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Abstract

The forecast combination puzzle refers to the finding that a simple average forecast combi-

nation outperforms more sophisticated weighting schemes and/or the best individual model.

The paper derives optimal (worst) forecast combinations based on stochastic dominance (SD)

analysis with differential forecast weights. For the optimal (worst) forecast combination, this

index will minimize (maximize) forecasts errors by combining time-series model based fore-

casts at a given probability level. By weighting each forecast differently, we find the optimal

(worst) forecast combination that does not rely on arbitrary weights. Using two exchange

rate series on weekly data for the Japanese Yen/U.S. Dollar and U.S. Dollar/Great Britain

Pound for the period from 1975 to 2010 we find that the simple average forecast combina-

tion is neither the worst nor the best forecast combination something that provides partial

support for the forecast combination puzzle. In that context, the random walk model is the

model that consistently contributes with considerably more than an equal weight to the worst

forecast combination for all variables being forecasted and for all forecast horizons, whereas

a flexible Neural Network autoregressive model and a self-exciting threshold autoregressive

model always enter the best forecast combination with much greater than equal weights.
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1 Introduction

Since the seminal work of Bates and Granger (1969), combining forecasts of different models,

instead of relying on forecasts of individual models has come to be viewed as an effective way of

improving the accuracy of predictions regarding a certain target variable. A significant number

of theoretical and empirical studies, e.g. Timmerman (2006 ) and Stock and Watson(2004) have

been able to show the superiority of combined forecasts over single-model based predictions.

The central question on which the literature focused on, naturally, is to determine the optimal

weights used in the calculation of combined forecasts. In combined forecasts the weights attributed

to each model depends on the model’s out of sample performance. As time moves on forecast errors

used for the calculation of optimal weights changes, and thus the weights themselves vary over time.

However, in empirical applications, numerous papers (Clemen (1989), Stock and Watson (1999,

2001, 2004), Hendry and Clements (2004), Smith and Wallis (2009), Huang and Lee (2010), Aiolfi

et al. (2010)) have found that the equal weighted forecast combination often outperforms estimated

optimal forecast combinations. This finding is frequently referred as “forecast combination puzzle”

by Stock and Watson (2004).1 Overall, even though different optimal forecast combination weights

are derived for static, dynamic, or time-varying situations, most empirical findings suggest that

the simple average forecast combination outperforms more sophisticated weighting schemes and/or

the best individual model.

In this paper, we will follow an approach for the combination of forecasts based on stochastic

dominance (SD hereafter) analysis and we test whether a simple average combination of forecasts

would outperform forecast combinations with more elaborate weights or not. In this context, we

will examine whether an equally weighted forecast combination is optimal. Instead of assigning

arbitrary equal weights to each forecast, we use stochastic dominance efficiency analysis (SDE

hereafter) to propose a weighting scheme that dominates the equally weighted forecast combination

or is alternatively dominated by it.2

1Smith and Wallis (2009) found that the finite sample error is the reason behind the forecast combi-

nation puzzle. On the other hand, Aiolfi et al. (2010) suggested that parameter or model instability is

another reason why simple average forecast combination outperforms the best individual forecast model

(see Diebold and Pauly (1987), Clements and Hendry (1998, 1999, 2006), Timmermann (2006) for further

discussion of model instability and Elliot and Timmermann (2005) forecast combinations for time varying

data.
2Mostly, stochastic dominance comparisons are made pairwise in the literature. Barrett and Donald

(2003) developed pairwise stochastic dominance comparisons that relied on Kolmogorov-Smirnov type tests

developed within a consistent testing environment. This offers a generalization to Anderson (1996), Beach

and Davidson (1983), Davidson and Duclos (2000) who have looked at second order stochastic dominance
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The main contribution of the paper is the derivation of an optimal (worst) forecast combi-

nation based on SD analysis with differential forecast weights. For the optimal (worst) forecast

combination, this index will minimize (maximize) the forecasts errors by combining time-series

model based forecasts for a given probability level. By weighting each forecast differently, we will

find the optimal (worst) forecast combination that do not rely on arbitrary weights.3

In our empirical applications using two exchange rate series on weekly data for the Japanese

Yen/U.S. Dollar and U.S. Dollar/Great Britain Pound for the period from 1975 to 2010 we find

that the simple average forecast combination is neither the worst nor the best forecast combination

something that provides partial support for the forecast combination puzzle. 4 In that context, the

random walk (RW hereafter) model is the model that consistently contributes with considerably

more than an equal weight to the worst forecast combination for all variables being forecasted

and for all forecast horizons. For the optimal forecast combination, the best forecasting model

(i.e., the model which gets relatively more weight than other forecast models) always includes a

flexible Neural Network autoregressive (hereafter NNETTS) model and a self-exciting threshold

using tests that rely on pair-wise comparisons made at a fixed number of arbitrary chosen points. This

is not a desirable feature since it introduces the possibility of a test inconsistency. Linton et al. (2005)

propose a subsampling method which can deal with both dependent samples and dependent observations

within samples. This is appropriate for conducting SD analysis for model selection among many forecasts.

In this context, comparisons were available for pairs where one can compare one forecast with respect

to another forecast and conclude whether one forecast dominates the other one. In other words, one

can find the best individual model by comparing all forecasts. Lately, multi-variate (multidimensional)

comparisons, in our case forecast combinations, have become more popular. In an application to optimal

portfolio construction in finance, Scaillet and Topaloglou (2010), hereafter ST, use SD efficiency tests that

can compare a given portfolio with an optimal diversified portfolio constructed from a set of assets. In

a related paper, Pinar, Stengos and Topaloglou (2010) use a similar approach to construct an optimal

Human Development Index. The same methodology is applied in Agliardi et al. (2011), where an optimal

country risk index is constructed following SD analysis with differential component weights, yielding an

optimal hybrid index for economic, political, and financial risk indices that do not rely on arbitrary weights

as rating institutions do.
3To achieve stochastic dominance we maximize the difference between two cumulative distribution

functions. This maximization results in the worst forecast combination constructed from the set of forecast

models in the sense that it reaches the maximum value of absolute forecast errors for a given probability

level. A minimization of the difference would result in the best case forecast scenario, where the forecast

combination now achieves the minimum value of absolute forecast errors. We expand on this point in the

next section.
4To obtain full support for the puzzle we would expect the equally weighted combination to be the

best, on the other hand to refute the puzzle, in our empirical applications, we would expect the simple

average combination to be the worst.
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autoregressive (hereafter SETAR) model for all series and for all forecast horizons

The remainder of the paper is as follows. In section 2 we define the notion of stochastic

dominance and discuss the general hypothesis for stochastic dominance at any order. Section 3

describes the data, time-series forecasting models and forecast methods used in our paper and

presents the empirical analysis. We use the ST methodology to find the optimal (worst) fore-

cast combination for macroeconomic variables for different forecast horizons. Finally, section 4

concludes.

