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Abstract

In many contests a subset of contestants is granted preferential treatment which

is presumably intended to be advantageous. Examples include a¢ rmative action and

biased procurement policies. In this paper, however, I show that some of the supposed

bene�ciaries may in fact become worse o¤when the favored group is diverse. The reason

is that the other favored contestants become more aggressive, which may outweigh the

advantage that is gained over contestants who do not receive preferential treatment.

Likewise, a contestant may be made better o¤ when a subset of his competitors is

granted preferential treatment. The contest is modelled as an incomplete-information

all-pay auction in which contestants have heterogenous and non-linear cost functions.

Incomplete information is crucial for the results.
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1 Introduction

There are many examples of contests in which a subset of contestants receive �preferential

treatment�. On the labor market, a¢ rmative action may in�uence which job applicant

wins the prize, in this case the job. The same is true in the contest to win admission into

university. Internal applicants are sometimes given preference over external applicants when

a �rm seeks to �ll a senior position. In public procurement, domestic �rms may be given

preferential treatment over foreign �rms, and so on.

In all these examples it is a diverse group of contestants who are favored. A¢ rmative

action apply to individuals with di¤erent backgrounds, internal applicants for senior posi-

tions are likely to be heterogeneous, and domestic �rms may have di¤erent technologies.

Another feature of the examples is that the prize is not awarded based on the identities of

the contestants alone, but also on the quali�cations of the contestants in question. The in-

vestment in these quali�cations �obtaining an education before applying for a job, preparing

for the SAT, working hard to prove one�s worth to the company, or building up expertise

prior to seeking a procurement contract �may entail very signi�cant costs. Importantly, the

size of this investment is endogenous; it is likely to depend on the perceived strength of the

competition and on whether the contestant is given preferential treatment. Since a given

contestant may not have complete information regarding the skills, costs, or preferences of

his rivals, asymmetric information may also play a role in determining the magnitude of a

contestant�s investments.

The objective of this paper is to study the consequences of preferential treatment in

contests that are characterized by within-group diversity and incomplete information. I will

show that the combination of these realistic features may, somewhat perversely, produce

outcomes that are precisely the opposite of what intuition would suggests. The main results

are:

1. If the group of contestants who are given preferential treatment is diverse, a subset

of them may participate less often, win less often, and overall be worse o¤ when

preferential treatment is introduced.

2. If the group of contestants who are not given preferential treatment is diverse, a subset

of them may participate more often, win more often, and overall be better o¤ when

preferential treatment is introduced.

The �rst outcome is unlikely to be what is intended with policies that give preferential

treatment to select contestants. Thus, the current paper serves as a note of caution; rather
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than �leveling the playing �eld�, preferential treatment may, in principle, increase the sever-

ity of the problems or inequalities it was intended to minimize.1 The intention is not to

dismiss preferential treatment in its many forms, but rather to challenge the common intu-

ition in a formal model and invite more research into the complex interaction of heterogenous

contestants. Thus, this paper is concerned with contests in general, rather than speci�cally

with a¢ rmative action per se. There are several theoretical papers that address the speci�c

question of a¢ rmative action on the labor market or in university admission. See De Fraja

(2005), Moro and Norman (2003), or Fang and Norman (2006) for examples. The last two

papers also reach surprising conclusions about the e¤ects of a¢ rmative action, but for very

di¤erent reasons than those presented here.

The contest is modelled as a deterministic contest or, more formally, an all-pay auction,

in which heterogenous contestants have private information about costs.2 Thus, the paper is

related to the literature on auctions with heterogenous participants. The papers by Lebrun

(1999), Kirkegaard (2009a), and Parreiras and Rubinchik (2010) are among the few that

consider speci�c auction formats with more than two heterogenous participants. However,

due to the technical challenges, most theoretical papers that compare di¤erent auction for-

mats or the consequences of changes to the auction design assume there are exactly two

heterogeneous participants.3 Clearly, since the purpose of the current paper is to consider a

setting with two groups, at least one of which is diverse, a model with only two contestants

is not adequate.

