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Abstract

We study a dynamic Cournot game with capacity accumulation under demand uncertainty, in which

the investment is perfectly divisible, irreversible, and productive with a lag. We characterize equilibrium

investments under closed-loop and S-adapted open-loop information structures. Contrary to what is

established usually in the dynamic games literature with deterministic demand, we �nd that the �rms

may invest at a higher level in the open-loop equilibrium (which in some cases coincides with Markov

perfect equilibrium) than in the closed-loop Nash equilibrium. The rankings of the investment levels

obtained in the two equilibria actually depend on the initial capacities and on the degree of asymmetry

between the �rms. We also observe, contrary to the bad news principle of investment, that �rms may

invest more as demand volatility increases and they invest as if high demand (i.e., good news) will unfold

in the future.

Key Words: Capacity Investment, Dynamic Games, S-adapted Open-Loop Equilibrium, Closed-loop

Equilibrium.

JEL Codes: C73, L13.

1 Introduction

In many industries capital or capacity investments are made under uncertainty. Uncertainty may stem from

the nature of production characteristics, demand, cost and macroeconomic conditions. Some uncertainties

are industry speci�c and the degree of uncertainty may vary from industry to industry. Production capacity

investments under uncertainty have been studied extensively in the literature. The recent studies revisit

and extend the early contributions to incorporate di¤erent demand models and behavioral assumptions to

study the new capital intensive markets including, e.g., restructured electric power generation, natural gas

transportation, ethanol, and hot spot industries. The main objectives of these articles are to provide insights

for equilibrium investment behavior, entry-exit decisions and explain policy relevant topics such as e¤ects

of mergers, the role of excess market capacity on market power and price caps on equilibrium predictions.

However, the capacity competition over time, in which capacity is subject to a time-to-build constraint

�We wish to thank Roberto Cellini, Mike Hoy, Peter Kort, Stanley Reynolds, Thanasis Stengos and Henry Thille for valuable
comments on previous drafts. Research supported by SSHRC and NSERC, Canada.
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and �rms face demand uncertainties over time, has not been adequately analyzed.1 In particular, how
�rms would adjust their incremental capacity investments over time under di¤erent behavioral assumptions

(precommitment versus no commitment, or open-loop versus closed-loop) is an important question to be

addressed. For example, in the electricity production industry competing power generation �rms can invest

incrementally in some technologies under demand uncertainty either using some precommitment policies or

using some state-dependent policies.

We study a �nite-horizon discrete-time duopoly game with capacity accumulation under demand uncer-

tainty. Investment is irreversible and can be accumulated over time. Investment is not productive instantly,

and there is a lag between investment and production. Production is subject to total available capacity.

We analyze the dynamics of capacity investments, characterize and compare closed-loop Nash equilibrium

and S-adapted open-loop Nash equilibrium investment strategies (and therefore investment expenditures and

pro�ts). There is a signi�cant literature in dynamic games focusing on the comparison of feedback and

open-loop strategies.2 In the capacity expansion literature, to which this article naturally belongs, it has

been established in Reynolds (1987), in an in�nite horizon di¤erential game, that Markov strategies increase

competition, i.e., Markov-perfect equilibrium investments exceed the open-loop ones. The same qualitat-

ive result has been obtained in di¤erent articles (and topics), e.g., Dockner (1992), Driskill and McCa¤erty

(1989), Long et al. (1999), and Driskill (2001), whereas other articles �nd that Markov behavior softens

competition (see, e.g., van der Ploeg and de Zeeuw (1990), Melese and Michel (1991), Piga (1998), Figuières

(2002)). In a model where investment is reversible (a crucial assumption), Figuières (2009) shows that

these contradictory �ndings are related to the concept of strategic substitutability and complementarity. A

common feature in this literature is that the model is deterministic. Recently some authors, e.g..., Ruiz-

Aliseda and Wu (2008), Wu (2007), and Garcia and Stacchetti (2008) studied capacity investment games

under various assumptions including demand uncertainty. However, these articles do not focus on the role of

uncertainty on the di¤erent equilibrium types (or information structures), nor do they explicitly study the

role of state variables on equilibrium predictions.

The main objective of this article is to study capital accumulation under open-loop and closed-loop

behavior in a context where demand is uncertain. We start by considering the simplest possible setting, that

is a two-stage deterministic model involving one investment decision. We �nd that open-loop and closed-

loop Nash equilibria coincide. This unsurprising result holds because state vectors match at each stage

for both equilibrium types. This simple setting has however an interesting benchmark (or experimental)

value. Indeed, departing from this setting by assuming that demand in the second period is uncertain,

allows (i) to show that the two equilibrium concepts do not coincide any longer; and, interestingly, (ii) to

characterize the observed di¤erences in investment strategies in terms of the di¤erences in initial capacities

of the players (or their degree of asymmetry). More speci�cally, we �nd that when �rms are symmetric

in terms of initial capacities and costs, open-loop equilibrium investment exceeds that of closed-loop for all

�rms. The intuition for the result in the symmetric case is that a �rm�s output in the following period is

increasing in the rival �rm�s investment. This creates collusive-like behaviour in which when a �rm reduces

its investment the rival also decreases its investment. Hence closed-loop investment levels will be lower than

1Time-to-build decision is empirically observable. Pacheco-de-Almeida and Zemsky (2003) observe that time-to-build di¤ers
across products and countries in petrochemical industry. Koeva (2000) measures average time-to-build in some industries and
�nds that it ranges from 13 to 86 months.

2 Indeed, many papers have dealt with the comparison of open-loop and feedack strategies and equilibria in di¤erent areas.
See, e.g., Dockner et al. (2000) and Figuières (2002, 2009) for capital accumulation games, Kossioris et al. (2008) and Long
et al. (1999) for examples in environmental and resource economics, and Piga (1998) and Breton et al. (2006) for examples of
advertising investments.
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the open-loop counterparts. Whenever �rms are asymmetric in terms of initial capacities and the larger �rm

does not make any investment in equilibrium then the small �rm�s investment under closed-loop information

structure is higher than under its open-loop counterpart. The reason for this asymmetric case is that small

�rm�s investment is a decreasing function of rival �rm�s output under the closed-loop structure. It invests

strategically and preemptively, hence its investment is higher under the closed-loop information structure.

When demand is known with certainty and the time period extends to many stages then investments

under both equilibrium types are expected to be di¤erent. In our model it appears that our �ndings for two

stages extend to �nitely many stages under demand uncertainty. In the three stage extension of the model,

we focus on the symmetric players case and provide characterization of equilibrium under both information

structures. We �nd that each �rm invests more under open-loop equilibrium than under the closed-loop

counterpart. This result is in the opposite direction of the one in Reynolds (1987) for the comparison of

open-loop and Markov-perfect equilibrium. Further, another signi�cant result of the article is that under no

circumstances the players can achieve a higher payo¤ under an open-loop information structure than under

a closed-loop information structure. This conclusion, which holds true for any number of �nite stages, is a

strong argument (to be added to the usual one stating that closed-loop strategies, that are state-contingent,

are more conceptually appealing that here open-loop counterparts) in defense of the closed-loop information

structure.

When investment is irreversible and future demand is stochastic, one expects, according to the �bad

news�hypothesis of Bernanke (1983), that �rms will invest as if the low demand scenario will unfold in the

future. Our �ndings are just the opposite. Indeed, we obtain that the �rms invest in equilibrium as if the

high demand scenario will be realized.

1.1 A Brief Look at Relevant Literature

Because of its analytical tractability many models on capacity accumulation games assume a linear-quadratic

(LQ) framework in optimization settings without uncertainty and capacity constraints.3 They analyze,

including seminal articles by Spence (1979) and Dixit (1980), the commitment value of capital investments.

They �nd that �rms invest strategically to preempt rival �rms�capacity investments to secure large market

shares and higher pro�ts. Dixit (1980) studies a duopolistic Cournot-Nash game, in which the incumbent �rm

chooses a capacity investment level before the play of �post-entry�game. Hence the incumbent �rm changes

initial capacity states of the game and secures higher outputs. Spence (1979) studies �rst-in advantage

and strategic capital investments in an in�nite horizon model of duopoly, in which investment is completely

irreversible. He �nds that, in the equilibrium the advantaged �rm invests strategically to preempt the

rival �rm capacity investment and secures a higher market share and greater pro�tability in the long term.

Fershtman and Muller (1984) analyze a duopolistic model and characterize conditions for the existence

of Nash equilibrium (NE) investment strategies and the asymptotic stability of capital trajectories. They

�nd that there are a unique stationary NE capital stocks which are independent of initial capital stocks.

This result is based on the open-loop Nash equilibrium concept. However, in our article initial capacities

play important roles in equilibrium predictions. Cellini and Lambertini (1998) extend Fershtman and Muller

(1984) by studying an in�nite horizon continuous time symmetric di¤erential game with capital accumulation

of symmetrically di¤erentiated goods (in which there is no capacity investment, but the excess output is

reintroduced into the production process). They investigate optimal capital accumulation and study the

in�uence of demand conditions on market equilibrium. The equilibrium solution concept is open-loop Nash

3 In this paper we consider �hard� capacity constraints that cannot be relaxed at a cost.
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equilibrium (OLNE). They �nd that when the equilibrium is driven by demand conditions social planning

is more e¢ cient than any competition setting. When equilibrium is dictated by capital accumulation, social

planning and oligopoly lead to the same allocation.

The Spence and Dixit articles suggest that when capacity investment is completely irreversible then in-

vestment can have a commitment value for the duopolists. Reynolds (1987) analyzes commitment value

of investment in a two-player linear-quadratic, in�nite-horizon di¤erential game when capacity is reversible

with adjustment costs. He explains the preemptive e¤ect of capacity investment under di¤erent behavioral

assumptions on committing investment paths. He �nds that when each �rm precommits to the investment

path (i.e., OLNE) the equilibrium is unique and is the pair of asymptotically stable equal investment capa-

cities. When �rms do not precommit to investment paths (i.e., Markov perfect equilibrium (MPE)) feedback

equilibrium strategies are linear and unique. In the OLNE, each �rm�s investment strategy is independent of

the rival �rm�s stock of capacity. In the MPE, each �rm�s current investment aims to seize the rival �rm�s

future capacity expansion plan. The stationary capacity levels under MPE exceed the stationary capacity

levels under OLNE.

