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Abstract
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distributions in I(0)/I(1) vector autoregressive (VAR) models with unknown in-
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estimated equation, which is not included in the tests. By extending this surplus

lag approach to an infinite order VARX framework, we show that it can provide

a highly persistence-robust Granger causality test that accommodates i.a. sta-
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1 Introduction

Since its introduction in Granger (1969), tests of Granger noncausality have become

ubiquitous in economics, with recent applications ranging from the relationship be-

tween exchange rates and fundamentals (Engel and West, 2005) to tests for cycles of

violence in the Palestinian-Israeli conflict (Jaeger and Paserman, 2008). Return pre-

dictability tests (e.g. Stambaugh, 1999) are also arguably interpretable as special cases

of causality tests and there is a rich recent econometric literature on causality testing.1

Previous literature has shown that the addition of an untested surplus-lag leads to

flexible inference in I(0)/I(1) VAR models with unknown integration orders (Toda and

Yamamoto, 1995; Dolado and Lütkepohl, 1996; Saikkonen and Lütkepohl, 1996). By

adapting this surplus-lag approach to an infinite order VARX setting, we show that it

provides a Granger causality test that is particularly robust to the degree and nature of

the persistence in the causing variables. The proposed causality test2 has the same null

limit distribution regardless of whether the causal variable is I(0), I(1), local-to-unity,

long-memory/fractionally integrated, or subject to breaks in mean. Consequently, no

pre-estimation or pre-test of persistence parameters is required.

These are desirable characteristics for several reasons. The practical difficulties

associated with distinguishing I(1) and I(0) processes are well known. Moreover,

processes with near unit roots may often be better modelled as local-to-unity (Phillips,

1987; Chan, 1988), against which unit root tests are inconsistent by design. Likewise,

structural breaks can be confused with long-memory processes (e.g. Diebold and Inoue,

2001). Thus it can be difficult to determine with confidence the correct model for

persistent data. As Phillips (2003, p. C35) puts it “no one really understands trends,

even though most of us see trends when we look at economic data.”

These distinctions are important to model specification, determining, e.g., whether

a VAR is specified in levels, first-differences or error-correction format. Likewise, struc-

tural breaks require explicit modelling and long-memory processes are not easily ac-

commodated in a VAR setting. Such choices have played an important practical role

in some recent macroeconomic debates (e.g. Christiano et al., 2003). Second stage

inferences can also be sensitive to these choices in both theory (e.g. Elliott, 1998) and

in applications, such as predictability tests (e.g. Stambaugh, 1999).

1(e.g. Dufour and Renault, 1998; Hidalgo, 2000; Hidalgo, 2005; Dufour and Jouini, 2006; Saidi and
Roy, 2008; Dufour et al., 2006; McCracken, 2007; Hong et al., 2009, to list just a few)

2We address only Granger’s version of causality, despite the importance of several other definitions.
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Our approach builds on a rich literature, originating in Park and Phillips (1989)

and Sims et al. (1990), who show that parameters that may be expressed as coefficients

on stationary regressors retain a standard root-T normal asymptotic distribution, even

in I(1) systems. Similar results hold in cointegrating systems involving nonstationary

fractional integration (Dolado and Marmol, 2004). The surplus lag approach uses this

result to simplify inference. In the context of unit root testing, Choi (1993) recog-

nized that, with the addition of an extra, unnecessary lag, the autoregressive model

could be rewritten so that all the parameters of interest are expressed as coefficients

on stationary transformations of the data. Thus, at some cost in terms of efficiency,

inference procedures could be simplified via the avoidance of nonstandard distribu-

tions. Toda and Yamamoto (1995), and Dolado and Lütkepohl (1996) showed how

the same surplus lag approach could be applied to provide inference in finite order

vector autoregression, without knowing which components are I(0) and which are I(1).

Saikkonen and Lütkepohl (1996) extended these results to infinite order VARs.

By incorporating an exogenously modelled component, we show that, in the context

of Granger causality testing, the robustness features of the surplus lag approach can

be considerably enhanced to accommodate a richer class of persistent processes for the

forcing variable in the VARX framework, including those with long-memory/fractional

integration or unmodelled structural breaks. Our results are not dependent on knowl-

edge of the correct lag orders. In all cases, we allow for infinite lag orders under

the null hypothesis, approximated by finite order models whose lag lengths increase

with sample size. Thus we also build on the literature on reasonable approximability

(Berk, 1974; Lewis and Reinsel, 1985; Lütkepohl and Saikkonen, 1997), providing some

extensions to allow for exogenous regressors, including those with long-memory.3

Because Granger noncausality places no restriction on the coefficients in the equa-

tion describing the causal variable, a Granger causality test based on a VAR model

can also be re-interpreted in terms of VARX based causality test. Therefore we conjec-

ture that similar robustness results could be established for a causality test based on

the surplus VAR methodology proposed by (Toda and Yamamoto, 1995; Dolado and

Lütkepohl, 1996), despite the misspecification of the equation describing the causal

variable when characterized by long-memory or structural breaks. A formal proof

would require extensions of our results to allow the number of tested coefficients to

3Some related extensions are provided by Poskitt (2007), who establishes autoregressive approxi-
mations to (univariate) non-invertible and stationary long-memory processes.
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increase with the lag order for the dependent variable, as required in the VAR setting.

Of course, one advantage of the more general VARX based setting, is that the formu-

lation of the alternative hypothesis is no longer tied to the lag order approximation

for the dependent variable.

The generality of the surplus lag approach is not without cost. Naturally, the extra

unnecessary lag reduces power relative to a correctly specified model. As previous

literature reports, the magnitude of these effects varies considerably. Power losses

are greatest in cointegration tests, in which consistency against O(T−1) alternatives is

lost, but can be far more moderate in other cases. When restricted to the I(0)/I(1)

context there exist alternative tests, based on error correction (Toda and Phillips,

1993) and fully modified methods (Kitamura and Phillips, 1997)4 that are arguably

as general, but more powerful, than the existing results established for the surplus

lag test. However, our results demonstrate that the surplus-lag causality test applies,

without adjustment, to a considerably wider range of processes. This argues for its

usefulness as a robust complement to tests that are more powerful in more restrictive

settings.

A second limitation of our approach is that we allow for long-memory and structural

breaks in the forcing processes but not in the intercepts or error processes for the

dependent variables. The difficulty of weakening this assumption in the time domain

is discussed by Hidalgo (2000; 2005), who provides frequency based non-parametric

causality tests, which allow for covariance stationary long-memory in both.

The remainder of the paper is organized as follows. Sections 2, 3, 4, and 5 present

the model, large sample results, simulations, and an empirical illustration, respectively.

The tables are included at the back of the paper. Proofs, technical lemmas, and details

of the numerical analysis are included in the appendix.

2 The model

We consider tests of the null hypothesis that z1t (kz1 × 1) does not Granger cause

yt (ky × 1) after controlling for z2t (kz2 × 1).5 Using the notation Ft,x to denote the

information set generated by {xt−j, j ≥ 0}, we test the Granger noncausality condition

E
[
yt|Ft−1,(y,z1,z2)′

]
= E

[
yt|Ft−1,(y,z2)′

]
. (1)

4Kim and Phillips (2004) extend FM regression, but not causality tests, to fractional cointegration.
5While z2t is optional, the results of Dufour and Renault (1998) underline its potential importance.
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In practice this hypothesis is often tested by means of parameter restrictions on a

joint VAR involving all three variables. However, in order to allow the forcing variable

z1t to exhibit long-memory or structural breaks, we instead model it exogenously,

allowing for a number of alternative DGPs (see Section 3). 6

Under the null hypothesis the true joint DGP for wt := [y′t, z
′
2t]

′ will be assumed to

be approximable by a VAR model, i.e. we assume that

wt =
∞∑

j=1

πwjwt−j + εt (2)

where (εt)t∈Z is a martingale difference sequence (MDS; for detailed assumptions see

Section 3). Our primary interest lies in the process for yt, which is approximated by

yt =

p∑
j=1

(πyjyt−j + πz2jz2t−j) + εyt,p. (3)

In order to consider linear alternatives to Granger noncausality, we must also include

lags of z1t in the empirical specification. Thus, we estimate the VARX model7

yt =

p∑
j=1

(ψyjyt−j + ψz2jz2t−j) +

pz1+1∑
j=1

ψz1jz1t−j + εyt,p (4)

and test the joint restriction ψz1j = 0 for 1 ≤ j ≤ pz1 using a standard Wald test.

The estimated model includes a surplus lag of the forcing variable, z1t−pz1−1, which

is not tested. Its role becomes apparent after reparameterizing (4) as

yt =

p∑
j=1

(ψyjyt−j+ψz2jz2t−j)+

pz1∑
j=1

ψz1j (z1t−j − z1t−pz1−1)+

(
pz1+1∑
j=1

ψz1j

)
z1t−pz1−1+εyt,p.

(5)

When z1t is integrated of order less than 1.5 the parameters restricted under the null

hypothesis (i.e. ψz1j for 1 ≤ j ≤ pz1) are expressed as the coefficients on the covariance

stationary variables z1t−j − z1t−pz1−1 (recall that pz1 is fixed) and may be shown to

follow a joint normal limiting distribution under suitable conditions.

Our analytic results are carried out under the null hypothesis. We will require p to

increase with T in order to ensure that (3) approximates (2). In contrast, pz1 ≥ 1 is

necessarily over-specified under the null hypothesis in which all lags of z1t are excluded

6Note, that although exogenously modelled, zt1 is not strictly exogenous in a statistical sense.
7When the null hypothesis holds ψyj = πyj and ψz2j = πz2j .
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from (2). Therefore, we do not require pz1 to be either a true value or to grow with

T in order to approximate (2). In fact, because our analytic results pertain only to

test size, we do not specify a true alternative model, but only an empirical alternative

based on an arbitrary, but fixed value of pz1. Of course, the choice of pz1 should matter

for test power: larger choices of pz1 allow more general alternatives, but may reduce

power against simpler alternatives. Also, pz1 need not be set equal to p, the lag order

of wt. In this way, the VARX provides additional flexibility. Even if modelling z1t

requires many lags, e.g. if z1t has long-memory, it may still be possible to model wt

parsimoniously. Likewise, we require only an extra lag of z1t rather than of (z1t, wt),

improving efficiency, particularly when p is small, but the dimension of wt is large.

In order to rewrite (4) in compact form define y−t := [y′t−1, . . . , y
′
t−p]

′, z−2t :=

[z′2t−1, . . . , z
′
2t−p]

′, ψy := [ψy1, . . . , ψyp], ψz2 := [ψz21, . . . , ψz2p], and z−1t := [z′1t−1, . . . , z
′
1t−pz1

]′,

so that εyt,p = yt − ψyy
−
t − ψz2z

−
2t. We define by x−1t = z−1t the regressors whose co-

efficients ψx1 are to be tested. The remaining regressors, including the surplus lag,

are then grouped together as x−2t := [(y−t )′, (z−2t)
′, (z1t−pz1−1)

′]′. Thus, the estimated

equation in (4) may be rewritten in single equation form as

yt = ψx1x
−
1t + ψx2x

−
2t + εyt,p (6)

where ψx1 ∈ Rky×pz1kz1 and ψx2 ∈ Rky×(kyp+kz2p+kz1) or in stacked form as

Y = X1ψ
′
x1 +X2ψ

′
x2 + Ep, (7)

where Y =
[
y−pmax+1, . . . , y−T

]′
, for pmax = max{p, pz1 + 1}, and X1, X2, and Ep

stack x−1t, x
−
2t and ε−yt,p in identical fashion.

Granger noncausality is imposed byH0 : ψx1 = 0. DefiningX1.2 = X1−X2(X
′
2X2)

−1X ′
2X1,

with rows denoted by
(
x−1.2t

)′
, we estimate ψx1 by ψ̂x1 = Y ′X1.2 (X ′

1.2X1.2)
−1 and the

variance of vec
(
ψ̂x1

)
by Σ̂x1 :=

(
(X ′

1.2X1.2)
−1 ⊗ Σ̂ε

)
, for Σ̂ε := 1

T
Ê ′

pÊp, with the rows

of Êp given by ε̂′yt,p for ε̂yt,p := yt − ψ̂x1x
−
1t − ψ̂x2x

−
2t.

8 The Wald test takes the form:

Ŵ := vec(ψ̂x1)
′Σ̂−1

x1 vec(ψ̂x1) = vec(Y ′X1.2)
′
(
(X ′

1.2X1.2)
−1 ⊗ Σ̂−1

ε

)
vec(Y ′X1.2). (8)

3 Large sample robustness results

In this section we show that the Wald statistic Ŵ for a test of Granger noncausality in

the surplus lag VARX obeys a standard Chi-squared null limiting distribution under

8Here ⊗ stands for the Kronecker product corresponding to columnwise vectorization.
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a variety of assumptions regarding the nature of the persistence in z1t. We first state

the assumptions on the innovation process for the endogenous variables wt in (2):9

Assumption N: The noise (εt)t∈Z is a strictly stationary ergodic martingale differ-

ence sequence adapted to the increasing sequence of sigma algebras Ft generated by

εt, εt−1, . . .. Further assume that E{εtε
′
t|Ft−1} = Eεtε

′
t = Σ > 0, E{εt,aεt,bεt,c|Ft−1} =

ωa,b,c (constant) where εt,a denotes the a-th coordinate of εt, and E{ε4
t,i} <∞.

