
 

DEPARTMENT OF ECONOMICS AND FINANCE 

 

DISCUSSION PAPER 2012-02 

 

 

 

 

 

 

Ross McKitrick 

 

FEBRUARY 6, 2012 

 

 

  
College of Management and Economics | Guelph Ontario | Canada | N1G 2W1 

www.uoguelph.ca/economics 

Encompassing Tests of 

Socioeconomic Signals in 

Surface Climate Data 



[2] 

 

ENCOMPASSING TESTS OF SOCIOECONOMIC 

SIGNALS IN SURFACE CLIMATE DATA  

 

 

Ross McKitrick 

Department of Economics 

University of Guelph 

 

February 6, 2012 

 

 
Abstract: The debate over whether urbanization and related socioeconomic 

developments affect large-scale surface climate trends is stalemated with 

incommensurable arguments. Each side can appeal to supporting statistical 

evidence based on data sets that do not overlap, yielding inferences that merely 

conflict with but do not refute one another. I argue that such debates can only be 

resolved in an encompassing framework, in which both types of results can be 

demonstrated on the same data set, in such a way that apparent support for one 

conclusion occurs as a restricted case of a more general specification that supports 

the other, and where the restrictions can be tested. The issues under debate make 

such data sets challenging to construct, but I give two illustrative examples. First, 

insignificant differences in warming trends in urban temperature data between 

windy and calm conditions are shown in a restricted model whose general form 

shows temperature data to be strongly affected by local population growth. Second, 

an apparent equivalence between trends in a data set stratified by a static measure 

of urbanization is shown to be a restricted finding in a model whose general form 

indicates significant influence of local socioeconomic development on temperatures.  
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1 INTRODUCTION 

The debate over whether urbanization and related land use changes affect large-scale surface 

climate trends has involved a number of disjoint data sets and statistical models. Jones et al. (1990), 

Peterson et al. (1998) and Hansen et al. (1999), among others, stratified surface data sets according 

to measures of urbanization levels and argued the differences in trends were insignificant. 

McKitrick and Michaels (1997), McKitrick (2010) and McKitrick and Nierenberg (2010) by contrast 

demonstrated significant correlations between the spatial pattern of warming trends and the 

spatial pattern of socioeconomic development, despite this not being a prediction of climate models 

(contrast Schmidt 2010 with McKitrick and Nierenberg 2010 on this point). de Laat and Maurellis 

(2004, 2006) showed that measured trends were higher in regions with high industrialization 

trends (as measured by local carbon dioxide emissions), irrespective of where they set the 

high/low industrialization threshold, with the largest gap appearing when the threshold was set 

fairly high. By contrast Parker (2004, 2006) examined a sample of urban locations and found no 

difference in trends on subsets partitioned according to nighttime wind speed, concluding that 
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urban warming could not be a significant factor in global averages. More recently, Wickham et al. 

(2011) divided the “BEST” data set (Berkeley Earth Surface Temperature) using satellite-based 

measures of rural and urban locations, found no significant difference in average trends, likewise 

concluding that land surface disruptions were not a factor in global average trends.  

Thus far each side has appealed to incommensurate statistical evidence: since the data sets do 

not overlap, one result merely contrasts with the next one, but does not disprove it. The situation 

can be likened to a hockey game with two pucks on the ice, in the sense that each side is scoring 

goals, yet it is unclear which, if any, count. Such debates are interminable unless an encompassing 

framework is created, in which both types of results can be demonstrated on a single data set, in 

such a way that apparent support for one conclusion is shown only to occur as a restricted case of a 

more general specification that supports the other. If the restrictions are rejected the model can 

then be seen to uphold one conclusion over another.  