In this paper, I take a �rst step towards a more general analysis. One of the consequences

1Sowell (2004), for example, argues that there are other, behavioral reasons a¢ rmative action may not
be advantageous in the real world. Speci�cally, a¢ rmative action may breed resentment, or it may trigger
discrimination within the diverse group that is given preferential treatment. In contrast, the driving force
in this paper is the strategic response by the contestants themselves to the changes in the rules of the
game. While Sowell (2004) points out that there may be an incentive to lower investments, he considers
this problematic only insofar as it leads to a population with lower quali�cations. Sowell�s (2004) main
objective is to empirically evaluate and question the actual consequences of a¢ rmative action. The current
paper complements Sowell (2004) by pointing out that theoretical predictions �even in a simple model �
do not necessarily support the received wisdom either. See Fryer and Loury (2005) for a brief discussion of
�a¢ rmative action and its mythology�.

2The contest is deterministic in the sense that the contestant with the largest investment wins with
probability one (in the absence of preferential treatment). This simplifying assumption facilitates the in-
clusion of private information in the model. Due to private information, a contestant is never sure of the
actual investment of his rivals, and on whether a particular level of investment will be su¢ cient to win.
Alternatively, the situation could be modelled as a tournament á la Lazaer and Rosen (1981) or as a Tullock
contest, Tullock (1980). These contests are not deterministic, but nor are they conducive to the inclusion of
private information.

3Recent prominent examples include Maskin and Riley�s (2000) seminal comparison of �rst-price and
second-price auctions, Hafalir and Krishna�s (2008, 2009) analysis of such auctions with resale, Hörner and
Sahuguet�s (2007) analysis of jump bidding, and Goeree and O¤erman�s (2004) study of the �Amsterdam
auction�. In the context of all-pay auctions with private information, Clark and Riis (2000) and Kirkegaard
(2009b) consider the revenue e¤ects of various forms of preferential treatment.
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is to cast into doubt the robustness of results that are based on models with just two

participants, at least for all-pay auctions. For example, in a contest with just two contestants,

the sole bene�ciary of preferential treatment is unambiguously made better o¤. Concerning

the analysis itself, a measure of traction is obtained by explicitly engineering the set-up of

the problem to minimize the complications that arise from having several contestants and

instead maximizing the use of insights from two-player contests. In the �rst part of the

paper, the reaction to preferential treatment in a contest with two participants is used to

infer the �rst result. In the second part, a model is constructed in which only two contestants

are active at any given investment level, although this pair may depend on the actual level.

The analysis is outlined next.

Consider a contest with a �strong�, a �weak�, and a �very weak�contestant, and assume

the two weaker contestants are given preferential treatment. As a consequence, they have

less to fear from the strong contestant. However, that does not necessarily mean that they

will work less hard to obtain quali�cations. In fact, the �weak� contestant may push his

newfound advantage by investing more aggressively. From the point of view of the �very

weak�contestant, one rival has become less of a threat, but the other more of a threat. I show,

under mild assumptions, that the very weak contestant would be less likely to win the prize

with a small investment when he and the other weak bidder are given preferential treatment.

The second step is to show that there are cost structures for which a monotonic equilibrium

exists in which the �very weak�contestant wins the prize with probability zero and earns

zero payo¤, but that such an equilibrium does not exist without preferential treatment. The

cost function of the very weak bidder must have the right amount of �curvature�, not too

much and not too little. Moreover, the cost functions of the weak and very weak contestants

may not be ordered (they may cross). These assumptions are discussed in Section 4.

An equilibrium is not characterized in the absence of preferential treatment; it is merely

shown that there is no equilibrium where the very weak contestant is inactive. Siegel�s (2010)

paper nicely illustrates the technical di¢ culties. He characterizes equilibrium in certain

complete information contests. However, in contests with just one prize, his characterization

is generally valid only if there are exactly two contestants. For example, if there are three or

more contestants with a common value of winning but non-ordered cost function, then it is

generally not possible to characterize an equilibrium, even with complete information. Here,

in contrast, I allow cost functions to be non-ordered and information to be incomplete.

To overcome these di¢ culties, a parameterized version of the model is examined in the

second part of the paper. In this model, an equilibrium can be characterized, and its prop-

erties serve to further motivate the main result.

In the modi�ed version of the model the strong contestant is not only the sole contestant
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to participate with probability one, he also wins more often than the other contestants

combined. In an attempt to correct such an unbalanced outcome, weaker contestants may

be given preferential treatment. Since the equilibrium can be characterized, it is possible

to show that small doses of preferential treatment work more or less as expected for its

bene�ciaries. The weaker contestants participate more often and win more often. However,

large interventions may fundamentally alter the equilibrium structure and leave the very

weak contestant worse o¤.