2 Hypothesis, Test Statistics and Asymptotic Properties

Let ŷi,t+h be the forecast of the ith forecasting model for yt generated at time t for the period

of t + h (h ≥ 1). We have n different time-series forecasting models and we denote the absolute

forecast error of the ith forecasting model as ε̂i,t+h = |yt+h − ŷi,t+h|. The equally weighted forecast

combination can be obtained as the simple average of individual forecasts derived from n different

models, i.e. ŷewt+h = 1
n

∑n
i=1 ŷi,t+h. The absolute forecast error of the equally weighted forecast

combination is given by ε̂ewt+h =
∣∣yt+h − ŷewt+h∣∣. Now consider an alternative weighing scheme

as ŷwt+h =
∑n
i=1 λiŷi,t+h, where

∑n
i=1 λi = 1. Therefore ε̂wt+h =

∣∣yt+h − ŷwt+h∣∣. The forecast

combination literature asserts that there exists a combination of forecasts that delivers smaller

ε̂wt+h than all of the individual constituent models’ ε̂i,t+h’s, hence there exists a solution to the

following optimization problem apart from any of λi-’s taking on value 1 with remaining λi’s equal

to 0’s, i.e. one of the i-s is the best forecaster.

Arg Min
(λi)

ε̂wt+h =

∣∣∣∣∣yt+h −
n∑
i=1

λiŷi,t+h

∣∣∣∣∣ s.t.

n∑
i=1

λi = 1 (1)

The forecast combination puzzle refers to a situation in which ε̂ewt+h constitutes the minimum

(absolute) forecast error.

Let us define Mean Absolute Forecast Errors (MAFEs) of different models as ε̂ewt+h = 1
n

∑n
i=1 |ε̂i,t+h|

which is obviously identical to ε̂ewt+h defined above. Similarly defining Weighted Absolute Forecast

Errors (WAFE’s) as ε̂wt+h =
∑n
i=1 λi |ε̂i,t+h| which is identical to ε̂wt+h defined above. Hence the

optimization problem Equation (1) can also be written as a minimization problem of the sum of

WAFE’s.

Arg Min
(λi)

ε̂wt+h =

n∑
i=1

λi |yt+h − ŷi,t+h| s.t.

n∑
i=1

λi = 1 (2)
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The optimization problem above derives the weights that minimize the overall absolute forecast

error, placing emphasis only on the first moment. However, SDE analysis allows for all moments

as it examines the whole distribution function of absolute forecast errors. In this current paper,

we test the efficiency of MAFE’s by testing whether the cumulative distribution function of mean

absolute forecast errors, ε̂ewt+h, is stochastically efficient or not.

We denote by F (|ε̂t+h|), the continuous cdf of εt+h = (|ε̂1,t+h| , ..., |ε̂i,t+h| , ..., |ε̂n,t+h|)′. Let

us consider a forecast combination λ ∈ L where L := {λ ∈ Rn+ : e′λ = 1} with e being a vector of

ones. This means that all the different absolute forecast errors from different models have positive

weight and that the forecast combination weights sum to one. Let us denote by G(z,λ;F ) the cdf

of the forecast combination λ′εt+h at point z given by G(z,λ;F ) :=

∫
Rn

I{λ′εt+h ≤ z}dF (εt+h).

Let us denote the equally weighted forecast combination τ which is a special case of λ, being

vector of 1
n ’s. Therefore G(z, τ ;F ) is the cdf of the equally-weighted forecast combination, ε̂ewt+h,

or τ ′εt+h.

For any two distributions we say that the hybrid combination λ dominates the distribution

of some other hybrid combination τ stochastically at first order (SD1) if, for any point z of

the distribution G(z, τ ;F ) ≥ G(z,λ;F ). In general, the dominant combination refers to a ”best

outcome” case as there is more mass to the right of z with G(z,λ;F ) than with G(z, τ ;F ). In

the context of the present analysis, since the distribution of outcomes refers to forecast errors,

the ”best outcome” dominant case corresponds to a forecast combination with the largest forecast

errors and as such it would yield the worst possible forecast combination. More precisely, in the

context of our analysis, if z denotes an absolute forecast error level, then the inequality in the

definition means that the value (mass) of the cdf of forecast errors with λ at point z is no larger

than the value (mass) of the cdf of absolute forecast errors with τ . In other words, there is at least

as high a proportion of absolute error levels in λ as in τ . If the forecast combination λ dominates

the equal weighted forecast combination (i.e. MAFEs) τ at first order, then there is always less

value (mass) of absolute forecast errors in the cdf of τ than that of λ. In that case, λ yields the

worst forecast combination. If τ were to refer to the the equally weighted forecast combination,

we could establish that this could not have been the worst forecast combination as the alterative

given by λ would be that.

More precisely, to achieve stochastic dominance we maximize the following objective function:

Max [G(z, τ ;F ) − G(z,λ;F )]. This maximization results in the worst forecast combination λ

constructed from the set of forecast models in the sense that it reaches the maximum value

of absolute forecast errors for a given probability level. Following the traditional definition of
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stochastic dominance we center our discussion around the worst forecast combination, that would

correspond to the ”best outcome” scenario, consistent with the highest mass of forecast errors.

Any dominant combination in that case would imply a worse forecast combination than the one

that it dominates. If there is no other alternative weighting scheme that dominates the equally

weighted forecast combination, then the latter would constitute the worst forecast combination.

Of course, if we were to apply the optimization criterion on the cdf’s of the transformed absolute

forecast errors, where the latter are obtained by multiplying the original absolute forecast errors

by minus one, that would result in minimizing instead of maximizing the difference between the

cdf’s. In that case, the stochastic dominant forecast combinations would correspond to the optimal

best-case scenario forecast combination that would be consistent with minimal forecast errors. In

the empirical section we will derive worst and best case forecast combinations and we will assess

the SDE of the equally-weighted combination.

The general hypotheses for testing the stochastic dominance efficiency of order j of τ , hereafter

SDEj , can be written compactly as:

Hj
0 :Jj(z, τ ;F ) ≤ Jj(z,λ;F ) for all z ∈ R and for allλ ∈ L,

Hj
1 :Jj(z, τ ;F ) > Jj(z,λ;F ) for some z ∈ R or for someλ ∈ L.

where

Jj(z,λ;F ) =

∫
Rn

1

(j − 1)!
(z − λ′εt+h)j−1I{λ′εt+h ≤ z}dF (εt+h) (3)

and J1(z,λ;F ) := G(z,λ;F ) 5. Under the null hypothesis Hj
0 there is no forecast combination λ

constructed from the set of absolute forecast errors from the model based forecasts that dominates

the equal weighted index τ (MAFEs) at order j. In this case, the function Jj(z, τ ;F ) is always

lower that the function Jj(z,λ;F ) for all possible forecast combinations λ for any absolute forecast

error level z. In this case as discussed earlier, we interpret this result to mean that the equally-

weighted forecast combination yields the worst forecast scenario. Under the alternative hypothesis