In this paper I give two examples of encompassing tests. First, a panel of Canadian urban and 

rural post-1979 weather station data are developed which includes both local wind and population 

figures. A Parker-type result is reproduced, in which near-identical warming trends are 

demonstrated in urban data during windy and calm conditions. This is shown in a restricted model, 

the general form of which shows that regional population growth has a strong apparent warming 

effect in urban areas but not rural areas, notwithstanding the absence of a wind effect. The 

restrictions are rejected in the urban sample, implying that the approach of partitioning a sample 

by wind characteristics is not capable of proving the absence of a contaminating effect on 

temperature data. Second, the global sample of 1979-2002 surface trends from McKitrick and 
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Nierenberg (2010) is compared to a suite of regional socioeconomic indicators. A BEST-type 

equivalence is demonstrated between trends in locations defined as urban based on a static 

measure (in other words, stratification of surface characteristics observed at one point in time). But 

it is also shown that this result is, in principle, consistent with the absence or the presence of 

urbanization bias, and consequently is uninformative. A better measure of the particular form of 

bias we are measuring is the relationship between temperature change terms (regional trends) and 

corresponding changes at the surface. A general model is estimated showing that significant 

socioeconomic patterns can be detected even if a restricted form of the model, in which the sample 

is split based on a static characteristic, fails to show it.  

The encompassing approach is especially useful in cases, such as with the Parker (2004, 2006) 

and Wickham et al. (2011) studies, in which the results depend on the failure to observe an effect, 

since this is not proof that the effect does not exist. In the case of Parker (2004, 2006), it is argued 

that when data are unaffected by urban heat islands (UHI), night time minimum trends will be the 

same under calm and windy conditions. But this does not imply the reverse, namely that an 

insignificant difference in trends between calm and windy conditions implies the data are 

unaffected by land surface disruptions. The model in Section 2 below shows a counterexample: 

windy/calm trend near-equivalence in data known on other grounds to be contaminated with 

urbanization bias. Wickham et al. argue that in data unaffected by urbanization, trends will be 

equivalent between urban and rural locations. But again, it is incorrect logic to argue the reverse, 

namely that the observation of trend equivalence implies the data are unaffected by urbanization. 

The model in Section 3 also provides a counterexample to show why this does not follow. In each 
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case, estimation of a general encompassing form allows for a more decisive treatment of the 

underlying dispute. 

2 WIND AND THE URBAN HEAT ISLAND EFFECT 

2.1 DATA 

For the purpose of this section it was necessary to build a data set in which suitable measures of 

temperature, wind and economic growth for a group of locations at a high sampling frequency 

could be obtained. A sample was needed not only of obviously urban locations, but also obviously  

remote rural locations. Building a global sample was not possible, but a pan-Canadian sample was 

developed that covers a large geographical span. 

All temperature, wind speed and precipitation data were obtained from Environment Canada. 

The source URLs are shown in the caption to Table 1. Sampling locations for the urban data were 

international airports at the following cities: Victoria, Vancouver, Edmonton, Calgary, Regina, 

Saskatoon, Winnipeg, Toronto, Ottawa and Montreal. The non-homogeneity adjusted data are only 

subject to minimal checks for quality control but are otherwise unadjusted (Environment Canada, 

pers. comm.). Consequently these data can reasonably be expected to be affected by urbanization 

and regional land surface disruption. For each city I obtained the monthly minimum temperatures. 

Environment Canada also provides a homogeneity-adjusted data set with corrections applied for 

discontinuities due to time of observation change, equipment change, station moves and changes in 

exposure, but not for artificial trends due to regional land surface changes (Vincent et al. 2002). 

Monthly mean wind speed observations were taken from this archive, although wind speeds for 
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nearby cities had to be used in place of Toronto, Montreal and Vancouver (respectively St. 

Catherines, McTavish and Abbotsford, see Table 1) due to the absence of those cities in the 

homogeneity-adjusted archive. Since the current debates have focused on the post-1979 interval 

this was the period studied in this example as well. The sample extended up to 2006, the last year of 

the wind speed record.  

To build a data set that could reasonably be described as free of UHI problems, remote stations 

from the same province were selected to replace each city in turn. In some cases the stations were 

far away from the city being replaced. Each site was examined visually using Google Satellite View 

to ensure the location was not in an urban or semi-urban location. The sites were selected based on 

length of the record and suitability of the site and the data were obtained from the homogeneity 

adjusted archive (Vincent et al. 2002). Table 1 shows the decadal least-squares temperature trends 

for each location. Standard errors are not shown since they will be calculated in the full regression 

model with a correction for panel-specific autocorrelation (see Section 2.2). The data set was 

assembled a year prior to conducting the statistical analysis and no resampling, screening or 

replacement of locations occurred after the analysis began. Summary statistics are shown in Table 

2. 