Many of the results presented below may be proved under more general assumptions on

the innovations. In particular, finite fourth moments are often unnecessary. The strict

stationarity assumption may be seen as overly restrictive in many empirical macroeco-

nomic applications. However, it is not easily relaxed in this setting and the above as-

sumptions are standard in infinite order VAR models (Saikkonen and Lütkepohl, 1996,

use similar but stronger assumptions) and provide a single set of assumptions that are

sufficient for most of our results. A second restriction is the assumed conditional ho-

moskedasticity of the innovations. If this restriction were dropped robust standard

errors would be needed. This is not pursued.

Under the null hypothesis we have yt = εyt,p + ψx2x
−
2t and hence Y ′X1.2 = E ′

pX1.2.

This motivates the following high level assumptions where Γ̂1.2 := T−1X ′
1.2X1.2 is used:

Assumption HL: Let p = p(T ), let pz1 be a fixed integer, and assume that

(i) Σ̂ε
p→ Σ.

(ii) Γ̂1.2
p→ Γ1.2 for some matrix Γ1.2 ∈ Rkz1pz1×kz1pz1 ,Γ1.2 > 0.

(iii) p(T ) is such that T−1/2vec(
∑T

t=p+1 εt,p(x
−
1.2t)

′)
d→ N(0,Γ1.2 ⊗ Σ).

From Assumption HL the standard asymptotics for Ŵ are immediate from (8).

Theorem 1 Let Assumption HL hold for εyt,p = yt − ψx2x
−
2t − ψx1x

−
1t. Then, under

H0 : ψx1 = 0, Ŵ
d→ χ2(kypz1kz1).

We show below that in a multitude of circumstances Assumption HL is fulfilled.

3.1 Infinite Order Stationary V ARX

We first extend the approximation results of Lewis and Reinsel (1985) from the VAR

to the VARX model. We employ the following assumptions:10

9Note that Ft−1,y,z2 = Ft−1 under the null hypothesis.
10We define || · ||2 as the Euclidean norm ‖x‖2 =

√
x′x, when applied to the vector x and as the

induced matrix norm max {‖Ax‖2 : x(n× 1), ‖x‖2 = 1} when applied to the m× n matrix A.
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Assumption P1:

(i) The noise (εt)t∈Z fulfills Assumption N.

(ii)
∑∞

j=1 ‖πw,j‖2 <∞ and det πw(z) 6= 0, for|z| ≤ 1, where πw(z) := I −
∑∞

j=1 πw,jz
j.

(iii) The integer p increases with T such that T 1/2
∑∞

j=p+1 ‖πw,j‖2 → 0 and p3/T → 0.

(iv) The process (z1t)t∈Z is generated according to the equation

z1t = νt +
∞∑

j=1

θjνt−j +
∞∑

j=0

φjεt−j (9)

where (νt)t∈Z fulfills Assumption N with Eνtν
′
t > 0 and is independent of the process

(εt)t∈Z. Here
∑∞

j=1 ‖[θj, φj]‖2 <∞ is assumed.

Assumptions (ii) and (iii) match those of Lewis and Reinsel (1985, Theorem 2, p.

398). However, the process (z1t)t∈Z is not modelled endogenously, with the advantage

of allowing the lag order pz1 for z1t to vary freely, i.e. it is not tied to the approxi-

mation properties. Also, over-differenced processes are allowed for z1t, as it does not

require a V AR(∞) representation. The following result extends Theorem 3 of Lewis

and Reinsel (1985) to the VARX framework:

Theorem 2 Let x−2t := [y′t−1, . . . , y
′
t−p, z

′
2t−1, . . . , z

′
2t−p, z

′
1t−pz1−1]

′ and x−1t := [z′1t−1, . . . , z
′
1t−pz1

]′.

Then Assumption P1 implies Assumption HL.

The theorem shows that when the true process follows a VARX(∞,pz1) the Wald test

statistic can be used as if the true process was a V ARX(p, pz1). From the proof it is

clear that in this special case the result also holds without the surplus lag z1t−pz1−1.

3.2 Infinite order I(1) and near-I(1) models

We next consider the near unit root model (Phillips, 1987; Chan, 1988), which approx-

imates well the case in which the largest roots are indistinguishable from, but still less

than, one. This often poses a challenge for inference since, in a local-to-unity model,

the critical values of econometric tests designed for the I(0)/I(1) framework typically

depend on the value of the localization parameter, which cannot be consistently esti-

mated (see e.g. Elliott (1998)). We will use the following assumptions:

Assumption P2 :

(i) Define AT,w := I + Cw/T, Cw = diag(c1, c2, . . . , cky+kz2−n) and ci ≤ 0 for i =
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1, . . . cky+kz2−n. There exists a nonsingular matrix Γ = [γ⊥, γ], γ ∈ R(ky+kz2)×n, 0 ≤
n ≤ ky + kz2 such that the process (vt)t∈Z obtained as (for suitable value w0)

vt :=
(

(γ′⊥wt − AT,wγ
′
⊥wt−1)

′ , (γ′wt)
′
)′

(10)

has an VAR(∞) representation
∑∞

j=0 πv,jvt−j = εt where (εt)t∈Z fulfills Assumption N.

(ii) For πv(z) :=
∑∞

j=0 πv,jz
j we assume det πv(z) 6= 0, |z| ≤ 1.

(iii) Summability of the power series:
∑∞

j=1 j‖πv,j‖2 <∞.

(iv) The integer p increases with T such that p3/T → 0 and T 1/2
∑∞

j=p+1 ‖πv,j‖2 → 0.

(v) Let AT,z := I+Cz/T where Cz := Sdiag(cz,1, . . . cz,kz1)S
−1, cz,i ≤ 0 for i = 1, . . . kz1,

and S ∈ Rkz1×kz1 is nonsingular. The process (z1t − AT,zz1t−1)t∈Z for some value z10

fulfills Assumption P1(iv) where additionally
∑∞

j=1 j‖[θj, φj]‖2 <∞ holds.

Under Assumption P2 yt, z1t and z2t are all defined as triangular arrays11 that can

be either stationary, integrated, or near-integrated. Cointegrating relations may exist.

The matrices of largest roots AT,w and AT,z depend on the matrices of local-to-unity

parameters Cw and Cz respectively, allowing for a different local-to-unity parameter

(ci and cz,i) in each element of γ′⊥wt and z1t. The matrix S generalizes the diagonal

localization matrix to allow for a rotation of the coordinate system. It is not needed for

Cw since γ⊥ already allows for a rotation. The component γ′wt is stationary, allowing

for cointegration in wt with cointegration rank n. The no cointegration case (n = 0)

is also included. Cointegration between wt and z1t is allowed for, but not explicitly

modeled. Results for exact unit roots hold when ci = cz,i = 0.

The theorem below shows that Ŵ has an asymptotic normal null distribution that

is invariant to both the local-to-unity parameters and the cointegrating rank.

Theorem 3 Let x−2t := [y′t−1, . . . , y
′
t−p, z

′
2t−1, . . . , z

′
2t−p, z

′
1t−pz1−1]

′ and x−1t := [z′1t−1, . . . , z
′
1t−pz1

]′.

Then Assumption P2 implies Assumption HL.

In the special case of exact unit roots (Cw = 0, Cz = 0) the theorem extends the robust-

ness results of Saikkonen and Lütkepohl (1996) to the VARX model. The asymptotic

normality result in the more general local-to-unity framework is a rare property that

underlines the practical value of the surplus lag method as a robust test.

11For notational simplicity we follow common practice in suppressing the dependence on T .
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3.3 Long-memory forcing variables

Models of fractional integration originating from (Granger and Joyeux, 1980; Hosking,

1981) provide another useful method of spanning the I(0)/I(1) divide. A variable z1t

is said to be integrated of order d if its fractional difference (1 − L)dz1t is I(0). Thus

values of 0 < d < 1 provide an intermediate between I(0) and I(1) models, in which

shocks do decay, but only at a hyperbolic rate. These slow decay rates have been

found useful for modelling a number of phenomena in economics and finance, such as

volatilities (Baillie, 1996). For d < 0.5, the process fits into a larger class of stationary

long-memory models. d > 0.5 corresponds to nonstationary fractional integration.

3.3.1 Stationary long-memory

Assumption P1 imposed short-memory via the summability assumptions on the MA(∞)

representation of (z1t)t∈N. We now relax this condition.

Assumption P4 :

(i) Assumption P1, (i) - (iii) hold. Additionally (εt)t∈Z is assumed to be i.i.d.

(ii) The process (z1t)t∈Z is generated according to the equation (9), where (νt)t∈Z fulfills

Assumption N and is independent of the process (εt)t∈Z. Here ‖[θj, φj]‖2 ≤ cjd−1 for

some constant 0 < c <∞ and −0.5 < d < 0.5 is assumed.

(iii) p is chosen such that p = o(T 1−2d) and Assumption P1(iii) is fulfilled.

Since the squared coefficients for d ≈ 0.5, d ≤ 0.5 are just summable, the condi-

tions on the impulse response sequences are close to minimal. Thus, the assumptions

on the exogenous inputs include many long-memory processes, including fractionally

integrated processes and sums of fractionally integrated processes. On the other hand,

we now require an additional condition on p, the number of lags included in the ap-

proximation for 1/3 < d < 1/2 since in this case the estimates of the covariance

sequence, including the cross covariance with lags of yt and z2t, are extremely unre-

liable. In fact, their covariances are of order O(T 4d−2) and hence arbitrarily small

fractions of the sample size are obtained as convergence orders for values close to

d = 0.5. This in turn limits the range of admitted processes via the assumption that

T 1/2
∑∞

j=p+1 ‖πw,j‖2 → 0. In some situations this is not a severe limitation. If the

joint process wt is a VARMA process then any rate of the form p = T δ will fulfill the

approximation restriction and choosing δ < 1 − 2d the condition on p is met.

In this setting the advantage of the VARX framework is clearly visible. If instead
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one modelled the process [y′t, z
′
1t, z

′
2t]

′ using a VAR(p) then a large p would be required

for a small approximation error εyt,p − εyt due to the slow decay of the coefficients in

the true VAR(∞) representation. Again it can be shown that Assumption HL holds.

The following result also holds if the surplus lag z1t−pz1−1 is omitted.

Theorem 4 Let x−2t := [y′t−1, . . . , y
′
t−p, z

′
2t−1, . . . , z

′
2t−p, z

′
1t−pz1−1]

′ and x−1t := [z′1t−1, . . . , z
′
1t−pz1

]′.

Then Assumption P4 implies Assumption HL.

3.3.2 Nonstationary long-memory

We next establish that the surplus lag test also retains robustness under the following

set of assumptions, which allow for forcing variables with nonstationary long-memory.

Assumption P5 :

(i) Assumption P1, (i) - (iii) hold. Additionally (εt)t∈Z is assumed to be i.i.d. and∑∞
j=1 j

1+δ‖πw,j‖ <∞ for some δ > 0.

(ii) There exists full column rank matrices β ∈ Rkz1×(kz1−cz1) and β⊥ ∈ Rkz1×cz1 , β′β⊥ =

0 such that for β′
⊥z10 = 0[

β′
⊥(z1t − z1t−1)

β′z1t

]
= vt, t ∈ N, where vi,t =

∞∑
j=0

Li(j)
Γ(j + di)

Γ(di)Γ(j + 1)
α′

i

(
νt−j

εt−j

)
, (11)

for −0.5 < di < 0.5, ‖αi‖2 = 1, limj→∞ Li(j) = 1, and (νt)t∈Z i.i.d. and independent

of εt, with Eνt = 0, Eνtν
′
t > 0 and finite fourth moments.

(iii) Defining dmax := max(d1, . . . , dkz1), and dmin := min(d1, . . . , dcz1), p is chosen

such that p = o
(
Tmin{1/3,1−2dmax,1/3(1+2dmin)}) and T 1/2

∑∞
j=p+1 ‖πw,j‖2 → 0.

Type I Nonstationary fractional integration (see Marinucci and Robinson (1999)) in the

forcing variable is allowed for through the hyperbolic rates of decay on β′
⊥(z1t − z1t−1),

through (11), which allows for different values of d in each element of β′
⊥z1t. The

cointegrating residuals, β′z1t, may be fractionally integrated of order −0.5 < di < 0.5.

