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Abstract 

I present a two-player nested contest which is a convex combination of two widely studied 
contests: the Tullock (lottery) contest and the all-pay auction. A Nash equilibrium exists for all 
parameters of the nested contest. If and only if the contest is sufficiently asymmetric, then there 
is an equilibrium in pure strategies.  In this equilibrium, individual and aggregate efforts are 
lower relative to the efforts in a Tullock contest. This leads to the surprising result that if 
aggregate efforts in the all-pay auction are higher than the aggregate efforts in the Tullock 
contest, then  aggregate efforts in the nested contest may not lie between aggregate efforts in the 
all-pay auction and aggregate efforts in the Tullock contest. When the contest is symmetric or 
asymmetric,  I find a mixed-strategy equilibrium and describe some properties of the equilibrium 
distribution function; I also find the equilibrium payoffs and expected bids. When the weight on 
the all-pay auction component of this nested contest lies in an intermediate range, then there exist 
multiple  non-payoff-equivalent equilibria such that there is an all-pay auction equilibrium as 
defined in Alcade and Dahm (2010) and another equilibrium which is not an all-pay auction 
equilibrium; these equilibria cannot be ranked using the Pareto criterion. If the goal of a contest-
designer is to reduce aggregate effort (i.e., wasteful rent-seeking efforts), then this nested contest 
may be better than both the Tullock contest and the all-pay auction. 
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1. Introduction 

 The literature on contests is voluminous and still flourishing. The most studied contests 

are the all-pay auction and the Tullock (lottery) contest (see, for example, Congleton, Hillman, 

and Konrad, 2008a, 2008b; Konrad, 2009; Nitzan, 1994). The equilibrium properties of these 

separate contests, including the aggregate and individual efforts, have been compared in Fang 

(2002), Epstein, Mealem, and Nitzan (2011), and Franke et al (2012).1 In this paper, I present a 

contest which is a combination of these two widely popular contests.  Such a nested contest may 

arise in the situations described below.  

 In the wake of a judging controversy at the Winter 2002 Olympic games, the governing 

council of the International Skating Union (ISU) scrapped its judging system. The ISU adopted a 

new judging system called the Code of Points (COP). In 2006, the COP took effect and became 

mandatory at all international competitions including the Winter Olympics.  

 The ISU's "Code of points" is a two-stage process. But for my purposes, it suffices to 

note that a panel of twelve judges award a mark for each skater's grade of execution (GOE) . The 

GOE value from the twelve judges is then averaged by randomly selecting nine judges, 

discarding the highest and lowest values, and averaging the remaining seven. Therefore, this is a 

contest in which the players (i.e., the skaters) do not know which members of the awarding 

committee have the power to make the final decision. In a related context, Epstein et al. (2007, p. 

114) observed that "... in some bureaucratic organizations, not only is the distribution of power 

among the acting figures within the system unknown, but even the set of potential decision 

makers may only be partially known. In particular, the contestants may not know the identity of 

the “wire-puller” who controls the decision-making system, possibly from behind the scenes."  

                                                            
1 See also Epstein and Nitzan (2006a) for a comparison of the all-pay auction and Tullock contest from the 
standpoint of a politician who wants to maximize some social welfare function. For an approach using standard tools 
of mechanism design, see Polishchuk and Tonis (2012). 
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 This type of contest is examined in Amegashie (2006) and Epstein et al. (2007). 

However, in these papers the players can direct their lobbying effort to specifically target 

potential judges and each potential judge or rent-giver awards the prize based on an imperfectly-

discriminating contest success function (e.g., the Tullock function).2 In this paper, a potential 

judge may base his decision on a perfectly-discriminating contest success function (i.e., he 

awards the prize to the player with the highest effort) or on an imperfectly-discriminating success 

function. In this sense, the contest is a combination of the all-pay auction and the Tullock 

contest. Also, each player's effort is simultaneously observed by all potential judges. 

 As another example, consider a committee with N ≥ 3 members who must award a single 

prize in a contest. Suppose that two members of the committee have very strong personalities 

and different views of the world. Call them H and L. These members could also be the two most 

senior members of the committee. Suppose the other members of the committee are followers, so 

H and L compete with each other to get as many members as possible to their different points of 

view. With probability,  λ,  H can sway a majority of the committee members to his point of 

view while L can do so with probability 1 − λ, where 0 < λ < 1. Then we have a contest in which 

the contest success function can be modeled as a convex combination of two different success 

functions. 3 

 Furthermore, committees may be prone to groupthink. In his influential  book, Irving 

Janis (1972) defined groupthink as a "... mode of thinking that people engage in when they are 

                                                            
2 See also Alcade and Dahm (2008) who briefly examine a contest which is a combination of the Tullock contest 
success function and another imperfectly-discriminating  success function (i.e., the serial contest function; see also 
Alcalde and Dahm, 2007). 
3Amegashie (2002, 2006) and Congleton (1984) consider contests with an N-member rent-giving committee, where 
N ≥ 3. These models are related to but different from the model in this paper because unlike the present model, the 
votes of more than one member of the committee counts and all the members act independently or are not 
influenced by other committee members. In Congleton (1984), the rent is awarded by a three-member committee 
where each committee member votes for the players who lobbies him the most. He showed that there is no 
equilibrium in pure strategies. Whether there exists a mixed-strategy equilibrium in that game has not, to the best of 
my knowledge, been investigated.  
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deeply involved in a cohesive in-group, when the members' strivings for unanimity override their 

motivation to realistically appraise alternative courses of action." Such a committee may be 

interested in reaching unanimous decisions because a divided decision makes them (i.e., the 

committee members) look bad. Therefore, members of the committee may try to minimize 

conflict and reach a consensus decision without critical evaluation of alternative viewpoints. In 

such situations, only a few alternatives (e.g., only two), for evaluating performance may be 

considered in any decision-making. These two alternatives may correspond to the views of only 

two committee members and, with some known probability, one of these two people will be 

successful in convincing the entire group. 

 In this paper, I use the Tullock success function with returns parameter, R = 1. This is the 

most popular version of the Tullock success function in the literature. As mentioned above, I 

combine it with the auction success function. In the next section, I investigate the equilibria of 

this nested contest and compare it to the Tullock contest and the all-pay auction. Section 3 

discusses the results. 