5Defining

J2(z,λ;F ) :=

∫ z

−∞
G(u,λ;F )du =

∫ z

−∞
J1(u,λ;F )du,

J3(z,λ;F ) :=

∫ z

−∞

∫ u

−∞
G(v,λ;F )dvdu =

∫ z

−∞
J2(u,λ;F )du,

and so on. Davidson and Duclos (2000) (Equation (2))states that

Jj(z,λ;F ) =

∫ z

−∞

1

(j − 1)!
(z − u)j−1dG(u,λ, F ),

which can be rewritten as in the text.
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Hj
1 , we can construct a forecast combination λ that for some absolute forecast error level z, the

function Jj(z, τ ;F ) is greater than the function Jj(z,λ;F ). Thus, when j = 1, the equally-

weighted absolute forecast errors (MAFEs) τ is stochastically inefficient (i.e., it does not yield the

worst forecast scenario) at first order if and only if some other forecast combination λ dominates

it at some absolute forecast error level z. Alternatively, the equally-weighted forecast combination

τ is stochastically efficient (i.e., the worst forecast combination) at first order if and only if there

is no other forecast combination λ that dominates it at all absolute error levels.

We obtain SD at first and second order when j = 1 and j = 2, respectively. The hypothesis

for testing SD of order j of the distribution of the equally weighted forecast combination τ over

the distribution of an alternative forecast combination λ takes analogous forms, but for a given λ

instead of several of them.

The empirical counterpart of (3) is simply obtained by integrating with respect to the empirical

distribution F̂ of F , which yields:6

Jj(z,λ; F̂ ) =
1

T − h

T−h∑
t=1

1

(j − 1)!
(z − λ′εt+h)j−1I{λ′εt+h ≤ z} (4)

We consider the weighted Kolmogorov-Smirnov type test statistic

Ŝj :=
√
T − h 1

T − h
sup
z,λ

[
Jj(z, τ ; F̂ )− Jj(z,λ; F̂ )

]
, (5)

and a test based on the decision rule:

“ Reject Hj
0 if Ŝj > cj ”,

where cj is some critical value. (The derivation of the test is given by ST (2010)).

In order to make the result operational, we need to find an appropriate critical value cj . Since

the distribution of the test statistic depends on the underlying distribution, this is not an easy task,

and we decide hereafter to rely on a block bootstrap method to simulate p-values (see Appendix).7

6This can be rewritten more compactly for j ≥ 2 as:

Jj(z,λ; F̂ ) =
1

T − h

T−h∑
t=1

1

(j − 1)!
(z − λ′εt+h)j−1

+ .

7The asymptotic distribution of F̂ is given by
√
T − h(F̂ − F ) which tends weakly to a mean zero

Gaussian process B ◦ F in the space of continuous functions on Rn (see e.g. the multivariate functional

central limit theorem for stationary strongly mixing sequences stated in Rio (2000)). ST (2010) derive

the limiting behavior by using the Continuous Mapping Theorem (as in Lemma 1 of Barrett and Donald

(2003)), see ST (2010) Lemma 2.1.
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The test statistic Ŝ1 for first order stochastic dominance efficiency is derived using mixed

integer programming formulations (see Appendix) 8.

3 Empirical Analysis

3.1 Data, Forecasting Models, and Forecast Methodology

In this section we apply the SDE testing methodology to obtain optimal (worst) forecast combi-

nations on Japanese Yen/U.S. Dollar and U.S. Dollar/Great Britain Pound exchange rate returns

data. We use log first differences of exchange rate levels. The exchange rate series data are ex-

pressed at a weekly frequency for the period between 1975:1-2010:52.9 The use of weekly data

avoids the so-called weekend effect, as well as other biases associated with nontrading, bid-ask

spread, asynchronous rates and so on, which are often present in higher frequency data. To ini-

tialize our parameter estimates we use weekly data between 1975:1 - 2006:52. We then generate

pseudo out-of-sample forecasts of 2007:1 - 2010:52. Parameter estimates are updated recursively

by expanding the estimation window by one observation forward and, thereby, reducing the pseudo

out-of-sample test window by one period.

In our out-of-sample forecasting exercise we concentrate only on univariate models and consider

three types of linear and four types of nonlinear univariate models. While linear models consist of

the random walk (RW), autoregressive (AR) and autoregressive moving average (ARMA) mod-

els, nonlinear models comprise the following models: logistic smooth transition autoregressive

(LSTAR), self-exciting threshold autoregressive (SETAR), Markov-Switching autoregressive (MS-

AR) and autoregressive neural networks (NNETTS).

In the RW model ŷt+h is equal to the the value of yt at time t. ARMA model is

yt = α+

p∑
i=1

φ1,iyt−i +

q∑
i=1

φ2,iεt−i + εt (6)

where p and q are selected to minimize Akaike Information Criterion (AIC) and with a maximum

lag of 24. After estimating the parameters of equation (6) one can easily produce h-step (h ≥ 1)

forecasts by the following recursive equation:

8In this paper we only test first order SD in the empirical applications below. Since there are alternative

weighting schemes that dominates the given one at the first order, we do not move to the second one
9The daily noon buying rates in New York City certified by the Federal Reserve Bank of New York for

customs and cable transfers purposes are obtained from the FREDÂ R© Economic Data system of Federal

Reserve Bank of St Louis (http://research.stlouisfed.org). The weekly series is generated by selecting the

Wednesday series (if a Wednesday is a holiday then the following Thursday is used).
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ŷt+h|t = α+

p∑
i=1

φ̂1,iŷt+h−i +

q∑
i=1

φ̂2,iε̂t+h−i . (7)

When h > 1, to obtain forecasts we iterate on a one-period forecasting model, by feeding the

previous period forecasts as regressors into the model. That means when h > p and h > q, yt+h−i|t

is replaced by ŷt+h−i|t and εt+h−i by ε̂t+h−i|t = 0. An obvious alternative to iterating forward

on a single-period model would be to tailor the forecasting model directly to the forecast horizon,

i.e., estimate the following equation by using the data up to t.

yt = α+

p∑
i=0

φ1,iyt−i−h +

q∑
i=0

φ2,iεt−i−h + εt (8)

for h ≥ 1 and use the fitted values of this regression to produce h-step ahead forecast directly 10

Being a special case of ARMA, estimation and forecasts of AR model can be simply obtained

by setting q = 0 in (7) and (8).

LSTAR model is

yt =

(
α1 +

p∑
i=1

φ1,i yt−i

)
+ dt

(
α2 +

q∑
i=1

φ2,i yt−i

)
+ εt (9)

with dt = (1 + exp {−γ(yt−1 − c)})−1. εt are regarded as normally distributed i.i.d. variables with

zero mean and α1, α2, φ1,i, φ2,i, γ and c are simultaneously estimated by maximum likelihood.