The inclusion of the slowly varying coefficients, Li(j), lends flexibility to the short-

memory dynamics, allowing for models such as the ARFIMA(p,d,q) (see Davidson

and Hashimzade, 2007). The required restrictions on the increase of p as a function

of T are striking. Assumption P4 showed problems for di close to 0.5 due to the bad

estimates of the covariance sequence. Assumption P5 indicates difficulties for di near

−0.5, which results from the slow divergence rate of the nonstationary component, with

integration 1 + di only slightly above 0.5. The borderline case di = 0.5 has not been

10



analyzed. The next theorem shows that when the forcing variables are fractionally

integrated of order 0.5 < d < 1.5 the null asymptotics remain standard.12

Theorem 5 Let x−2t := [y′t−1, . . . , y
′
t−p, z

′
2t−1, . . . , z

′
2t−p, z

′
1t−pz1−1]

′ and x−1t := [z′1t−1, . . . , z
′
1t−pz1

]′.

Then Assumption P5 implies Assumption HL.

3.4 Structural breaks

We next expand the stationary infinite VARX process to allow for the occurrence of

a fixed number (J) of historical breaks in the intercept of the exogenously modelled

variable z1t, which occur at fixed fractions of the sample size. Although the true data

generating process includes breaks, we do not assume that any breaks are included in

the estimated model. In particular, we wish to avoid any first stage inference regarding

the existence of and/or number of breaks. Breaks in the process for the endogenously

modelled variables wt would have to be explicitly modelled and thus are not considered.

Breaks in the coefficients ψx1 governing the impact of x1t on yt are also excluded under

the null hypothesis, under which these coefficients are fixed at zero.

Assumption P6 :

(i) Assumption P1, (i) - (iii) hold. Additionally (εt)t∈Z is assumed to be i.i.d.

(ii) Let J be a fixed integer denoting the number of breaks. Defining ω0 := 0 and letting

ωj j = 1, . . . , J denote the fraction of the sample spent in regime j with
∑J

j=1 ωj = 1,

the process (z1t)t∈Z is generated according to the equation

z1t =
J∑

j=1

φ̄jI

(
1 +

⌊
j−1∑
k=0

ωkT

⌋
≤ t ≤

⌊
j∑

k=1

ωkT

⌋)
+ νt +

∞∑
j=1

θjνt−j +
∞∑

j=0

φjεt−j

where I(·) denotes an indicator function bxc denotes the greatest integer less than x,

(νt)t∈Z fulfills Assumption N with Eνtν
′
t > 0 and is independent of the process (εt)t∈Z.

Here
∑∞

j=1 ‖[θj, φj]‖ <∞ is assumed.

The estimated VARX must either include an intercept or z1t must be demeaned prior

to estimation. It will be convenient to work with deviations from means. Define

12In the special case when the lag length p is known and finite, the validity of the excess lag test
may be partially anticipated by the results of Dolado and Marmol (2004) who generalize the findings
of Sims et al. (1990) to allow for nonstationary fractional integration. However, the above result
appears to be the first to directly establish the validity of the surplus lag method with nonstationary
fractionally integrated regressors. The allowance for unknown and possibly infinite order models
complicates the analysis non-trivially.
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Sj =
{
pz1 + 2 + b

∑j−1
k=0 ωkT c, . . . , b

∑j
k=1 ωkT c

}
as the set of time periods for which

all elements of z−1t belong to regime j. Let x−t :=
[ (

x−1t

)′ (
x−2t

)′ ]′
denote the full set

of regressors and define µ(j) := E
[
x−t I (t ∈ Sj)

]
and µ̄ :=

∑J
j=1 ωjµ(j) as the mean

within regime j and the average mean across regimes, respectively.

Let Ŵ (x̄−) denote the value of the Wald statistic introduced earlier when the

original data x−t is replaced by x−t − x̄−. We first show that the infeasible estimator

Ŵ (µ̄) has the correct large sample distribution. The result is then easily extended to

the feasible statistic Ŵ (x̄−) in the corollary that follows, the proof of which is omitted.

Theorem 6 Let x−2t := [y′t−1, . . . , y
′
t−p, z

′
2t−1, . . . , z

′
2t−p, z

′
1t−pz1−1]

′ and x−1t := [z′1t−1, . . . , z
′
1t−pz1

]′.

Then Assumption P6 implies Assumption HL is satisfied for Ŵ (µ̄).

Corollary Let Assumption P6 hold. Then underH0 : ψx1 = 0, Ŵ (x̄−)
d→ χ2(kypz1kz1).

4 Simulation results

Below we conduct a small scale simulation. These complement those of Dolado and

Lütkepohl (1996) and Swanson et al. (2003), who investigate the I(0)/I(1) cases. We

consider three methods, the Toda and Phillips (1993) approach, based on a vector

error correction model of lag-order p̂, with pre-tests for unit roots and cointegration

rank (VECM), and two variants of the surplus lag causality test: a VAR(p̂ + 1), in

which only the first p̂ lags are tested (surplus-VAR), and a VARX(p̂,p̄z1 + 1) in which

only the first p̄z1 lags of the exogenous component z1t are tested (surplus-VARX).

Table 1 provides a detailed list of the simulation models employed in Tables 2 and

3. In all cases we test the null hypothesis (H0 : δ = 0) that z1t does not Granger cause

yt against δ 6= 0. Both test size (δ = 0) and size-adjusted power based on critical value

adjustments (δ 6= 0) are reported. We consider a broad range of models, including

I(0) [DGP 1], I(1) [DGP 2], cointegrated I(1) [CI(1), DGPs 3-4], near I(1)/local-to-

unity [NI(1), DGP 5], cointegrated near-I(1) [CNI(1), DGP 6-7], co-structural break

[CB, DGP 8], fractionally integrated [I(d), DGPs 9-10], and co-fractionally integrated

[CI(d)] models. Models 1-8 are based on specializations of

(1 − qI2L)(yt, z1t)
′ = τT,t(0, 1)′ + AT (yt−1, z1t−1)

′ + C(∆yt−1,∆z1t−1)
′ + ut, (12)

while the fractionally integrated DGPs (9-12) are based on

(1−qL)yt = A1,·(yt−1, z1t−1)
′+C1,·(∆yt−1,∆z1t−1)

′+u1t, z1t = (1 − L)−d u2t. (13)
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The error process is specified as

u′t = (u1t, u2t) = εt +Bεt−1, ε′t ∼ i.i.d. N(0,Σ),Σ11 = Σ22 = 1,Σ12 = −0.8. (14)

In Table 2 we employ known lag-lengths (p̂ = p = 2, p̂z = pz = 2) and white noise

errors (B = I2). In Table 3 we allow for infinite values of both p and pz in the true

autoregressive specification, via the vector moving average errors in (14), by setting

B =

[
−0.3 0.5δ

0 −0.3

]
. In order to preserve test size, the lag-length selection is carried

out with the null hypothesis H0 : δ = 0 imposed. Specifically, for all three tests, p̂

is selected by the Akaike (AIC) criterion in an autoregression of yt alone. The true

order of pz1 is infinite under HA : δ 6= 0, but zero under H0. Therefore it cannot be

estimated by AIC with H0 imposed. Instead, we set it to the same fixed, but now

incorrect, value of p̄z1 = 2 6= pz1.

Several general findings emerge from Tables 2 and 3. Both surplus lag methods

provide fairly reliable test size over the full range of DGPs, both when the lag length

p is known and when it is estimated. Likewise, the VECM provides appropriate size

in all of the models (DGPs 1-4) for which it was designed, as well as many for which

it was not, most notably the fractionally integrated models (DGPs 9-12). However,

moderate size distortion is observed in the structural break model (DGP 8) and larger

distortions are observed in certain near unit root specifications, particularly DGP 7.

On the other hand, in cases when it has correct size the VECM generally provides

better power. The power loss associated with the surplus lag approaches varies con-

siderably across DGP specifications. As anticipated, it can be severe in cases where

the Granger causality test corresponds to a cointegration test (e.g. DGPs 3 and 12),

whereas it is quite moderate in many of the other cases (e.g. DGPs 1, 5, 9, 10).

It is also interesting to compare the power of the two surplus-lag approaches. The

tests differ in two main ways. First, when the number of lags tested in both models

are the same (p̄z1 = p̂), the VARX variant may be expected to have more power since

it employs only an extra lag of z1t, whereas the VAR employs an extra lag of (yt, z1t)
′.

This is observed in Table 2, in which the power of the surplus-VARX is always as good

as and often much better than that of the surplus-VAR. On the other hand, when

p̂ 6= p̄z1 the two methods test a different number of lags and depending on the form of

the alternative this effect can favor either test. In the tests of Table 3, we generally

observed p̂ > p̄z1 and since the true model is infinite this effect tends to favor the

surplus VAR. As a result of these two competing effects the power comparison now
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varies across DGPs, with no clear overall choice between the two.

5 Empirical Illustration

As empirical illustration we test the forward rate unbiasedness hypothesis in a VAR

setting. We denote by si,t, fi,t, fpi,t = fi,t−si,t, and re
i,t = ∆si,t−fpi,t−1 the log spot and

forward exchange rates with respect to the US Dollar, the forward premium and the

excess return to holding foreign currency, respectively. Here i = 1, 2 denote the British

Pound ($/£) and German Mark ($/DM), respectively. The forward rate unbiasedness

hypothesis E[si,t|Ft−1] = fi,t−1, a risk neutral market efficiency condition, implies that

there are no expected excess returns to holding foreign currency: E[re
i,t|Ft−1] = 0. An

immediate implication is that the forward premium does not Granger cause the excess

return, i.e. E[re
i,t|F t−1,fp] = E[re

i,t|Ft−1,(fp,re)′ ] = 0.13 Rejections of these hypotheses

underly the forward premium anomaly, a major puzzle in international finance (see

Engel, 1996, for a survey).

The forward premium is highly persistent and there has been debate as to whether

it is best modelled via a root near unity (Crowder, 1994), long-memory (Baillie and

Bollerslev, 1994; Maynard and Phillips, 2001), or structural breaks (Choi and Zivot,

2007). Consequently, Bekaert and Hodrick (2001) perform a calibrated small sample

simulation and report over-rejections of VAR based Wald tests of unbiasedness. Sim-

ilar concerns have been expressed in a regression based tests of unbiasedness (Baillie

and Bollerslev, 2000; Maynard and Phillips, 2001). To ensure reliable inference, a per-

sistence robust test may therefore be required. While robust predictive tests, such

as sign tests, have been applied in a simple bivariate regression based tests (e.g.

Maynard, 2006), few methods exist for addressing this problem in the VAR-type frame-

works. Below we apply the surplus-lag VARX test to address this problem.

Defining yt = (re
1,t, r

e
2,t)

′ and z1t = (fp1,t, fp2,t)
′, we test the hypothesis that z1t does

not Granger cause yt using 322 end-of-month observations from June, 1973 to March,

2000.14 We select p by AIC in a VAR of yt alone (enforcing H0) and set p̄z1 = 2

exactly as in Table 3. This yields p̂ = 0, which precludes a standard VAR based test.

However, using values of p = 1 and p = 2, the causality test based on a standard

VAR (without surplus lag) yields p-values of 0.0004 and 0.0054 respectively. This is

13Here we use the definition of Ft,x given directly above (1). Section A.2 of the appendix discusses
in more detail the relationship the unbiasedness and Granger non-causality hypotheses.

14See Maynard (2006) for further details on the data.
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strong rejection of unbiasedness. Nonetheless, given the discussion above, its validity

could be questioned. Employing the surplus-VARX(p̂ = 0, p̄z1 + 1 = 3), in which only

p̄z1 = 2 lags are tested15 we obtain a larger, but still significant, p-value of 0.0103.

This provides a more definitive rejection, whose significance cannot be question based

on the persistence of the causal variable.
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A Additional details of the numerical analysis

A.1 Further explanation of the Monte Carlo DGPs

Here we provide further explanation and detail on the DGPs described in Table 1 and

equations (12) and (13).