As a counterpart to the main result mentioned previously, I also examine the use of

preferential treatment in the modi�ed model when the set of contestants who do not receive

preferential treatment is diverse. Here, it is shown that a member of this group may par-

ticipate and win more often once preferential treatment is introduced. In summary, the two

results imply that a recipient of preferential treatment may be made worse o¤ by it, while

someone outside the favoured group may gain.4

This paper is not the �rst to document some arguably counterintuitive properties of

contests. For instance, Che and Gale (1998) have shown that a cap or ceiling on investments

may increase total investments, while Baye, Kovenock, and de Vries (1993) have shown that

total investments may increase by excluding a subset of the contestants �speci�cally the

strong contestants. However, what sets the current paper apart from these seminal papers

is the pivotal role played by asymmetric information in generating new results.

Using recent results by Siegel (2009) for complete information contests, it is shown that

the assumption of incomplete information is critical for the results; weaker contestants are

never hurt by preferential treatment in a complete information contest. This complements a

�nding by Kirkegaard (2009b) that it may be pro�table to handicap the weak contestant in

a two-player contest when information is incomplete, but not when it is complete. Thus, the

assumption of incomplete information adds an extra dimension and yields richer results.5

The general model is described in Section 2 and analyzed in Section 3. Section 4 contains

a number of observations related to the main result. Section 5 develops and analyses a

tractable version of the model. Section 6 concludes. All proofs are in the Appendix.

4The modi�ed version of the model may also be interesting on purely theoretical grounds. Parreiras and
Rubinchik (2010) have shown that an incomplete-information all-pay auction with more than two contestants
may, in principle, have the property that (1) some contestant uses a discontinuous strategy (if he invests, he
invests a lot), and/or (2) some contestant never invests enough to win with a probability close to one. It is
precisely these features that makes it di¢ cult to characterize equilibrium in general, or to prove uniqueness.
The model presented here appears to be the �rst for which an equilibrium with both features can be explicitly
characterized in a setting with incomplete information. See Siegel (2010) for a counterpart for contests with
complete information.

5In contrast, the papers by Che and Gale (1998) and Baye, Kovenock, and de Vries (1993) assume
valuations and abilities are common knowledge. In those papers, the commonly known heterogeneity among
contestants yields a model that is su¢ ciently rich to produce their surprising results.
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2 A contest with preferential treatment

Consider a deterministic contest with n contestants and the following timing:

0. Contestants are informed about the rules of the contest and discover the value they

place on winning the prize. These valuations are private information.

1. Contestants simultaneously invest e¤ort or other resources into obtaining quali�cations.

The cost for contestant i of obtaining b units of quali�cations is described by the twice

continuously di¤erentiable cost function ci(b), with ci(0) = 0, 0 < c0i(�) < 1, and
c00i (�) � 0, i = 1; 2; :::; n.6

2. The winner of the contest is the contestant with the highest score. Each contestant�s

score is a function (as speci�ed in step 0) of his quali�cations (b) and, possibly, his

identity. Ties are broken with the toss of a fair coin.

The game described above is isomorphic to an all-pay auction with private information

in which a set of bidders submit bids, but where the cost of bidding may be di¤erent from

bidder to bidder, and where the winner is not necessarily the bidder who submitted the

highest bid. The de�ning characteristic of the all-pay auction is that the cost of the bid

is forfeited, whether or not the auction is won. The auction terminology is used in the

remainder of the paper.

All bidders are, for now, assumed to be risk neutral, and to share the same value of not

participating, which is normalized to zero. The consequences of risk aversion are discussed

in Section 4.2. Each bidder has a privately known type, v, which captures how much he

values winning the prize. Bidder i�s type is distributed according to some strictly increasing

and twice continuously di¤erentiable distribution function, F (v), with no mass points and

support [v; v], where v > v > 0, i = 1; 2::; n. Densities, denoted by f , are bounded above

and below, away from zero. The following assumption is imposed.

Assumption A: The �average probability�, F (v)=v, is strictly increasing in v.