 

2. A nested contest 

 Consider a complete-information contest in which the prize will be awarded by one of 

two people (i.e., judges, bureaucrats, decision-makers, etc): call them H and L. There are two 

risk-neutral players, 1 and 2, who compete for the prize. Player j values the prize at Vj > 0, j = 1, 

2. Suppose that V1 ≥ V2 > 0. 

 Player j's effort is ej ≥ 0, j = 1,2. Each judge, if he is chosen as the decision-maker, votes 

for the contestant with the higher output (or performance).  Judge H is chosen with probability  λ 

while L is chosen with probability 1 − λ, where )1,0( . The players must choose their efforts 
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before knowing which judge will be chosen as the decision-maker and they cannot separately 

target judges. This is, for example, the case when the judges simultaneously observe the efforts 

of the players and no additional interaction with any judge is allowed. Of course, one does need 

two different (potential) judges. It suffices to have a single judge whose type, H or L, is drawn 

from a  binary distribution where pr(H) = λ, pr(L) = 1 − λ, and λ (0,1).  

 Suppose that judge H observes effort without noise such that he sees player j's output as 

H
jy  = ej, j = 1, 2. Judge L observes effort with noise such that he sees player j's output as  

L
jy  = g(ej, ε), where ε is a random variable with a continuous distribution, j = 1,2. These may 

reflect differences in ability in evaluating performance. 4 

 Alternatively, we could assume that either judge observes effort without noise but judge 

L, in addition to the players' efforts, takes other factors into account in his decision-making but 

these factors are not known to the players (Clark and Riis, 1996; Corchon and Dahm, 2010).5 

This interpretation is consistent with Corchon and Dahm (2010, p. 85) who assume that "... 

contestants are uncertain about a characteristic of the decider that is relevant for his decision. So 

contestants exert effort without knowing the realization of the characteristic." For two players  

 

                                                            
4Such differences in evaluation may be seen in contests such as reality TV shows like American Idol and "Dancing 
with the Stars" where the votes of expert judges and viewers count (e.g., see Amegashie, 2009)  or elections in 
which some voters are more informed than others. Expert judges are likely to view effort with little or no noise 
while the viewers are likely to do so with noise. In Amegashie (2009) and all the papers cited here, it is assumed that 
both groups observe effort with noise, although the noise of one group (e.g., the experts) has a smaller (positive) 
variance.  
5 For example, the members of a recruitment committee may all care about a candidate's technical ability (e.g., in 
academia, this may be whether he can publish in good journals). All members of the committee can evaluate 
technical ability perfectly but while some people care about only technical ability, others may also care the social 
skills of a candidate (e.g., is he a team player? will he be a good citizen of the department?). 
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and a uniform distribution of the judge's characteristic, they show that one can obtain the Tullock 

CSF.6  

 Based on previous works, we may assume that the functional form g(.) and the  

distribution of  ε are such that prob( L
jy  > L

ky ) gives the Tullock contest success function, j  ≠  k, 

j = 1,2; k = 1, 2. 7 Or, as mentioned above, one could follow the interpretation in, for example, 

Corchon and Dahm (2010) where the judge observes effort without noise but has a characteristic 

that is not known by the contestants.8 Accordingly, it follows that if judge L is the decision-

maker, he will choose player  j as the winner with probability. 














0eeif,5.0

0]e,emax[if),ee/(e

)e,e(P

kj

kjkjj

kj
L
j ,      (1) 

where j  ≠  k, j = 1,2; k = 1, 2. The Tullock CSF with the returns parameter, R = 1 (i.e., the CSF 

in (1)), is the most popular version of the Tullock function that is used in the literature. 

 Since judge H observes effort with no noise, the probability that he will vote for player j 

is given by  















kj

kj

kj

kj
H
j

eeif,0

eeif,5.0

eeif,1

)e,e(P ,        (2) 

                                                            
6 Demonstrating this result is straightforward.  Suppose that the rent-giver's  payoff  is U1(θ,e1) = (1 − θ)f(e1) if he 
awards the prize to player 1 and his payoff is U2(θ, e2) = θf(e2) if he awards the prize to player 2, where f(ej) is a 
strictly increasing function and θ is a random characteristic of the rent-giver that is uniformly distributed on [0,1], j 
= 1, 2.  Then the probability that he will award the prize to player 1 is prob(U1(θ,e1) > U2(θ, e2))  and is equal to   

prob(θ < ̂ ) = f(e1)/[f(e1) + f(e2)], where ̂  ≡  f(e1)/[f(e1) + f(e2)]. Then the Tullock CSF with returns parameter 
equal to 1 is obtained if f(ej) = ej, j = 1, 2. 
7See, for example, Hillman and Riley (1989), Jia (2008), Fu and Lu (2012) and the surveys on the stochastic 
derivation of contest success functions in Konrad (2009), Jia and Skaperdas (2011), and Jia, Skaperdas, and Vaidya 
(2011). Che and Gale (2000) discuss and analyze difference-form CSFs and their connection to the all-pay auction.  
8This micro-foundation is not crucial to my argument. What matters is that judge H votes for the player who exerts 
the higher effort while judge L might not. 
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where j  ≠  k, j = 1,2; k = 1, 2.  

 Then when player j chooses his effort (bid), he believes that he will win the contest with 

probability 

L
j

H
jj P)1(PP  ,         (3) 

j = 1, 2. 

 The contest success function (CSF) in (3), a nested CSF, is a convex combination of a 

Tullock success function, L
jP ,  and an auction success function, H

jP , j = 1,2. To the best of my 

knowledge, all previous works have considered only one of these two popular CSFs at a time.9 

But in contests as in Amegashie (2006) and Epstein et al. (2007) where the identity of the 

ultimate decision-maker is not known and where the potential decision-makers have different 

abilities  in or different approaches to evaluating performance, it is reasonable to nest these two 

CSFs. Furthermore, given that these are the two predominant CSFs in the literature,10 it is 

interesting to examine a nested CSF which is a convex combination of these two CSFs. 