The first four DGPs represent the I(0), I(1) and cointegrated I(1) models. DGP 1

is a stationary VAR(1) in the levels of the data, in which both yt and z1t are I(0):[
yt

z1t

]
=

[
0.5 δ

0.3 0.5

][
yt−1

z1t−1

]
+

[
u1t

u2t

]
. [DGP 1]

DGP2 is a difference VAR in which both yt and z1t are I(1) and there are no cointe-

grating vectors:16[
∆yt

∆z1t

]
=

[
0.5 δ

0.3 0.5

][
∆yt−1

∆z1t−1

]
+

[
u1t

u2t

]
. [DGP 2]

DGPs 3 and 4 are both based on vector error correction models (VECMs), in which

yt and z1t are I(1) and cointegrated. In DGP 3 the causality is due to the presence of

cointegration under the alternative[
∆yt

∆z1t

]
=

[
−1

1

] [
1 −0.5δ

] [ yt−1

z1,t−1

]
+

[
0.5 0

0.3 0.5

][
∆yt−1

∆z1t−1

]
+

[
u1t

u2t

]
, [DGP 3]

whereas in DGP 4 the causality instead results from the coefficient on the lagged first

differences:[
∆yt

∆z1t

]
=

[
0

1

] [
1 −1

] [ yt−1

z1,t−1

]
+

[
0.5 0.5δ

0.3 0.5

][
∆yt−1

∆z1t−1

]
+

[
u1t

u2t

]
. [DGP 4]

DGPs 5-7 all represent models with near unit root models, in which we define c ≤ 0

as the local-to-unity coefficient and aT = 1 + c/T . In DGP 5 (yt, z1t) are modelled as

non-cointegrated near unit roots:[
∆yt

∆z1t

]
=

[
aT − 1 0

0 aT − 1

][
yt−1

z1t−1

]
+

[
0.5 δ

0.3 0.5

][
∆yt−1

∆z1t−1

]
+

[
u1t

u2t

]
. [DGP 5]

16In order to provide a basis of comparison to the previous literature, we choose the parameters of
this model to match a special case of the simulations in Dolado and Lütkepohl (1996).
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In DGPs 6-7, we allow for cointegration between near unit roots. In DGP 6:[
∆yt

∆z1t

]
=

[
aT − 1 0

aT −1

][
yt−1

z1t−1

]
+

[
0.5 0.5δ

0.3 0.5

][
∆yt−1

∆z1t−1

]
+

[
u1t

u2t

]
[DGP 6]

(yt, z1t) have cointegrating vector (1,−1) and z1t adjusts to restore long-run equilib-

rium. In DGP 7, specified by,[
∆yt

∆z1t

]
=

[
−1 0.5aT δ

0 c/T

][
yt−1

z1t−1

]
+

[
0.5 0

0.3 0.5

][
∆yt−1

∆z1t−1

]
+

[
u1t

u2t

]
, [DGP 7]

it is yt that performs this adjustment and therefore the alternative hypothesis defines

cointegration between yt and z1t. Both DGP 6 and 7 are specializations of (Elliott

1998, eq. 2).

DGP 8 is a stationary model with a four standard deviation structural break to

the intercept for z1t in the middle of the sample. Under the null hypothesis, the break

effects only z1t. Under the alternative hypothesis, it also implies a break in the mean

value of y1t. Therefore, in this case, the causality test has the interpretation of a test

for co-breaking. Specifically it is specified as:[
yt

z1t

]
= τT,t

[
0

1

]
+

[
0.5 0.4δ

0.3 0.5

][
yt−1

z1t−1

]
+

[
u1t

u2t

]
τT,t = 2 − 4 × 1(t ≤ T/2). [DGP 8]

In DGPs 9-12 z1t is fractionally integrated of order d and modelled as:

z1t = (1 − L)−d u2t (A.1)

for d = 0.4 and d = 0.8. We consider two models. In DGPs 9 and 10 we employ

∆yt = 0.5∆yt−1 + δ∆z1t−1 + u1t, [DGPs 9 and 10]

in which yt is I(1) under both the null and alternative. Because z1t is I(d) for d < 1,

yt and z1t cannot cointegrate even under the alternative hypothesis. We set d = 0.4

(stationary case) in DGP 9 and d = 0.8 (nonstationary case) in DGP 10. Finally, in

DGPs 11-12 we employ

∆yt = −0.5(yt−1 − bδz1t−1) + u1t, [DGPs 11 and 12]

in which yt is I(0) under H0 and I(d) and cointegrated with z1t (with cointegrating

vector (1,−bδ)) under the alternative. In DGP 11, d = 0.4 and b = 1. In DGP 12,

d = 0.8 and b = 0.5.

A.2



A.2 Further details relating to the empirical illustration

Here we detail the relationship between the forward rate unbiasedness hypothesis and

the Granger causality test employed in the empirical illustration. The forward rate

unbiasedness hypothesis, given by17 E[st|Ft−1] = ft−1 also implies that the lagged

forward premium (fpt−1 = ft−1 − st−1) provides an unbiased forecast of the spot

return

E[∆st|Ft−1] = fpt−1. (A.2)

In practice, (A.2) is often tested by H0 : β1 = 1 in a regression of

st − st−1 = β0 + β1fpt−1 + εt (A.3)

as in Fama (1984) or by an equivalent restriction in a larger VAR model as in Bekaert

and Hodrick (2001), in which lags of ∆st are included but not tested. For example, in

the simplest case, a VAR(1) in yt = (∆st, fpt) would be specified as[
∆st

fpt

]
=

[
A11 A12

A21 A22

][
∆st−1

fpt−1

]
+

[
ε1t

ε2t

]
(A.4)

with the hypothesis H0 : A12 = 1 tested. These are the most common forms in which

the hypothesis has been tested. However, (A.2) is equivalent to the non-predictability

of the excess return defined by re
t = ∆st − fpt−1

E[re
t |Ft−1] = 0. (A.5)

Likewise (A.3) can be re-expressed as

re
t = β0 + α1fpt−1 + εt (A.6)

where α1 = 1 − β1 and H0 : α1 = 0 in (A.6) is equivalent to H0 : β1 = 1 in (A.3).

Similarly, we may transform (A.4) into a VAR(2) in (re
t , fpt)

′:[
re
t

fpt

]
=

[
A11 Ã12

A21 A22

][
re
t−1

fpt−1

]
+

[
0 Ã12

0 0

][
re
t−2

fpt−2

]
+

[
ε1t

ε2t

]
(A.7)

where Ã12 = A12 − 1 and in which H0 : Ã12 = 0 implies that fpt does not Granger

cause re
t in a VAR(2). This hypothesis may also be tested more parsimoniously using

a VARX(1,2).

17Here we use the definition of Ft,x given directly above (1) and denote Ft,(s,f) by Ft.
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While this is just a special case, the noncausality restriction is also a theoretical

restriction. By the law of iterated expectations, (A.5) implies both

E[re
t |Ft−1,(fp,re)] = 0, and (A.8)

E[re
t |Ft−1,fp] = 0, (A.9)

the latter being a condition that is closer to what is actually tested in practice by

(A.6). Then a joint implication of (A.8) and (A.9) is that fpt does not Granger cause

re
t :

E[re
t |Ft−1,(fp,re)′ ] = E[re

t |Ft−1,fp], (A.10)

which matches (1) when setting yt = re
t and z1t = fpt and omitting z2t.

B Technical lemmas

Lemma 1 Let wt =
∑∞

j=0 φw,jεt−j where (εt)t∈Z is an i.i.d. sequence of random vari-

ables having zero mean and finite fourth moments. Let γ̂j := T−1
∑T

t=1+pwtw
′
t−j and

γj := Ewtw
′
t−j. Assume that φw,j = O(jd−1) where −0.5 < d < 0.5. Then:

Evec(γ̂j − Eγ̂j)vec(γ̂k − Eγ̂k)
′ =


O(T 4d−2) , for 0.25 < d < 0.5

O(T−1 log T ) , d = 0.25,

O(T−1) , −0.5 < d < 0.25

All O(.) terms hold uniformly in 1 ≤ j, k ≤ p and 1 ≤ p ≤ T .

Proof: We employ Theorem 1, 3 and 5 of Hosking (1996). However, these results

apply to fixed lags, whereas we require expressions uniformly in the lag. First note

that using Ω := Eεtε
′
t we have for some constant 0 < K <∞ not depending on j ∈ Z

and for 0 < d < 1/2

‖γj‖2 = ‖
∞∑
i=j

φw,iΩφ
′
w,i−j‖2 ≤ C

∞∑
i=j

‖φw,i‖2‖φw,i−j‖2 ≤ Kj2d−1

since ‖Ω‖2 < C, ‖φw,i‖2 ≤ Cki
d−1 for some K < ∞ (using Lemma 3a of Palma and

Zevallos (2004) with b = 1− d). For −1/2 < d ≤ 0 we obtain ‖γj‖2 ≤ Kjε−1 for every

ε > 0. The vector case is only notationally more complex and hence we only show the

result for the case of scalar wt. Then we obtain

Eγ̂j γ̂k = T−2

T∑
t,s=1+p

Ewt+jwtwsws+k.
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Note that Ewtwswrw0 = γt−sγr + γt−rγs + γtγs−r + κ4(t, s, r) for

κ4(t, s, r) :=
∞∑

a=−∞

φw,a+tφw,a+sφw,a+rφw,a(Eε4
t − 3(Eε2

t )
2)

where for notational simplicity φw,a = 0, a < 0 is used. It follows that Ew4
0 ≤M4 <∞

since ‖φ4
w,a‖2 = O(a4d−4) = o(a−2). Next

T−2

T∑
t,s=1+p

Ewt+jwtwsws+k = T−2

T∑
t,s=1+p

γjγk+γt−s+jγt−s−k+γt+j−s−kγt−s+κ4(t−s, t−s+j, k).

(A.11)

The first term is equal to (T − p)2T−2γjγk = Eγ̂jEγ̂k independent of the value of d.

The derivation of the bounds for the remaining terms in (A.11) will be done separately

for the different cases for d. First consider 0.25 < d < 0.5. The last term in (A.11) is

majorized by the first term in (A.2) of Hosking (1996) and hence can be bounded by

M4εT
−1γjγk where M4ε is the fourth cumulant of εt. In fact this holds for any d < 0.5.

The two middle terms can be dealt with using ‖γl‖2 ≤ Kl2d−1 as shown above:∣∣∣∣∣T−2

T∑
t,s=1+p

γt−s+jγt−s−k

∣∣∣∣∣ ≤ T−1

T−1−p∑
l=1−T+p

|γl+jγl−k|
T − |l| − p

T

≤ T−1

(
T−1−p∑

l=1−T+p

γ2
l+j

)1/2( T−1−p∑
l=1−T+p

γ2
l−k

)1/2

and for j ≥ 0, using Lemma 3.2. (i) of Chan and Palma (1998), we have

T−1−p∑
l=1−T+p

γ2
l+j ≤

T−1+2j−p∑
l=1−T+p

γ2
l+j =

T−1+j−p∑
l=1−T−j+p

γ2
l = O((T − p+ j)4d−1) = O(T 4d−1).

This holds for 0.25 < d < 0.5 For d = 0.25 the same argument shows the bound

O(log T ) (cf. Hosking, 1996, top of p. 278). For j ≤ 0 the analogous argument can

be used extending the sum to the negative integers. Combining these expressions we

obtain Eγ̂j γ̂k − Eγ̂jEγ̂k = ∆j,k where E|∆j,k| ≤MT 4d−2 for 0.25 < d < 0.5.

For d = 0.25 the same bound on the last term in (A.11) applies as for 0.25 < d <

0.5. Further E|∆j,k| ≤ M(log T )/T for d = 0.25 by standard summability arguments

showing that
∑T

j=1 j
−1 = O(T log T ) (see e.g. Hosking, 1996, top of p. 278). This

shows the claim for d = 0.25.

For d < 0.25 it follows that the middle two terms are of order O(T−1) independent of

j, k, p. Hence E|∆j,k| ≤ M/T for d < 0.25. All bounds hold uniformly in 1 ≤ j, k ≤ p
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and 1 ≤ p ≤ T . �
Inspecting the proof it follows that it also applies (with d = 0) to linear processes

vt =
∑∞

j=0 θv,jεt−j where (εt)t∈Z fulfills Assumption N if
∑∞

j=0 ‖θv,j‖2 <∞.

Lemma 2 Let (εt)t∈Z fulfill Assumption N. Let vt,p =
∑∞

j=0 φp,jεt−j, t ∈ Z, p ∈ N.

Then if supp∈N
∑∞

j=0 ‖φp,j‖2
2 <∞ it follows that supp∈N E‖vt,p‖4

2 <∞.

Proof: The proof for the multivariate case is only notationally more complex, hence

only the univariate case will be dealt with. Then Ev4
t,p = 3(Ev2

t,p)
2 + κ4,p (see e.g.

the proof of Lemma 1 given above). Next since Ev2
t,p =

∑∞
j=0 φ

2
p,jEε2

t it follows that

supp∈N Ev2
t,p <∞. Further

κ4,p =
∞∑

j=0

φ4
p,jEε4

t ≤ Eε4
t

(
∞∑

j=0

φ2
p,j

)2

.

Hence supp κ4,p <∞. �

Lemma 3 Let Γ denote the Gamma function and let Li(j) satisfy limj→∞Li(j) = 1

for i = 1, . . . , ku. Then define vt by ∆vt = ut, t > 0 and vt = 0, t ≤ 0, where ui,t =∑∞
j=0 θu,j,i(α

′
iεt−j), ‖αi‖2 = 1, (εt)t∈Z is i.i.d. with mean zero and finite fourth moments

and θu,j,i := Γ(di)
−1(j+1)(di−1)Li(j), for 0 < di < 1/2 and θu,j,i := aj,i−aj−1,i for j > 0

and θu,0,i := a0,i for aj,i := Γ(1+di)
−1(j+1)diLi(j) for −1/2 < di < 0. Further let wt =∑∞

j=0 θw,jεt−j for 0 < ‖
∑∞

j=0 θw,j‖2 < ∞ and θw,j := O(j−1−δ) for δ > 0. Then using

DT := diag
(
T−(d1+1), . . . , T−(dku+1)

)
and DT,0 := diag

(
T−(d1,0+1), . . . , T−(dku,0+1)

)
, for

di,0 := max(di, 0), we have (uniformly in p = o(T 1/3))

(i) DT

T∑
t=p+1

vtv
′
tDT

d→ Ξd, where det Ξd 6= 0 a.s.