In LSTAR model, while direct forecast can be obtained as in ARMA case, which is also the case

for all the subsequent nonlinear models 11, it is not possible to apply any iterative scheme to obtain

multistep ahead forecasts as in the linear models. This impossibility follows from the general fact

that conditional expectation of a nonlinear function is not necessarily equal to function of that

conditional expectation, and one cannot iteratively derive the forecasts for h > 1 by plugging

in previous forecasts (see, for example, Kock and Terasvirta 2011) 12. We, therefore, use Monte

Carlo integration scheme suggested by Lin and Granger (1994) to numerically calculate conditional

expectations and, then, produce forecasts iteratively.

10Which approach is best -the direct or the iterated- is an empirical matter since it involves trading

off estimation efficiency against robustness to model misspecification, see Elliott and Timmerman (2008).

Marcellino, Stock and Watson (2006) address these points empirically using a data set of 170 US monthly

macroeconomic time series. They find that the iterated approach generates the lowest MSE-values, par-

ticularly if long lags of the variables are included in the forecasting models and if the forecast horizon is

long.
11This requires replacing yt by yt+h on the left hand side in equation (4) and running the regression using data

up to time t to fitted values for corresponding forecasts
12Indeed, dt is convex in yt−1 whenever yt−1 < c and −dt is convex whenever yt−1 > c. Therefore, by Jensen’s

inequality, naive estimation under-estimates dt if yt−1 < c and over-estimates if yt−1 > c.
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When |γ| → ∞ LSTAR model approaches two-regime SETAR model, which is also included

in our forecasting models. Alike LSTAR and most nonlinear models, in forecasting with SETAR,

it is not possible to use simple iterative scheme to generate multi period forecasts. In this case,

we employ a version of the Normal Forecasting Error (NFE) method suggested by Al-Qassam and

Lane (1989) to generate multistep forecasts13. NFE is an explicit form recursive approximation

to calculate higher step forecasts under normality assumption of error terms and is shown by De

Gooijer and De Bruin (1998) to perform reasonably accurate compared with numerical integration

and Monte Carlo method alternatives.

The two-regime MS-AR model that we consider here is

yt = αs +

p∑
i=1

φs,iyt−i + εt (10)

where st is a two-state discrete Markov chain with S = {1, 2} and εt ∼ i.i.d. N(0, σ2). We

estimate MS-AR by using the maximum likelihood algorithm expectation-maximization.

Although MS-AR models may encompass complex dynamics, point forecasting is less compli-

cated in comparison to other non-linear models. The h-step forecasts from the MS-AR model

is

ŷt+h|t = P (st+h = 1 | yt, ..., y0)

(
αs=1 +

p∑
i=1

φs=1,iŷt+h−i

)

+P (st+h = 2 | yt, ..., y0)

(
αs=2 +

p∑
i=1

φs=2,iŷt+h−i

)
(11)

where P (st+h = i | yt, ..., y0) is the ith element of column vector Phξ̂t|t. ξ̂t|t represent the fil-

tered probabilities vector and Ph is the constant transition probabilities matrix (see, for example,

Hamilton 1994). Hence, multistep forecasts can be obtained iteratively by plugging in 1, 2, 3, . . .

period forecasts similar to the iterative forecasting method of AR processes.

NNETTS the autoregressive single hidden layer feed-forward neural network model14 suggested

in Terasvirta (2006), is defined as

yt = α+

p∑
i=1

φiyt−i +

h∑
j=1

λjd

(
p∑
i=1

γiyt−i − c

)
+ εt (12)

where d is the logistic function defined above such that d = (1 + exp {−x})−1. Estimation of an

ARNN model may, in general, be computationally challenging. Here we follow QuickNet method,

13A detailed exposition of approaches for forecasting from a SETAR model can be found in van Dijk et al. (2003)
14See Franses and Dijk (2000) for a review of feed-forward type neural network models
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a kind of “relaxed greedy algorithm”, suggested by White (2006). Forecasting procedure with

NNETTS, on the other hand, is identical to that of LSTAR.

To obtain pseudo out-of-sample forecasts for a given horizon,h, the models are estimated by

running regressions with data up through the date t0 < T , where t0 refers to the date where the

estimation is initialized (2006:52 in both of the exchange rate return applications) and T to the

final date in our data. The first h horizon forecast is obtained by using the coefficient estimates

from this first regression. Next, the time subscript is advanced, and the procedure is repeated for

t0 + 1, t0 + 2,...,T − h to obtain Nf = T − t0 − h− 1 distinct h-step forecasts.15

For each of h-step forecasts, we calculate Nf absolute forecast errors for each our models that

we use in our applications.

3.2 Results for the efficiency of forecast combinations

This section presents our findings of the tests for SD1 efficiency of the equally-weighted forecast

combination. We find that the equally weighted forecast combination constitutes neither the

optimal nor the worst forecast combination. We obtain the best and worst forecast combinations

of the model based forecasts for Japanese yen/U.S. dollar and U.S. dollar/Great Britain pound

exchange rate forecasts by computing the weighting scheme on each forecast model which offers

the optimal (worst) forecast combination that minimizes (maximizes) absolute forecast errors.

3.2.1 Japanese yen/U.S. dollar exchange rate application

First, we start our empirical analysis with the weekly Japanese yen/U.S. dollar exchange rate fore-

casts for different forecast horizons. We proceed with testing whether the equally-weighted forecast

combination of the forecasting models for different horizons is the worst forecast combination or

there are alternative weights on forecast models that stochastically dominate the equally-weighted

forecast combination, τ , in the first order sense (e.g. for which G(z, τ ;F ) > G(z,λ;F )), where

absolute forecast errors are maximized. Three panels of Table 1 present the results for the worst

case scenario (i.e., forecast combination of models that maximizes the absolute forecast error) for

different forecast horizons. In panel A, B and C of Table 1, we present the results for the weekly

(i.e. 1 to 24 steps ahead), monthly (i.e. 28 to 52 steps ahead) and quarterly (i.e. 65 to 104 step

ahead) forecast horizons respectively. In panel A of Table 1, for one step ahead forecast horizon

(i.e. h=1), each time-series model produces 180 one step ahead forecasts with their associated

absolute forecast errors. The average of these absolute forecast errors are given by the correspond-

15Nf differs between 208 and 105 for different h values between 1 and 104.
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ing MAFE’s. There are 204 alternative forecast combinations that dominate the equally-weighted

forecast combination (i.e. MAFE’s) in the first order sense and the first row in panel A of Table

1 summarizes the results. This table presents the average weights of the 204 alternative forecast

combinations that dominate the equally-weighted forecast combination. We find that the RW

model has the highest contribution with 76.6% weight. On the other hand, SETAR, NNETTS,

ARMA, MS, and AR contribute with weights of 10.9%, 9.2%, 2.4%, 0.5% and 0.4% respectively.