Note that the �average probability�, F (v)=v, is strictly increasing if �total probability�,

F (v), is convex. For example, Assumption A is satis�ed by the uniform distribution with

support [v; v] whenever v > 0. The assumption that bidders are ex ante homogenous in

6The cost function may di¤er from contestant to contestant because the ability or access to obtain
quali�cations may di¤er, or because the same amount of training does not translate into the same perceived
quali�cations.
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terms of their desire to win can be relaxed, but it serves to highlight that the important

source of heterogeneity is di¤erences in costs.7

Two di¤erent possibilities are considered for how scores are computed in stage two. The

�rst possibility is that the auction is unbiased, in which case the score is simply identical to

the bid. In the alternative speci�cation, bidder 1 is handicapped. Formally, bidders other

than bidder 1 obtain a score equal to their bid, as before, but bidder 1 must bid h(s) to

obtain a score of s. It is assumed that h(s) is twice continuously di¤erentiable, with h(0) = 0,

h(s) > s for all s 2 R++, and h0(s) > 0 for all s 2 R+.8 The important point is that bidders
2; 3; :::; n are given the same kind of advantage, and, in particular, that there is no bias when

the bids of bidders in this group are compared with each other. Nevertheless, the set of

favoured bidders may be diverse, in the sense that they may have di¤erent cost functions.

Note that handicapping bidder 1 is equivalent to giving preferential treatment to all other

bidders. Assume that bidders 2; 3; :::; n obtain a score of h(b) > b for any b 2 R++, whereas
bidder 1 only scores b when he bids b. This amounts to a simple �change of variables�

compared to the model formulated in terms of handicaps. In particular, to tie with a rival

bidder who scores s, bidder 1 has to bid h(s), exactly as before. The di¤erence between the

two models amounts to an inconsequential rescaling or renaming of scores. More generally,

if bidder i scores Hi(b) with a bid of b, then the function h(b) � H�1
1 (H2(b)) measures the

bid bidder 1 would have to submit in order to tie with bidder 2 if the latter bids b. The

assumption in this paper is that bidder 1 is disadvantaged; H2(b) > H1(b) or h(b) > b for all

b 2 R++.
It is assumed that F and ci are common knowledge among bidders. It is not necessarily

assumed that the regulator of the contest knows the primitives of the game. The focus of

the paper is not on determining what the �optimal� intervention may be, but merely on

describing the actual consequences of changes to the game. Thus, it is also assumed that the

regulator cannot or will not manipulate the number of prizes (which is assumed to be one),

or their value.

Let �n denote the auction involving bidders 1; 2; :::; n in which scores coincide with bids.

Similarly, let �hn denote the game in which bidders 2; ::; n are given preferential treatment.

In the following, it is useful to think of bidders as choosing scores rather than bids. The

set of actions is then foutg [ R+, meaning that each bidder can choose to either stay out

7All results hold if, for example, bidder 1�s distribution �rst order stochastically dominates the distrib-
ution of bidder 2. See Amann and Leininger (1996) and Parreiras and Rubinchik (2009) for an analysis of
all-pay auctions with two or more bidders, respectively, whose types are drawn from di¤erent distributions
but where costs are linear.

8For example, if the handicap is linear, by bidding b bidder 1 would obtain a score of s = b=h, h 2 (1;1),
where h is the handicap. Thus, bidder 1�s problem is equivalent to deciding which score, s, to obtain, given
that to obtain a score of s he must bid hs � s.

7



of the auction or to enter the auction and submit a non-negative score. When bidder 1 is

handicapped, his cost of obtaining a score of s is ch1(s) � c1(h(s)).
It is assumed that the handicap increases bidder 1�s marginal costs. This is the case if,

for example, h(s) is linear, convex, or, more generally, if h0(s) > 1.

Assumption B: The handicap increases bidder 1�s marginal costs; ch01 (s) > c01(s) for all

s 2 R+.

To demonstrate the main point, it is su¢ cient to consider a situation with three bidders.

In the games considered here, bidder 1, the bidder who is potentially handicapped, is the

�strong�bidder. Bidder 2 and bidder 3 are �weaker�bidders, although their weakness is

manifested in di¤erent ways, as illustrated in Figure 1. Speci�cally, of all the bidders, bidder

2 is the one for whom small bids are the most expensive. On the other hand, bidder 3 is the

bidder for whom large bids are the most expensive. Thus, for both bidders there are bids for

which they would incur the highest cost of obtaining such bids. There are no bids with this

property for bidder 1, the strong bidder. Bidder 2 and bidder 3 will be referred to as �weak�

and �very weak�, respectively, because in a closely contested auction bidder 3�s advantage

over bidder 2 at low bids is less likely to be relevant. Alternatively, following Siegel (2009),

de�ne bidder i�s reach, ri, as the highest bid that the bidder would be willing to submit (in

the absence of a handicap) even if he was guaranteed to win, such that v � ci(ri) = 0 or

ri = c�1i (v). No bid above ri can be rationalized by bidder i. In Siegel�s (2009) complete

information contests (where types are common knowledge), the ranking of bidders�reaches is

an important measure of strength (see also Che and Gale (2006)). This ranking, r1 > r2 > r3,

provides another justi�cation for the strong, weak, and very weak terminology.