(ii) max
0≤j≤HT

‖DT,0

T∑
t=p+1

vtw
′
t−j‖2 = OP (1), where HT = o(T 1/3)

(iii) T−(1+max(di+dj ,0))

T∑
t=p+1

vi,tu
′
j,t = OP (1),

(iv) DT

T∑
t=p+1

vt−1ε
′
t = OP (1).

Proof: (i), (iii), and (iv) follow from Proposition 4.1 and Theorem 4.1 of Davidson and

Hashimzade (2007). For (ii), the convergence in distribution of T−(di,0+1)
∑T

t=p+1 vi,tw
′
j,t+1
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follows from Theorem 4.1. of Davidson and Hashimzade (2007). The uniform (in j)

result can be derived from the following argument:

T−(di,0+1)

T∑
t=p+1

vi,tw
′
t−j = T−(di,0+1)

T∑
t=p+1

(vt,i − vt−j−1,i)w
′
t−j + T−(di,0+1)

T∑
t=p+1

vt−j−1,iw
′
t−j

= T−(di,0+1)

j∑
r=0

T∑
t=p+1

∆vt−r,iw
′
t−j + T−(di,0+1)

T∑
t=p+1

vt−j−1,iw
′
t−j

= T−di,0

j∑
r=0

(
T−1

T∑
t=p+1

ut−r,iw
′
t−j

)
+ T−(di,0+1)

T∑
t=p+1

vt−j−1,iw
′
t−j.

The first term is the sum of j + 1 estimated covariances to which we apply Lemma 1:

j∑
r=0

(
T−1

T∑
t=p+1

ut−r,iw
′
t−j

)
=

j∑
r=0

Eut−r,iw
′
t−j+

j∑
r=0

(
T−1

T∑
t=p+1

[
ut−r,iw

′
t−j − Eut−r,iw

′
t−j

])
+O(pT−1)

which is of order O(pd0,i)+OP ((j+1)fT ) where fT = T 2d0,i−1 for 0.25 < d0,i < 0.5, fT =

T−1/2
√

log T for d0,i = 0.25 and fT = T−1/2 for d0,i < 0.25. Here
∑j

r=1 Eut−r−1,iw
′
t−j =

O(pd0,i) is used which is straightforward to derive. Hence the first term above is of

order o(1)+OP (jfTT
−d0,i) = oP (1) for di > 0 and of order O(1)+OP (jT−1/2) = OP (1)

for di < 0 uniformly in 0 ≤ j ≤ T 1/3.�

Lemma 4 Let vt,T − ATvt−1,T = ut, t ∈ N, AT = I − diag(c1, . . . , ck)/T, ci ≥ 0 for

i = 1, . . . k, where ut is stationary and ergodic with finite second moments generated

according to
∑∞

j=0 πu,jut−j = εt where (εt)t∈Z fulfills Assumption N, and where, for

πu(z) :=
∑∞

j=0 πu,jz
j, we have det πu(z) 6= 0, |z| ≤ 1 and

∑∞
j=0 ‖πu,j‖2 < ∞. The

recursions are started at v0,T = v0, T ∈ N which is assumed to be deterministic. Further

let wt =
∑∞

j=0 φ
ε
w,jεt−j +

∑∞
j=0 φ

η
w,jηt−j where

∑∞
j=0 j‖φε

w,j‖2 < ∞,
∑∞

j=0 ‖φ
η
w,j‖2 < ∞

and (ηt)t∈Z fulfills Assumption N and is independent of (εt)t∈Z. Then:

(i) E‖vt,T‖2
2 = O(t) uniformly in T .

(ii) E‖T−3/2
∑T

t=p+1 vt,Tw
′
t‖2

2 = O(T−1).

(iii) T−2
∑T

t=p+1 vt,Tv
′
t,T

d→
∫ 1

0
Jc(w)Jc(w)′dw where Jc(w) denotes an Ornstein-Uhlenbeck

process.

(iv) T−1
∑T

t=p+1 vt,Tu
′
t

d→
∫ 1

0
Jc(w)dB(w)′ + σu for some matrix σu. Here B(w) de-

notes the Brownian motion associated with T−1/2ut.
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Proof: (i) According to the assumptions it follows that ut =
∑∞

j=0 φu,jεt (Lewis and

Reinsel, 1985,p. 395, l.3). Further
∑∞

j=−∞ ‖Eu0u
′
j‖2 < ∞ follows. The recursive

definition of vt,T implies that vt,T = At
Tv0 +

∑t−1
i=0 A

i
Tut−i. Consequently

E‖vt,T‖2
2 = E(At

Tv0+
t−1∑
i=0

Ai
Tut−i)

′(At
Tv0+

t−1∑
i=0

Ai
Tut−i) = Ev′0(At

T )′At
Tv0+

t−1∑
i,j=0

Eu′t−i(A
i
T )′Aj

Tut−j.

Since ci ≥ 0 for i = 1, . . . k, it follows that the elements of the diagonal matrix AT are

all less than one and hence v0(A
t
T )′At

Tv0 = O(1). For the second term note that

|
t−1∑

i,j=0

Eu′t−i(A
i
T )′Aj

Tut−j| ≤
t−1∑

i,j=0

‖Eut−iu
′
t−j‖2 ≤ t

∞∑
j=−∞

‖Eu0u
′
j‖2 = O(t).

(ii) We will only deal with the univariate case. The multivariate case is only nota-

tionally more difficult. The process (wt)t∈N can be decomposed as wt := wε
t + wη

t =

(
∑∞

j=0 φ
ε
w,jεt−j) + (

∑∞
j=0 φ

η
w,jηt−j). Since εs and ηt are independent it follows that

Evt,Tvs,Twtws = Evt,Tvs,Tw
ε
tw

ε
s + Evt,Tvs,T Ewη

tw
η
s (A.12)

because Evt,Tvs,Tw
ε
tw

η
s = Evt,Tvs,Tw

ε
t Ewη

s = 0 and expectations exist by Assumption N.

We bound the contribution to E‖T−3/2
∑T

t=p+1 vt,Twt‖2
2 of the second term in (A.12)

by

T−3

T∑
t=1+p

T∑
s=1+p

|Evt,Tvs,T Ewη
tw

η
s | ≤ T−3

T∑
t=1+p

T∑
s=1+p

t1/2s1/2|Ewη
tw

η
s | = O(T−1)

due to
∑∞

j=−∞ ‖Ewη
tw

η
t−j‖2 <∞.

For the first term in (A.12), we use the Beveridge-Nelson decomposition (Phillips and

Solo, 1992) wε
t = φw(1)εt + w∗

t − w∗
t−1. We then rewrite

∑T
j=p+1 vt,Tw

ε
t as a sum of

several terms and show that the expectation of the square of each summand is of the

required order. Of course, the cross terms are then of the same order,. It follows that

T−3/2
∑T

t=1+p vt,Tw
ε
t = T−3/2

∑T
t=1+p vt,T εtφw(1) + T−3/2

∑T
t=1+p vt,T (w∗

t − w∗
t−1)

= T−3/2
∑T

t=1+p vt,T εtφw(1) − T−3/2
∑T−1

t=p (vt+1,T − vt,T )w∗
t

+T−3/2vT,Tw
∗
T − T−3/2vp,Tw

∗
p .

(A.13)

Since vT,T = AT
Tv0 +

∑T−1
i=0 A

i
TuT−i it follows from finite fourth moments of ut that

Ev4
T,T = O(T 4) and finite fourth moments of w∗

T (see the proof of Lemma 1) then im-

ply via the Cauchy-Schwartz inequality that Ev2
T,T (w∗

T )2 = O(T 2). Therefore the
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two last terms in the expression above contribute terms of the order O(T−1) to

E‖T−3/2
∑T

t=p+1 vt,Twt‖2
2 as required. Further vt,T = ATvt−1,T + ut and

E

(
T−3/2

T∑
t=1+p

vt−1,T εt

)2

= T−3

T∑
t,s=1+p

Evt−1,T εtvs−1,T εs = T−3

T∑
t=1+p

Ev2
t−1,T Eε2

t = O(T−1)

due to E{εtε
′
t|Ft−1} = Eεtε

′
t and Ev2

t,T = O(t). Obviously E(T−3/2
∑T

t=p+1 utεt)
2 =

O(T−1). Finally vt,T − vt−1,T = vt,T −ATvt−1,T + (AT − 1)vt−1,T = ut − c/Tvt−1,T and

therefore the square of the second term in (A.13) equals

T−3

T∑
t,s=1+p

ut+1us+1w
∗
tw

∗
s −

c

T
(vt,Tus+1w

∗
tw

∗
s + vs,Tut+1w

∗
tw

∗
s) +

c2

T 2
vt,Tvs,Tw

∗
sw

∗
t .

Now Ev4
t,T = O(t4) and hence Evt,Tus+1w

∗
tw

∗
s ≤ (Ev4

t,T )1/4(Eu4
s+1)

1/4(E(w∗
t )

4)1/2 =

O(t). Therefore (ii) follows.

The proofs for (iii) and (iv) are omitted since they closely follow previously established

results. (iii) and (iv) are proved in Lemma 1 (c) and (d) of (Phillips, 1987) for the uni-

variate case (k = 1) and in Lemma 1 (iii) and (iv) of (Elliott, 1998) for the multivariate

case, in both cases under different assumptions on the process ut. The main fact used

in both cases, however, is that the process XT (t) = T−1/2σ−1
∑btT c

s=1 us, 0 ≤ t ≤ T

converges weakly to a Brownian motion. It is a standard result that this holds under

our assumptions (see e.g. Hall and Heyde, 1980, Theorem 4.1.). �

Lemma 5 Let the process (wt)t∈Z be generated according to Assumption P2 (i)-(ii) and

be partitioned as w′
t = [y′t, z

′
2t]

′. Accordingly let εyt denote the first block of (Γ′)−1εt.

Define πw,0,T := I,Γ′ :=

(
γ′⊥

γ′

)
, πw,j,T := (Γ′)−1[πv,jΓ

′ − πv,j−1

(
AT,wγ

′
⊥

0

)
], j ≥

1. Let εyt,p :=
∑p−1

j=0[Is, 0]πw,j,Twt−j − [Is, 0](Γ′)−1πv,p−1

(
AT,wγ

′
⊥

0

)
wt−p = εyt −∑∞

j=p[Is, 0](Γ′)−1πv,jvt−j. Then, for a suitable constant c <∞ not depending on p,

E(‖εyt,p − εyt‖2
2)

1/2 ≤ c
∞∑

j=p

‖πv,j‖2 (A.14)

Proof: Using (10) and the definition of πw,j,T to substitute for wt and πw,j,T respec-

tively in the equation for εyt,p we obtain εt,p =
∑p−1

j=0 πv,jvt−j where εt =
∑∞

j=0 πv,jvt−j.

Then (A.14) follows by Lewis and Reinsel (1985), p. 397, (2.9) and εyt,p = [Is, 0](Γ′)−1εt,p.

�
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Remark 1 The Lemma holds for both the stationary (see Assumption P1) and (co)-

integrated I(1) processes as special cases when γ⊥ = 0 and c = 0, respectively.

Lemma 6 Let RT ∈ RgT×gT denote a sequence of (possibly random) nonsingular

matrices whose dimension gT depends on the sample size T . Let R̂T denote a se-

quence of random matrices such that ‖R̂T − RT‖2 = OP (bT ) where bT → 0. Then if

supT∈N ‖R−1
T ‖2 <∞ a.s. it follows that ‖R̂−1

T −R−1
T ‖2 = OP (bT ).

Proof: See Lewis and Reinsel (1985), p. 397, l. 11. �

Lemma 7[
A B

C D

]−1

=

[
A−1 0

0 0

]
+

[
−A−1B

I

] [
D − CA−1B

]−1
[
−CA−1 I

]
(A.15)

Proof: This can be verified by simple algebraic manipulations. �

Lemma 8 Under Assumption P1(i), (ii) and (iv) let Γp := E(x−t )(x−t )′ where x−t =

[(x−2t)
′, (x−1t)

′]′ as defined in Theorem 2. Then supp∈N ‖Γ−1
p ‖2 <∞.