We replicate the same exercise for weekly (step 1 to 24), monthly (step 28 to 52) and quarterly

(step 65 to 104) forecast horizons in panel A, B and C respectively. The models that receive more

than the arbitrarily assigned equal weight are highlighted in all the Tables.16 Overall, we find that

the RW model consistently contributes to the worst forecast combination with weight well above

0.143 and also receives the highest weight relative to other models for all of the forecast horizons.

Moreover, the NNETTS and SETAR models contribute to the worst forecast combination with

weights that are above 0.143 for some forecast horizons and below 0.143 for some other forecast

horizons. Finally, the AR, ARMA, LSTAR and MS models always contribute with weights that

are less than 0.143 for all forecast horizons.

Overall, for all forecast horizons, we found that the equally-weighted forecast combination

does not constitute the worst forecast combination. There are many other forecast combinations

that dominate the equally-weighted forecast combination for all different forecast horizons that

maximize absolute forecast errors. Now using the same weekly Japanese yen/U.S. dollar exchange

rate forecasts, we proceed with testing whether the equally-weighted forecast combination of the

forecasting models for different horizons is the optimal forecast combination or there exist alter-

native weights on forecasting models that stochastically dominate the equally-weighted forecast

combination, τ , in the first order sense (e.g. for which G(z, τ ;F ) > G(z,λ;F )), where now abso-

lute forecast errors are minimized.17 Three panels of Table 2 present the results for the best case

scenario (i.e. forecast combination of models that minimizes absolute forecast errors) for different

forecast horizons. In panel A, B and C of Table 2, we present the results for the weekly (i.e. 1 to 24

steps ahead), monthly (i.e. 28 to 52 steps ahead) and quarterly (i.e. 65 to 104 step ahead) forecast

horizons respectively. For example, for the one step ahead forecast, there are 208 given MAFE’s

and there exist alternative forecast combinations for all case that dominate the equally-weighted

forecast combination in the first order sense. Table 2 summarizes the results. This Table presents

16In our application, there are 7 time-series forecasting models and in order to obtain the mean absolute

forecast errors, each model gets equal weights, a weight of approximately 0.143 (i.e. 1/7).
17As proposed earlier in the previous section, we multiply each absolute forecast error with minus one

to use SDE analysis to test whether the equally-weighted forecast combination is optimal or not.

11



the average weights of the alternative forecast combinations that dominate the equally-weighted

forecast combination. For the one step ahead forecast, NNETTS is the model with the highest

contribution with a weight of 59%. On the other hand, SETAR, MS, ARMA, AR, RW, and

LSTAR models take weights of 22.8%, 10.5%, 5.6%, 1%, 0.9% and 0.2% respectively. Overall,

NNETTS and SETAR contribute with more than equal weights (i.e. a weight of 0.143) for the

construction of the optimal forecast combination at all forecast horizons. Moreover, NNETTS

model always contributes the most for all forecast horizons for the optimal forecast combination,

whereas ARMA model contributes more than equal weights for some horizons and less than equal

weights for some other. However, the AR, LSTAR (except one forecast horizon), MS and RW

models make part of the optimal forecast combination with weights that are less than the equal

weight of 0.143 for all forecast horizons.

For the application to weekly Japanese yen/U.S. dollar exchange rate forecasts, we find that

the equally-weighted forecast combination is neither the optimal nor the worst forecast combina-

tion. We find that different models contribute with differential weights for the optimal forecast

combination at different forecast horizons. Some of the models have robust contributions to the

optimal (worst) forecast combination. The RW model always contributes with more (less) than

equal weights to the worst (optimal) forecast combination. Moreover, the NNETTS and SETAR

models contribute with more than equal weights to the optimal forecast combination for all fore-

cast horizons. On the other hand, the AR, LSTAR and MS models always contribute less than

equal weights both for the optimal and worst forecast combination for all forecast horizons. The

upshot of our analysis is that the simple average forecast combination is neither the worst nor the

best forecast combination something that provides partial support for the forecast combination

puzzle in that there are many other forecast combinations that are less efficient than the equally

weighted one.

3.2.2 U.S. dollar/Great Britain pound exchange rate application

In this subsection, we have a similar application as previous subsection, but in this case we obtain

the optimal (worst) forecast combination for the foreign exchange rate of U.S. dollar/Great Britain

pound forecasts for different time horizons. The three panels of Table 3 and 4 present the results

for the worst and optimal forecast combinations for different forecast horizons respectively. In

panel A, B and C of Table 3 and 4, we present the results for the weekly (i.e. 1 to 24 steps

ahead), monthly (i.e. 28 to 52 steps ahead) and quarterly (i.e. 65 to 104 step ahead) forecast

horizons respectively. Tables 3 and 4 present the average weights of the alternative forecast

12



combinations that dominate the equally-weighted forecast combination for the worst case forecast

combination (i.e. forecast combination that maximizes absolute forecast errors) and for the best-

case combination (i.e. forecast combination that minimizes absolute forecast errors) respectively.

For the worst case, for all forecast horizons, the RW model contributes the most with at least a

weight of 68.7%. The NNETTS and SETAR models contribute to the worst forecast combination

with more than equal weights for some forecast horizons (for only six and two forecast horizons

respectively), while the AR, ARMA, LSTAR and MS models always contribute with a weight

that is less than 6%. For the optimal forecast combination in Table 4, the NNETTS and SETAR

(except one forecast horizon) models always contribute with more than equal weights (i.e. a weight

of 0.143) for all horizons. Moreover, ARMA contributes with more than an equal weight to the

optimal forecast combination for some forecast horizons. Finally, the AR, LSTAR, MS and RW

models contribute less than equal weights to the optimal forecast combination for all forecast

horizons.

Overall, for the application to weekly U.S. dollar/Great Britain pound exchange rate forecasts,

the findings are very similar to those of Japanese yen/U.S. dollar exchange rate application. We

find that the equally-weighted forecast combination is neither optimal nor the worst forecast

combination. We find that the NNETTS and SETAR models contribute with more than equal

weights to the optimal forecast combination for all forecast horizons and ARMA contributes with

more than equal weight to the optimal forecast combination for some forecast horizons. On

the other hand, the RW model always contributes with the highest weight to the worst forecast

combination. As before, we find that the simple average forecast combination is neither the

worst nor the best forecast combination something that provides partial support for the forecast

combination puzzle.

4 Conclusion

This paper presents stochastic dominance efficiency tests at any order for time dependent data.

We study tests for stochastic dominance efficiency of an equal weighted forecast combinations with

respect to all possible forecast combinations constructed from a set of time-series model forecasts.