Recent literature on capital accumulation games has incorporated uncertainty into the models. For

example, Wu (2007) has studied a continuous-time endogenous Stackelberg leadership game in which identical

�rms choose entry timing and capacity investment in a new market with evolving uncertainty. In his model

capacity investment is lumpy and there are two capacity states, low and high, at each time. Demand is

stochastic and grows until some time then it declines to zero. He shows that in equilibrium, in most cases,

the leader enters the market with smaller capacity than the follower�s capacity in the ultimately declining

industry. Ruiz-Aliseda and Wu (2008) use a real options approach to examine optimal entry and exit behavior

of a single �rm in a market with demand that cycles between growth and decline phases. They use the �bad

news principle of irreversible investment�hypothesis of Bernanke (1983), which says a �rm only cares about

the arrival of bad news and their adverse e¤ect on payo¤s before making investment decision, to interpret

�rms�investment policies.

We study quantity competition in capacity investments and production. In a similar article, Garcia and

Stacchetti (2008) analyze a dynamic extension of Kreps and Sheinkman�s (1983) two-period Bertrand game

with capacity investments. Duopolists have several equal-sized plants and the marginal cost of production

is constant. Demand is inelastic and increases or stays the same with some probability from one period to

the next one. They characterize Markov-perfect equilibrium of bidding and investment strategies. They �nd

that in some equilibria excess market capacity is low and market prices are equal to the price cap. They

argue that increasing the price cap causes high market prices and low consumer surplus. In a similar model

to Garcia and Stacchetti (2008), Garcia and Shen (2010) study a dynamic oligopoly Cournot model in which

market demand grows stochastically and capacity additions take place over long time lags. They con�rm

that oligopoly underinvests relative to the social optimum. They measure the rate of change of investment

as demand growth probabilities, discount factors, depreciation rates, and production and investment costs

vary.

In terms of the modeling assumptions and results this article has similarities with Pacheco-de-Almeida

and Zemsky (2003), and Genc et al. (2007), who assume that investment does not become productive

instantaneously but has a lag with the production decision. As Pacheco-de-Almeida and Zemsky point

out there are many factors creating a lag between investment decision and production process in several

industries, and time-to-build constraint is not commonly studied in IO literature. Pacheco-de-Almeida and

Zemsky provide an interesting analysis of the impact of time-to-build on equilibrium in a three-period game
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where uncertainty about demand is resolved after the �rst period. One of the results is that �rms will tend to

invest incrementally instead of investing once. This result contrasts with some prior work, in which �rms were

allowed to make investment only once, or in equilibrium �rms made investments only once when investment

was productive immediately. In our model, investment also becomes productive in the following period, and

in equilibrium (under both open-loop and closed-loop information structures) �rms invest incrementally over

time. Pacheco-de-Almeida and Zemsky (2003) assume that �rms face demand uncertainty only once, however

we assume uncertainty evolving over time and �rms face uncertainty all the time before they make investment

decisions. Also, contrary to Genc, Reynolds and Sen who provide an implementation of open-loop approach

via stochastic programming for solving a large-scale oligopoly, we provide characterization of equilibrium for

both open-loop and closed-loop information structures.

Comparison of the equilibrium behavior (closed-loop versus open-loop) for capital investment dynamic

games under demand uncertainty is one of the main objectives of this article. The open-loop equilibrium

concept has been utilized by many authors, such as Cellini and Lambertini (1998), Fershtman and Muller

(1984), for predicting market outcomes of deterministic dynamic games. 4 because we allow uncertainty

in the model the appropriate equilibrium concept with the features of an open-loop information structure

would be S-adapted open-loop Nash equilibrium (see Haurie et al. (1990) for this equilibrium concept). This

approach has the advantage of tractability and is particularly useful for computing equilibrium outcomes of

large scale games (see Genc et al. (2007), Genc and Sen (2008)). We assume random walk type demand

uncertainty, whose continuous time version is the Brownian motion. This type of demand structure is used

by, for example, Dixit and Pindyk (1992), and Genc et al. We assume that investment is perfectly divisible,

irreversible (i.e., net investment is non-negative) and made under demand uncertainty. Investment becomes

productive with a one period lag, as in Pacheco-de-Almeida and Zemsky (2003) and Garcia and Stacchetti

(2008). In some industries investment may be perfectly divisible and it may require time to build for future

use. For instance, in the electric power generation industry, a �rm may invest on more �exible generators

such as gas-�red generators with varying degrees of capacity choices and the investment takes some time to

be productive.

The plan of the rest of the article is as follows. Section 2 introduces the model, and Section 3 states some

general results and Section 4 deals with two-period models, with one investment decision. In Section 5, we

generalize some results to T > 2 periods and provide an illustration in a three-period setting. Section 6

brie�y concludes.

2 Model

We study a dynamic duopoly game, in which �rms make capacity investment and production decisions over

time. Firms produce a homogeneous good. For a given demand and capacity state vector in a time period,

�rms make capacity investments under demand uncertainty. The stochastic process we consider is discretized

and described by an event tree. An investment made at time t = 0; : : : ; T , will become productive in the

following period. After the demand uncertainty is revealed, �rms make production decisions simultaneously

and independently. We �rst introduce the model in general terms and next specify the functional forms.

Let i denote a player and J be the set of players, i � J = f1; 2g. Let St be the set of possible realizations
of the stochastic process that a¤ects market demand at period t: The set S0 has only one element, s0,

which is the root of the event tree. At any subsequent period, i.e., t � 1; the set St contains Nt elements
4See Reynolds (1987), and Deneckere and de Palma (1998) for a defense of using open-loop equilibrium in dynamic games.
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(nodes), i.e., St =
�
st1; : : : ; s

t
Nt

	
.. Let a (stk) 2 St�1 be the unique predecessor of stk 2 St; and denote by

B (stk) � St+1; t = 0; : : : ; T � 1, the set of successors of node stk in the event tree.
The stochastic inverse demand is given by

p
�
t; stk

�
= P

 X
i

qi
�
t; stk

�!
;

where qi (t; stk) is the output of player i, and p (t; s
t
k) is the market price for the realization s

t
k. Denote by

Ii (t; s
t
k) the investment in the production capacity Ki (t; s

t
k) of player i: Assuming away obsolescence and

taking into account the one-period delay for investment to become productive, the capacity accumulation

dynamics is then given by

Ki

�
t; stk

�
= Ki

�
t� 1; a

�
stk
��
+ Ii

�
t� 1; a

�
stk
��
; t = 0; : : : ; T; 8stk 2 St; (1)

with Ki

�
0; s0

�
= Ki0. Each player must satisfy the production capacity constraint at each production node,

i.e.,

qi
�
t; stk

�
� Ki

�
t; stk

�
; t = 0; : : : ; T; 8stk 2 St: (2)

We assume that the investment cost Fi(Ii) is convex, increasing and satisfying Fi(0) = 0. The production

cost Ci (qi) is also convex, increasing and there is no �xed production cost, i.e., Ci(0) = 0. Denote by

� (stk j a (stk)) the conditional probability associated with the arc (a (stk) ; stk) in the event tree withX
stk2St

�
�
stk j a

�
stk
��
= 1:

Assuming pro�t maximization behavior, player i�s optimization problem reads

max�i = P
�
Q
�
0; s0

��
qi
�
0; s0

�
� Ci

�
qi
�
0; s0

��
� Fi

�
Ii
�
0; s0

��
+

TX
t=1

�t
X
stk2St

�
�
stk j a

�
stk
��
[P
�
Q
�
t; stk

��
qi
�
t; stk

�
� Ci

�
qi
�
t; stk

��
� Fi(Ii

�
t; stk

�
)]

subject to (1)-(2)

qi
�
t; stk

�
� 0; Ii

�
t; stk

�
� 0; t = 1; : : : ; T;8stk 2 St;

where Q (t; stk) =
P

iqi (t; s
t
k) ; � is the discount factor, 0 < � < 1, and also Ii

�
T; sTk

�
= 0:

To compute and compare S-adapted open-loop and closed-loop strategies, we need to specify the forms of

the cost and demand function. In the sake of keeping the computations as simple as possible while obtaining

interesting qualitative insights, we adopt a quadratic investment cost function and a linear production cost,

i.e.,

Fi (Ii) = 1=2f I
2
i ; Ci (qi) = cqi;

where f > 0 and c > 0. We assume that the inverse demand is a¢ ne and analyze the simple case where, for

any stk 2 St; the set of successors is B (stk) =
�
st+11 ; st+12

	
= fu; dg ; where u stands for demand shifting up

and d for demand shifting down. That is, from any non-terminal node, the demand distribution is a simple

binary random walk, with demand shifting up with probability p or down with probability 1� p. Formally,
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the inverse demand is given by

P

 X
i

qi
�
t; stk

�!
= 1 + �

�
t; stk

�
�Q

�
t; stk

�
;

where

�
�
t; stk

�
= �

�
a
�
t; stk

��
+ ~�; where ~� =

(
�; if stk = u

��; if stk = d
;

and � is a nonnegative parameter and � (0; 0) = 0.

Admittedly our model is far from being the most general one. Indeed, the selected demand distribution

is a simple one, and the cost functions could have been more general. However, our parsimonious model

still possess the required attributes to allow for a full analysis of the dynamics of investments in production

capacities in the context of imperfect competition, with uncertain demand and under di¤erent information

structures. For the sake of completeness, we provide the formal de�nition of S-adapted open-loop and

closed-loop Nash equilibria.5

De�nition 1 S-adapted open-loop information: At any time each player�s information set includes the cur-
rent calendar time, the current demand state, the distribution of future demand, and the initial values of

capacity states.

