status.
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1 Introduction

In the past two decades, a number of statistical tests of stochastic dominance

have been put forth in the literature. These tests can broadly be divided into

two broad categories. Tests in category one, which include those proposed

by Anderson (1996), Fisher et al. (1998), Davidson and Duclos (2000), and

Davidson and Duclos (2007), all of which are applicable only to univariate

distributions, involve evaluating each CDF at a finite number of points.1

Tests in category two, on the other hand, are based on evaluations over

the entire support of each CDF. This category includes the univariate tests

of McFadden (1989), Kaur et al. (1994), Maasoumi and Heshmati (2000),

Barrett and Donald (2003), Linton et al. (2005), and Horvath et al. (2006),

as well as the multivariate tests of McCaig and Yatchew (2007), hereafter

MY, and Anderson (2008).

Tests in category one have the disadvantage of requiring the researcher

to specify a set of arbitrary evaluation points. As suggested by Davidson

and Duclos (2000) and Barrett and Donald (2003), these tests might, as a

result, be inconsistent. However, these tests have the advantage of making

use of the covariances between the estimates made at each of the evaluation

points (see Davidson and Duclos, 2000). Tests in category two ignore this

covariance structure.
1Related tests in this category are the tests of Lorenz dominance by Beach and Davidson

(1983), Beach and Richmond (1985), Bishop et al. (1993), and Dardanoni and Forcina
(1999), as well as the test of distribution dominance by Xu and Osberg (1998).
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In this paper, we propose a test for bivariate stochastic dominance which

involves evaluating each CDF at a finite number of points (i.e., over a grid

of points). This test, belonging to category one, can be seen as a simple

extension of the methods of Fisher et al. (1998) and Davidson and Duclos

(2000) to the bivariate case. While a partial extension of these methods was

considered by Duclos et al. (2006), these authors do not utilize the covariance

structure between the estimates at each grid point in their hypothesis tests.

We are able to do by using the general methods of Kodde and Palm (1986)

and Wolak (1989) for testing vectors of inequality constraints.

The remainder of this paper is organized as follows. Section 2 provides

formal definitions and discuss how stochastic dominance relations can be

estimated. In Section 3 we propose a hypothesis test based on the asymptotic

distribution of the estimates introduced in the previous section, and contrast

this test with that of MY. These two tests are then compared in a Monte

Carlo simulation in Section 4. In Section 5, we present an empirical example

using Canadian household survey data on income and health status. Section

6 concludes.

2 Estimation and inference

Let FA and FB denote two right-continuous d-dimensional distribution func-

tions. We say that distribution FA (weakly) dominates distribution FB

stochastically at order s (an integer) if Ds
A(z) ≤ Ds

B(z) for all z ∈ Rd
+,
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where, for K = A,B, D1
K(z) = FK(z) and Ds

K(z) is defined recursively as

Ds
K(z) =

∫ z

0

Ds−1
K (u)du, s ≥ 2.

In what follows, we will denote this relation by FA �s FB.

Following Davidson and Duclos (2000), it will be convenient, in the bi-

variate case, to rewrite Ds
K(z) = Ds

K(zx, zy) as

Ds
K(zx, zy) =

1

(s− 1)!
E[(zx −XK)

(s−1)
+ (zy − YK)

(s−1)
+ ], s ≥ 1,

where φ+ = max(0, φ), and the random vector (XK , YK) has distribution

function FK .

Letting {(xK,i, yK,i)}nK
i=1 denote a sample of nK independent and identi-

cally distributed (IID) observations drawn from FK , a natural estimator of

Ds
K(zx, zy) is

D̂s
K(zx, zy) =

1

nK(s− 1)!

nK∑
i=1

(zx − xK,i)
s−1
+ (zy − yK,i)

s−1
+ . (1)

In what follows, we wish to estimate both Ds
A(x, y) and Ds

B(x, y) on the same

J×J grid of arbitrary evaluation points. Specifically, let λX,1, . . . , λX,J denote

a set of points on the combined support of XA and XB, and λY,1, . . . , λY,J

denote a set of points on the combined support of YA and YB. Next, let

λ = ((λX,1, λY,1), (λX,1, λY,2), . . . , (λX,1, λY,J),
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. . . , (λX,J , λY,1), (λX,J , λY,2) . . . , (λX,J , λY,J))

denote the J2-vector of unique evaluation points.