We proceed to test whether stochastic dominance efficiency confirms or contradicts the use of

the equally weighted forecast combination. The results from the empirical analysis indicate that

the equally weighted forecast combination is neither optimal nor the worst forecast combination

for different forecast horizons. We can construct many alternative forecast combinations that
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dominate the equal weighted forecast combinations which are consistent with the least (most)

absolute forecast errors. We construct the optimal (worst) forecast combination for different

forecast horizons for weekly Japanese yen/U.S. dollar and U.S. dollar/Great Britain pound foreign

exchange rate forecasts. We found that the RW model is the main contributor to the worst

forecast combinations for both applications. On the other hand, the NNETTS and SETAR models

contribute more than equal weights to the optimal forecast combination for both weekly Japanese

yen/U.S. dollar and U.S. dollar/Great Britain pound exchange rate forecasts. Overall, there is also

an agreement for both applications that the ARMA model contributes more than equal weight

for the optimal forecast combinations for some forecast horizons, whereas the AR, LSTAR and

MS models always contribute with a weight that is less than equal weights for both the worst and

optimal forecast combinations for all forecast horizons.

In summary, we find that the equally-weighted forecast combination is neither optimal nor the

worst forecast combination, something that provides partial support for the forecast combination

puzzle in that there are many other forecast combinations that are less efficient than the equally

weighted one. However, at the same time some other time-series models receiving more weights

can lead to an improvement on forecasting when compared with the equally weighted combination.

We should mention that we only applied stochastic dominance efficiency analysis with seven time-

series models to weekly Japanese yen/U.S. dollar and U.S. dollar/Great Britain pound exchange

rate data. Therefore, one should further test whether the equally-weighted forecast combina-

tion is optimal or not by using other variables of interest and also by using different time-series

model forecasts. Another possible future application is to test whether the average of survey

based forecast combinations are optimal. One may expect that there may be some cases where

the equally-weighted forecast combination outperforms all other possible forecast combinations.

Therefore, SDE of the optimal forecast combination should be tested periodically.
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Tables

Table 1: The optimal forecast combination for Japanese Yen/U.S. Dollar exchange rate forecasts

(a) Worst-case: Weekly

Forecast

steps

ahead

Number of ob-

servations

Number of dom-

inating weighting

schemes

Average of dominating weighting schemes

AR ARMA LSTAR MS NNETTS RW SETAR

1 208 204 0.004 0.024 0.000 0.005 0.092 0.766 0.109

2 207 204 0.000 0.069 0.049 0.000 0.113 0.748 0.021

3 206 201 0.003 0.025 0.000 0.003 0.076 0.756 0.137

4 205 202 0.004 0.017 0.000 0.005 0.065 0.780 0.129

5 204 198 0.010 0.016 0.000 0.004 0.077 0.787 0.106

6 203 203 0.002 0.097 0.034 0.000 0.115 0.729 0.023

7 202 197 0.004 0.012 0.000 0.013 0.074 0.757 0.140

8 201 198 0.005 0.023 0.000 0.010 0.105 0.724 0.133

9 200 199 0.008 0.029 0.047 0.000 0.114 0.786 0.016

10 199 199 0.003 0.032 0.076 0.001 0.093 0.751 0.044

11 198 191 0.001 0.029 0.046 0.000 0.097 0.763 0.064

12 197 192 0.007 0.026 0.000 0.008 0.071 0.748 0.140

13 196 191 0.006 0.035 0.029 0.000 0.119 0.759 0.052

14 195 191 0.001 0.018 0.001 0.000 0.091 0.744 0.145

15 194 194 0.002 0.029 0.000 0.004 0.081 0.745 0.139

16 193 192 0.000 0.077 0.026 0.000 0.093 0.787 0.017

17 192 187 0.006 0.029 0.000 0.014 0.133 0.672 0.146

18 191 187 0.004 0.024 0.000 0.008 0.089 0.794 0.081

19 190 185 0.003 0.016 0.000 0.008 0.090 0.723 0.160

20 189 186 0.000 0.032 0.000 0.006 0.113 0.702 0.147

21 188 182 0.003 0.015 0.003 0.000 0.077 0.745 0.157

22 187 187 0.007 0.032 0.037 0.002 0.133 0.778 0.011

23 186 182 0.009 0.044 0.068 0.000 0.120 0.718 0.041

24 185 180 0.006 0.019 0.000 0.003 0.071 0.762 0.139

(b) Worst-case: Monthly (4 weeks)

Forecast

steps

ahead

Number of ob-

servations

Number of dom-

inating weighting

schemes

Average of dominating weighting schemes

AR ARMA LSTAR MS NNETTS RW SETAR

28 181 180 0.004 0.031 0.046 0.000 0.128 0.774 0.017

32 177 172 0.014 0.026 0.000 0.005 0.133 0.675 0.147

36 173 171 0.003 0.046 0.031 0.000 0.144 0.727 0.049

40 169 168 0.004 0.004 0.000 0.010 0.102 0.807 0.073

44 165 161 0.003 0.016 0.000 0.002 0.115 0.766 0.098

48 161 160 0.014 0.007 0.001 0.000 0.130 0.635 0.213

52 157 153 0.000 0.003 0.000 0.011 0.102 0.780 0.104

(c) Worst-case: Quarterly (13 weeks)

Forecast

steps

ahead

Number of ob-

servations

Number of dom-

inating weighting

schemes

Average of dominating weighting schemes

AR ARMA LSTAR MS NNETTS RW SETAR

65 144 144 0.004 0.025 0.039 0.000 0.180 0.694 0.058

78 131 128 0.006 0.000 0.000 0.001 0.118 0.724 0.151

91 118 118 0.001 0.002 0.000 0.000 0.104 0.740 0.153

104 105 104 0.005 0.003 0.000 0.000 0.166 0.762 0.064
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Table 2: The optimal forecast combination for Japanese Yen/U.S. Dollar exchange rate forecasts

(a) Best-case: Weekly

Forecast

steps

ahead

Number of ob-

servations

Number of dom-

inating weighting

schemes

Average of dominating weighting schemes

AR ARMA LSTAR MS NNETTS RW SETAR

1 208 208 0.010 0.056 0.002 0.105 0.590 0.009 0.228

2 207 164 0.019 0.109 0.070 0.014 0.460 0.022 0.306

3 206 195 0.017 0.094 0.002 0.093 0.551 0.008 0.235

4 205 205 0.014 0.079 0.000 0.107 0.574 0.011 0.215

5 204 200 0.008 0.100 0.007 0.096 0.582 0.011 0.196

6 203 186 0.013 0.094 0.119 0.007 0.415 0.007 0.335

7 202 195 0.014 0.120 0.000 0.115 0.532 0.010 0.209

8 201 191 0.006 0.119 0.001 0.086 0.547 0.016 0.225

9 200 181 0.005 0.166 0.134 0.001 0.399 0.019 0.276

10 199 187 0.030 0.180 0.079 0.005 0.435 0.027 0.244

11 198 193 0.018 0.159 0.098 0.002 0.399 0.011 0.313

12 197 186 0.012 0.156 0.008 0.067 0.503 0.023 0.232

13 196 195 0.016 0.174 0.113 0.009 0.430 0.018 0.240

14 195 190 0.007 0.151 0.000 0.073 0.527 0.019 0.223

15 194 190 0.013 0.143 0.000 0.061 0.550 0.020 0.213

16 193 189 0.043 0.177 0.112 0.002 0.368 0.019 0.279

17 192 166 0.015 0.137 0.000 0.096 0.491 0.022 0.239

18 191 187 0.012 0.147 0.000 0.072 0.581 0.011 0.177

19 190 172 0.022 0.170 0.000 0.046 0.532 0.020 0.210

20 189 179 0.011 0.130 0.000 0.103 0.506 0.019 0.231

21 188 183 0.017 0.143 0.000 0.093 0.516 0.018 0.213

22 187 179 0.034 0.168 0.090 0.002 0.366 0.012 0.328

23 186 157 0.005 0.231 0.111 0.001 0.406 0.020 0.226

24 185 177 0.039 0.131 0.000 0.114 0.505 0.020 0.191

(b) Best-case: Monthly (4 weeks)