 Player j chooses ej to maximize 

jjjkjj eVP)e,e(  ,         (4) 

where j ≠ k; j = 1,2; k = 1,2. In the present model with two players, the solution of this contest 

when λ = 0 (Tullock contest) or λ = 1 (all-pay auction) is well known. The Tullock contest has a 

unique equilibrium in pure strategies11 while the all-pay auction has a unique equilibrium in 

                                                            
9 The Tullock contest is sometimes referred to as a lottery or an imperfectly discriminating contest while the all-pay 
auction is referred to as the perfectly discriminating contest. As noted earlier, the aggregate and individual efforts in 
these separate contests have been compared in Fang (2002), Epstein, Mealem, and Nitzan (2011), and Franke et al 
(2012).  
10 For example, Alcade and Dahm (2010, p. 5) observe that "[A] common modelling approach is to consider the two 
polar cases of Tullock's rent seeking game with exponent equal to one and the limiting case of the all-pay auction in 
which the exponent goes to infinity." 
11For a discussion of general problems of existence in the Tullock contest, see, for example, Baye et al. (1994) and 
Konrad (2009). 
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mixed strategies.12 My goal is to characterize the equilibria in the intermediate case of )1,0(  

and compare it to the cases of λ = 0 and λ = 1.  

  

2.1 Equilibrium analysis  

2.1.1 Pure-strategy equilibria 

Define jj V)1(V̂   and jj
L
jj eV̂P  , j = 1, 2. Note that Δj is the expected payoff  of player 

j in a Tullock contest in which his valuation is jV̂  , j = 1,2. We can rewrite (4)  as 

j
H
jjkjj VP)e,e(  ,         (5) 

j ≠ k; j = 1,2; k = 1,2. 

 

 I state the following proposition: 

Proposition 1: Suppose that V1 > V2  and 
21

2
2

2
1

2
21

VV2V3V3

)VV(ˆ



 . If ]ˆ,0(  , then (i) there 

exists an equilibrium in pure strategies in which player 1 bids 
 221

2
2

1*
1

VV

VV)1(
e




  and player 2 

bids 
 221

1
2
2*

2
VV

VV)1(
e




 ; the expected payoffs are 

2
21

2
221

2
11*

1
)VV(

)VVV2V(V




  and 

2
21

3
2*

2
)VV(

V)1(




 , and (ii) this equilibrium is the only pure-strategy equilibrium.13 

                                                            
12 See Hillman and Riley (1989) and Baye et al. (1996). When there are more than two players, the all-pay auction 
may not have a unique mixed strategy equilibrium (Baye et al., 1996). Siegel (2009) presents a general analysis of a 
class of contests of which the complete-information all-pay auction is a special case. The contest in this paper does 
not belong to the class of contests studied in Siegel (2009). 
13 Of course, this proposition also holds in the well-known case of λ = 0. 
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Proof: Given previous results on the equilibrium of the Tullock game when R = 1 (e.g., Nti, 

1999),  we know that 0
ee 2

2

1

1 







 if and only if 
   221

2
2

1
2

21

2
2

1*
1

VV

VV)1(

V̂V̂

V̂V̂
e







  and 

 221

1
2
2*

2
VV

VV)1(
e




 . Since V1 > V2, it follows that *

2
*
1 ee  > 0. So in equilibrium, player 1's payoff 

is 

*
11

21

1*
1 eV

VV

V
)1( 











2

21

2
221

2
11

)VV(

)VVV2V(V




 ,    (6)  

and player 2's equilibrium payoff is
 

*
22

21

2*
2 eV)1(

VV

V





2
21

3
2

)VV(

V)1(




 .       (7)  

We can rewrite the players' equilibrium payoffs as: 

*
11

*
1 V  ,           (6a)  

and 
 

*
2

*
2  .           (7a)  

 Since ∂Δ1/∂e1 = 0 and *
2

*
1 ee   in equilibrium, player 1 has no incentive to bid more than 

his equilibrium bid because this reduces Δ1 without increasing λV1. If he deviates to a lower bid 

he again reduces Δ1 without increasing λV1. Hence player 1 will not deviate. 

 Now consider player 2. If he deviates to a lower bid, he reduces Δ2 without changing his 

probability of winning the contest when judge H is the decision maker. Note that *
1e  < V2. If 
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player 2 deviates to *
1e , he reduces Δ2 but increases the probability that judge H will vote for him 

from 0 to 0.5. His payoff is 

*
12

d
2 eV

2

1
 .          (8) 

Then  player 2 will not deviate to *
1e if d

2
*
2  .  

 Finally, suppose player 2 deviates to a bid greater than *
1e , say *

1e + β , where β > 0. Then 

he reduces Δ2 but increases the probability that judge H will vote for him from 0 to 1. The payoff 

from this deviation is:  

)e(V
ee

e
)1()(

~ *
12*

1
*
1

*
1d

2 













 .      (10) 

Clearly, there exists a small but positive value of β which ensures that d
2

d
2 )(

~  . Hence 

deviating to *
1e + β dominates deviating to *

1e . Therefore, to show that player 2 has no profitable 

deviation, it suffices to prove that )(
~ d

2
*
2   given the stated conditions in the proposition. 

 Define *
12*

1
*
1

*
1d

2 eV
ee

e
)1()0(

~ 











 . This is player 2's payoff  if he were to get 

judge H's vote with certainty by only matching player 1's bid, *
1e . In choosing β, player 2 

effectively chooses *
1e + β ≡ d

2e . Given that player 1 bids *
1e , we know that 0

e

~

d
2

d
2 




, if and only 

if *
2

d
2 ee  . 14 Given *

1e + β ≡ d
2e  > *

2e  and the strict concavity of the payoff function, it follows 

that   

                                                            
14 Note that the term λV2 drops out when the payoff function in (10) is differentiated with respect to player 2's effort. 
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0
e

~

*
1

d
2 ee

d
2

d
2 







.          (11)  

Then  given (11), )0(
~ d

2
*
2   implies that )(

~ d
2

*
2   for all β > 0. It can be shown that 

)0(
~ d

2
*
2   if  

21
2
2

2
1

2
21

VV2V3V3

)VV(ˆ



 .         (12) 

 To see that the equilibrium in proposition 1 is the only pure-strategy equilibrium, recall  

that  0
ee 2

2

1

1 







 if and only if  (e1, e2) = )e,e( *
2

*
1 . It follows that any pair of pure-strategy 

bids (e1, e2) )e,e( *
2

*
1  implies that 0

e j

j 



 for, at least, one player, j = 1, 2. Then there is a 

player j who can marginally deviate from his bid and be better off because he can increase j  

without affecting j
H
j VP  if  }1,0{PH

j   or  can increase j
H
j VP  if 5.0PH

j  , j = 1,2. QED. 