Since each of our estimates is just a sum of IID random variables, we can

apply a multivariate central limit theorem to find its asymptotic distribution.

Specifically, letting the population moment of order 2s − 2 of the random

vector (XK , YK) exist,
√
nK [D̂s

K(λ) − Ds
K(λ)]

D→ N(0,ΣK), where ΣK has

typical element

lim
nK→∞

nKCov[D̂s
K(λX,j, λY,k), D̂s

K(λX,l, λY,m)]

=
1

[(s− 1)!]2
E[(λX,j −XK)s−1

+ (λY,k − YK)s−1
+ (λX,l −XK)s−1

+ (λY,m − YK)s−1
+ ]

−Ds
K(λX,j, λY,k)Ds

K(λX,l, λY,m),

with j, k, l,m = 1, . . . , J . These results follow directly from Davidson and

Duclos (2000) and Duclos et al. (2006).

A consistent estimate of Cov[D̂s
K(λX,j, λY,k), D̂s

K(λX,l, λY,m)] can be ob-

tained using

ˆCov[D̂s
K(λX,j, λY,k), D̂s

K(λX,l, λY,m)]

=
1

nK [(s− 1)!]2

n∑
i=1

[(λX,j − xi)s−1
+ (λY,k − yi)s−1

+ (λX,l − xi)s−1
+ (λY,m − yi)s−1

+ ]

−D̂s(λX,j, λY,k)D̂s(λX,l, λY,m).

In the following section, we show how these results can be used to test for
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bivariate stochastic dominance between two populations.

3 Hypothesis testing

To test for bivariate stochastic dominance, we use the general approach to

testing multivariate inequality restrictions of Kodde and Palm (1986) and

Wolak (1989). This approach has also been used for tests for of univariate

stochastic dominance by Fisher et al. (1998) and Davidson and Duclos (2000).

Specifically, we are interested in testing hypotheses of the form

H0 : FA �s FB

against an unrestricted alternative. Letting ∆ = Ds
B(zX , zY ) − Ds

A(zX , zY ),

we can rewrite the null hypothesis above as

H0 : ∆ ≥ 0.

The unrestricted estimate of ∆ is ∆̂ = D̂s
B(λ) − D̂s

A(λ), where D̂K(λ)

is the estimator given in the previous section for population K = A,B.

The restricted estimate of ∆ can be found as the solution to the following

minimization problem:

min
∆≥0

(∆̂−∆)′Ω̂−1(∆̂−∆), (2)
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where Σ̂ is an estimate the asymptotic covariance matrix of ∆̂. Under the

assumption that A and B represent two independent samples, we have

Ω̂ = Σ̂A/nA + Σ̂B/nB,

where Σ̂K is an estimate of the asymptotic covariance matrix of
√
nK(D̂s

K −

Ds
K), for K = A,B (see Section 2 for details).2

Solving for ∆ in (2) is a straightforward quadratic programming (QP)

problem. Denoting the solution by ∆̃, we have the Wald-type test statistic

W = (∆̂− ∆̃)′Ω̂−1(∆̂− ∆̃).

As shown by Kodde and Palm (1986), under the null, W will converge in

distribution to a mixture of χ2 distributions.

To avoid the complexities associated with computing the critical values

for W (see Wolak, 1989 for a more complete discussion), we suggest using

the bootstrap. Specifically, we combine samples of observations on each

population into pooled sample (which is of length nA + nB). Resampling

(in pairs) nK observations from this pooled sample produces the bootstrap

sample {(x∗K,i, y
∗
K,i)}

nK
i=1, for K = A,B. Using the two bootstrap samples,

we calculate the bootstrap test statistic, W ∗, in a matter analogous to that

for the original test statistic, W . Repeating this process some large number
2See Duclos et al. (2006) for a discussion on how to estimate the covariance matrix in

the case of dependent samples.
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of times, the bootstrap p-value for W is the proportion of times that W ∗

exceeds W .