Forecast

steps

ahead

Number of ob-

servations

Number of dom-

inating weighting

schemes

Average of dominating weighting schemes

AR ARMA LSTAR MS NNETTS RW SETAR

28 181 172 0.024 0.128 0.071 0.005 0.427 0.015 0.330

32 177 175 0.013 0.090 0.000 0.069 0.562 0.030 0.236

36 173 162 0.028 0.114 0.175 0.002 0.405 0.031 0.245

40 169 160 0.060 0.064 0.002 0.099 0.488 0.010 0.277

44 165 154 0.027 0.101 0.002 0.061 0.547 0.017 0.245

48 161 152 0.019 0.111 0.006 0.069 0.553 0.017 0.225

52 157 149 0.009 0.072 0.000 0.082 0.643 0.021 0.173

(c) Best-case: Quarterly (13 weeks)

Forecast

steps

ahead

Number of ob-

servations

Number of dom-

inating weighting

schemes

Average of dominating weighting schemes

AR ARMA LSTAR MS NNETTS RW SETAR

65 144 129 0.052 0.168 0.074 0.001 0.366 0.025 0.314

78 131 106 0.044 0.064 0.000 0.067 0.574 0.020 0.231

91 118 106 0.032 0.048 0.000 0.042 0.633 0.014 0.231

104 105 101 0.053 0.040 0.000 0.067 0.597 0.012 0.231
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Table 3: The worst forecast combination for U.S. Dollar/Great Britain Pound exchange rate forecasts

(a) Worst-case: Weekly

Forecast

steps

ahead

Number of ob-

servations

Number of dom-

inating weighting

schemes

Average of dominating weighting schemes

AR ARMA LSTAR MS NNETTS RW SETAR

1 208 208 0.004 0.024 0.000 0.000 0.102 0.805 0.065

2 207 207 0.001 0.045 0.000 0.001 0.116 0.720 0.117

3 206 203 0.018 0.039 0.004 0.000 0.113 0.714 0.112

4 205 203 0.004 0.015 0.000 0.001 0.104 0.721 0.155

5 204 204 0.003 0.049 0.000 0.001 0.082 0.797 0.068

6 203 195 0.006 0.047 0.000 0.000 0.111 0.733 0.103

7 202 199 0.006 0.050 0.000 0.000 0.094 0.724 0.126

8 201 201 0.013 0.008 0.000 0.000 0.107 0.764 0.108

9 200 200 0.005 0.007 0.000 0.000 0.098 0.769 0.121

10 199 199 0.012 0.003 0.000 0.001 0.094 0.796 0.094

11 198 198 0.002 0.031 0.000 0.001 0.125 0.722 0.119

12 197 197 0.007 0.030 0.000 0.002 0.084 0.769 0.108

13 196 194 0.019 0.051 0.000 0.001 0.095 0.727 0.107

14 195 195 0.012 0.042 0.000 0.001 0.106 0.722 0.117

15 194 194 0.007 0.059 0.000 0.003 0.110 0.715 0.106

16 193 192 0.001 0.000 0.009 0.004 0.097 0.786 0.103

17 192 190 0.003 0.007 0.000 0.000 0.138 0.688 0.164

18 191 191 0.002 0.035 0.003 0.000 0.144 0.740 0.076

19 190 188 0.004 0.025 0.000 0.000 0.102 0.788 0.081

20 189 187 0.007 0.013 0.000 0.003 0.087 0.800 0.090

21 188 188 0.003 0.048 0.000 0.000 0.114 0.714 0.121

22 187 186 0.018 0.038 0.000 0.003 0.100 0.727 0.114

23 186 182 0.002 0.033 0.000 0.000 0.095 0.767 0.103

24 185 185 0.004 0.027 0.000 0.000 0.119 0.792 0.058

(b) Worst-case: Monthly(4 weeks)

Forecast

steps

ahead

Number of ob-

servations

Number of dom-

inating weighting

schemes

Average of dominating weighting schemes

AR ARMA LSTAR MS NNETTS RW SETAR

28 181 181 0.001 0.011 0.000 0.002 0.102 0.782 0.102

32 177 172 0.001 0.054 0.000 0.003 0.092 0.786 0.064

36 173 168 0.002 0.032 0.000 0.001 0.093 0.756 0.116

40 169 169 0.006 0.006 0.000 0.001 0.118 0.786 0.083

44 165 163 0.005 0.042 0.000 0.000 0.112 0.734 0.107

48 161 161 0.011 0.037 0.000 0.000 0.152 0.752 0.048

52 157 157 0.004 0.011 0.000 0.003 0.158 0.728 0.096

(c) Worst-case: Monthly(4 weeks)

Forecast

steps

ahead

Number of ob-

servations

Number of dom-

inating weighting

schemes

Average of dominating weighting schemes

AR ARMA LSTAR MS NNETTS RW SETAR

65 144 141 0.005 0.005 0.031 0.005 0.190 0.730 0.034

78 131 129 0.013 0.018 0.004 0.000 0.156 0.773 0.036

91 118 117 0.038 0.050 0.012 0.000 0.192 0.687 0.021

104 105 103 0.040 0.020 0.004 0.003 0.136 0.747 0.050

20



Table 4: The worst forecast combination for U.S. Dollar/Great Britain Pound exchange rate forecasts