 Note that ̂< 1/3.15 Then given the inequality condition in proposition 1 and the fact that 

the equilibrium is the only pure-strategy equilibrium, we get the following result: 

Corollary 1: There is no pure-strategy equilibrium of the nested contest if (i) λ ≥ 1/3, and/or (ii) 

V1 = V2 = V. 

 If  λ = 0 (i.e., a Tullock contest), then aggregate effort is 
21

21*
TC VV

VV
E


  and if  λ = 1 (an 

all-pay auction), then aggregate effort is 
1

212*
APA V2

)VV(V
E


 . And for λ (0, ̂ ], aggregate 

                                                            
15I thank Luis Corchón for this point. 
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effort in the nested contest is 
21

21*
2

*
1

*
n VV

VV)1(
eeE




 . Hence if  proposition 1 holds, then 

given λ (0, ̂ ], *
TC

*
TC

*
n EE)1(E  . It follows that if *

TC
*
APA EE   and proposition 1 

holds, we get the surprising result that ]E,E[E *
APA

*
TC

*
n  .16  

 This leads to the following proposition: 

Proposition 2: Suppose that the nested contest has a pure-strategy equilibrium and aggregate 

efforts in the all-pay auction are higher than the aggregate efforts in the Tullock contest. Then 

aggregate efforts in the pure-strategy equilibrium of the nested contest --  a convex combination 

of the all-pay auction and the Tullock contest -- may not lie between aggregate efforts in the all-

pay auction and aggregate efforts in the Tullock contest.17 

 As an example, suppose that V1 = 10, V2 = 4.15, and λ = 0.01. Then proposition 1 holds 

and 90335.2E*
n  . We get  93286.2E*

TC   and .93612.2E*
APA   Clearly,  

]E,E[E *
APA

*
TC

*
n  .18 

 

 

 

 

                                                            
16 Note that *

TC
*
APA EE   if  0VVV2V 2

121
2
2  . 

17 I use "may" because as shown below, there could be multiple equilibria in which one of the equilibria of the 
nested contest gives the same expected aggregate efforts as the expected efforts in the standard all-pay auction. 
18 Using the parameters V1 = 25, V2 = 4, and λ = 0.2 gives 44828.3E3200.2E *

TC
*
APA   and 75862.2E*

n  . 

Therefore, in this case ]E,E[E *
TC

*
APA

*
n  . 



13 
 

2.1.2 Mixed-strategy equilibria 

Lemma 1: If V1 = V2 = V > 0, then there exists a non-degenerate symmetric mixed-strategy 

Nash equilibrium in the nested contest for all )1,0( . It has no atoms at points of discontinuity. 

Proof: The proof comes from noting that when V1 = V2 = V, this discontinuous game has no 

pure-strategy equilibrium (i.e., corollary 1 above) and satisfies Theorem 6 in Dasgupta and 

Maskin (1986).19 To apply Theorem 6 in Dasgupta and Maskin (1986), a player must choose his 

action (bid) from a non-empty and compact set. In the nested contest, this set is  [0, V]. The 

game must also satisfy the following conditions: first, the sum of the payoffs must be upper 

semi-continuous. Since Π1 + Π2 = V − e1 − e2 is continuous, it follows that the sum of the 

payoffs is upper semi-continuous. Second, Πj must be bounded, j = 1, 2. This holds since 

 −V ≤  Πj ≤  V for ej [0, V], j = 1, 2. Third, the discontinuity set must be defined such that 

player j's payoff is discontinuous only if j's strategy is related to player  k's strategy by some 

function, )(f jk  , such that ek = fjk(ej), j ≠ k, j = 1,2, k = 1,2. Since the players' payoffs are only 

discontinuous at symmetric bids, it follows that the identity function satisfies the desired 

requirement.  Finally, the game must satisfy a property called property (α). To see that this 

property is satisfied, consider an arbitrary point of discontinuity, e1 = e2 = ê  ≥ 0.  

 

 

 

 

 

                                                            
19 The reasoning is the same as the proof of Lemma 2.3 in Alcade and Dahm (2010) who apply Theorem 6 in 
Dasgupta and Maskin (1986) to their game (contest).  Baye et al. (1994) were the first to apply existence theorems in 
Dasgupta and Maskin (1994) to a contest, in particular, the Tullock contest. 
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Then  property (α) is satisfied since  

êe j
lim 

 inf  Πj(ej, ê ) = [λ + 0.5(1 − λ)]V − ê  > 0.5V − ê  =  Πj( ê , ê ),    (*) 

for all )1,0( , j = 1, 2.20 QED. 

Lemma 2: If V1 ≥ V2 > 0, then there exists a mixed-strategy Nash equilibrium in the nested 

contest for all )1,0( . 

Proof:  Theorem 5 in Dasgupta and Maskin (1986) guarantees the existence of a mixed-strategy 

equilibrium. The proof that this theorem is applicable is the same as the proof of lemma 1 except 

that V is replaced by Vj and the players' payoff functions must be weakly lower  

semi-continuous at points of discontinuity, j = 1, 2.  That is, the strict inequality in (*) is replaced 

with a weak inequality. 21  This, of course, holds in this game for all )1,0( .  QED. 

Proposition 3: Suppose that V1 ≥ V2 = V > 0 and λ [0.25,1). Then then there exists a non-

degenerate mixed-strategy equilibrium in the nested contest defined implicitly by equations (A.6) 

and (A.7) below. In equilibrium, player 1's distribution function, G(e) is (i) continuous over its 

entire support, ]v,0[ , (ii) differentiable on )v,0( , (iii) strictly increasing on ]v,0( ,  and (iv) 

strictly convex on a subset of its support, where  )V,V(v  . Player 2 abstains from the contest 

with probability  (1 − V2/V1) but uses the same distribution function, G(e) whenever he 

                                                            
20 The corresponding condition in Alcade and Dahm (2010) is equivalent to assuming that λ = 1 in (*). Note that 
part (b) of the DS property in Alcade and Dahm (2010) requires that at a point of discontinuity, a bidder's success 
probability must jump to 1. However, at a symmetric positive bid, the CSF in this paper is such that an increase in  a 
player's bid leads to a jump in his success probability from 0.5 to 0.5(1 + λ) < 1 given that  λ (0,1). Nevertheless, 
the CSF in this paper satisfies the spirit of the DS property in Alcade and Dahm (2010) because  it pays for a player 
to increase his bid slightly at points of discontinuity. This is the crucial requirement  of the DS property that is 
relevant for the proof of Lemma 2.3 in Alcade and Dahm (2010). Part (b) of the DS property in Alcade and Dahm 
(2010) is required to ensure that property (α) in Theorem 6 of Dasgupta and Maskin (1986) is satisfied. 
21 Property (α) is a stronger version of the requirement of weakly lower semi-continuity. It is property (α) which 
ensures that the players' equilibrium symmetric mixed strategies have no atoms at points of discontinuity. 
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participates. The  equilibrium expected payoffs and expected bids are 211 VVˆ  ,  0ˆ
2  ,  

E(e1) = V2/2, and  E(e2) = (V2)
2/2V1.  