De�nition 2 S-adapted closed-loop information: At any time each player�s information set includes the
current calendar time, the current states involving demand and capacity states, the distribution of future

demand, and the history of the states.

Here we use the term S-adapted (i.e., sample adapted) to re�ect the fact that the game is stochastic

and the demand distribution is modeled by event tree. Both S-adapted open-loop equilibrium (or simply

open-loop equilibrium) and S-adapted closed-loop equilibrium (or simply closed-loop equilibrium) are Nash

equilibrium in investment and production strategies. The former is obtained under the S-adapted open-loop

information structure, and the latter is obtained under the S-adapted closed-loop information structure.

3 Some General Results

We report in this section some general results pertaining to production decisions at any given node in the

demand event tree. We also show some relationships between output and investment decisions. These results

provide some valuable �rst insights for the characterization and analysis of both open-loop and closed-loop

equilibria.

Consider production decisions at any given node in the demand tree. Because the investment decision at

a given node is independent of the quantity decision at the same node (because of the lag between investment

and production), then at any node stk 2 St; t = 0; : : : ; T; each player chooses the production quantities by

solving the following problem

maxP
�
Q
�
t; stk

��
qi
�
t; stk

�
� Ci

�
qi
�
t; stk

��
;

s:t:; 0 � qi
�
t; stk

�
� Ki

�
t; stk

�
:

5We note that in the literature (see, Basar and Olsder, 1995) there are several forms of closed-loop equilibrium concepts. We
use the one de�ned below.
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Assume symmetric capacities so that Ki (t; s
t
k) = Kj (t; s

t
k) � K (t; stk), i 6= j. The solution of the

above problem produces three equilibrium candidates: (i) The interior Cournot solution, that is, qi (t; stk) =

qj (t; s
t
k) = (1 + � (t; s

t
k) � c)=3; (ii) The corner solution that is qi (t; stk) = qj (t; stk) = K (t; stk); or (iii) The

asymmetric solution with (say) player i producing at full capacity, i.e., qi (t; stk) = K (t; stk) and the rival

player j plays its best (interior) response strategy qj (t; stk) = (1 + � (t; s
t
k)� c�K (t; stk))=2. The following

lemma, however, shows that the asymmetric solution is ruled out.

Lemma 1 At any node stk 2 St; t = 0; : : : ; T , whenever capacities of the players are symmetric, Nash

equilibrium outputs are unique and symmetric.

Proof. See Appendix. �
In the next lemma, we show that it can never occur that a player�s output in downstate demand d exceeds

his production in upstate demand u. Note that the result is independent of production capacities.

Lemma 2 In any set B (stk), qi (t+ 1; d) � qi (t+ 1; u).

Proof. See Appendix. �
The following result states that if a player invests at a node at period t, then this player will produce at

full capacity in the descendent upstate node.

Lemma 3 If at any node stk 2 St; t = 0; : : : ; T � 1; Ii (t; stk) > 0, then in any set B (stk), player i produces
at maximal capacity in the upstate demand case, i.e., qi (t+ 1; u) = Ki (t+ 1; u) : Further, if Ii (t; stk) = 0,

then qi (t+ 1; u) < Ki (t+ 1; u) :

Proof. See Appendix. �
In this article we de�ne a realization of high demand scenario as �good news�. Good news principle of

investment is that investment is made to meet future high demand (i.e., good news), and this investment is

fully utilized in the production process (i.e., capacity is binding or excess capacity is zero). 6

The result of this Lemma is an illustration of the good news principle, stipulating that a decision-maker

is investing as if the optimistic scenario will materialize in the following period. Note that this result will

not necessarily hold if we had a large �xed cost or indivisibility of investment. The second part of the lemma

deals with the case where it is optimal not to invest at a node. The result then states that the player will

not produce at full capacity in the upstate successor, whatever is the already available capacity. Further, by

Lemma 2, we have that qi (t+ 1; d) < qi (t+ 1; u) < Ki (t+ 1; u). Therefore, combining the two lemmas, we

have that if a player does not invest at any given node, then he will not use his full capacity in all successors

of that node.

In the following lemma, we show that, in any pair of nodes sharing the same history, it cannot occur in

a symmetric game that a player invests in the downstate node and does not invest in the upstate one.

Lemma 4 In a symmetric game, in any set B (stk) ; s
t
k 2 St; t = 0; : : : ; T � 1; if Ii (t; u) = 0 then necessarily

Ii (t; d) = 0:

Proof. See Appendix. �
6Bernanke�s bad news principle (1983) relies on the assumptions that there is a single optimizer (i.e., no competition), there

is a menu of projects at each time and investment projects are lumpy, and new information relevant to long-run returns arrives
over time. Under these assumptions postponing is desirable, since by waiting the investor may improve his chances of making
a correct decision. This principle is totally based on the option value approach.
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4 Equilibria in Two-Period Model

We explore in this section the e¤ects of uncertainty and initial capacities on the equilibrium investment

behaviour in a two-period model, that is in a setting where there is only one investment decision to be made

at the root node. To start, consider the simplest possible setting of rivalry investment decisions, that is, the

case where demand is known with certainty at period 1 (~� = 0). We have the following result.

Proposition 1 In the absence of uncertainty, closed-loop Nash equilibrium and open-loop Nash equilibrium

investments coincide.

Proof. See Appendix. �
The result holds because the closed-loop and open-loop Nash equilibrium state vectors at each stage

coincide, and, therefore, the rollback solution is identical to the forward solution. Alternatively, as the

investment cost is sunk for the second period and the e¤ect of investment is to provide an upper bound

for the production level, the two types of equilibria coincide in the two-period model with deterministic

demand. Note that this result holds for any given initial production capacities, and in particular for equal

ones. Further, as one can expect, total industry investment is lower than the welfare-maximizing level.7

We now switch to a stochastic demand (i.e., ~� > 0). Note that in period 1, the production capacity is the

same in both states u and d:::We hence simplify the notation and write Ki

�
1; s1k

�
= Ki1 and Ii

�
0; s0

�
= Ii0.

Depending on the model parameters�values, di¤erent cases may arise, namely:

Case 1: Ii0 = 0 and (by Lemmas 2 and 3) qi (1; d) < qi (1; u) < Ki1.

Case 2: Ii0 > 0 and qi (1; d) < qi (1; u) = Ki1.

Case 3: Ii0 > 0 and qi (1; d) = qi (1; u) = Ki1.

Case 1 occurs when the player�s initial capacity is �too large�and there is no need, at least in the short

run, to increase it. The equilibrium solution when both players do not invest in capacity is trivial and does

not present much interest. We are interested in the case where the initial capacity Ki0 is large enough so that

the capacity constraints do not always bind, but also low enough that the �rms have an incentive to invest

in capacity. Guided by Lemmas 2 and 3, we restrict our attention to equilibria where capacity is binding in

the u state (qi (1; u) = Ki1), and not in the d state (qi (1; d) < Ki1). However, exceptionally in the fully

symmetric case analyzed below, we shall also consider the scenario where capacity is binding in both states

in period 1, i.e., qi (1; u) = qi (1; d) = Ki1. Our results are reported in the following propositions stated

under di¤erent assumptions regarding initial capacities.

Assumption A1: Ki0 = Kj0 = K0, i 6= j, and Ii0 > 0, i = 1; 2.

Proposition 2 Under assumption A1 and if qi (1; d) < qi (1; u) = Ki1, then

1. Symmetric S-adapted open-loop (OL) and closed-loop (CL) Nash equilibrium investments are given by

IOLi0 =
�p (1 + � � c� 3Ki0)

f + 3�p
; ICLi0 =

�p (1 + � � c� 4Ki0)

f + 4�p
; i = 1; 2:

7Using the simple notation Ii
�
0; s0

�
= Ii0 and Ij

�
0; s0

�
= Ij0, it is shown in the Appendix that the total investments made

in the market will be Ii0 + Ij0 = �[2 � 3K0 � 2c]=(f + 3�), where K0 = Ki0 +Kj0. Welfare maximizing e¢ cient investment
would be I0 = �[1�K0 � c]=(f + �), obtained through the solution of the problem

maxf
Z
(1� q)dq � cq0 � fI20=2 + �[

Z
(1� q)dq � cq1] + �0(K0 � q0) + �1(K0 + I0 � q1)g:::

Clearly I0 > Ii0 + Ij0, that is duopoly underinvests relative to the e¢ cient.
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2. The equilibrium production quantities at time 1 are given by

qCLi (1; u) = KCL
i1 =

fKi0 + �p (1 + � � c)
f + 4�p

; qCLi (1; d) =
1� � � c

3
; i = 1; 2;

qOLi (1; u) = KOL
i1 =

fKi0 + �p (1 + � � c)
f + 3�p

; qOLi (1; d) =
1� � � c

3
; i = 1; 2:

3. The equilibrium pro�ts compare as follows

�OLi < �CLi ; i = 1; 2:

4. An asymmetric equilibrium in investment strategies is not possible.

Proof. See Appendix. �

Corollary 1 Under assumption A1 and assuming qi (1; d) = qi (1; u) = Ki1; i = 1; 2; then

1. Symmetric S-adapted open-loop (OL) and closed-loop (CL) Nash equilibrium investments are given by

IOLi0 =
� (1� � � c� 3Ki0 + 2p�)

f + 3�
; ICLi0 =

� (1� � � c� 4Ki0 + 2p�)

f + 4�
; i = 1; 2:

2. The equilibrium production quantities at time 1 are given by

qCLi (1; u) = qCLi (1; d) = KCL
i1 =

fKi0 + � (1 + � � c+ 2p�)
f + 4�

; i = 1; 2;

qOLi (1; u) = qOLi (1; d) = KOL
i1 =

fKi0 + � (1 + � � c+ 2p�)
f + 3�

; i = 1; 2::

3. The equilibrium pro�ts compare as follows

�OLi < �CLi ; i = 1; 2:

4. An asymmetric equilibrium in investment strategies is not possible.

Proof. Similar to the proof of Proposition 2 and is omitted. �
Contrasting Proposition 2 and its corollary with Proposition 1 con�rms the known conclusion that un-

der uncertainty the two information structures do not produce the same investment equilibrium strategies.