Statistics Canada does not have monthly population data for cities, but a suitable replacement 

was found in the form of quarterly provincial population data from the online CANSIM system. In 

the post-1979 interval, population growth across Canada was almost entirely concentrated in major 

urban centres, so changes in population in each province are good indicators of the growth of the 

major cities in this sample. The data were filled out to match the monthly frequency of the 
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temperature data. That is, the same value was used for each of the three months in a quarter. The 

population data were centered on a zero mean city by city  and converted to units of one million. 

Each climatic series was converted to anomalies by removing the monthly means, city-by-city.  

2.2 METHODS 

The regression model takes the following form: 

 
itititit

j

it
ePaDtataDaaT ++×+++=

43210
 (1) 

where 
j

it
T  denotes the mean temperature anomaly in city i (=1,…,N) in month t (=1,…,T) in either 

an urban (j=U) or a rural (j=R) location, 
it

D  is an indicator (or dummy) variable taking the value 1 

in month t if average wind speed was one standard deviation above that city’s average and 0 

otherwise, t is the linear time trend and 
it

e  is a regression residual. (Similar results to those 

reported herein are obtained if the cutoff is set to 1.5x or 2x the standard deviation, but in the latter 

case there are only 1 or 2 percent of cases classified as windy, making the comparisons unreliable. 

The trend through data points during relatively calm periods (
it

D =0) is given by 
2

a  while that 

through windy periods is given by 
32

aa + . Thus a t-test on 
3

a  tests the null hypothesis that the 

trend under windy conditions is less than or equal to that under calm conditions. A Parker-type 

result would arise in a model in which �� is restricted to zero and 
3

a  is statistically insignificant.  

An encompassing model would then take the form of allowing �� to be unrestricted. Were it to be 

significant in an urban sample in which 
3

a  is insignificant, with or without population in the 

equation, that would imply that the test on 
3

a  cannot be considered a test on whether land use 

effects associated with population growth bias the trends. A consistency test is provided by redoing 
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the analysis on the rural sample and checking that the population effects are not significant, 

irrespective of the wind effects. 

The estimation is done using Driscoll-Kraay (1998) standard errors which are robust to 

heteroskedasticity, serial correlation and spatial dependence of unknown forms. This is a non-

parametric approach in the class of estimators known as HAC (heteroskedasticity and 

autocorrelation consistent) in the econometrics literature, and is implemented in Stata 12 using the 

“xtscc” command in Stata 12. Up to four temporal lags were permitted for each location.  

2.3 RESULTS 

The results are shown in Table 3. Looking first at the restricted model, the urban results appear 

to show a Parker-like finding, namely no significant difference in trends between the calm and the 

windy conditions. This is illustrated in the top panel of Figure 1, where the trend lines are positive 

and nearly parallel. The t-test of no difference between the trends has a p value of 0.922, indicating 

that we cannot reject the hypothesis of equivalence between the trends. The trend on calm nights 

equates to 0.216 degrees C per decade, but is not significant (p=0.151). The trend on calm nights in 

rural locations is 0.240, a bit higher, though likewise insignificant.  

Rural areas also exhibit no difference in trends based on night time wind speed, as shown in the 

bottom panel of Figure 1. The coefficient on the trend difference has a p value of 0.827. The Parker 

(2004, 2006) model implies that since neither the urban nor the rural locations exhibit a difference 

in trends based on wind speed, urbanization has no effect on the overall temperature trend. But the 

difficulty here is that we are using uncorrected data from areas known to be affected by growing 
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urbanization, so the failure to find an effect might also imply that the method is not adequate for the 

purpose. 

We can turn to an encompassing model to test this. The unrestricted model estimations, in which 

local population is introduced, are shown in columns 5 and 6 of Table 3. The population variable is 

positive and highly significant (p=0.013) in the urban data but not in the rural data (p=0.599). This 

is consistent with the prior expectation that the urban data are contaminated and the rural data are 

not. It also indicates that an insignificant difference in trends on windy and calm nights does not 

imply the absence of non-climatic bias in the data. The significance of the population coefficient in 

the urban model also implies that the restricted model is rejected in favour of the unrestricted 

model. 