Proof: Note that if the equilibrium in proposition 3 exists, then it must be a non-degenerate 

mixed-strategy equilibrium because the equilibrium in proposition 1 is the only pure-strategy 

equilibrium and it has a different set of equilibrium payoffs from the payoffs in proposition 3.  

 The claims about the equilibrium expected payoffs and bids can be shown by applying  

Theorem 3.2 in Alcade and Dahm (2010). This requires showing that the nested contest success 

function satisfies the anonymity and elasticity properties of their theorem. They also use a 

property called DS in their proof. But the DS property is only required to show that Theorem 6  

of Dasgupta and Maskin (1986) is applicable to their contest (game).22 Accordingly, I shall only 

prove that the nested contest success function satisfies the anonymity and elasticity conditions of 

Alcade and Dahm (2010) when λ ≥ 0.25.  

 First, it is obvious that the nested contest success function satisfies the anonymity 

property because a contestant's success probability is independent of his identity; it only depends 

on the vector of bids.  

 The elasticity condition has two parts: E1 and E2. Let {x, G}N+. Define ηj(ej,ek) as the 

elasticity of a contestant's success probability with respect to his effort, j = 1, 2; k = 1, 2. Given 

the anonymity condition, there is no loss of generality in dropping subscripts. Condition E1 in 

Alcalde and Dahm (2010) is satisfied if   

                                                            
22 See note 20 of this paper. 



16 
 
















G

x
,

G

x

G

y
,

G

x
,          (13) 

for all x }x,...,1,0{ ,  y }1x,...,1x{  , and  x  satisfies x  ≤ GV1 < x  + 1. 

 Based on the results in Alcade and Dahm (2010), we know that the Tullock contest 

success function and the all-pay auction (APA) success function each satisfies (13). Therefore,  

we can write: 
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Then multiplying the first inequality in (14) by (1 − λ), the second inequality by λ, and adding 

gives 
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Then the inequality in (15) implies that the nested contest success function satisfies condition E1 

in Alcade and Dahm (2010). Finally, we have to show that when λ ≥ 0.25, the nested CSF  

satisfies condition E2.23 The nested CSF satisfies condition E2 in Alcade and Dahm (2010) if 

)1x(2

2x

1x2

)1x)(1(








 .         (16) 

  

                                                            
23 According to Alcade and Dahm (2010, p. 4), to ensure that a contest has an all-pay auction equilibrium, condition 
E2 in their paper  "... specifies a minimum win probability that outbidding the opponent by the minimum amount 
must yield, implying that the CSF must be sufficiently discriminating in favor of the higher bidder. This specifies a 
lower bound on how much the extreme case of the APA (all-pay auction), in which the higher bidder definitely wins 
the contest, can be relaxed." parenthesis mine. 
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 The inequality in (16) holds for x = 0. For x ≥ 1, it can be rewritten as  λ ≥ 0.5/(x + 1).24 

The denominator of the expression on the right hand side is strictly decreasing in x and so it is 

maximized at x = 1 where it attains the value of 0.25. Hence the nested CSF satisfies condition 

E2 if  λ ≥ 0.25. This completes the proof that when λ ≥ 0.25, the nested contest has an all-pay 

auction equilibrium. 25 

 Regarding the other claims in proposition 3, we apply Lemma B.2 in Alcade and Dahm 

(2010). This lemma says that when a symmetric two-player contest has a symmetric equilibrium 

(possibly in mixed strategies) and there is complete rent dissipation in this equilibrium, then the 

asymmetric version of the contest (i.e., players with non-identical valuations) has an equilibrium 

which is the same as the equilibrium of the symmetric contest except that the player with the 

smaller valuation abstains from the contest with a positive probability. Accordingly, I investigate 

the symmetric version of this contest in appendices A and B and demonstrate the other claims in 

proposition 3. QED 

 Propositions 1 and 3 imply the following corollary: 

Corollary 2: If ]ˆ,25.0[  , then there exist two payoff-non-equivalent equilibria in the nested 

contest: a pure-strategy non-all-pay auction equilibrium as in proposition 1 and a mixed-strategy 

all-pay auction equilibrium as in proposition 3.  

                                                            
24Define κ ≡ (x + 1)/(2x + 1). Then (18) can be rewritten as λ ≥ [0.5(x + 2)/(x+ 1) − κ]/(1 − κ] . Note that κ = 1 if x = 
0. Therefore, [0.5(x + 2)/(x+ 1) − κ]/(1 − κ] is undefined if x = 0. If x > 0, 0 < κ < 1 and we get λ ≥ 0.5/(x + 1). 
25 An all-pay auction equilibrium  in Alcade and Dahm (2010) is defined as an equilibrium with the same expected 
equilibrium payoffs and total efforts (but not necessarily the same distribution functions) as the standard all-pay 
auction in Baye et. al (1996) and Hillman and Riley (1989). Theorem 3.2 in Alcalde and Dahm (2010) states 
sufficient conditions that a CSF must satisfy in order to guarantee the existence of an all-pay auction equilibrium. 
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 The equilibria in corollary 2 cannot be ranked using the Pareto criterion. Obviously, 

player 2 is better off in the equilibrium in proposition 1 since 
2

21

3
2*

2
)VV(

V)1(




 > 0. However, 

player 1 is worse off. To see this, note that  

2
21

2
221

2
12

21
*
1

)VV(

]VVV)1(V)12[(V
)VV()(




 ,     (17) 

where the dependence of *
1  on λ is made explicit. The expression in (17) is strictly increasing 

in λ. Consider the highest value of λ in corollary 2. This is, of course, ̂  since ]ˆ,25.0[   in 

corollary 2. This gives the highest possible value for (17). Putting ̂  into (17) gives  