Proof: Since z1t = zν
1t + zε

1t where zν
1t = νt +

∑∞
j=1 θjνt−j and zε

1t =
∑∞

j=0 φjεt−j are

mutually independent, we have Ez1t−iz
′
1t−j = Ezν

1t−i(z
ν
1t−j)

′ + Ezε
1t−i(z

ε
1t−j)

′. Let xε
1t

and xν
1t denote the components of x−1t generated from εt and νt respectively. Then

Γp = E


y−t (y−t )′ y−t (z−2t)

′ y−t (zε
1t−pz1−1)

′ y−t (xε
1t)

′

z−2t(y
−
t )′ z−2t(z

−
2t)

′ z−2t(z
ε
1t−pz1−1)

′ z−2t(x
ε
1t)

′

zε
1t−pz1−1(y

−
t )′ zε

1t−pz1−1(z
−
2t)

′ zε
1t−pz1−1(z

ε
1t−pz1−1)

′ zε
1t−pz1−1(x

ε
1t)

′

xε
1t(y

−
t )′ xε

1t(z
−
2t)

′ xε
1t(z

ε
1t−pz1−1)

′ xε
1t(x

ε
1t)

′



+E


0 0 0 0

0 0 0 0

0 0 zν
1t−pz1−1(z

ν
1t−pz1−1)

′ zν
1t−pz1−1(x

ν
1t)

′

0 0 xν
1t(z

ν
1t−pz1−1)

′ xν
1t(x

ν
1t)

′

 def
= Γε

p + Γν
p.

Clearly 0 ≤ Γε
p, 0 ≤ Γν

p. Also the largest eigenvalues of both matrices are bounded

uniformly in p (see Theorem 6.6.10. of Hannan and Deistler (1988) for Γε
p; the nonzero

eigenvalues of Γν
p do not depend on p). Furthermore the matrix in the third and fourth

block row and block column of Γν
p is positive definite, since z1t contains the term νt.

For the heading subblock built from the first and second block row and columns of

Γε
p the smallest eigenvalue is bounded uniformly in p by Theorem 6.6.10. on p. 265 of
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Hannan and Deistler (1988). Suppose then that the uniform bound on the eigenvalues

of Γp does not hold. Then there exists a sequence pT → ∞ and a sequence of unit norm

vectors xp such that x′pΓpxp → 0. Then x′pΓ
ε
pxp + x′pΓ

ν
pxp → 0 and hence partitioning

xp = [x′p,1, x
′
p,2, x

′
p,3, x

′
p,4]

′ where xp,i corresponds to the partitioning used previously

it follows that E(x′p,3z
ν
1t−pz1−1 + x′p,4x

ν
1t)(x

′
p,3z

ν
1t−pz1−1 + x′p,4x

ν
1t)

′ → 0. It follows that

‖xp,3‖2 + ‖xp,4‖2 → 0. From Theorem 6.6.10 of Hannan and Deistler (1988) it also

follows that E(x′p,1y
−
t + x′p,2z

−
2t)(x

′
p,1y

−
t + x′p,2z

−
2t)

′ → 0 implies ‖xp,1‖2 + ‖xp,2‖2 → 0.

But this produces a contradiction to ‖x‖2 = 1. This shows the claim. �

Lemma 9 Let (wt)t∈Z, (εyt,p)t∈Z, and πw,j,T , j ≥ 0 be defined as in Lemma 5. Then,

under H0 : γz1j = 0 for all j, and for T > max(ci), (4) can be reformulated as

∆yt = Ψ0,p,T (γ′⊥wt−1)+

p∑
j=1

Ξj,p,Tvt−j+

(
pz1+1∑
j=1

ψz1j

)
z1t−pz1−1+

pz1∑
j=1

ψz1j(z1t−j−z1t−pz1−1)+εyt,p,

(A.16)

where supp,T (
∑∞

j=1 ‖Ξj,p,T‖2) <∞, Ψ0,p,T := −[I : 0](Γ′)−1[I : 0]′−
∑p−1

j=1 π⊥,jA
−(j−1)
T,w −

[I : 0](Γ′)−1πv,p−1[I : 0]′A2−p
T , and Ξj,p,T := [Ξ1,j,p,T ,Ξ2,j,T ] for Ξ1,j,p,T :=

∑p−1
h=j+1 π⊥,hA

−(h−j)
T,w +

(Γ′)−1πv,p−1[I : 0]′Aj−p+1
T for j = 1, . . . , p − 1, and Ξ1,p,p,T := 0, Ξ2,1,T := −[I :

0](I + πw,1,T )(Γ′)−1[0 : I]′, Ξ2,j,T := −[I : 0]πw,j,T (Γ′)−1[0 : I]′ for j = 2, . . . p − 1,

Ξ2,p,T = 0, and π⊥,j := [I : 0]πw,j,T (Γ′)−1[I : 0]′.

Remark 2 A similar reformulation is employed in (A.2) of Saikkonen and Lütkepohl

(1996) for the VAR case with AT,w = I. However, the derivations and notation differ.

Proof: Using [ψyj, ψz2j] = −[I, 0]πw,j,T , j = 1, . . . , p−1, [ψyp, ψz2p] = [Is, 0](Γ′)−1πv,p−1

(
γ⊥A

′
T,w, 0

)′
(since γz1j = 0 under H0) and subtracting yt−1 = [I : 0]wt−1 from both sides of (4) and

using wt = (Γ′)−1Γ′wt = (Γ′)−1((γ′⊥wt)
′, v′2,t)

′, for v2,t = [0 : I]vt, we obtain

∆yt = [I : 0]

[
−(Γ′)−1

[
γ′⊥wt−1

v2,t−1

]
−

p∑
j=1

πw,j,T (Γ′)−1

[
γ′⊥wt−j

v2,t−j

]]
+

pz1+1∑
j=1

ψz1jz1t−j+εyt,p.

(A.17)

Defining v1,t := [I : 0]vt = γ′⊥wt − AT,wγ
′
⊥wt−1 and noting that AT,w is invertible for

T > max(ci), the terms involving γ′⊥wt−j in (A.17) can be re-expressed as:[
−[I : 0](Γ′)−1[I : 0]′ −

p∑
j=1

π⊥,jA
−(j−1)
T,w

]
γ′⊥wt−1 −

p−1∑
j=1

p∑
h=j+1

π⊥,hA
−(h−j)
T,w v1,t−j.

Likewise, the terms involving z1t−j may be re-expressed as in (5), yielding (A.16).

Since, by using (10) to substitute for vj j = 0, 1, 2 . . . in
∑∞

j=0 πv,jvt−j = εt, πw,j,T may
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be expressed as a linear finite lag function of πv,j,
∑∞

j=1 j‖πw,j,T‖ < ∞ follows by As-

sumption P2 (iii). supp,T (
∑∞

j=1 ‖Ξ1,j,p,T‖2) ≤ supT ([I : 0]
∑∞

j=1

∑∞
h=j+1 ‖πw,h,T‖2(Γ

′)−1[I :

0]′) <∞ and absolute summability of Ξ2,j both follow. �

C Proof of Theorems

The proof of the theorems will be given based on the following lemma, which introduces

a new set of high level conditions sufficient for Assumptions HL to hold:

Lemma 10 Let (wt)t∈Z, (εyt,p)t∈Z, and πw,j,T , j ≥ 0 be defined as in Lemma 5. As-

sume that z−t ∈ Rkzp is a vector, which is Ft−1 measurable such that yt = A(p)z−t +

εyt,p = [A1(p), A2(p), A3(p)][
(
z−t,1
)′
,
(
z−t,2,p

)′
, z′3,t]

′ + εyt,p where z−t ∈ Rkzp is partitioned

as z−t = [
(
z−1,t

)′
,
(
z−2,t,p

)′
, z′3,t]

′ such that z−t,1 =
[
z′t−1,1, . . . , z

′
t−p1,1

]′ ∈ Rkz1 (where p1 is

fixed) and z3,t ∈ Rkz3 do not depend on p and z2,t,p =
[
z′2t−1, . . . , z

′
2t−p

]′
depends on p.

Further let p tend to infinity as a function of the sample size such that p3/T → 0 and

T 1/2
∑∞

j=p+1 ‖πv,j‖2 → 0 such that E(‖εyt,p − εyt‖2
2)

1/2 = o(T−1/2).

Then the following conditions are sufficient for Assumption HL to hold: There ex-

ists a matrix RT and a scaling matrix DT = diag(Ikz1T
−1/2, IT−1/2, FT ) (where FT =

diag(ft,1, . . . , ftkz3)) such that (λmax denotes a maximal eigenvalue)

sup
T∈N

λmax(ERT ) = O(1), λmax(RT ) = OP (1), λmax(R
−1
T ) = OP (1), (A.18)

RT =

 R1,1 RT,1,2 0

RT,2,1 RT,2,2 0

0 0 RT,3,3

 , (A.19)

R̂T := DT

T∑
t=p+1

z−t (z−t )′DT , such that ‖R̂T−RT‖2 = oP (p−1/2), and ER̂T = O(1) elementwise

(A.20)

sup
l∈Rkzp ,‖l‖2=1

T−1/2

T∑
t=p+1

(E‖l′DT z
−
t ‖2

2)
1/2 = O(1), (A.21)

vec

[
T∑

t=p+1

εyt(z
−
t )′DTR

−1
T

(
I 0 0

)′] d→ Z, (A.22)

where Z ∼ N(0,Γ−1
1.2 ⊗ Σ), where Γ1.2 := limT→∞R1,1 −RT,1,2R

−1
T,2,2RT,2,1 > 0.
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Proof: Consider18

Â(p) :=
T∑

t=p+1

yt(z
−
t )′(

T∑
t=p+1

z−t (z−t )′)−1 = A(p) +
T∑

t=p+1

εyt,p(z
−
t )′DT (DT

T∑
t=p+1

z−t (z−t )′DT )−1DT

+ O(T−1) = A(p) +

(
T∑

t=p+1

εyt,p(z
−
t )′DT

)
R̂−1

T DT +O(T−1),

where
∑T

t=p+1 εyt,p(z
−
t )′DT =

∑T
t=p+1 εyt(z

−
t )′DT +

∑T
t=p+1(εyt,p − εyt)(z

−
t )′DT and

E‖
T∑

t=p+1

(εyt,p − εyt)(z
−
t )′DT‖2 ≤

T∑
t=p+1

(E‖εyt,p − εyt‖2
2)

1/2(E‖DT (z−t )‖2
2)

1/2

= (T 1/2
(
E‖εy1,p − εy1‖2

2)
1/2
)(

T−1/2

T∑
t=p+1

(E‖DT (z−t )‖2
2)

1/2

)
= o(p1/2).(A.23)

Here (A.21) and Lemma 5 are used. Moreover letting εyt(i), i = 1, . . . , ky, denote a

coordinate of εyt we have

E(
T∑

t=p+1

εyt(i)(z
−
t )′DT )′(

T∑
t=p+1

εyt(i)(z
−
t )′DT ) =

T∑
t=p+1

Eε2
yt(i)EDT z

−
t (z−t )′DT = Eε2

y1(i)ER̂T

using the martingale difference property. Therefore ‖
∑T

t=p+1 εyt,p(z
−
t )′DT‖2 = OP (p1/2).

Consequently, ‖(Â(p)−A(p))D−1
T ‖2 = OP (p1/2) using (A.21), (A.18, A.20) and Lemma 6.

Then consider Σ̂ε := T−1
∑T

t=p+1 ε̂tε̂
′
t: We obtain

Σ̂ε =
1

T

T∑
t=p+1

(yt − Â(p)z−t )(yt − Â(p)z−t )′

=
1

T

T∑
t=p+1

(εyt,p − (Â(p) − A(p))z−t )(εyt,p − (Â(p) − A(p))z−t )′

=
1

T

T∑
t=p+1

εyt,pε
′
yt,p −

1

T

T∑
t=p+1

εyt,p(z
−
t )′(Â(p) − A(p))′ − 1

T

T∑
t=p+1

(Â(p) − A(p))z−t ε
′
yt,p

+(Â(p) − A(p))

(
1

T

T∑
t=p+1

z−t (z−t )′

)
(Â(p) − A(p))′

= Σ + oP (1) +OP (p/T ) = Σ + oP (1).

18The O(T−1) term is due to the dependence of A(p) on AT,z/T,AT,w/T in the local-to-unity case,
see Lemma 5.

A.13



Here the bound follows from T−1
∑T

t=p+1 εyt,pε
′
yt,p → Σ, which can be shown using

Lemma 5 and the ergodicity of (εt)t∈Z, implying that T−1
∑T

t=p+1 εtε
′
t → Σ almost

surely. Further ‖(Â(p)−A(p))D−1
T ‖2 = OP (p1/2), ‖R̂T‖2 = OP (1) and ‖

∑T
t=p+1DT z

−
t ε

′
yt,p‖2 =

OP (p1/2) are used. This shows HL (i).

Next, note that Γ̂−1
1.2 equals the (1,1) block of R̂−1

T . Then (A.20) and (A.18) imply HL

(ii).