It is not the case that these results imply population growth explains all the warming across 

Canada. In the rural sample where population has no significant effect, the trend over months with 

low wind speed is 0.336 degrees per decade, though it is not significant (p=0.157). In the urban data 

the results indicate that the climatic trend simply cannot be identified after controlling for the 

population effect.  

The example in this section shows that that one must be careful when using one variable to 

measure something completely different. Using wind to measure urbanization-related processes 

requires a close two-way mapping between the quantities, such that a failure to observe a 

difference of trends in a sample stratified by wind speed can reliably be interpreted as the absence 

of an effect due to land use changes. It is unsound logic to reverse the underlying syllogism, that is, 

to argue that the absence of a wind effect implies the absence of an urbanization effect. The 
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encompassing model in this section provides an empirical demonstration. An insignificant 

difference in trends in data stratified by calm and windy conditions can be consistent with evidence 

of a significant urban warming effect due to regional population growth.  

3 URBAN-RURAL SAMPLE SPLITS  

3.1 CONCEPTUAL ISSUES 

Many authors look for evidence of bias by dividing the surface up into rural and urban regions 

based on a static threshold. Whether the measure is local population, night lights or a remote 

sensing measure of land cover, the idea is the same: the site is categorized based on the extent of 

urbanization as measured at a certain point in time,  and the researcher then checks whether the 

urban areas exhibit higher trends, which, if so, would be interpreted as evidence of bias. While 

some studies have reported differences based on this method (some results in Jones et al. 1990, as 

well as de Laat and Maurellis 2004 and 2006), others do not (Peterson et al. 1998, Hansen et al. 

1999). Most recently Wickham et al. (2011) reported that in a global sample, the rural trends were 

slightly higher than those in an urban sample, though the difference was insignificant.  

The key problem with this approach is that it relates a change term (temperature trend) to a 

level variable (land classification) rather than to a corresponding change variable (such as the 

change in surface conditions). As a result the findings are inherently ambiguous. It is intuitively 

simple to think of cases in which the urban location would warm faster due to an urbanization bias. 

But it is also easy to think of an example where the same process could result in a faster measured 

warming rate in a rural area than in a city, or no difference at all. Suppose there are only two 
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weather stations in the world, one rural and one urban. Suppose also that there is zero climatic 

warming over some interval, but there is a false warming due to local population growth, the effect 

of which is logarithmic. Then the measured trends would be proportional to the respective tangent 

lines as shown in Figure 3. A sample split according to the rural/urban distinction would 

apparently show that the rural station has a higher trend than the urban one. Far from proving that 

there is no urban bias in the overall average, it is precisely the result we expect if there is such a 

bias. And the contrast would be larger, the wider the difference between “urban” and “very rural”. 

Consequently a finding of a slightly larger warming rate in rural areas compared to urban areas (as 

in Wickham et al. 2011) does not imply that there is little or no urbanization bias, since the results 

are consistent with such a bias being present. Likewise, if the line in Figure 3 were linear, or 

sigmoid in shape, any trend comparison between urban and rural areas might be observed, each 

consistent with the hypothetical case in which there is no climatic warming over an interval, and 

instead there is only a false local warming due to local population growth. The only way to say 

something decisive about the effect of local population growth on warming would be to measure it 

directly, not to try and infer it from an indirect measure such as wind speed.  

 

3.2 DATA AND METHODS 

In this case an encompassing model must be able to demonstrate how a static sample split could 

yield an appearance either of no difference of trends, or a higher warming rate in the rural location, 

then reproduce this effect as a restricted form of a more general model that actually shows the 

opposite. A suitable data set for this purpose is from McKitrick and Nierenberg (2010, herein 
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MN10). This is based on the data set of McKitrick and Michaels (2007), augmented with more 

recent data products and spatial weights matrices based on maximum likelihood estimation of the 

distance decay parameter.  

MN10 estimated the regression equation 

 iiiiii WATERDSLPDRYPRESSTROP 543210 ββββββθ +++++= iABSLAT6β+  

 iiiiiiii uxgecymp ++++++++ 13121110987 βββββββ  (2) 

where iθ  is the 1979-2002 trend in the CRUTEM3v gridded surface climate data (Brohan et al. 