Following the previous discussion, the relationship between the cost functions of bidder

1 and bidder 2 is formalized by the next assumption. While Assumption B signi�es that the

handicap is detrimental to bidder 1, it is assumed that it is not big enough to completely

negate the advantage he has over bidder 2.

Assumption C: Bidder 1 has a cost advantage over bidder 2, even after he is handicapped;
c02(s) > c

h0
1 (s) for all s 2 [0; r2].

At this point, no formal assumptions regarding c3 is imposed. The reason is that it will

be a result of this paper that there are c3 functions with the general properties depicted in

Figure 1 for which bidder 3 is worse o¤ with preferential treatment. Thus, Figure 1 serves

as a �preview�of the main result.
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c1(s)

c2(s)
c3(s)

s

costs
v

v

Figure 1: The strong, the weak, and the very weak.

3 Analysis

In this paper, I restrict attention to equilibria in increasing strategies. That is, each bidder

has a cut-o¤ type below which he scores zero or stays out of the auction, and above which he

enters the auction with a score that is strictly increasing in his type. It follows from Athey�s

(2001) more general analysis that an equilibrium of this nature exists (see also Parreiras and

Rubinchik (2010)).

The analysis is initiated by considering two games, �2 and �h2 . In these games, bidder

3 is ignored. Then, the larger games in which bidder 3 is potentially active, �3 and �h3 , are

examined. Here, the central question is whether bidder 3 would select to be active if bidders

1 and 2 continue to play the increasing strategies from �2 and �h2 , respectively.

3.1 The strong and the weak bidder; �2 and �h2

Consider the game �h2 , in which bidder 3 is not present. Let '
h
i (s) denote bidder i�s inverse

bidding strategy among the set of types who participate, such that bidder i scores s if his

type is 'hi , i = 1; 2. Bidder 1 with type v seeks to maximize vF ('h2(s)) � ch1(s), where
F ('h2(s)) is the probability that he outscores bidder 2 (and wins) with a score of s. Using

the same arguments as in Amann and Leininger (1996, Lemmas 1-5), it can be shown that

F h1 (s) � F ('h1(s)) and F h2 (s) � F ('h2(s)) have a common support of the form [0; sh], where

sh is the common maximal score, and that they are continuous.9 The latter implies that

9It is easy to see that the bidders must share a common maximal score. If this was not the case, one
bidder could pro�tably deviate by lowering his score without a¤ecting the probability that he wins.
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there are no mass points, except possible at zero (see below). Since strategies are monotonic,

they are di¤erentiable almost everywhere.10 Thus, any interior solution to bidder 1�s problem

must satisfy the �rst order condition,

v
dF ('h2(s))

ds
� ch01 (s) = 0.

The �rst order condition for bidder 2 is obtained in similar fashion.

In equilibrium, bidder 1 scores s if his type is v = 'h1(s) while bidder 2 scores s if his

type is 'h2(s). Substituting these into the �rst order conditions gives the following pair of

conditions:
dF ('h1(s))

ds
=
c02 (s)

'h2(s)
;

dF ('h2(s))

ds
=
ch01 (s)

'h1(s)
: (1)

The assumption that types are strictly positive, or v > 0, implies that the slopes of F ('h1(s))

and F ('h2(s)) are �nite everywhere.

Recall that there is a common maximal score, sh, such that 'hi (s
h) = v, or F ('hi (s

h)) = 1,

i = 1; 2. From any given guess on the value of sh, the two di¤erential equations in (1) can

be used to �shoot backwards�, in order to evaluate the unique paths that 'h1 and '
h
2 take as

s is reduced.11 Verifying whether the result is consistent with an equilibrium then helps to

pinpoint the values of sh that are equilibrium candidates.12 To this end, note that it cannot

be the case that both bidders stay out of the auction with strictly positive probability. The

reason is that it would pay to enter the auction with a very small score, in order to win

with a non-trivial probability.13 Thus, it must hold that F ('h1(0)) = 0 and F ('
h
2(0)) � 0, or

vice versa. In other words, one bidder enters with probability one with a minimum score of

zero, while the other bidder may stay out with positive probability. By using this condition

and the requirement of a common maximal score, it will be shown that there is a unique

equilibrium in increasing strategies (see Proposition 1, below).