With respect to HL (iii) note that x−1.2t = [Γ̂1.2, 0]D−1
T R̂−1

T DT z
−
t . Therefore

T−1/2

T∑
t=p+1

εyt,p(x
−
1.2t)

′ =
T∑

t=p+1

εyt,p(z
−
t )′DT R̂

−1
T

 Γ̂1.2

0

0

 =
T∑

t=p+1

εyt(z
−
t )′DTR

−1
T

 Γ̂1.2

0

0

+oP (1)

since ‖
∑T

t=p+1(εyt−εyt,p)(z
−
t )′DT l‖2 = oP (1) similar to (A.23) and

∑T
t=p+1 εyt(z

−
t )′DT =

OP (p1/2) as used above. Then (A.22) and HL (ii) imply HL (iii). �

C.1 Proof of Theorem 2

Proof: The proof uses a number of results of Lewis and Reinsel (1985), henceforth

LR. We verify the conditions of Lemma 10 where z−1,t := x−1t, z
−
2,t,p := x−2t and z3,t

does not occur. Thus kzp = kz1pz1 + p(ky + kz2) + kz1 and DT = T−1/2I. Also,

by assumption, all variables are stationary with bounded variance. Then ER̂T =

(T − p)/TRT . The maximum eigenvalue of RT is bounded uniformly in T ∈ N since

z−t is a vector containing only lags of the vector process [w′
t, z

′
1t]

′, which has bounded

spectrum due to the summability assumptions on the autoregression coefficients (see

e.g. Hannan and Deistler, 1988, p. 265). The bound on the minimum eigenvalue of RT

is derived in Lemma 8. This verifies (A.18), (A.19) and (A.21).

Each entry in R̂T − RT is equivalent to an estimated covariance at some lag up to an

approximation error due to the different limits of summation. Lemma 1 shows that

the variance of the estimators of the covariances are of order O(T−1), see also Hannan

(1976), Chapter 4. The change in the summation introduces an error of orderOP (pT−1)

since the difference is a sum of a maximum of p terms each of variance O(T−2). Thus

all entries in R̂T −RT are of order OP (T−1/2) and therefore ‖R̂T −RT‖2 = OP (pT−1/2).

Then p/T 3 → 0 implies that pT−1/2 = o(p−1/2) showing (A.20).

Finally (A.22) follows as in Theorem 3 of LR (see also Theorem 7.4.9. of Hannan and

Deistler, 1988). The only change in the arguments lies in the different definition of the

regressors and correspondingly the replacement of Γp of LR by RT . In the proof the
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uniform bound on λmax(R
−1
T ) derived above is crucial. Details are omitted. �

C.2 Proof of Theorem 3

Proof: The proof builds on Saikkonen and Lütkepohl (1996) henceforth SP96. We

re-parameterize the auxiliary model (4) using (A.16), which is permissible for our

purpose since we test only ψz1j, j = 0, . . . , pz1, whose estimates coincide in (4) and

(A.16).

Note that in (A.16) there are two variables containing nonstationary regressors: (γ′⊥wt−1)

and z1t−pz1−1. Assumption P2 allows for full column rank matrices β ∈ R(n+kz1)×nz

with 0 ≤ nz ≤ n + kz1 and β⊥ ∈ R(n+kz1)×(n+kz1−nz) such that β′β⊥ = 019 where

(ñt,⊥)t∈N, ñt,⊥ := β′[(γ′⊥wt−1)
′, z′1t−pz1−1]

′ is stationary and (ñt)t∈N, ñt := β′
⊥[(γ′⊥wt−1)

′, z′1t−pz1−1]
′

is integrated (but not cointegrated). Thus instead of (A.16), we consider

∆yt = [ψx1, ψ̃x2, Ψ̃0][(z
−
1,t)

′, (z−2,t,p)
′, z′3,t]

′ + εyt,p = A(p, T )z−t + εyt,p, (A.24)

where z−1,t := x̃−1t = [(z1t−z1t−pz1−1)
′, . . . , (z1t−pz1−z1t−pz1−1)

′]′, z−2,t,p := [ñ′
t,⊥, v

′
t−1, . . . , v

′
t−p+1, (γ

′wt−p)
′]′

and z3,t := ñt analogously to the definition in Lemma A.3. of SP96. Here (z−2,t,p)t∈Z

is stationary for given value of p. z−1,t := [(z1t − z1t−pz1−1)
′, . . . , (z1t−pz1 − z1t−pz1−1)

′]′

behaves essentially as a stationary process since z1t−j −Apz1+1−j
T,z z1t−pz1−1 is stationary

(as a finite sum of stationary terms) and therefore

z1t−j − z1t−pz1−1 = z1t−j − Apz1−j+1
T,z z1t−pz1−1 + (Apz1−j+1

T,z − 1)z1t−pz1−1,

where Apz1−j+1
T,z − 1 = O(T−1). Thus it follows from Lemma 4 that the second term is

negligible and it is sufficient to verify the conditions of Lemma 10.

Define R̂T := DT (
∑T

t=p+1 z
−
t (z−t )′)DT for DT := diag(T−1/2I, T−1/2I, T−1I), with par-

titioning corresponding to that of z−t in (A.24). The last kz3 coordinates of z−t are

integrated. The rest are stationary, apart from lower order remainders. Further let

RT :=

 Ez−1,t(z
−
1,t)

′ Ez−1,t(z
−
2,t)

′ 0

Ez−2,t(z
−
1,t)

′ Ez−2,t(z
−
2,t)

′ 0

0 0 T−2
∑T

t=p+1 ñtñ
′
t

 ,
such that obviously (A.19) holds. Here the submatrix built of the first two block rows

and columns of RT has uniformly bounded eigenvalues (both from below and from

19Cointegration between γ′⊥wt−1 and z1t−pz1−1 is allowed for, but not imposed. The no cointegra-
tion case is accommodated by taking nz = 0.
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above) due to Lemma 8 as in the proof of Theorem 2. The nonsingularity (in probabil-

ity) of the (3,3) block of RT follows from the convergence in distribution (cf. Lemma 4

(iii)) to an almost sure positive definite random matrix. Therefore λmax(RT ) = OP (1)

and λmax(R
−1
T ) = OP (1) establishing (A.18). ER̂T = O(1) is easy to verify from the

results of the proof of Theorem 2 and Eñtñ
′
t = O(t) from standard theory.

Next, Lemmas 1 (for d = 0) and 4 (ii) imply that each entry in R̂T − RT has

variance uniformly of order O(T−1). Thus ‖R̂T − RT‖2 = OP (p/T−1/2) showing

(A.20) for p = o(T 1/3). Then consider E‖l′DT z
−
t ‖2

2 = E(T−1‖l′1z−1,t‖2
2 + T−1‖l′2z−2,t‖2

2 +

T−2‖l′3z3,t‖2
2) where l′ = [l′1, l

′
2, l

′
3] is partitioned in accordance with z−t . By Lemma 4

(i), E‖z3,t‖2
2 = O(t). Due to stationarity of the remaining terms E‖l′DT z

−
t ‖2

2 =

O(T−1), analogously to the proof in Theorem 2, and (A.21) follows. Finally, in∑T
t=p+1 εyt(z

−
t )′DTR

−1
T [I, 0, 0]′ the nonstationary terms do not occur due to the block

diagonal structure of RT . Thus analogous arguments as in the proof of Theorem 2

imply that (A.22) holds. �

C.3 Proof of Theorem 4

Proof: The proof follows that of Theorem 2, except that the impulse response sequence

corresponding to z1t is not summable. (Note that wt is short-memory.) Hence let

DT = T−1/2I, RT = Ez−t (z−t )′, and R̂T := T−1
∑T

t=p+1 z
−
t (z−t )′, where z−t is defined

as in the proof of Theorem 2. To show ‖R̂T − RT‖2 = oP (p−1/2), note that every

entry in this matrix converges in mean square since, by Lemma 1, the variances are of

order O(Tmax(4d−2,−1)) for d 6= 0.25 and of order O(T−1 log T ) for d = 0.25. Note that

Eγ̂j = (T − p)/Tγj. Hence ER̂T = (T − p)/TRT . Thus the expectation of the sum

of squared entries of R̂T − RT is of order O(T 4d−2p+ p2T−1), O(pT−1 log T + p2T−1),

and O(pT−1 + p2T−1) for 0.25 < d < 0.5, d = 0.25, and d < 0.25, respectively. This

follows since there are only O(p) terms involving the long-memory processes, as wt

has short memory and contributes p2 terms of order O(T−1). Hence, for obtaining

‖R̂T − RT‖2 = oP (p−1/2) it suffices that p2T 4d−2 + p3T−1 → 0 for 0.25 < d < 0.5,

(p2 log T + p3)/T → 0 for d = 0.25, and p3T−1 → 0 otherwise. This shows (A.20).

The bounds in (A.18) follow from Lemma 8 (which did not use the short memory

assumption on z1t) as in the proof of Theorem 2. Since z3,t does not occur (A.19)

follows trivially. Stationarity and finite variances of (z1t)t∈N implies (A.21) as in the

proof of Theorem 2.

It remains to verify (A.22). In the following we will only deal with the scalar output
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case (i.e. ky = 1). The multivariate case is only notationally more difficult. It is suf-

ficient to show that T−1/2
∑T

t=p+1 εyt(α
′
pz

−
t ) is asymptotically normal with α′

pRTαp →
α′
∞R∞α∞ for vector sequences αp such that 0 < c < infp∈N ‖αp‖2 ≤ supp∈N ‖αp‖2 ≤ C

for some constants 0 < c < C < ∞ and ‖[α′
p, 0]′ − α∞‖2 → 0 holds. Clearly the

columns of R−1
T fulfill these requirements.

In this respect we use the three series criterion of Hall and Heyde (1980, Theorem

3.2, p. 58): With XTt = εyt(α
′
pz

−
t )/

√
T we obtain that (XTt)1≤t≤T is a martingale

difference sequence with respect to the sigma field generated by εs, νs, s ≤ t. Below

we deal only with the univariate case. The multivariate case follows as usual from the

Cramer-Wold device (see e.g. Davidson, 1994, Theorem 25.5.). Then Theorem 3.2.

states that
∑T

t=1XTt
d→ N (0, η2) if

(i) max
1≤t≤T

|XTt|
p→ 0, (ii)

T∑
t=1

X2
Tt

p→ η2(a constant), (iii) E max
1≤t≤T

X2
Tt is bounded in T .

Assume that α′
pRTαp → η̃2 (for some constant η̃) as p → ∞. Then it holds that

Eε2
yt(α

′
pz

−
t )2 = Eε2

ytE(αpz
−
t )2 < M for some constant 0 < M < ∞ uniformly in p ∈ N

due to the conditional homoskedasticity and the assumption of finite second moments

of z−t . Then E max1≤t≤T X
2
Tt ≤

∑T
t=1 EX2

Tt ≤M such that (iii) follows. Secondly,

T∑
t=1

X2
Tt = T−1

T∑
t=1

ε2
yt(α

′
pz

−
t )2 = T−1

T∑
t=1

(ε2
yt−Eε2

yt)α
′
pz

−
t (z−t )′αp+

(
T−1

T∑
t=1

α′
pz

−
t (z−t )′

)
αpEε2

yt

where α′
p(T

−1
∑T

t=1 z
−
t (z−t )′)αp = α′

pR̂Tαp → η̃2 since ‖R̂T − RT‖2 → 0. Therefore

it is sufficient to show that T−1
∑T

t=1(ε
2
yt − Eε2

yt)α
′
pz

−
t (z−t )′αp converges to zero. Ac-

cording to Davidson (1994, Theorem 19.7) this hold for our assumptions if |(ε2
yt −

Eε2
yt)(α

′
pz

−
t )2| can be shown to be uniformly integrable (uniformly over t and p). Now

E(ε2
yt − Eε2

yt)
2(α′

pz
−
t )4 = (E(ε2

yt − (Eε2
yt))

2)(Eα′
pz

−
t )4 due to the i.i.d. assumption on

(εt)t∈Z. But E(ε2
yt − (Eε2

yt))
2 < ∞ due to finite fourth moments. In order to show

that supp∈N E(α′
pz

−
t )4 < ∞ for supp ‖αp‖2 < ∞ we use Lemma 2: Clearly α′

pz
−
t =∑∞

j=0 φ
ν
p,jνt−j +

∑∞
j=0 φ

ε
p,jεt−j. Thus it suffices to show that supp

∑∞
j=0 ‖[φν

p,j, φ
ε
p,j]‖2

2 <

∞, which follows since supp ‖αp‖2 is bounded by assumption and for each of yt, z1t and

z2t the summability assumption is easily verified. Uniform integrability then follows

from Davidson (1994, Theorem 12.10.). It follows that (ii) holds.