2008) in grid cell i, iTROP  is the time trend of Spencer-Christy Microwave Sounding Unit (MSU)-

derived temperatures in the lower troposphere in the same grid cell as iθ over the same time 

interval (Spencer and Christy 1990), iPRESS  is the mean sea level air pressure, iDRY  is a dummy 

variable denoting when a grid cell is characterized by predominantly dry conditions (which is 

indicated by the mean dewpoint being below 0 oC), iDSLP  is ii PRESSDRY × , iWATER  is a dummy 

variable indicating the grid cell contains a major coastline, iABSLAT  denotes the absolute latitude 

of the grid cell, ip  is local population change from 1979 to 2002, im  is per capita income change 

from 1979 to 2002, iy  is total Gross Domestic Product (GDP) change from 1979 to 2002, ic  is coal 

consumption change from 1979 to 2002, ig  is GDP density (national Gross Domestic Product per 

square kilometer) as of 1979, ie  is the average level of educational attainment, and ix  is the 

number of missing months in the observed temperature series and iu  is the regression residual. 

There are 428 observations in this data set. MN10 also used the MSU product from Mears et al. 
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(2003) and found it yielded slightly stronger effects once some outliers were removed, but the data 

set has less spatial coverage than the Spencer-Christy record, so the latter is used here. 

Equation (2) explains the spatial pattern of temperature trends in terms of three groups of 

explanatory variables: temperature trends in the lower troposphere, fixed geographical factors, and 

socioeconomic variables. The standard interpretation of climate data is that the socioeconomic 

effects have been filtered out of climatic data products like CRUTEM3v. 

Summary statistics are in Table 4. The tropospheric data are at a 2.5x2.5 degree level, one-fourth 

of the 5x5 CRU surface grid size. To reconcile the spatial scales between surface and tropospheric 

gridcells MN10 develop matched 5x5 grid cells.  

The surface temperature field is spatially autocorrelated, which can, in principle, bias the 

inferences from regressions on the spatial trend field. We test for spatial dependence in the 

residuals as follows. The regression model (2) can be rewritten in matrix notation as 

  u+= XbT  (3) 

where T is a 428x1 vector of temperature trends in each of 428 surface grid cells, X is a 428xk 

matrix of climatic and socioeconomic covariates, b is a kx1 vector of least-squares slope coefficients 

and u is a 428x1 residual vector. Spatial autocorrelation in the residual vector can be modeled using 

 euu += Wλ  (4) 

where λ  is the autocorrelation coefficient, W is a symmetric nn ×  matrix of weights that 

measure the influence of each location on the other, and e is a vector of homoskedastic Gaussian 
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disturbances, (Pisati 2001). The rows of W are standardized to sum to one. A test of 0:0 =λH  

measures whether the error term in (4) is spatially independent. Anselin et al. (1996) point out that 

if the alternative model allows for possible spatial dependence of T, i.e. 

 e++= XbZTT φ  (5), 

where Z is a matrix of spatial weights for T and may not be identical to W, then conventional 

tests of 0=λ  assuming an alternative model of the form e+= βXy  will be biased towards over-

rejection of the null. They derive a )1(
2χ  Lagrange Multiplier (LM) test of 0=λ  robust to possibly 

nonzero φ  in (5). Hypothesis tests and parameter estimations using W are conditional on the 

assumed spatial weights. Denote the great circle distance between the grid cell centers from which 

observation i and observation j are drawn as ijg . The weighting function is µ−

ij
g  where µ  

determines the rate at which the relative influence of one cell on adjacent cells to declines and is 

estimated in MN10 by a maximum likelihood grid search routine.   

On the MN10 data set the spatial lag term in � in (4) is significant (p=0.002) but the residual lag 

term � is not (p=0.160) indicating that (2) is a well-specified model of the surface temperature 

trends. To be conservative the spatial lag term was included in the regression models. 

For comparison with Wickham et al. (2010) an alternative form of equation (2) was estimated in 

which the only explanatory variable was g, the static (1979) measure of (national) GDP per square 

km in each grid cell. An alternative version of this model was tried in which g was replaced with a 
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binary variable indicating if g was at least one standard deviation above the mean, but the same 

results were obtained, so this outcome is not reported.  