In the following, let 'i denote the strategies and let s denote the maximum equilibrium

10Amann and Leininger (1996) assume that the cost function is identical (and linear) for the two bidders,
but that types are draws from di¤erent distribution functions. However, their arguments also apply to the
model in the current paper.

11The two di¤erential equations in (1) can also be written as d'h1=ds = c02(s)=f('
h
1 )'

h
2 and d'

h
2=ds =

ch01 (s)=f('
h
2 )'

h
1 , respectively. The right hand sides are continuously di¤erentiable in s, '

h
1 , and '

h
2 , which

implies that the solution is unique given the boundary condition 'h1 (s
h) = 'h2 (s

h) = v.
12Note that if 'h1 and '

h
2 satisfy (1) then '

h
i is increasing in s (the right hand side is strictly positive).

The �rst derivative of bidder 1�s payo¤ with respect to the score is
�
v='h1 (s)� 1

�
ch01 (s), which is positive

when s is small (such that 'h1 (s) < v) and negative when s is large (and '
h
1 (s) > v). Consequently, payo¤

is single peaked in s, and the �rst order conditions are su¢ cient if 'h1 and '
h
2 satisfy (1).

13Likewise, no bidder scores or bids zero for a mass of types. Otherwise, the rival bidder with valuation
v should not score zero, but rather marginally above zero, in order to dramatically increase the probability
of winning (by ruling out the probability of a tie).
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score when there is no handicap. The di¤erential equations for this case are analogous to

(1). Given Assumptions B and C, the strong bidder scores more aggressively than the weak

bidder whether or not he is handicapped. Moreover, the weak bidder stays out of the auction

with positive probability, whereas the strong bidder always participates. However, the strong

bidder scores less aggressively when he is handicapped (although his bid may be higher).

In response, the weak bidder becomes more aggressive, at least in the sense that he is now

more likely to participate.

Proposition 1 (Equilibrium Properties) There is a unique equilibrium in increasing

strategies in �h2 . In this equilibrium, the weak bidder stays out with strictly positive probabil-

ity and is more likely to submit low bids than the strong bidder, F ('h1(s)) < F ('
h
2(s)) for all

s 2 [0; sh), with F ('h1(0)) = 0 < F ('h2(0)).14 The same properties hold for �2.

Proof. See the Appendix.

Proposition 2 (Comparative Statics) The unique equilibrium in increasing strategies of
�2 compares with its counterpart in �h2 as follows:

1. Scores are more compressed and the strong bidder scores less aggressively in �h2 than

in �2: sh < s, and F ('h1(s)) > F ('1(s)) for all s 2 (0; sh].

2. The weak bidder participates more often in �h2 than in �2: 0 < F ('
h
2(0)) < F ('2(0)).

Proof. See the Appendix.

F ('h2(s))

F ('2(s))

F ('h1(s))

F ('1(s))

ssh s

prob
1

Figure 2: Individual distributions of scores.

14More precisely, the equilibrium is �essentially unique�because it does not matter whether bidder 2 with
type 'h2 (0) scores zero or stays out.
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Note that the strong bidder becomes less of a threat to the weak bidder when he is

handicapped. For a �xed score, the weak bidder is more likely to win. Consequently, he is

more likely to participate, and, if he participates, he is better o¤. Thus, depending on his

type, v, he is either indi¤erent or strictly better o¤ when he is given preferential treatment.

Ex ante (before his type is known), he must therefore be strictly better o¤.

Corollary 1 With just two bidders, bidder 2 is weakly better o¤ regardless of his type if he
is given preferential treatment, and strictly better of ex ante.

3.2 The very weak bidder; �3 and �h3

Consider now bidder 3, the very weak bidder. In particular, if bidder 1 and bidder 2 compete

as described above, does bidder 3 have an incentive to become active in the auction? Figure

2 illustrates the response of bidders 1 and 2 to the handicap (assuming bidder 3 stays out),

as described in Proposition 2. If bidder 3 enters with a small bid after preferential treatment

is extended to the weak bidders, he is more likely to beat the strong bidder, but less likely

to beat the weak bidder. Of course, bidder 3 is concerned with outscoring both bidders, the

probability of which is

qh3 (s) � F ('h1(s))F ('h2(s)) (2)

when he submits a score of s.