Further, a simple comparison of the investment strategies in Proposition 2, as well as in its corollary, shows

that IOLi0 > ICLi0 , and, therefore, the S-adapted open-loop Nash equilibrium capacity per �rm exceeds its

closed-loop Nash equilibrium counterpart. The economic intuition for this result is as follows. Under the

closed-loop structure �rms at the upstate node know that initial capacities of both players are identical and

initial node investments will be identical due to symmetry. Because both players�capacities will be binding

in this upstate node (because investments are positive), they will have the identical capacities. Therefore, a

�rm�s output in the upstate is increasing in the rival �rm�s investment. This creates collusive-like behaviour

in which when a �rm reduces its investment the rival also decreases its investment. Hence closed-loop invest-

ment levels will be lower than the open-loop counterparts. In terms of output decisions, when capacity is

binding, each player produces more in open-loop equilibrium than in closed-loop equilibrium. When capacity

10



is not binding, i.e., in downstate demand of Proposition 2, open-loop and closed-loop equilibrium quantities

are equal and correspond to the interior Cournot solution. Further, each player realizes a higher pro�t in the

closed-loop equilibrium than in the open-loop counterpart. Finally, we note that under assumption A1, there

is no room for an asymmetric equilibrium in investments strategies. This holds true under both information

structures.

As can be seen from optimal investment expressions in Proposition 2 (and Corollary 1), investment is a

function of demand probabilities. It can be easily shown that investment expressions (for both open-loop

and closed-loop behavior) are increasing functions of (up-state) demand probability p. As the probability p

approaches to zero, investment gets closer to zero in both open-loop and closed-loop cases. This, in turn,

implies that if upstate demand is not likely to unfold, no investment occurs in the previous period.

We note that open-loop Nash equilibrium (OLNE) in Proposition 2 coincides with Markov-perfect Nash

equilibrium (MPNE) investment levels.8 The reason is that under the conditions of Proposition 2, both �rms

are capacity constrained in the high demand state in period 1. This implies that the MPNE output strategy

for �rm j for the high demand state in period 1 is, qj(Kju;Kiu) = Kju, and @qj=@Kiu = 0. Using this zero

derivative, the OLNE and MPNE results are the same. The economic intuition for this is that a �rm�s period

zero investment does not have any strategic value (over and above its value in an OLNE strategy) because it

does not have an impact on its rival�s period one output choice.

For completeness of the analysis of this symmetric game, it is easy to check that if both players do not

invest in capacity (this is the case when initial capacities are large enough to cover the next-period upstate

demand), then open-loop and closed-loop outputs coincide at each node, and are given by

qOLi (1; u) = qCLi (1; u) =
1 + � � c

3
; i = 1; 2;

qOLi (1; d) = qCLi (1; d) =
1� � � c

3
; i = 1; 2:

Consequently, individual pro�ts are the same under both information structures.

Remark 1 It is interesting to check under which conditions an interior solution is not observed in both
equilibria at node (1; d), i.e., capacity constraints do always bind in both periods. It is easy to verify that this

will occur in

Dx = f(Ki0; f; �) j Kx
i2 < q

c
i2; f; � 2 (0; 1);Ki0 � 0g; x = CL;OL;

where Kx
i2 = Ki0 + I

x
i0, and I

x
i0 > 0. In this set, Cournot outputs satisfy qci2 = (1 � c � �)=3: Note that

the investment quantities Ixi0 calculated above will be functions of the model parameters that belong to the set

Dx.

Assumption A2: Suppose that Ki0 < Kj0, and Ii0 > 0, Ij0 = 0, i 6= j. That is, at the outset of the game
duopolists have di¤erent initial capacities and one duopolist makes positive investment and the other

has enough capacity and does not make any investment.

Proposition 3 Under assumption A2, �rm i�s OLNE and CLNE investments are given by

IOLi0 =
�p[1 + � � c� 3Ki0]

2f + 3�p
; ICLi0 =

�p[1 + � � c� 2Ki0]

2f + 2�p
:

8OLNE and MPNE investment levels also coincide in Corollary 1.
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Further,

�OLi < �CLi ;

�OLj > �CLj :

Proof. See Appendix. �
An interpretation of the above proposition is that facing a rival �rm with large initial capacity, a player

will invest less and realize lower pro�t in open-loop equilibrium than in closed-loop equilibrium. The closed-

loop Nash equilibrium capacity for �rm i exceeds its open-loop Nash equilibrium counterpart. Note that in

both equilibria, player i produces at full capacity in upstate next-period demand and player j less than his

capacity.

Contrary to the Proposition 2, OLNE does not coincide with the MPNE investments in Proposition 3.

Here CLNE coincides with MPNE outcomes, because �rm i�s period zero investment has a strategic value

and it has an impact on �rm j�s period one output choice.

Propositions 2�3 show the role of the initial conditions and the degree of asymmetry on equilibrium

predictions. In a fully symmetric game (and equilibrium), Proposition 2 indicates that each player invests

more in the open-loop equilibrium than in its closed-loop counterpart. In Proposition 3, when we assume

one �rm has higher initial capacity than the other, and the �rm with higher capacity does not make any

investment, we �nd that the �rm with low initial capacity invests and its investment would be higher under

closed-loop information structure than under the open-loop structure. A �rst conclusion emerges from these

propositions: when comparing investments made by a player under the two di¤erent information structures,

our results show that everything can go either way, depending on the circumstances, i.e., initial capacity

levels and their degree of asymmetry. However, in the deterministic capacity investments literature (e.g.,

Reynolds (1987)), it is observed that �rms overinvest under the Markov perfect information structure (which

is also a state-dependent structure) relative to the open-loop structure. The intuition is based on �strategic

investment�: a �rm�s investment is a decreasing function of the rival�s output, and the investing �rm seizes

the rival �rm�s capacity expansion. All players behave in the same manner, hence they overinvest.

The second conclusion is that player i who makes the strategic investment is better o¤ by considering

the role of its investment on rival player�s output choice and will realize a higher pro�t in the closed-

loop equilibrium than in the open-loop one. Therefore, on top of being conceptually more appealing, this

result provides a pro�t-grounded justi�cation for the adoption of the state-dependent closed-loop equilibrium

information structure.

5 A Generalization and an Example

In the two-period setting, we have shown in Proposition 2 that if the players start out with identical capacities

and invest positively at each period, then they invest more in an open-loop equilibrium than in a closed-loop

equilibrium. The generalization of the comparative investment result to multi-period games is given in the

following proposition.

Proposition 4 Assume the T stage extension of Assumption 1. For T � 2 period extension of the game, T
is �nite, equilibrium investment under the open-loop structure is higher than the one under the closed-loop

structure; that is IOLi (T � 1; sT�1k ) > ICLi (T � 1; sT�1k ) at any node sT�1k on the event tree.

Proof. See the Appendix. �
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Although the setting, i.e., equal initial capacities and positive investment at each period, may look re-

strictive, the above result is still interesting for mainly two reasons. The symmetry assumption, of which the

economics literature is replete, is necessary here to be sure that any di¤erence in the investment strategies

is due, and only due, to the information structure. Put di¤erently, given our focus on comparing open-loop

and closed-loop investment behaviors, it makes sense, as in any experimental design, to control for all other

variables than the one studied that might a¤ect the result. The investment positivity assumption is not

severe in a context where investment is divisible and the cost is quadratic.

As a corollary to this proposition, we argue that for any �nite number of periods, expected payo¤ under

the closed-loop equilibrium is higher than the expected payo¤ under the open-loop equilibrium; that is

�CLi > �OLi . We do not o¤er a formal proof for that, however we proved this result for t = 2 in Proposition 2.

Because positive investments happen and open-loop investments exceed closed loop investments each period,

and this T -stage extension is the recurrence of the 2 period game, we expect this equilibrium payo¤ ranking.

Also, in this proposition we treat the symmetric case only. The analysis in the asymmetric case, that is

allowing di¤erent initial capacities and/or taking into account of one player may invest and the other may

not at a particular time, could also be analyzed. However, analytic solution may not be tractable due to the

(curse of) dimensionality.

5.1 An Example with Three Periods

To obtain some additional insights into the impact of the model�s parameters (especially initial capacities) on

investment decisions, we consider a three-period model, and determine open-loop and closed-loop symmetric

equilibria9 . The event tree is depicted in Figure 1.10 The root of the tree is node 0, at period 0: In period 1;

we have two demand states; upstate demand at node (1; u) and downstate demand at node (1; d). In period 2

we have four demand states, i.e., (2; uu) ; (2; ud) ; (2; du) (2; dd), where the �rst letter in the second argument

refers to the parent node belonging to stage 1; and the second letter to the state of demand in period 2.

With this notation, one knows at a glance the full history of each node in period 2.

Given the result in Lemma 4, we have six possible cases for investments:

Case 1 : Ii (0; 0) = 0; Ii (1; u) = 0; Ii (1; d) = 0;

Case 2 : Ii (0; 0) > 0; Ii (1; u) > 0; Ii (1; d) = 0;

Case 3 : Ii (0; 0) > 0; Ii (1; u) > 0; Ii (1; d) > 0;

Case 4 : Ii (0; 0) = 0; Ii (1; u) > 0; Ii (1; d) = 0;

Case 5 : Ii (0; 0) = 0; Ii (1; u) > 0; Ii (1; d) > 0;

Case 6 : Ii (0; 0) > 0; Ii (1; u) = 0; Ii (1; d) = 0;

In cases 1, 4 and 5, the players do not invest at the initial node, implying that capacity exceeds the interior

Cournot solution at upstate node in period 1. In the other three cases, the players do invest at the initial

node. We summarize in Table 1 the equilibrium results for these di¤erent cases. Note that depending on

initial production capacity, the equilibrium output at node 0 will be either at capacity (i.e., qi (0; 0) = Ki0)

or interior (i.e., qi (0; 0) = 1�c
3 ) in both open-loop and closed-loop equilibria, yielding the same pro�t. Given

9Note that asymmetric equilibria are also tractable but involve very long mathematical formulae without adding much more
qualitative insight.
10As time period increases, it is possible that corner solution occurs and the production quantity is zero due to the nature

of random walk demand distribution. In that case, clearly no investment is made at that decision node, and the accumulated
capacity will be carried to the following periods to be used for future high-demand states.
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Figure 1: Event tree

the lack of strategic interest, we do not print the corresponding line in Table 1, nor in the other tables to

follow. Also note that we drop the player index in this fully symmetric game. Regarding investments, this

table is qualitatively valid for open-loop and closed-loop equilibria, i.e., in terms of whether investment is

positive or zero. The actual value depends on the information structure, the case considered and whether

capacity is binding or not in downstate demands. This last feature is captured in cells having two rows, with

the �rst one corresponding to an output equal to capacity and the second line gives the equilibrium output

when capacity is not binding. What remains to be seen is for which set of parameter values each of the six

cases occurs.