(a) Best-case: Weekly

Forecast

steps

ahead

Number of ob-

servations

Number of dom-

inating weighting

schemes

Average of dominating weighting schemes

AR ARMA LSTAR MS NNETTS RW SETAR

1 208 198 0.016 0.135 0.000 0.053 0.470 0.013 0.313

2 207 192 0.013 0.148 0.000 0.024 0.517 0.014 0.284

3 206 176 0.001 0.174 0.000 0.108 0.428 0.018 0.271

4 205 184 0.016 0.183 0.000 0.014 0.501 0.018 0.268

5 204 198 0.003 0.168 0.000 0.032 0.516 0.012 0.269

6 203 191 0.011 0.206 0.000 0.044 0.528 0.017 0.194

7 202 184 0.029 0.264 0.000 0.056 0.389 0.015 0.247

8 201 183 0.050 0.158 0.000 0.027 0.466 0.014 0.285

9 200 183 0.005 0.232 0.000 0.049 0.469 0.021 0.224

10 199 185 0.007 0.144 0.000 0.039 0.537 0.019 0.254

11 198 179 0.009 0.220 0.000 0.075 0.415 0.015 0.266

12 197 192 0.009 0.171 0.000 0.053 0.481 0.009 0.277

13 196 154 0.008 0.216 0.000 0.049 0.480 0.019 0.228

14 195 186 0.000 0.159 0.000 0.055 0.494 0.014 0.278

15 194 186 0.007 0.159 0.000 0.044 0.516 0.007 0.267

16 193 178 0.011 0.142 0.000 0.048 0.478 0.014 0.307

17 192 178 0.023 0.074 0.004 0.079 0.495 0.023 0.302

18 191 178 0.005 0.136 0.000 0.048 0.502 0.017 0.292

19 190 180 0.012 0.083 0.002 0.067 0.481 0.006 0.349

20 189 177 0.020 0.148 0.002 0.033 0.478 0.016 0.303

21 188 181 0.024 0.108 0.000 0.066 0.446 0.014 0.342

22 187 172 0.016 0.188 0.001 0.029 0.513 0.014 0.239

23 186 171 0.016 0.119 0.003 0.054 0.490 0.010 0.308

24 185 177 0.015 0.065 0.000 0.053 0.556 0.017 0.294

(b) Best-case: Monthly(4 weeks)

Forecast

steps

ahead

Number of ob-

servations

Number of dom-

inating weighting

schemes

Average of dominating weighting schemes

AR ARMA LSTAR MS NNETTS RW SETAR

28 181 172 0.012 0.072 0.000 0.049 0.550 0.015 0.302

32 177 175 0.018 0.121 0.000 0.044 0.495 0.013 0.309

36 173 162 0.011 0.164 0.000 0.025 0.486 0.017 0.297

40 169 160 0.016 0.134 0.000 0.006 0.465 0.012 0.367

44 165 154 0.028 0.174 0.000 0.021 0.460 0.019 0.298

48 161 152 0.059 0.094 0.000 0.027 0.446 0.014 0.360

52 157 149 0.046 0.119 0.000 0.034 0.376 0.014 0.411

(c) Best-case: Quarterly(13 weeks)

Forecast

steps

ahead

Number of ob-

servations

Number of dom-

inating weighting

schemes

Average of dominating weighting schemes

AR ARMA LSTAR MS NNETTS RW SETAR

65 144 129 0.019 0.057 0.084 0.041 0.519 0.029 0.251

78 131 106 0.002 0.204 0.022 0.001 0.526 0.022 0.223

91 118 106 0.000 0.369 0.073 0.019 0.451 0.028 0.060

104 105 101 0.024 0.020 0.002 0.025 0.693 0.016 0.220
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Appendix : Simulating p-values

Block Bootstrap Methods

In this appendix we describe practical ways to compute p-values for testing stochastic dominance

efficiency at any order by looking at block bootstrap methods and discuss the theoretical justifica-

tion for these methods. Block bootstrap methods extend the nonparametric i.i.d. bootstrap to a

time series context (see Barrett and Donald (2003) and Abadie (2002) for use of the nonparamet-

ric i.i.d. bootstrap in stochastic dominance tests). They are based on “blocking” arguments, in

which data are divided into blocks and those, rather than individual data, are resampled in order

to mimic the time dependent structure of the original data. We focus on block bootstrap since

we face moderate sample sizes in the empirical applications, and wish to exploit the full sample

information.

Let b, l denote integers such that T − h = bl. The non-overlapping rule (Carlstein (1986)) just

asks the data to be divided into b disjoint blocks, the k-th being Bk = (ε′(k−1)l+1, ..., ε
′
kl)
′ with

k ∈ {1, ..., b}. The block bootstrap method requires that we choose blocksB∗1, ...,B
∗
b by resampling

randomly, with replacement, from the set of non-overlapping blocks. If B∗i = (Y ∗′i1, ...,Y
∗′
il )
′, a

block bootstrap sample {ε∗t+h; t = 1, ..., T} is made of {ε∗11, ..., ε∗1l, ε∗21, ..., ε∗2l, ..., ε∗b1, ..., ε∗bl} and

we let F̂ ∗ denote its empirical distribution.

Let us define p∗j := P [S∗j > Ŝj ], where S∗j is the test statistic corresponding to each bootstrap

sample. Then the block bootstrap method is justified by the next statement (the proof is given

by ST (2010)).

Proposition 1 Assuming that α < 1/2, a test for SDEj based on the rule:

“ rejectHj
0 if p∗j < α ”,

satisfies the following

limP [rejectHj
0 ] ≤ α ifHj

0 is true,

limP [rejectHj
0 ] = 1 ifHj

0 is false.

In practice we need to use Monte Carlo methods to approximate the probability. The p-

value is simply approximated by p̃j =
1

R
, where the averaging is made on R replications. The

replication number can be chosen to make the approximations as accurate as we desire given time

and computer constraints.
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Mathematical formulation of the test statistics

The test statistic Ŝ1 for first order stochastic dominance efficiency is derived using mixed integer

programming formulations. The following is the full formulation of the model:

max
z,λ

Ŝ1 =
√
T − h 1

T − h

T−h∑
t=1

(Lt+h −Wt+h) (13)

s.t.M(Lt+h − 1) ≤ z − τ ′εt+h ≤MLt+h, ∀ t (14)

M(Wt+h − 1) ≤ z − λ′εt+h ≤MWt+h, ∀ t (15)

e′λ = 1, (16)

λ ≥ 0, (17)

Wt+h ∈ {0, 1}, Lt+h ∈ {0, 1}, ∀ t (18)

with M being a large constant.

The model is a mixed integer program maximizing the distance between the sum over all

forecast combination scenarios of two binary variables,
1

T − h

T−h∑
t=1

Lt+h and
1

T − h

T−h∑
t=1

Wt+h which

represent G(z, τ ; F̂ ) and G(z,λ; F̂ ), respectively (the empirical cdf of τ and λ at absolute forecast

error level z). According to inequalities (3b), Lt+h equals 1 for each scenario t+ h ∈ T for which

z ≥ τ ′εt+h, and 0 otherwise. Analogously, inequalities (3c) ensure that Wt+h equals 1 for each

scenario for which z ≥ λ′εt+h. Equation (3d) defines the sum of all forecast combination weights

to be unity, while inequality (3e) disallows for negative weights.

This formulation allows us to test the dominance of the equal weighted forecast combination

(τ ) over any potential linear forecast combination λ of the forecasts based on time series models.

When some of the variables are binary, corresponding to mixed integer programming, the

problem becomes NP-complete (non-polynomial, i.e., formally intractable). The problem can

be reformulated in order to reduce the solving time and to obtain a tractable formulation (see

above and ST (2010), section 4.1 for the derivation of this formulation and details on practical

implementation).
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