2
221

2
1

2
1

2
22

21
*
1

V3VV2V3

)VV3(V
)VV()ˆ(




 .       (18) 

Towards a contradiction, suppose that when corollary 2 holds, player 1 is not worse off in the 

equilibrium in proposition 1 relative to the equilibrium in proposition 3. Then the expression in 

(18) is non-negative. This requires 3V/V 2
2

2
1  . And for both equilibria to exist (i.e., for 

corollary 2 to hold), we require 25.0ˆ  . This holds if 

0VVV10V 2
221

2
1  .         (19) 

It is obvious that there exists pairs of valuations (V1, V2) which satisfy (19). 

 Let 2
2

2
1 VV  . Therefore,  21 VV . Then we require θ ]3,1(  because  21 VV   

and V1 > V2 imply that we require 1  or θ > 1. Put  21 VV  into (19) and simplify to get 

0V)101( 2
2  .          (20) 
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There exists no θ ]3,1(  which satisfies (20). So when (18) is non-negative, the inequality in 

(19) does not hold. This contradicts the claim that corollary 2 holds and player 1 is not worse off 

in the equilibrium in proposition 1 relative to the equilibrium in proposition 3. Accordingly, if 

corollary 2 holds, then player 1 must be worse off in the equilibrium in proposition 1. 

 

3. Discussion  

 Corollary 2 is interesting. To appreciate this point, Baye et. al (1996) showed that in an 

all-pay auction with three or more players, there could be multiple equilibria. However, these 

equilibria are all payoff-equivalent. Alcalde and Dahm (2010) also find a similar result for 

imperfectly discriminating contests. In a Tullock contest with three or more players, Ewerhart 

(2012) shows that there are multiple non-payoff equivalent equilibria if the returns parameter of 

the Tullock CSF is sufficiently high.26,27 Corollary 2 is interesting because it shows that with 

only two players, there are multiple non-payoff equivalent equilibria in the nested contest. Also, 

it is interesting that one equilibrium does not Pareto dominate the other because player 1 prefers 

one equilibrium while player 2 prefers the other equilibrium.  

 If proposition 1 holds, then the nested contest gives smaller individual and aggregate 

efforts than a standard Tullock contest. Hence if the goal is to reduce aggregate effort (i.e., 

wasteful rent-seeking efforts), then this contest is better than a Tullock contest. Intuitively, the 

pure-strategy equilibrium in proposition exists if a sufficiently high weight is put on the Tullock 

component of the nested contest. Since 0/*
1   but 0/*

2  , it follows that in the 

                                                            
26 Chowdhury and Sheremeta (2011) find multiple equilibria in Tullock contests.  But in their model, the valuations 
of the players are endogenous (i.e., they are functions of the players' efforts). The current paper and the cited papers 
consider exogenous valuations. 
27 Note that the nested contest is not a log-supermodular contest as defined in Ewerhart (2012). 
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equilibrium in proposition 1, the stronger player is better off when a bigger weight is put on the 

all-pay  auction component of the contest while the weaker player is worse off. 

 Proposition 2 is particularly striking because it shows that a contest which is a convex 

combination of the all-pay auction and the Tullock contest could yield an  aggregate effort which 

is not a convex combination of the aggregate efforts in the Tullock contest and all-pay auction. 

Thus the nested contest could have different properties from its underlying contests. In fact, 

when proposition 2 holds, then aggregate effort in the nested contest is smaller than aggregate 

effort in the Tullock contest and it is also smaller than aggregate effort in the all-pay auction. If 

the goal is to reduce aggregate effort (i.e., wasteful rent-seeking efforts), then this contest may be 

better than both the Tullock contest and the all-pay auction. 

 The intuition for proposition 2 requires an understanding of the intuition for the 

equilibrium in proposition 1. First, a pure-strategy equilibrium exists if the weight on the all-pay 

auction is sufficiently small. Then the asymmetry in valuations induces a competition for only 

the Tullock-contest part of the rent because by maximizing his payoff based on only the Tullock 

part, the strong contestant exerts a higher effort which is enough to guarantee the all-pay auction 

part of the rent. Since the all-pay auction part of the rent is sufficiently small, it does not pay for 

the weak contestant to outbid the strong contestant in order to get the all-pay auction part 

especially when the asymmetry in valuations is sufficiently high. So he also maximizes his 

payoff based on the Tullock part of the rent. And since their valuations in the Tullock part is 

smaller than their valuation if the game was only a Tullock contest and also given that their 

valuations is reduced by the same proportion (i.e., from Vj to (1 − λ)Vj), it follows that each 

player's effort is smaller.28 

                                                            
28 The equal proportional  reduction in their valuations is crucial because reductions in their valuations that are not 
proportionally the same could lead to a rise in aggregate efforts (see Epstein and Nitzan, 2006b). 
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 Unlike the two-player all-pay auction, proposition 3 implies that neither player 

randomizes uniformly over a given support in a mixed-strategy equilibrium. Finally, because the 

auction success function is an explicit component of the nested CSF in (3), we can say more 

about the properties of the distribution function (in a mixed-strategy equilibrium) than is possible 

in Alcade and Dahm (2010) and Baye et al. (1994).  

  

4. Conclusion 

 The Tullock contest and all-pay auction have been examined separately in the literature 

on contests.  This paper has taken the first step of examining a contest which is a nested version 

of these two popular contests.  Some properties of the equilibria of this nested contest differ from 

all-pay auction and Tullock contests. In addition to Alcade and Dahm (2010), this approach may 

be an alternative way of  studying departures from the all-pay auction.  For example, one could 

use this approach to study the robustness of the "exclusion principle" in Baye et al. (1993). It 

remains to describe the properties of an equilibrium to the nested contest when )25.0,ˆ( . By 

lemma 2,  we know that an equilibrium exists and given part (ii) of proposition 1, it will be a 

non-degenerate mixed strategy because  ˆ . I conjecture that it will be a non-all-pay auction 

equilibrium. Experimental studies of this nested contest will also be interesting. All these 

extensions are left for future investigations. 
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Appendix A  

 Following up on lemma 1, we can establish a bit more about the nature of the symmetric 

mixed-strategy equilibrium of this contest. Accordingly, I undertake this investigation.  