First, note that cases 5 and 6 can be disregarded because they involve a contradiction. Indeed, in case

5, we simultaneously need to satisfy that K0 �
1 + � � c

3
and K0 <

1� c
3

� I (1; d), which is impossible.

Similarly, case 6 requires that K0 + I0 <
1 + � � c

3
and K0 + I0 >

1 + 2� � c
3

, which is again infeasible.

Further, case 4 cannot be part of an open-loop equilibrium. Indeed, the �rst-order conditions include,

among others, the following two conditions:

fI (0) = � (1; u) + � (1; d) + � (2; uu) + � (2; ud) + � (2; du) + � (2; dd) ;

�pfI (1; u) = � (2; uu) + � (2; ud) :

As the multipliers must be non negative, it is not possible to have simultaneously I (0) = 0 and I (1; u) > 0:

We are therefore left with cases 1-3. To illustrate, let us assume that the capacity constraint is not active in

the downstate demand nodes, i.e., in a two-row cell, we select the interior value.11 A simple inspection of

the cells leads to the following bounds for initial capacity in the remaining cases:
11The results for the scenario where the capacity is also binding at downstate demand nodes do not provide much additional

qualitative insight. They are available from the authors upon request.
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Table 1: Investments and outputs in the six possible cases

Node Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
I0 0 > 0 > 0 0 0 > 0
I (1; u) 0 > 0 > 0 > > 0
I (1; d) 0 0 > 0 0 > 0

q (1; u)
1 + � � c

3
K0+I0 K0+I0

1 + � � c
3

1 + � � c
3

K0+I0

q (1; d)
1� � � c

3

K0+I0
1� � � c

3

K0+I0
1� � � c

3

1� � � c
3

1� � � c
3

K0+I0
1� � � c

3

q (2; uu)
1 + 2� � c

3
K0+I0+I (1; u) K0+I0+I (1; u) K0+I (1; u) K0+I (1; u)

1 + 2� � c
3

q (2; ud)
1� c
3

K0+I0+I (1; u)
1� c
3

K0+I0+I (1; u)
1� c
3

K0+I (1; u)
1� c
3

K0+I (1; u)
1� c
3

1� c
3

q (2; du)
1� c
3

1� c
3

K0+I0+I (1; d)
1� c
3

K0+I (1; d)
1� c
3

q (2; dd)
1� 2� � c

3

1� 2� � c
3

K0+I0+I (1; d)
1� 2� � c

3

1� 2� � c
3

K0+I (1; d)
1� 2� � c

3

1� 2� � c
3

Table 2: Investment levels in Case 2

Node Open-loop equilibrium investments

0
�pf(f+3�p)[1+��c+�p(1+2�+3c)�3K0]�3f�pK0��2p2(1+2��c)g

[(f+3�p)2+3f�2p2]

(1; u) �p(1+2��3Ki0�c)
(f+3�p) � 3�p

(f+3�p)Ii (0)

Closed-loop equilibrium investments

0
�p[1 + � � c� 4K0]

f + 4�p

(1; u)
�p[f(1� c+ 2� � 4K0) + 4��p]

(f + 4�p)2

Case 1 : K0 �
1 + 2� � c

3
;

Case 2 :
1� c
3

� I0 < K0 < min

�
1 + � � c

3
� I0;

1 + 2� � c
3

� I0 � I (1; u)
�
;

Case 3 : K0 < min

�
1 + � � c

3
� I0;

1� c
3

� I0 � I (1; d) ;
1 + 2� � c

3
� I0 � I (1; u)

�
;

Case 1 will yield unique equilibrium if the initial capacity is large enough to cover the highest possible

demand, i.e., demand in state uu in period 2. If the initial capacity is su¢ cient along the downstate demand

path but not along the upstate path, then case 2 will yield the equilibrium. Table 2 provides the equilibrium

investments under closed-loop and open-loop information structures in Case 2.

Finally, the third case in which the players invest at all investment decision nodes emerges when the

initial capacity is low. In this case, the open-loop and closed-loop investment levels are those given in Table

3. Observe that in Table 3 closed-loop investment formulations in the nodes 0 and (1; u) are the same as

the corresponding ones in Table 2, however the exact levels of the equilibrium investments may be di¤erent
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Table 3: Investment levels in Case 3

Node Open-loop equilibrium investments

0
�p[3�p(1 + � � c� 3K0) + f((1 + �) (1� c� 3K0) + � + 2�p�)]

(f + 3�p)
2
+ 3�2fp

(1; u)
�p[f2(1 + 2� � c� 3K0) + 3�pf(1� c� 3K0 + �(3� 2�(p� 1))) + 9��2p2]

(f + 3�p)
h
(f + 3�p)

2
+ 3�2fp

i
(1; d)

�p[f2(1� c� 3K0) + 3�pf (1� � � c� 3K0 � 2��p)� 9��2p2]
(f + 3�p)

h
(f + 3�p)

2
+ 3�2fp

i
Closed-loop equilibrium investments

0
�p[1 + � � c� 4K0]

f + 4�p

(1; u)
�p[f(1� c+ 2� � 4K0) + 4��p]

(f + 4�p)2

(1; d)
�p[f(1� c� 4K0)� 4��p]

(f + 4�p)2

because they satisfy di¤erent parameter regions as de�ned above for Cases 2 and 3. When we compare

capacity levels in nodes (2; ud) and (2; du), even though the demand states are identical, we obtain di¤erent

capacities in these nodes as can be seen from equilibrium investment levels in Table 3. The reason is that

these two nodes di¤er in terms of histories and expectations.

Although we above explain how as initial capacity decreases, the equilibria switch from Case 1 to Case 2

and then Case 3, we do not formally formulate the regions of initial capacity under which Cases 1, 2, and 3

hold. It is possible to have an expression for the thresholds that determine the di¤erent cases. However, we

will explain why we do not need to de�ne them, and hence for the sake of briefness we do not report these

bounds of initial capacities. We describe, for example, how the bounds for initial capacity can be obtained for

Case 2. Under Case 2, investment only bene�ts up-state demands. In that case upper bound for the initial

capacity will be upstate Cournot output, and the lower bound will satisfy the property that the upstate

production capacity (investment plus initial capacity) is greater or equal to the down-state Cournot output.

As investment quantities in both types of equilibria are di¤erent, the bounds of the initial capacities under

both equilibria will be di¤erent. But one interval will subsume the other interval of initial capacities, because

investment in one equilibrium type (OL) is greater than the investment in other equilibrium type (CL).

Therefore, our comparison of investments will hold true without specifying the bounds of initial capacities.

Table 4 collects the result of the sensitivity analysis (i.e., comparative statics) of investment levels with

respect to the model�s parameters. We note that the open-loop and closed-loop investment levels mostly

vary in the same manner with respect to each of the parameters. The following observations can be made:

(i) The higher the marginal production cost, the lower are the investments in both equilibria and at all nodes.

When it becomes more expensive to produce, there is less incentive to increase the capacity. (ii) As one can

expect, the higher the initial capacity, the lower are the investment levels in both equilibria and at all nodes.

(iii) At the upstate demand node (1; u), as well as at the initial node, the investment level in both equilibria

increases with �; the higher the rate of increase in demand, the better is the reward from investing in capacity.

The parameter � is playing the reverse role at downstate demand node (1; d), and hence the negative sign.

(iv) The same result is observed for the discount factor � which is simply scaling the revenues at the di¤erent
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Table 4: Sensitivity Analysis for Case 3

IOL (0) IOL (1; u) IOL (1; d) ICL (0) ICL (1; u) ICL (1; d)
c � � � � � �
K0 � � � � � �
� + + � + + �
� + + � + + �
f � � +=� � � +

periods (and nodes). (v) Finally, the higher the investment cost parameter f , the lower is the investment

level at the initial period 0 and the upstate node (1; u) for both types of equilibria. This is rather intuitive.

However, at node (1; d) the rate of change of downstate investment with respect to the investment cost is

puzzling for both types of equilibria. Note that investment at node (1; u) will be higher than the one at (1; d)

due to higher demand. In the S-adapted open-loop equilibrium, at the outset of the game �rms may increase

or decrease their investments at node (1; d) as a response to an increase in investment cost parameter f .

There is a threshold value of f , below which �rms in equilibrium reduce their investments as a response to

the increase in f . Above that threshold value, however, �rms raise their investments as f increases. The

intuition for that is �rms balance their investments under uncertainty, in which demand �uctuates between

up and down states. In the upstate demand scenario (1; u) they reduce their investments as investment costs

increase, in the downstate demand (1; d) they may increase their investments as a response to the investment

cost increases with the expectation that demand with some probability will increase in the following period

and investment made in the node (1; d) will be totally used in the node (2; du). That is, �rms maximizing their

expected pro�ts at the initial node and making investment plans for the future will make sure that expected

pro�ts are maximized through �balanced�investment decisions (+ and -) as investment costs change. Also,

as time moves (from t to t + 1) they keep following this balanced investment approach. This approach is

clear for the state dependent decision making process (i.e., CLNE), however it may not be consistent with

the information structure in which �rms precommit their investment decisions (i.e., OLNE). Hence the sign

of rate of change of investment IOL (1; d) with respect to f can be positive or negative.