We now briefly contrast this approach with that of MY, who consider

tests of multivariate stochastic dominance of the category two type. Their

test statistic is

T =

{∫
[ψs(u)]2du

}1/2

where ψs(u) = max{Ds
A(u)−Ds

B(u), 0}. Of course, when the null is true, T

is equal to zero.

In practice, this test involves estimating T and testing whether it is sta-

tistically different from zero. Specifically, in the bivariate case, MY estimate

T by

T̂ =

{
J∑

j=1

J∑
k=1

[ψ̂s(λX,j, λY,k)]2

}1/2

,

where

ψ̂s(λX,j, λY,k) = max{D̂s
A(λX,j, λY,k)− D̂s

B(λX,j, λY,k), 0},

and D̂s
A(λX,j, λY,k) and D̂s

B(λX,j, λY,k) are obtained using the estimator in (1).

As in our approach, λX,1, . . . , λX,J denote a set of points on the combined

support of XA and XB, λY,1, . . . , λY,J denote a set of points on the combined

support of YA and YB. Thus, in practice, this test would seem to fall in the

same category as our proposed one. However, there is nothing inhibiting the

use of an extremely large number of grid points (perhaps every unique point
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supported by the combined sample). That being said, MY use J = 25 in their

simulations and empirical applications. While this number of grid points

would be quite computationally demanding for our approach (requiring, e.g.,

the inverse of a 252 × 252 covariance matrix to be computed), it would not

be out of the question given current processing power.

Finally, as MY note, T̂ does not have a known asymptotic distribution.

Accordingly, they suggest the use of a bootstrap procedure which is analogous

to the one we have described above for our proposed test statistic, W .

4 Simulation evidence

We now present the results of some simple Monte Carlo experiments. Each

of these experiments involves generating 100,000 sets of two independent

samples, one from distribution A and one from distribution B, and testing

the null hypothesis H0 : FA �1 FB. The distributions used are various

parameterizations of the bivariate lognormal distribution (see Table 1), some

of which were also used by MY. The size of the samples are nA = nB = n = 50

and 500.

Table 1: Parameters for simulated data

E(logX) E(log Y ) Var(logX) Var(log Y ) Cov(logX, log Y )
D1 0.85 0.85 0.36 0.36 0.20
D2 0.60 0.60 0.64 0.64 0.20
D3 0.85 0.60 0.36 0.64 0.20

Note: In each case, logX and log Y are bivariate normal.
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We consider three different cases. In the first case, distribution D1 is

used to generate samples for both A and B. Since the null is (weakly) true

in this case, we would expect to reject it at the nominal level of the test.

In the second case, distribution D2 is used to generate samples for A and

distribution D1 is used to generate samples for B. In this case, the null is

clearly false (FB �1 FA), so the rejection frequencies can give us an idea of

the relative power of the tests. In the third case, distribution D3 is used

to generate samples for A and distribution D1 is used to generate samples

for B. Letting FK,X and FK,Y denote the marginal distribution functions

of X and Y , respectively, for population K = A,B, we have, in this case,

FA,X �1 FB,X but FB,Y �1 FA,Y . Thus, the null hypothesis H0 : FA �1 FB

is false, but not so clearly as in the second case. Hence, the rate or rejection

should be lower in this case.

The simulated rejection frequencies for tests based on theW and T̂ statis-

tics at the 10%, 5%, and 1% nominal levels are reported in Table 2. For both

test statistics we use J = 9, so that the total number of grid points is 81.3

These points are chosen along each dimension so as to divide the combined

sample into 10 intervals which contain an equal number of observations. We

use 99 bootstrap replications.