3.3 RESULTS 

Table 5 shows the results from estimating two versions of equation (2), the restricted case in 

which all coefficients are set equal to zero except the one on g, and the unrestricted case. The 

restricted case resembles the kinds of tests undertaken in Wickham et al. (2010), Hansen et al. 

(1999), Peterson et al. (1998) and others, where the sample is conditioned only on a static measure 

of the level of surface disruption at one point in time. The restricted model appears to show that 

there is no significant difference in trends based on the level of g, thus apparently confirming the 

conclusions of these studies.  

But the unrestricted model tells a very different story. GDP and educational attainment correlate 

with temperature trends, as do the rate of population change and coal consumption. Rather than 

the restricted model proving that surface changes do not contaminate the temperature record, it 

appears from the unrestricted model to be more likely the case that a model of that form is simply 

not capable of measuring the effect. A test of the restrictions necessary to turn equation (2) into a 

model with only g on the right hand side has a �� value of 111.8, which is significant at <0.0001%. 

Hence the data reject the restricted form, and by implication provide preferential support for model 

(2) and its implications. 

4 CONCLUSIONS 
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The examples shown herein are meant to illustrate the kind of testing framework within which 

current debates about surface temperature data may move towards resolution. Rather than 

presenting contrasting results on disjoint data sets, the examples herein reproduce apparently 

conflicting findings on the same underlying data set, and then use proper hypothesis testing to 

determine whether the restrictions necessary to yield one set of results are rejected or not. In both 

cases, the form of the model that implies an absence of effects due to socioeconomic development is 

a restricted version of another model that implies the presence of such effects, and the restrictions 

are rejected. In order to move matters closer to overall resolution, it would be useful to develop a 

global data base, pooling time series and cross sectional information at the international level  to 

permit development of a genuinely comprehensive testing framework. Future work in this 

direction is planned.  
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6 FIGURES 

 

 

Figure 1. Fitted trends in urban (top) and rural (bottom) samples stratified by whether monthly 

average wind speed is one standard deviation above the local average, where the trends are 

estimated without controlling for any effects due to local population growth. Series are offset by 

constant terms to aid visual comparison. 
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Figure 2. Fitted trends in urban (top) and rural (bottom) samples stratified by whether monthly 

average wind speed is one standard deviation above the local average, where the trends are 

estimated after controlling for effects due to local population growth. Series are offset by constant 

terms to aid visual comparison. 
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Figure 3. Conceptual representation of differential warming bias rates at rural and urban 

locations.  
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7 TABLES 

 

Non-Homogeneity Adjusted Urban 

Temperature (a) 

 Homogeneity-Adjusted Remote 

Temperature (b) 

Location ID Trend  Location ID Trend 

Calgary AB 3031093 0.097  Carway 3031400 0.405 

Edmonton AB 3012205 -0.229  Campsie 3061200 -0.060 

Montreal QU 7025250 0.614  Gaspe 7052605 0.744 

Ottawa ON 6106000 0.318  Peterborough 6166418 0.360 

Regina SK 4016560 -0.176  Swift Current 4028040 0.412 

Saskatoon SK 4057120 -0.208  Estevan 4012400 0.137 

Toronto ON  6158733 1.028  Wiarton 6119500 0.371 

Vancouver BC 1108447 0.401  Stewart 1067742 0.089 

Victoria BC 1018620 0.395  Quatsino 1036570 -0.213 

Winnipeg MA 5023222 0.122  Sprague 5022759 0.554 

TABLE 1: Temperature Data for Section 2.  (a) 

http://www.climate.weatheroffice.gc.ca/climateData/ canada_e.html.  (b) 

http://www.ec.gc.ca/dccha-ahccd/default.asp?lang=En&n=B1F8423A-1. “ID” refers to 

Environment Canada identifier, not WMO identifier. Trend: 1979-2006 linear temperature trend in 

degrees C per decade. Provinces: AB Alberta, ON Ontario, QU Quebec, SK Saskatchewan, BC British 

Columbia, MA Manitoba.  
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Variables Obs Mean Std.Dev Min Max 

URBAN      

 Monthly min temp 3360 0 2.420 -12.143 10.580 

 Monthly mean wind speed 

 