6 Conclusions

The main objective of this article was to characterize and compare OL and CL investment strategies in a

dynamic game with a stochastic demand described by an event tree. Assuming (most of the cases) symmetry,

the main conclusions are:

1. The dynamics of investment is governed by the good news principle, i.e., the players invest in their

productive capacities as if the upstate-demand scenario is going to unfold in the next period. As long

as the probability of realization of this scenario is positive this result holds true under both S-adapted

open-loop and closed-loop information structures. Further, at each node where players invest, they

do so incrementally, i.e., they choose to increase the capacity by the exact value that is needed in the

upstate demand node.

2. The ranking of open-loop and closed-loop investment equilibrium levels depend on initial capacities.

In a discrete-time dynamic game where the randomness in demand is represented by an event tree, one

can think of any decision node as the root of a subgame starting at that node. This means that �initial
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capacities�can be interpreted, for this comparative purpose, in a more general way than strictly as the

capacities at hand at the very beginning of the game.

3. In the symmetric game, under no circumstances can a player achieve a better outcome in an open-loop
equilibrium than in its closed-loop counterpart. As pointed out earlier, this result constitutes a strong

defense in favor of the closed-loop information structure. However, in terms of welfare, under open-loop

behavior prices are lower and the production quantities are higher, and this bene�ts consumer surplus.

We made in this article, as in any modelling e¤ort, some restrictive assumptions that are worthwhile

relaxing in future investigations to assess their impact on the equilibrium results.

We assumed that demand either shifts up or shifts down by a positive quantity. The implication, at

least in the very long run, is that demand may become zero or negative along the downstate path(s). If

for any reason this market exit is undesirable, then one should adopt a demand distribution that prevents

this from occurring. One easy way out is to assume, as in Garcia and Stacchetti (2008), that demand can

either shift up or stay the same. Note that, especially if � is �very�small, our assumption would not have a

signi�cant qualitative impact on the equilibrium results of the �rst periods, which are actually more important

for immediate decisions than distant ones in terms of both pro�ts and (our understanding of) investment

strategies. Further, following many contributions in the literature, we supposed that the investment cost

is quadratic. Adding a linear term, i.e., having a positive marginal cost for zero investment, would surely

alter quantitatively and possibly qualitatively the results. Similarly, the addition of a �xed cost may have

an interesting impact on the incremental investment result obtained here.

Appendix 1

Proof of Lemma 1

Because no ambiguity may arise, we omit the variable�s argument (t; stk) : It is clear that if player i plays

qi = K then the best response of player j is qj = (1+�� c�K)=2 by the pro�t maximization. In that case,
P (Q) = (1+�+c�K)=2, and the pro�t of player i is �i = (1+��c�K)K=2. However, player i can do better,
namely, its best response to player j strategy qj is q�i = (1+��c+K)=4. Then, P � (Q) = (1+�+3c+K)=2,
and player i�s pro�t is ��i = ((1+�� c+K)=4)2. Then, clearly, ��i � �i if and only if (1+�� c� 3K)2 � 0,
but this inequality holds because the production constraint must satisfy q�i = (1+�� c+K)=4 � K. Hence,
asymmetric outcomes are not part of the equilibrium. If the capacity K is lower than the symmetric Cournot

level then the capacity constraints must be binding. If capacity K is greater than the symmetric Cournot

outputs then the solution is the interior one. If K is equal to the Cournot outputs then the interior solution

coincides with the corner solution. Therefore depending on the capacity level, the equilibrium will be unique.

Proof of Lemma 2

We will show that qi (t; u) � qi (t; d), for i = 1; 2. Suppose that there exists a player j for whom qj (t; u) <

qj (t; d). The Lagrangian of the pro�t maximization problem is

Lj = P
�
Q
�
t; stk

��
qj
�
t; stk

�
� Cj

�
qj
�
t; stk

��
+ �j

�
t; stk

�
(Kj

�
t; stk

�
� qj

�
t; stk

�
):
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The �rst order conditions lead to

P
�
Q
�
t; stk

��
+ P 0

�
Q
�
t; stk

��
qj
�
t; stk

�
� C 0j

�
qj
�
t; stk

��
� �j

�
t; stk

�
= 0; stk = u; d:

Because qj (t; u) < qj (t; d), �j (t; u) = 0 � �j (t; d) holds, then

P (Q (t; u)) + P 0 (Q (t; u)) qj (t; u)� C 0j (qj (t; u))� �j (t; u) = 0;

P (Q (t; d)) + P 0 (Q (t; d)) qj (t; d)� C 0j (qj (t; d)) � 0:

It follows that

P (Q (t; u)) = �P 0 (Q (t; u)) qj (t; u) + C 0j (qj (t; u))

< �P 0 (Q (t; d)) qj (t; d) + C 0j (qj (t; d)) � P (Q (t; d)) :

Because the inverse demand is monotone and linear, we have Q (t; d) < Q (t; u). This implies that qi (t; d) <

qi (t; u) for i 6= j. Then, using the same reasoning above, one can obtain that this inequality implies that

Q (t; d) > Q (t; u), which is a contradiction. Therefore, there cannot exist a player such that his production

in down-state is higher than its production in up-state.

Proof of Lemma 3

Consider the optimization problem of player i at any node stk 2 St; t = 1; : : : ; T � 1, with the two successor
nodes being u and d. It is straightforward to verify that the S-adapted OL Nash equilibrium (OLNE)

conditions include

@�i
@Ii (t; stk)

= �fIi
�
t; stk

�
+ �i (t+ 1; u) + �i (t+ 1; d) = 0;

@�i
@qi (t+ 1; u)

= �p [1 + � (a (t+ 1; u)) + � � 2qi (t+ 1; u)� qj (t+ 1; u)� c]� �i (t+ 1; u) = 0;

�i (t+ 1; u) � 0; Ki

�
t; stk

�
+ Ii

�
t; stk

�
� qi (t+ 1; u) � 0;

0 = �i (t+ 1; u)
�
Ki

�
t; stk

�
+ Ii

�
t; stk

�
� qi (t+ 1; u)

�
;

@�i
@qi (t+ 1; d)

= � (1� p) [1 + � (a (t+ 1; d))� � � 2qi (t+ 1; d)� qj (t+ 1; d)� c]� �i (t+ 1; d) = 0;

�i (t+ 1; d) � 0; Ki

�
t; st

�
+ Ii

�
t; st

�
� qi (t+ 1; d) � 0;

0 = �i (t+ 1; d)
�
Ki

�
t; stk

�
+ Ii

�
t; stk

�
� qi (t+ 1; d)

�
:

For Ii (t; stk) > 0, we have �i (t+ 1; u) + �i (t+ 1; d) > 0. We have the following possibilities

�i (t+ 1; u) > 0 and �i (t+ 1; d) > 0;

�i (t+ 1; u) > 0 and �i (t+ 1; d) = 0;

�i (t+ 1; u) = 0 and �i (t+ 1; d) > 0:

The last possibility is excluded by Lemma 2. Hence, in all events we have �i (t+ 1; u) > 0; and, from

complementarity conditions, qi (t+ 1; u) = Ki (t; s
t
k) + Ii (t; s

t
k) :

For Ii (t; stk) = 0, we have �i (t+ 1; u)+�i (t+ 1; d) = 0. The nonnegativity of the multipliers imply that
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�i (t+ 1; u) = �i (t+ 1; d) = 0, and hence qi (t+ 1; u) < Ki (t+ 1; u) and qi (t+ 1; d) < Ki (t+ 1; d) :

The proof of the result for the closed-loop Nash equilibrium is also similar. The structure of the proof is

available in the following propositions.

Proof of Lemma 4

Recall that any set B (stk) contains two nodes u and d, sharing the same history. Denote by Ii (t; u) and

Ii (t; d) the investment decisions at these two nodes. Denote by uu and ud the descendants of node u and by

du and dd the descendants of node d. The equilibrium output conditions at the upstate descendents node

uu and du for player i are given by

@vi
@qi (t+ 1; uu)

= �
�
st+1u j a

�
st+1u

�� �
1 + �

�
t; stu

�
+ � � 2qi (t+ 1; uu)� qj (t+ 1; uu)� c

�
� �i (t+ 1; uu) = 0;

�i (t+ 1; uu) � 0; Ki (t; u) + Ii (t; u)� qi (t+ 1; uu) � 0; �i (t+ 1; uu) [Ki (t; u) + Ii (t; u)� q (t+ 1; uu)] = 0;
@vi

@qi (t+ 1; du)
= �

�
st+1d j a

�
st+1d

�� �
1 + �

�
t; std

�
� � � 2qi (t+ 1; du)� qj (t+ 1; du)� c

�
� �i (t+ 1; du) = 0;

�i (t+ 1; du) � 0; Ki (t; d) + Ii (t; d)� qi (t+ 1; du) � 0; �i (t+ 1; du) [Ki (t; d) + Ii (t; d)� qi (t+ 1; du)] = 0;

where vi is the value function.

Suppose that Ii (t; u) = 0 and Ii (t; d) > 0. By Lemma 3, we must have qi (t+ 1; uu) < Ki (t+ 1; uu)

implying �i (t+ 1; uu) = 0; and qi (t+ 1; du) = Ki (t+ 1; du). Further, because nodes u and d at time t

share the same history, then Ki (t; u) = Ki (t; d). The above conditions become

qi (t+ 1; uu) =
(1 + � (t; stu) + � � qj (t+ 1; uu)� c)

2
< Ki (t; u) = Ki (t; d) ;

qi (t+ 1; du) = Ki (t; d) + Ii (t; d) =
(1 + � (t; std)� � � qj (t+ 1; du)� c)

2
� �i (t+ 1; du)

�
�
st+1u j a

�
st+1d

�� ;
�i (t+ 1; du) > 0:

Invoking symmetry, we then have

qi (t+ 1; uu) =
(1 + � (t; stu) + � � c)

3
< Ki (t; u) = Ki (t; d) ;

qi (t+ 1; du) = Ki (t; d) + Ii (t; d) =
(1 + � (t; std)� � � c)

3
� �i (t+ 1; du)

�
�
st+1u j a

�
st+1d

�� ;
�i (t+ 1; du) > 0:

These conditions are incompatible. Indeed, qi (t+ 1; du) is at the same time larger than Ki (t; u) and less

than qi (t+ 1; uu) ; which is less than Ki (t; u)... Therefore, if Ii (t; u) is zero then Ii (t; d) cannot be positive.