Finally (i) holds since it is implied by (I(.) denoting the indicator function)

T∑
t=1

E
[
X2

TtI(X
2
Tt > ε)

]
= TE

[
X2

T1I(X
2
T1 > ε)

]
→ 0
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for each ε > 0 (see Hall and Heyde ,1980, (3.6), p. 53). Here convergence is implied by

E[εy1(α
′
pz1)]

4 = Eε4
y1E(α′

pz1)
4 <∞ as shown previously. This concludes the proof. �

C.4 Proof of Theorem 5

Proof: The proof of Theorem 5 combines the arguments from the proof of Theorems

3 and 4. Analogously to equation (A.16) we obtain

yt =

p−1∑
j=1

πjyt−j+

p∑
j=1

ψjz2t−j+

(
pz1+1∑
j=1

ψz1j

)
B−1(Bz1t−pz1−1)+

pz1∑
j=1

ψz1j(z1t−j−z1t−pz1−1)+εyt,p

where B := [β, β⊥]. Note that z1t−j − z1t−pz1−1 =
∑pz1

i=j ∆z1t−i =
∑pz1

i=j x1t−i is station-

ary for each 1 ≤ j < pz1. Define z−1t :=
[
z′1t−1 − (z1t−pz1−1)

′, . . . , z′1t−pz1
− (z1t−pz1−1)

′]′ , z−2,t,p :=

[(y−t )′, (z−2t)
′, (β′z1t−pz1−1)

′]′ and z3,t := β′
⊥z1t−pz1−1. Then in z−t := [(z−1,t)

′, (z−2,t,p)
′, z′3,t]

′

the last coordinates (i.e. z3,t) are fractionally integrated while the rest are stationary.

Let DT := diag
(
T−1/2I, T−(d1+1), . . . , T−(dcz1+1)

)
, R̂T := DT

∑T
t=p+1 z

−
t (z−t )′DT , and

RT :=

 Ez−1,t(z
−
1,t)

′ Ez−1,t(z
−
2,t)

′ 0

Ez−2,t(z
−
1,t)

′ Ez−2,t(z
−
2,t)

′ 0

0 0 [R̂T ]3,3

 .
Obviously (A.19) holds with this choice. The uniform bound on the eigenvalues of RT

follows as in the proof of Theorem 4 and from

diag
(
T−(d1+1), . . . , T−(dcz1+1)

) T∑
t=p+1

z3,tz
′
3,tdiag

(
T−(d1+1), . . . , T−(dcz1+1)

) d→ Ξ (A.25)

where Ξ is a.s. positive definite by Lemma 3 (i). Consequently (A.18) holds.

Next we show that (A.20) also holds. R̂T −RT consists of six types of subblocks: The

terms involving only z−1,t and z−2,t can be analyzed exactly as in the proof of Theo-

rem 4, with dmax := max(d1, . . . , dkz1) replacing d. The upper bound on the increase

of p as a function of T shows that the sum of squares of these entries is of order

OP (p−1). The (3, 3) block of R̂T −RT is zero by definition. The remaining two terms

include terms of the form T−(dr+3/2)
∑T

t=p+1[z3,t]r[(β
′z1t−j)

′]s = Op(T
max(dr+ds,0)−dr−1/2)

T−(dr+3/2)
∑T

t=p+1[z3,t]r[∆z
′
1t−j]s = Op(T

max(dr+d1,...,dr+dcz ,0)−dr−1/2) by Lemma 3 (iii).

Both terms are op(p
−1/2) since |ds|, |dr| < 0.5 and, by Assumption P5 (iii), p <

Tmins(1−2ds,(1+2dr)/3,1/3) for r = 1, . . . , cz1 and s = 1, . . . , kz1. Likewise, defining dr,0 :=
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max(0, dr), it follows from Lemma 3 (ii) that20

max
0≤j≤HT

∥∥∥∥∥T−dr−3/2

T∑
t=p+1

[z3,t]r[y
′
t−j, z

′
2t−j]

∥∥∥∥∥
2

= OP (T dr,0−dr−1/2), for HT = o(T 1/3), r = 1, . . . , cz1.

Thus the sum over these terms is OP (pT dr,0−dr−1/2) = op(p
−1/2) since, by Assumption

P5 (iii), p < T 1/3 (covers 0 ≤ dr < 1/2) and p < T 2/3(1/2+dr) (covers −1/2 < dr < 0).

Further E[z3,t]
2
r = O(T 2dr+1) follows from Davidson and Hashimzade (2007). Thus

(A.20) holds under the restrictions on p imposed in Assumption P5. From (A.25) it

also follows that the contribution of this block to E‖l′DT z
−
t ‖2

2 is O(1), showing (A.21).

Finally the arguments to show (A.22) are analogous to those used in the proof of

Theorem 4 since the nonstationary components are not involved. This concludes the

proof. �

C.5 Proof of Theorem 6

Proof: The strategy of the proof is to apply, where possible, the previously proved

results within each regime. We will verify the conditions of Lemma 10 where z−1,t :=

x−1t, z
−
2,t,p := x−2t and z3,t does not occur. Thus kzp = kz1 (pz1 + 1) + p(ky + kz2) and

DT = T−1/2I. Sj (defined in the main text) omits pz1 + 1 discarded lags, which we

denote by Dj :=
{
b
∑j−1

k=0 ωkT c + 1, . . . , pz1 + 1 + b
∑j−1

k=0 ωkT c
}

. Let D :=
∪J

j=1Dj.

Define the within-regime variance Γ(j) := E
[
z−t (z−t )′I (t ∈ Sj)

]
− µ(j)µ(j)′ and define

R :=
∑J

j=1 ωjR(j), where R(j) := E
[(
z−t − µ̄

) (
z−t − µ̄

)′
I (t ∈ Sj)

]
as a measure of

the overall average variation. Noting that R(j) = Γ(j) + (µ(j) − µ̄) (µ(j) − µ̄)′ we

decompose R as R =
∑J

j=1 ωjΓ(j) +
∑J

j=1 ωj (µ(j) − µ̄) (µ(j) − µ̄)′ .

Using the same argument as was used directly for R in the proof of Theorem 4 for Γ(i)

we have λmax(Γ(i)), λmax (Γ(i)−1) = O(1). We also have λmax

(
(µ(j) − µ̄) (µ(j) − µ̄)′

)
=

O(1) despite the fact that the dimension µ(j)− µ̄ grows in p, since it consists of pz1 +1

repeated copies of the same vector extended to the correct dimension by adding zeros.

Here pz1 is fixed independently of the sample size. Then it follows (Lütkepohl, 1996,

p. 74) that

λmax (R) ≤
J∑

j=1

ωjλmax (Γ(j)) +
J∑

j=1

ωjλmax

(
(µ(j) − µ̄) (µ(j) − µ̄)′

)
= O (1) and

λmax

(
R−1

)
≤

(
J∑

j=1

ωjλmin (Γ(j))

)−1

= O(1)

20The summability condition of Assumption P5 (i) implies the rate condition on θw,j in Lemma 3.
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where J is fixed. This shows (A.18).

Next define sample counterparts (recall that here µ̄ is treated as known):

z̄(j) := bωjT c−1
∑
t∈Sj

z−t , z̄ := T−1

T∑
t=p+1

z−t , Γ̂(j) := bωjT c−1
∑
t∈Sj

(
z−t − µ (j)

) (
z−t − µ (j)

)′
,

R̂(j) := bωjT c−1
∑
t∈Sj

(
z−t − µ̄

) (
z−t − µ̄

)′
and note that

E
∥∥∥R̂(j) −R(j)

∥∥∥
2

≤ E
∥∥∥Γ̂(j) − Γ(j)

∥∥∥
2
+ 2E ‖(z̄(j) − µ (j))‖2

(∥∥µ (j)′
∥∥

2
+ ‖µ̄′‖2

)
+(pz1 + 1)

∥∥[ωjT ]−1µ̄µ̄′∥∥
2

where the last term results from the sum over the pz1 + 1 discarded lags in Dj.

E ‖(z̄(j) − µ (j)) I (t ∈ Sj)‖2
2 = (pz1 + 1)

kz1∑
i=1

E
[
(x̄1ti(j) − E [x1tiI (t ∈ Sj)])

2 I (t ∈ Sj)
]

+ p

ky+kz2∑
i=1

E
[
(x̄2ti(j) − E [x2tiI (t ∈ Sj)])

2 I (t ∈ Sj)
]

= O
(
pT−1

)
.

(A.26)

By similar argument ‖µ̄‖2, ‖µ(j)‖2 = OP (1) and ‖pz1[ωjT ]−1µ̄µ̄′‖2 ≤ OP (pT−1). Thus∥∥∥R̂(j) −R(j)
∥∥∥

2
≤

∥∥∥Γ̂(j) − Γ(j)
∥∥∥

2
+OP

(√
pT−1

)
. (A.27)

Next define R̂ := T−1
∑T

t=p+1

(
z−t − µ̄

) (
z−t − µ̄

)′
and note that

R̂ =
J∑

j=1

ωjR̂(j) +
J∑

j=1

T−1
∑
t∈Dj

(
z−t − µ̄

) (
z−t − µ̄

)′
=

J∑
j=1

ωjR̂(j) +OP

(√
pT−1

)
, (A.28)

since (pz1+1)T−1E
∥∥∥(z−t − µ̄

) (
z−t − µ̄

)′∥∥∥
2
≤ (pz1+1)T−1E

[∥∥(z−t − µ̄
)∥∥2

2

]
= O (pT−1) ,

where the last step follows by an argument similar to (A.26). Then by (A.27) and

(A.28)

∥∥∥R̂−R
∥∥∥

2
≤

J∑
j=1

ωj

∥∥∥Γ̂(j) − Γ(j)
∥∥∥

2
+OP

(√
pT−1

)
. (A.29)
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The same arguments as in the proofs of Theorems 2 and 4 show
∥∥∥Γ̂(j) − Γ(j)

∥∥∥
2

=

oP

(
p−1/2

)
since these do not involve breaks. The condition ER̂T = O(1) follows from

arguments analogous to those employed in the previous proofs above. This shows

(A.20).

Next write

T−1

T∑
t=p+1

(
E
∥∥l′ (z−t − µ̄

)∥∥2

2

)1/2

≤
√

2
J∑

j=1

T−1
∑
t∈Sj

(
E
∥∥l′ (z−t − µ(j)

)∥∥2

2

)1/2

√
2

J∑
j=1

T−1
∑
t∈Sj

(
‖l′ (µ(j) − µ̄)‖2

2

)1/2

+
J∑

j=1

T−1
∑
t∈Dj

(
E
∥∥l′ (z−t − µ̄

)∥∥2

2

)1/2

. (A.30)

For the last term in (A.30) we have
(
E
∥∥l′ (z−t − µ̄

)∥∥2

2

)1/2

= OP (p) by arguments simi-

lar to those directly above (A.26). It follows that
∑J

j=1 T
−1
∑

t∈Dj

(
E
∥∥l′ (z−t − µ̄

)∥∥2

2

)1/2

=

O (pT−1) = o (1). For the middle term in (A.30) we have
∑J

j=1 T
−1
∑

t∈Sj

(
‖l′ (µ(j) − µ̄)‖2

2

)1/2
=∑J

j=1b(Tωj − pz1 − 1)c/T ‖l′ (µ(j) − µ̄)‖2 = O (1) by argument similar to (A.26). Fi-

nally the first term in (A.30) is alsoO(1) since J is fixed and T−1
∑

t∈Sj

(
E
∥∥l′ (z−t − µ(j)

)∥∥2

2

)1/2

=

O (1) by the same arguments as in the proofs of theorems 2 and 4. This establishes

(A.21).

As in the proof of Theorem 4, we will show that T−1/2
∑T

t=1 εytα
′
p

(
z−t − µ̄

)
converges

to the normal distribution given in (A.22) by verifying the three conditions of (Hall

and Heyde, 1980, Theorem 3.2, p. 58) for XTt := εytα
′
p

(
z−t − µ̄

)
/
√
T in the scalar

case. The multivariate case again follows from the Cramer-Wold device.

Condition (ii) of Hall and Heyde (1980, Theorem 3.2, p. 58) follows from

E max
1≤t≤T

X2
Tt ≤

T∑
t=1

EX2
Tt = E

[
ε2

yt

]
α′

p

J∑
j=1

ωjE
[(
z−t − µ̄

) (
z−t − µ̄

)′]
αp = E

[
ε2

yt

]
α′

pRαp.

For condition (ii)

T∑
t=1

X2
Tt = E

[
ε2

ty

]
α′

pR̂
′αp + T−1

T∑
t=1

(
ε2

ty − E
[
ε2

ty

])
α′

p

(
z−t − µ̄

) (
z−t − µ̄

)′
αp (A.31)

note that
∥∥∥Γ̂ (j) − Γ(j)

∥∥∥
2
→p 0 by the same arguments as in Theorems 2 and 4.

Therefore by (A.29), this implies that
∥∥∥R̂−R

∥∥∥
2
→p 0, so that the first term in (A.31)

converges in probability to η̃2 = E
[
ε2

ty

]
α′

pRαp. The second term in (A.31) converges
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in probability to zero by the same arguments as in the proof of Theorem 4 (Lemma 2

implies that E
[
(α′

p

(
z−t − µ(j)

)
)4
]

and therefore E
[
(α′

p

(
z−t − µ

)
)4
]

is bounded). Not-

ing that
∑T

t=1 E [X2
TtI (X2

Tt > ε)] =
∑J

j=1bTωjcE [X2
TtI (t ∈ Sj) I (X2

Tt > ε)], condition

(i) also follows by the similar arguments as in Theorem 4. �
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