 Let G(ej) be the common cumulative distribution function (cdf) with support ]v,v[  by 

player j in a symmetric mixed-strategy equilibrium, j = 1, 2. Since there is no pure-strategy 

equilibrium in the symmetric case, it follows that a mixed-strategy equilibrium will necessarily 

be non-degenerate. Therefore, vv  . 

 Define 

 



v

v

jk
kj

j
jj e)e(dG

ee

e
V̂)v,v,V̂,e( ,       (A.1) 

where V)1(V̂  , j = 1,2;  k = 1,2; j ≠ k. 

Then suppressing v,v , and V̂ in the expression for Ωj, we may write player j's payoff as:  

V)e(G)e()e(ˆ
jjjjj  ,         (A.2) 

j = 1, 2. 

Let 

je
j maxarge~  )e( jj .                    (A.3) 
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 Since in a non-degenerate mixed-strategy equilibrium, no player puts a probability mass 

equal to 1 on a bid of zero,29 it follows that ve j   ≥ V gives )e(ˆ
jj < 0, j = 1,2. Then given that 

a player can guarantee himself a minimum payoff of zero, it follows that v  < V. Similarly, 

equation (A.1) implies that Ωj(ej) < 0 if V)1(V̂e j  . Therefore, )V̂,0[e j , j = 1, 2. By 

strict concavity of Ωj(ej), 0)v,v,V̂(e~e~ jj   is unique, j = 1, 2.  

 I shall now prove some lemmas by drawing on arguments that are similar to those in 

Hillman and Riley (1989) and Baye et al. (1996) but differ from them in some respects because 

the nested contest has a Tullock component. In what follows, I note that in a symmetric 

equilibrium, e~e~j  , j = 1, 2. 

Lemma 3: Neither player will be bid a positive bid with positive probability; equilibrium 

strategies (above zero) are continuous mixed strategies. 

Proof: To see this, suppose (without loss of generality) that player 1 bids e1 = 1ê  > 0 with 

positive probability. Then the probability that player 2 wins rises discontinuously as function of 

his bid at e2 = 1ê . Hence there exists ε > 0 such that player 2 will bid on the interval [ 1ê  – ε, 1ê ]  

with zero probability.30 But then player 1 is better off bidding 1ê  – ε instead of 1ê  since his 

probability of winning is the same. This contradicts the hypothesis that bidding e1 = 1ê  > 0 with 

positive probability is an equilibrium strategy. QED 

                                                            
29 We shall show that there is no atom on zero. 
30 This is also true in the case of non-identical players. To elaborate, note that for e1 > 0, e2/(e1 + e2) is strictly 
increasing in e2. Suppose (without loss of generality) that player  1 bids e1 = 1ê > 0  with probability δ > 0.  Let  

 ρ [0, 1 –  δ]  be the probability that player 1 bids e1 < 1ê . Then if player 2 also bids 1ê , his expected payoff is 

[λ(δ/2 + ρ) + (1 − λ)  
)]1e(1dG

1e1ê
1ê V2 – 1ê  . If instead player 2 were to bid 1ê  + ε, where ε > 0 but very small, his 

expected payoff will be, at least, [λ(δ + ρ) + (1 − λ)  
)]1e(1dG

1e1ê
1ê V2 – )1ê(  . Then since there exists  
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Lemma 4: e~v  . 

 Proof: Since negative bids are not possible, we require 0v  . Towards a contradiction, suppose 

that e~v  . In particular, suppose that e~v  ≥ 0. Then 0v  . Given lemma 3, it follows that the 

probability of a tie at a positive bid is zero. Therefore, G( v ) = 0. Then bidding 0v   gives 

)v()v(ˆ
jj  , j = 1, 2. Then by deviating and reducing his bid to e~ , player j increases Ωj(ej) 

without reducing λG(ej)V, j = 1, 2. Now suppose instead that e~v  . Then bidding e~  (a higher 

bid) dominates bidding v  because player j increases Ωj(ej) without reducing λG(ej)V, j = 1, 2. 

QED. 

Lemma 5: In a symmetric equilibrium, no player puts an atom on v .  

Proof: In a symmetric equilibrium, the lower bound of the support of each player's mixed 

strategy is v . Suppose that e~v  > 0. Then lemma 3 implies that there cannot be an atom at v . 

Suppose instead that e~v  = 0. Towards a contradiction, suppose that player 1 puts an atom on 

v = 0 in a symmetric equilibrium. Then there exists some ε > 0 such that player 2 is better off 

bidding v + ε > 0 than bidding v  since his success probability increases discontinuously.31 So 

player 2's minimum bid is v + ε ≠ v = 0. Then the equilibrium is not symmetric, a 

                                                                                                                                                                                                
ε    (0, 0.5λδV2), player 2 is better off bidding  1ê + ε than bidding 1ê  if player 1 bids 1ê  with positive probability.  

If player 2 bids 1ê  –   ≥ 0, his maximum expected payoff is  [λρ + (1 − λ)  
)]1e(1dG

1e1ê
1ê V2 – )ê( 1  , where > 

0 but very small. Then bidding 1ê  + ε dominates bidding 1ê  –    since  there exists  (ε +  )    (0, λδV2). Hence 

there exists   > 0 such that player 2 will bid on the interval  [ 1ê  –  , 1ê ] with zero probability. 
31 This implies that in the asymmetric case, both players cannot have atoms at zero. Only one player could possibly 
have an atom at zero. 
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contradiction.32 Alternatively, since a bid of  zero is a point of discontinuity, Theorem 6 in 

Dasgupta and Maskin (1986) implies that there is no atom at zero. QED. 

Lemma 6: The equilibrium distribution, G(e), is (i) differentiable on )v,v( , (ii) strictly 

increasing on ]v,v( , and (iii) strictly convex on a subset of its support. 