Proof of Proposition 1

In this deterministic case, there is only one node in each period and therefore there is no need to distinguish

between periods and nodes. For a variable x, we write xit instead of xi (t; stk) ; t = 0; 1. Consider �rst the

open-loop case. Player i maximizes

Li = qi0(1� qi0 � qj0)� cqi0 � f I2i0=2 + �[qi1(1� qi1 � qj1)� cqi1] + �i0(Ki0 � qi0) + �i1(Ki0 + Ii0 � qi1):
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At time 0, the �rst order necessary conditions for production decisions (that are irrelevant of investment

decisions) might yield several possibilities due to capacity constraints. It might produce interior Cournot

solution: �i0 = 0, i = 1; 2, implying qi0 = (1 � c)=3. Or, it might lead to one interior one corner solution:
�i0 = 0 and �j0 > 0 yielding qi0 = (1�Kj0� c)=2 and qj0 = Kj0, i 6= j. Or, both players are at the capacity:
�i0 > 0 and �j0 > 0 implying qi0 = Ki0, i = 1; 2.

At time 1, the production quantities are the same as the ones above, except the state variable at that

period might change with the possible capacity expansion made in earlier period. The optimum investment

must solve the �rst order necessary conditions, which imply Ii0 = �i1=f . Assuming positive investments by

both �rms means �i1 > 0, which in turn implies, Ki1 + Ii0 = qi1. The derivative of the objective function

with respect to qi1 results in �i1 = �[1� 2qi1 � qj2 � c]. Plugging this into the investment expression yields

fIi0 = �[1� 2(Ki0 + Ii0)� (Kj0 + Ij0)� c]; i; j = 1; 2; i 6= j:

The OLNE investment will satisfy this equality.

To characterize the closed-loop Nash equilibrium (CLNE) investment levels we solve the problem back-

wards and start from the �nal stage. At time 1, the value function is

vi1 = qi1(1� qi1 � qj1)� cqi1 + �i1(Ki0 + Ii0 � qi1):

The complementarity condition is, �i1(Ki0 + Ii0 � qi1) = 0. Assuming that �i0 > 0 (if we assume �i1 = 0,
we will obtain zero investment level in equilibrium), we obtain the corner solution qi1 = Ki0 + Ii0. Next we

plug this expression into the value function and write the value function at time 0:

vi0 = qi0(1� qi0 � qj0)� cqi0 � fI2i0=2 + �wi1(Ii0) + �i0(Ki0 � qi0):

Taking the derivative with respect to the investment results in, assuming positive investments by both �rms,

fIi0 = �[1� 2(Ki0 + Ii0)� (Kj0 + Ij0)� c]; i; j = 1; 2; i 6= j:

Clearly this expression is the same as the one obtained for OLNE. Hence, investment levels coincide under

both equilibrium concepts.

Proof of Proposition 2

First we characterize closed-loop Nash equilibrium investments. At time 1 on node u player i maximizes

viu = [qi (1; u) (1 + � � qi (1; u)� qj (1; u))� cqi (1; u)] + �iu(Kiu � qi (1; u));

where Kiu = Ii0 +Ki0: The optimum output will satisfy qi (1; u) = Kiu because of the assumption that Ki0

is low and Ii0 > 0.

At time 1 on node d player i maximizes

vid = [qi (1; d) (1� � � qi (1; d)� qj (1; d))� cqi (1; d)] + �id(Kiu � qi (1; d)):

The optimum output will satisfy qi (1; d) < Kid , where Kid = Kiu, because of the assumption that Ki0 is

large enough so that the capacity constraints do not always bind.
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At initial node, player i maximizes

vi0 = qi0(1� qi0 � qj0)� cqi0 � f I2i0=2 + �pwiu(Kiu;Kju) + �(1� p)wid(:) + �i0(Ki0 � qi0);

where wiu(Kiu;Kju) is the pro�t for player i at node u in period 1 when it has capacity of Kiu = Ii0 +Ki0

and the rival has the capacity of Kju = Ij0+Kj0. Also wid(:) = qi (1; d) (1���qi (1; d)�qj (1; d))�cqi (1; d)
is the pro�t for player i at node d in period 1. The optimal investment must satisfy

�fIi0 + p�
@wiu
@Kiu

@Kiu

@Ii0
= 0;

or

�fIi0 + p�[1 + � � qj (1; u) (Kiu)� 2Kiu �Kiuq
0
j (1; u) (Kiu)� c] = 0:

When qi (1; u) = Kiu, qj (1; u) (Kiu) = Kiu must hold because of symmetry. (It could be possible that

qj (1; u) (Kiu) = (1 + � � c � Kiu)=2. We analyze this case for asymmetric equilibrium.) Substituting

qj (1; u) (Kiu) = Kiu and Kiu = Ii0 +Ki0 and simplifying we have

ICLi0 =
�p[1 + � � c� 4K0]

f + 4�p
; i = 1; 2:

The equilibrium production quantities at time 1 will satisfy qu = (Kiu;Kju) at the upstate demand, and

qd = ((1� � � c)=3; (1� � � c)=3) at the downstate demand.
Next we characterize open-loop Nash equilibrium investments. We write the objective function to be

maximized by �rms i; j = 1; 2, i 6= j,

zi0 = qi0(1� qi0 � qj0)� cqi0 � f I2i0=2 + �p[qi (1; u) (1 + � � qi (1; u)� qj (1; u))� cqi (1; u)]

+�(1� p)[qi (1; d) (1� � � qi (1; d)� qj (1; d))� cqi (1; d)]

+�i0(Ki0 � qi0) + �iu(Ki0 + Ii0 � qi (1; u)) + �id(Ki0 + Ii0 � qi (1; d)):

Taking the derivative of the above objective function (zi0) with respect to the investment will yield to

Ii0 = (�iu + �id)=f , where

�iu = �p[1 + � � c� 2qi (1; u)� qj (1; u)] = �p[1 + � � c� 3(Ki0 + Ii0)];

because upstate production constraints are binding, and �id = 0 because downstate production constraints

are non-binding by assumption. Then, the OLNE strategy as a function of the model parameters is

IOLi0 =
�p[1 + � � c� 3Ki0]

f + 3�p
; i = 1; 2:

We now show that �CLi > �OLi : The CLNE and OLNE pro�ts at initial node and node d in period 1 are

clearly the same. Therefore, we need to compare the pro�ts at node u in period 1. The di¤erence in pro�ts

is given by

�OLi � �CLi = A+B;
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where, dropping the player index,

A = �f(
�
IOL

�2 � �ICL�2)=2 = �f(IOL � ICL)(IOL + ICL)=2;
B = �p[(K0 + I

OL)(1 + � � 2(K0 + I
OL)� c)� (K0 + I

CL)(1 + � � 2(K0 + I
CL)� c)]:

Because IOL > ICL, A is negative. If the sign of B is negative, then we are done. Otherwise, we need to

determine the sign of jAj �B. We have

B = �p[(K0 + I
OL)(1 + � � 2(K0 + I

OL)� c)� (K0 + I
CL)(1 + � � 2(K0 + I

CL)� c)]

= �p[�2K0I
OL + 2K0I

CL + IOL(1 + � � 2(K0 + I
OL)� c)� ICL(1 + � � 2(K0 + I

CL)� c)]

= �p[2K0(I
CL � IOL) + (1 + � � 2K0 � c)(IOL � ICL)� 2

�
IOL

�2
+ 2

�
ICL

�2
]

= �p[(IOL � ICL)(1 + � � 4K0 � c)� 2(IOL � ICL)(IOL + ICL)]

= �p[(IOL � ICL)(1 + � � c� 4K0 � 2(IOL + ICL))]:

In the expression �OLi � �CLi = A+B, we will show that jAj > B. Indeed,

jAj �B = (IOL � ICL)[f(I
OL + ICL)

2
� �p(1 + � � c� 4K0 � 2(IOL + ICL))]

= (IOL � ICL)[(IOL + ICL)(2�p+ f=2)� �p(1 + � � c� 4K0)]

= (IOL � ICL)[(IOL + ICL)(2�p+ f=2)� ICL(f + 4�p)]

= (IOL � ICL)[(IOL(2�p+ f=2)� ICL(2�p+ f=2)]

= (IOL � ICL)2(2�p+ f=2) > 0:

Hence, �OLi � �CLi < 0.

Next we show that asymmetric equilibrium in investment strategies is not possible under Assumption A1.

That is whenever Ki0 = K0 = Kj0 and investment is positive then ICLi0 = ICLj0 , and I
OL
i0 = IOLj0 , i 6= j. To

see this in the OLNE we look at the investment expression, Ii0 = �i1=f , where

�iu = �p[1 + � � 2qi (1; u)� qj (1; u)] = �p[1 + � � c� 2(K0 + Ii0)� (K0 + Ij0)]:

Then, we will have

IOLi0 =
�p[1 + � � c� 3K0 � 2IOLi0 � IOLj0 ]

f
;

IOLj0 =
�p[1 + � � c� 3K0 � 2IOLj0 � IOLi0 ]

f
;

which are clearly symmetric expressions and the only solution is IOLi0 = IOLj0 .