3360 0 1.656 -6.282 8.975 

RURAL      

 Monthly min temp 3360 0 2.623 -12.793 10.854 

 Monthly mean wind speed 3360 0 1.932 -10.046 12.954 

 

Population (millions) 3360 0 0.554 -1.880 1.850 

D (urban) 3360 0.141 0.314 0 1 

D (rural) 3360 0.150 0.318 0 1 

TABLE 2: Summary statistics of the data set for Section 2. Note that all data are centered.  
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  Restricted Unrestricted 

Variables Coefficient Urban Rural Urban Rural 

Trend (calm) a2 0.0018 

(1.57) 

0.0024 

(1.92) 

-0.0006 

(0.36) 

0.0028 

(1.54) 

 

Trend (windy) a2 +a3 0.0020 

(0.094) 

0.0021 

(1.14) 

-0.0003 

(0.12) 

0.0025 

(1.11) 

 

Trend x D a3 0.0002 

(0.10) 

-0.0003 

(0.22) 

0.0003 

(0.16) 

-0.0003 

(0.22) 

 

D a1 -0.6154 

(0.70) 

0.1803 

(0.32) 

-0.6722 

(0.76) 

0.1740 

(0.57) 

 

Population a4  

 

 0.5555** 

(3.10) 

-0.0917 

(0.55) 

 

Constant a0 -0.6471 

(1.36) 

-0.9541 

(1.82) 

0.3323 

(0.46) 

-1.11316 

(1.49) 

 

R2  0.0123 0.0075 0.0188 0.0077 

Table 3. Results from estimation of equation (1) . Restricted: population effect set equal to zero. 

Coefficient on trend terms (first 3 rows) are degrees per annum. Terms in parentheses are absolute 

t statistics. Bold: significant at 10%, * significant at 5%, ** significant at 1%.  Sample size = 3360 for 

all regressions.  
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Variable Definition Mean Std.Dev. Min Max 

cru3v 1979-2002 Surface Temp 

Trend (C/decade) 

0.2761 0.2443 -0.717 1.042 

uah4 1979-2002 Tropospheric 

Temp Trend (C/decade) 

0.2206 0.1732 -0.1390 .7414 

slp Sea Level Pressure 1016.29 4.987 993 1029 

dry Predominantly dry region 0.376 0.4835 0.0 1.0 

water Grid cell contains coast 0.6060 0.4892 0.0 1.0 

abslat Absolute latitude 35.97 16.79 2.5 82.5 

g GDP per square km 0.3010 0.6029 0.0014 3.002 

e Educational level 103.58 28.10 11.6 144.2 

x Months w/o surface 

temperature data 

0.5812 1.938 0.0 24 

p % Population growth* 0.3110 0.218 -0.0691 1.2353 

m % Income growth* 0.4172 0.6339 -0.7901 2.147 

y % GDP growth** 0.8536 0.8597 -0.6686 3.002 

c % Coal usage growth* 1.2869 4.759 -1.0 39.33 

Table 4: Data used for estimating equation (2). Weighted by cosine latitude to control for grid cell 

size. uah4: 4 2.5x2.5 degree gridcells combined to match area of surface 5x5 gridcell. *over the 

interval 1979 to 1999. **Over the interval 1980 to 2000. % Changes should be multiplied by 100, 

e.g. mean population growth is 31.1%. Sample size = 428. 
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Variable Restricted Unrestricted 

uah4  0.727* 

  (9.045) 

slp  0.006* 

  (2.157) 

dry  4.738 

  (1.367) 

dslp  -0.005 

  (-1.346) 

water  -0.029 

  (-1.564) 

abslat  0.000 

  (0.450) 

g 0.0116 0.030* 

 (1.14) (2.438) 

e  -0.002* 

  (-3.581) 

x  0.000 

  (0.070) 

p  0.240* 

  (2.069) 

m  0.178 

  (1.361) 

y  -0.139 

  (-1.351) 

c  0.004* 

  (2.188) 

cons 0.0433 -6.025* 

 (3.15) (-2.108) 

 

R2 

 

0.521 

 

0.581 

Table 5: Coefficient estimates for Equation (2). Sample size = 428. Second column: regression on g 

and constant only. Third column, allowing all other variables to enter model. R2 is the squared 

correlation between the observed and predicted dependent variable.  

 