Proof: For parts (i) and (ii), see appendix B. Consider part (iii). Towards a contradiction, 

suppose that )e(G j  is concave on its entire support, j = 1, 2. Then we cannot construct a non-

degenerate mixed-strategy equilibrium because, given that Ω(ej) is a strictly concave function,  

V)e(G)e()e(ˆ
jjj  , will also be strictly concave in ej and so a unique ej maximizes each 

player's payoff given the strategy of the other player,  j = 1, 2. Thus a necessary condition for 

constructing a non-degenerate mixed-strategy equilibrium is that  G(ej) is strictly convex on, at 

least, a subset of its support.  QED. 

 In a symmetric mixed-strategy equilibrium, )v(ˆ)v(ˆ  . Lemmas 3 and 5 imply that 

the players randomize their bids continuously on  ]v,v[ . Therefore, )v(G = 0 and )v(G = 1. Then 

)v(ˆ)v(ˆ   gives 

)v(V)v(  ,          (A.4) 

where )v()v(  . 

 Expanding (A.4) and simplifying gives 

 
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
v

v
vv

V
1)e(dG

)ev)(ev(

e
V)1( .       (A.5) 

                                                            
32 Recall that the present game satisfies Theorem 6 in Dasgupta and Maskin (1986). This theorem does not rule out 
the existence of asymmetric equilibria in symmetric discontinuous games. However, by appealing to this theorem, 
we know that a symmetric mixed-strategy exists in this game, as stated in lemma 1. Therefore, given that our focus 
is on symmetric equilibria of the game, it is correct to claim that the players' mixed strategy must have the same 
support in equilibrium. 
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 The left hand side of (A.5) is positive since  0 < λ < 1. Therefore,  the right hand side 

must also be positive. This gives Vvv  .  Recall that V)1(V̂e~  . Otherwise, the 

optimized value of Ω(e) will be negative. Therefore, V)1(e~v  . 

 Given (A.4), we require that in a symmetric mixed-strategy equilibrium,  

λVG(e) + Ω(e) = )v(  for all ]v,v[e . Expanding and simplifying gives  

 

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v

k
kk

k 0)ve()e(dG
)ev)(ee(
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)ve(V)1()e(VG ,     (A.6) 

for all ]v,v[e . 

 Given lemma 4, we rewrite equation (A.3) as 
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ee
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 As in Alcade and Dahm (2010) and Baye et al. (1994), an explicit solution for the 

distribution function, G(e), given that the strategy space is continuous,  is either impossible or 

very difficult.33 In the present game, the desired cumulative distribution function implicitly 

satisfies equations (A.6) and A.7). Its existence is guaranteed by Theorem 6 in Dasgupta and 

Maskin (1986).34 Like Alcalde and Dahm (2010) and Baye et al. (1994), I am unable to prove 

that it is unique. 

 Finally, the following observations are helpful. If  e~v   = 0 and player 1 bids this 

amount, then  )v()v(ˆ
11   = 0 because )v(G = 0 and e~ /( e~  + e2) = 0 (there are no ties at any 

bid). Therefore, if e~v   = 0 in a symmetric mixed-strategy equilibrium, then )v()v(ˆ   = 0 

                                                            
33To the best of my knowledge,  this has not been done for the Tullock contest studied in Baye et al (1994). 
34 Lemma 4 says that v)v,v,V̂(e~  . This requires finding a fixed point for v . Obviously, this fixed point exists if 

e~  = 0. 
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(i.e., complete rent dissipation). By applying theorem 3.2 in Alcalde and Dahm (2010), we have 

already shown that such an equilibrium indeed exists if λ ≥ 0.25. Hence, if λ ≥ 0.25, then it 

follows that e~v   = 0. Then applying lemma B.2 and Theorem 3.2 in Alcade and Dahm (2010) 

proves all the claims in proposition 3 except the claims about the monotonicity and 

differentiability of the equilibrium distribution function, G(e).35 

 

Appendix B 

Part (i) of lemma 6: proof that the equilibrium distribution function, G(e), is differentiable 

on )v,v( . 

 Without loss of generality, consider player 1. Fix some )v,v(e1 . Consider a sequence 

n
1e  with limit e1, where )v,v(en

1    n.  

Define  )e(dG
ee

e
)e(d

v

v

2
21

1
1  
  and )e(dG

ee

e
)e(d

v

v

2
2

n
1

n
1n

1  
 . 

 In a mixed-strategy equilibrium, we must have  

 111 e)e(Vd)1()e(VG ,e)e(Vd)1()e(VG n
1
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for all n. Then we get 
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
.      (B.2) 

                                                            
35I am unable to prove that an equilibrium with e~v   > 0 exists.  If it did, it will imply partial rent dissipation. To 

see this, note that V)v(G)v()v(ˆ  = )v(  given that )v(G = 0. Since a player can guarantee himself a 

payoff of zero by bidding zero and e~  is the unique maximizer  of Ω(e), it follows that e~v  > 0 necessarily implies 

that  )v()v(ˆ  > 0 (i.e., partial rent dissipation). 
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Note that 1
n
1n eelim   implies that 0)]e(d)e(d[lim n

11n  . Then given ),1,0(  we get    
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Since for )v,v(e1 , )e(G 1 exists and is finite, it follows that G(e1) is differentiable on )v,v( . By 

symmetry, this is true for player 2. QED. 

 

Part (ii) of lemma 6: proof that G(e) is strictly increasing on ]v,v( . 

 We note that in a mixed-strategy equilibrium, a player's payoff is constant for all e in the 

support of his mixed strategy. Without loss of generality, consider player 1. We can write 

)v()e()e(VG 11  .         (B.4) 

Then given that G(e1) is differentiable, we can take the derivative of (B4) with respect to e1 and 

rearrange to get: 

1
1 e
)e(GV




 .          (B.5) 

Since Ω(e1) is strictly concave and ∂Ω/∂e1 ≤ 0 at e1 = 0ve~   where ve~   is the unique 

maximizer  of  Ω(e1), it follows that ∂Ω/∂e1 ≠ 0 at e1 ≠ ve~  .36 Therefore, )e(G 1 ≠ 0 for all  

e1 ≠ ve~  . But since a cumulative distribution function is non-decreasing, it follows that )e(G 1

> 0 on ]v,v( . QED. 

 

 
 
 

                                                            
36 If ∂Ω/∂e1 = 0 at the optimum, this point is obvious. If ∂Ω/∂e1 < 0 at the optimum, then strict concavity of Ω(e1) 
and e1 ≥ 0 rules out ∂Ω/∂e1 = 0 at any other point. 
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