In the CLNE at initial node player i maximizes

vi0 = v � f I2i0=2 + �p[(K0 + Ii0)(1 + � � c� 2K0 � Ii0 � Ij0)];

where v is the portion of the pro�t not involving the investment term. Taking the derivative of this expression
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with respect to Ii0 and equating it to zero yield

ICLi0 =
�p[1 + � � c� 3K0 � ICLj0 ]

f + 2�p
:

Similarly, for player j we obtain

ICLj0 =
�p[1 + d� c� 3K0 � ICLi0 ]

f + 2�p
:

Clearly these best response functions admit a unique symmetric solution. Hence ICLi0 = ICLj0 .

Proof of Proposition 3

We write the objective function to be maximized by �rms:

vi0 = qi0(1� qi0 � qj0)� cqi0 � f I2i0=2 + �p[qi (1; u) (1 + � � qi (1; u)� qj (1; u))� cqi (1; u)] +

�(1� p)[qi (1; d) (1� � � qi (1; d)� qj (1; d))� cqi (1; d)]

+�i0(Ki0 � qi0) + �i1(Ki0 + Ii0 � qi (1; u)) + �i2(Ki0 + Ii0 � qi (1; d)):

Without loss of generality label the �rms such that �rm i makes investment, and the �rm j does not

make investment. First we characterize CLNE investments. At the upstate demand qi (1; u) = Ki0+ Ii0, and

qj (1; u) = (1 + � � c�Ki0 � Ii0)=2 will hold. At the downstate demand, we have qi (1; d) = (1� � � c)=3 =
qj (1; d). We plug these expressions into the above objective function and maximize with respect to Ii0 for

�rm i. The closed-loop investment strategy will be equal to ICLi0 =
p�[1 + � � c� 2Ki0]

2f + 2p�
.

Next we characterize open-loop investment strategy. We optimize the above objective function and

obtain that Ii0 = �i1=f , and �i1 = �p[1 + � � c � 2qi (1; u) � qj (1; u))], where qi (1; u) = Ki0 + Ii0, and

qj (1; u) = (1+ �� c�Ki0� Ii0)=2. Then the OLNE investment will be equal to IOLi0 =
p�[1 + � � c� 3Ki0]

2f + 3p�
.

Clearly, ICLi0 > IOLi0 holds.

We now show that �CLi > �OLi : We have

�CLi = �� f
�
ICLi0

�2
=2 + �p[(Ki0 + I

CL
i0 )(1 + � � (Ki0 + I

CL
i0 )� (1 + � � c�Ki0 � ICLi0 )=2� c)];

�OLi = �� f
�
IOLi0

�2
=2 + �p[(Ki0 + I

OL
i0 )(1 + � � (Ki0 + I

OL
i0 )� (1 + � � c�Ki0 � IOLi0 )=2� c)];

where � is the pro�t term involving initial node and node d in period 1. The pro�t di¤erence is thus given

by

�OLi ��CLi = �f(
�
IOL

�2��ICL�2)=2+�p[(K0+I
OL)(1+��(K0+I

OL)�c)�(K0+I
CL)(1+��(K0+I

CL)�c)]=2:

Let

A = �f(
�
IOL

�2 � �ICL�2)=2;
B = �p[(K0 + I

OL)(1 + � � (K0 + I
OL)� c)� (K0 + I

CL)(1 + � � (K0 + I
CL)� c)]=2:

A is positive because (IOL � ICL)(IOL + ICL) < 0 because IOL < ICL. It is easy to check that B reduces

to

B = �p[(IOL � ICL)(1 + � � c� 2K0 � (IOL + ICL))]:
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Now, note that

�OLi � �CLi = A+B;

= (IMP � IOL)(IOL � ICL)(�p=2 + f=2);

which is negative, and hence �OLi < �CLi .

We next show that �CLj < �OLj for player j. Similar to the pro�t di¤erence for player i, the pro�t

di¤erence for player j under both equilibria boils downs to

�OLj � �CLj = (ICL � IOL)(2 + 2� � 2c� 2K0 + I
CL � IOL).

Note that the investment levels ICL; IOLare the investments made by player i. The di¤erence is positive

because both the �rst term and the second term on the right hand side are positive.

Proof of Proposition 4

In Proposition 2 we prove that, for T = 2, IOL0 > ICL0 . Assume that at each node on the event tree OLNE

investment exceeds CLNE investment in the T � 1 stage game. By induction, we will show that this result
extends to T -stage game and the nodes on the event tree. First we will compare the investments in T stage

game. We start with the open-loop analysis.

Let us take a look at a particular node in time T � 1 and write down the expected payo¤ for �rm i from

that node to the nodes in the next period T

zi(T � 1; sT�1k ) = qi(T � 1; sT�1k )(1 + �� c� qi(T � 1; sT�1k )� qj(T � 1; sT�1k ))� f I2i (T � 1; sT�1k )=2 +

�p[qi(T; s
T
ku)(1 + �+ � � c� qi(T; s

T
ku)� qj(T; s

T
ku))]

+�(1� p)[qi(T; sTkd)(1 + �� � � c� qi(T; s
T
kd
)� qj(T; sTkd))]

+�i(T � 1; sT�1k )(Ki(T � 1; sT�1k )� qi(T � 1; sT�1k )) + �i(T; s
T
ku)(Ki(T � 1; sT�1k )

+Ii(T � 1; sT�1k )� qi(T; sTku)) + �i(T; s
T
kd
)(Ki(T � 1; sT�1k ) + Ii(T � 1; sT�1k )� qi(T; sTkd));

Taking the derivative of the function zi(T � 1; sT�1k ) with respect to the investment will yield to Ii(T �
1; sT�1k ) = (�i(T; s

T
ku
) + �i(T; s

T
kd
))=f

Case 1: Upstate production is binding and downstate production is interior.

Then

�i(T; s
T
ku) = �p[1 + �+ � � 2qi(T; sTku)� qj(T; s

T
ku)] =

�p[1 + �+ � � c� 3(Ki(T � 1; sT�1k ) + Ii(T � 1; sT�1k ))]

and �i(T; sTkd) = 0. The OLNE strategy would be,

IOLi (T � 1; sT�1k ) =
�p[1 + �+ � � c� 3KOL

i (T � 1; sT�1k )]

f + 3�p
:

Under closed-loop Nash equilibrium, the investments will satisfy

ICLi (T � 1; sT�1k ) =
�p[1 + �+ � � c� 4KCL

i (T � 1; sT�1k )]

f + 4�p
;
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as we compute in the proof of Proposition 2. We will show that IOLi (T � 1; sT�1k ) > ICLi (T � 1; sT�1k ).

Observe that capacity states in the above equalities are functions of investments made in earlier periods.

Similar to the problem at time T � 1, we could write the maximization problem at time T � 2 and obtain
the equilibrium investment levels under both types of equilibria:

IOLi (T � 2; a(sT�1k )) =
�p[1 + �� c� 3KOL

i (T � 2; a(sT�1k ))]

f + 3�p
;

ICLi (T � 2; a(sT�1k )) =
�p[1 + �� c� 4KCL

i (T � 2; a(sT�1k ))]

f + 4�p
:

We know, by the induction assumption, that IOLi (T � 2; a(sT�1k )) > ICLi (T � 2; a(sT�1k )), and KOL
i (T �

2; a(sT�1k )) > KCL
i (T � 2; a(sT�1k )). Noting that

KOL
i (T � 1; sT�1k ) = KOL

i (T � 2; a(sT�1k )) + IOLi (T � 2; a(sT�1k ));

the open-loop investment at T � 1 can be rewritten as

(f + 3�p)IOLi (T � 1; sT�1k ) = �u[1 + �+ � � c� 3KOL
i (T � 1; sT�1k )];

which implies

IOLi (T � 1; sT�1k ) =
�p[1 + �+ � � c� 3KOL

i (T � 2; a(sT�1k ))]

f + 6�p
=
IOLi (T � 2; a(sT�1k ))(f + 3�p)

f + 6�p
:

Similarly using

ICLi (T � 1; sT�1k ) =
�p[1 + �+ � � c� 4KCL

i (T � 1; sT�1k )]

f + 4�p
;

and

KCL
i (T � 1; sT�1k ) = KCL

i (T � 2; a(sT�1k )) + ICLi (T � 2; a(sT�1k ));

the CLNE investment at time T � 1 reduces to

ICLi (T � 1; sT�1k ) =
ICLi (T � 2; a(sT�1k ))(f + 4�p)

f + 8�p
:

However, given that IOLi (T � 2; a(sT�1k )) > ICLi (T � 2; a(sT�1k )) and
f + 3�p

f + 6�p
>
f + 4�p

f + 8�p
we conclude

that IOLi (T � 1; sT�1k ) > ICLi (T � 1; sT�1k ). This holds true for all k indexing the nodes sT�1k at time T � 1,
because of the demand structure.

Case 2: Upstate production is binding and downstate production is binding.

The proof for this case is similar to the above one. In the open loop one, we will have both the Lagrange

multipliers positive, that is �i(T; sTkd) > 0, and �i(T; sTku) > 0 so that Ii(T � 1; sT�1k ) = (�i(T; s
T
ku
) +

�i(T; s
T
kd
))=f . We calculate the multipliers by maximizing zi(T � 1; sT�1k ) and obtain that

�i(T; s
T
ku) = �p[1 + �+ � � c� 3(Ki(T � 1; sT�1k ) + Ii(T � 1; sT�1k ))]

and

�i(T; s
T
kd
) = �(1� p)[1 + �� � � c� 3(Ki(T � 1; sT�1k ) + Ii(T � 1; sT�1k ))]:
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Plugging them into the investment expression yields to

IOLi (T � 1; sT�1k ) =
�[1 + �� � + 2p� � c� 3KOL

i (T � 1; sT�1k )]

f + 3�
:

Under closed-loop Nash equilibrium, the investments will satisfy

ICLi (T � 1; sT�1k ) =
�[1 + �� � + 2p� � c� 4KCL

i (T � 1; sT�1k )]

f + 4�
:

Observe that these investment expressions are qualitatively similar to the ones in Case 1. Using the same

induction procedure we used above, it is clear that IOLi (T � 1; sT�1k ) > ICLi (T � 1; sT�1k ) must hold for any

sT�1k at time T � 1.
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