3We also computed T̂ using J = 25 (the number used by MY in their simulations), and
found no material difference in the rejection frequencies.
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Table 2: Rejection frequencies for simulated data

n = 50 n = 500

Case FA FB Level W T̂ W T̂
1 D1 D1 10% 0.1065 0.1019 0.1009 0.1011

5% 0.0537 0.0515 0.0505 0.0502
1% 0.0115 0.0104 0.0099 0.0010

2 D2 D1 10% 0.7655 0.6620 1.0000 1.0000
5% 0.6307 0.5005 1.0000 1.0000
1% 0.3179 0.2080 1.0000 0.9976

3 D3 D1 10% 0.5181 0.3891 1.0000 0.9994
5% 0.3671 0.2430 1.0000 0.9945
1% 0.1348 0.0696 0.9991 0.8910

Notes: The null hypothesis in each case is H0 : FA �1 FB.

Based on the results for the first case, it is clear that the sizes of the

tests based on both statistics are extremely close to their nominal levels,

particularly for n = 500. However, as evidenced by the rejection rates in the

second and third cases, tests based theW statistic seem to have substantially

higher power for both sample sizes than those based on T̂ .

5 Empirical example

For illustrative purposes, we now consider an empirical application which uses

income and health status data for two subgroups of the Canadian population:

those born in Canada, and those born outside. The data for this example is

obtained from the Joint Canada/United States Survey of Health conducted
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in 2002-2003.4

In order to reduce the level of heterogeneity within the sample, only

unattached individuals living in Canada are included. There are 568 Canadian-

born individuals and 99 foreign-born individuals for which we have data on

income, as measured by income from all sources, and health status, as mea-

sured by the Health Utilities Index Mark 3 (HUI3). The HUI3 is part of

the Comprehensive Health Status Measurement System developed at Mc-

Master University’s Centre for Health Economics and Policy Analysis, and

is designed to measure an individual’s overall functional health. It is based

on eight attributes: vision, hearing, speech, mobility, dexterity, cognition,

emotion, and pain and discomfort; see Furlong et al. (1998) for more details.

Summary statistics for the data are provided in Table 3.

Table 3: Summary statistics for empirical example

Canadian-born Foreign-born
Mean of income 35,033 34,688
Std. dev. of income 24,063 27,900
Mean of health status 0.8362 0.8586
Std. dev of health status 0.2249 0.2012
Correlation 0.2714 0.2369
No. of observations 568 99

Using this data, we conduct tests for first-order stochastic dominance

based on both the W and the T̂ test statistics discussed above. For both

test statistics we use J = 19, so that the total number of grid points is 361.
4For the purposes of this example, we ignore the complex sampling scheme of the survey

data; see Davidson and Duclos (2000).
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Analogous to what was done in the simulation described above, these points

are chosen along each dimension so as to divide the combined sample into 20

intervals which contain an equal number of observations. Here, we use 999

bootstrap replications.

Testing for first-order bivariate stochastic dominance of Canadian-born

individuals over foreign-born individuals, the W and T̂ test statistics are

35.1351 and 0.4593, respectively, and the bootstrap p-values are 0.0390 and

0.4244, respectively. Thus, we can reject the null of first-order stochastic

dominance (at, say, the 5% level) using theW test statistic, but can not do so

using the T̂ test statistic. On the other hand, testing for first-order stochastic

dominance of foreign-born individuals over Canadian-born individuals, the

W and T̂ test statistics are 4.0143 and 0.5274, respectively, and the bootstrap

p-values are 0.5295 and 0.3854, respectively.

6 Conclusion

In this paper, we have proposed a test for bivariate stochastic dominance

which involves evaluating each CDF at a finite number of points (i.e., over a

set of grid points). Simulation evidence presented here suggests that the pro-

posed test has substantially higher power than the test of MY. This conclu-

sion is borne out by the results of our empirical example; using the test of MY

we are unable to obtain any clear inference, while our proposed test leads us

to suggest that the joint distribution of income and health status for foreign-
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born individuals dominates that of Canadian-born individuals stochastically

at first-order.
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