For small scores, both F ('h1(s)) and F ('
h
2(s)) are steeper than F ('1(s)) and F ('2(s)),

which perhaps suggests a greater return to submitting a small score for bidder 3. However,

this is counteracted by the fact that bidder 2 is more likely to participate. Given (1), the

derivative of qh3 (s) is

qh03 (s) =
F ('h1(s))

'h1(s)
ch01 (s) +

F ('h2(s))

'h2(s)
c02 (s) : (3)

Since marginal costs are increasing, Assumption A imply that the right hand side is increasing

in s. In other words, qh3 (s) is strictly convex. Since F ('
h
1(0)) = 0 the derivative at s = 0 is

qh03 (0) =
F ('h2(0))

'h2(0)
c02 (0) : (4)

The main result follows from (4). In particular, 'h2(0) < '2(0) (Proposition 2) and

Assumption A together imply that qh3 (s) is �atter than q3(s) � F ('1(s))F ('2(s)) near

s = 0, though each individual term is steeper. Since qh3 (0) = q3(0) = 0, q
h
3 (s) must be below

q3(s) for small s; after bidder 3 is given preferential treatment (along with bidder 2), he faces

a worse distribution of rival scores at the bottom.
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Figure 3: Distribution of the highest score and the cost function.

The incentive to enter the auction is strongest for bidder 3 if his type is v, in which case

he maximizes vqh3 (s)� c3(s), or, equivalently,

qh3 (s)�
c3(s)

v
: (5)

Thus, for bidder 3 to �nd entry pro�table, there must be a score, s > 0, for which qh3 (s) �
c3(s)=v.

Figure 3 depicts qh3 (s) and q3(s). The important properties are: (i) q
h
3 (s) is �atter than

q3(s) for low s, and (ii) sh < s. Thus, qh3 (s) and q3(s) must cross. Now, with the cost

function c3 depicted in Figure 3, the very weak bidder should enter the auction with a

strictly positive bid (and earn positive payo¤) if there is no preferential treatment, but he

should stay out if bidder 1 is handicapped. More precisely, it is not an equilibrium for bidder

3 to be inactive in the absence of preferential treatment, but there is an equilibrium in which

he stays out after he and the other weak bidder is given preferential treatment.15 Equilibrium

is not characterized in the former case, but it follows from Athey (2001) that one exists, in

increasing strategies. See Section 5 for an example.

Theorem 1 There exists a strictly increasing and strictly convex cost function, c3, for which
there is no equilibrium in increasing strategies of �3 where bidder 3 wins with probability zero,

but for which there is an equilibrium in increasing strategies of �h3 in which bidder 3 wins

with probability zero.

15The opposite is also possible. Speci�cally, there are other c3 functions for which bidder 3 would be
inactive without preferential treatment, but active with preferential treatment.
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Proof. See the Appendix.
Consider now an arbitrary c3 function for which Theorem 1 is valid. Note that multiple

equilibria in increasing strategies has not been ruled out, but Theorem 1 proves that bidder

3 wins with strictly positive probability in any such equilibrium of �3. However, this is

not true for �h3 . Even if there are multiple equilibria of �
h
3 , the introduction of preferential

treatment may a¤ord bidder 1 and bidder 2 the opportunity to �collude� and e¤ectively

exclude bidder 3 in situations where that would have been impossible without preferential

treatment.

Since bidder 3 wins with positive probability for a mass of types in �3, he has types for

which his payo¤ is positive.16 In this case, bidder 3 would go from participating with positive

probability, winning with positive probability, and having positive payo¤, to participating

with probability zero, winning with probability zero, and having zero payo¤.

Corollary 2 Bidder 3 may be worse o¤ when he and bidder 2 are given preferential treat-
ment.

Sowell (2004) provides a plethora of examples from around the world in which preferential

treatment was initially intended for a relatively small and well-de�ned group of individuals

only, but where, over time, it grew to encompass a larger group of people. Even if preferential

treatment as initially envisioned was bene�cial to the former group, the results in this paper

caution that adding more people to the list may not only �dilute� the advantage of the

�rst group, as is intuitive, but may in fact reverse the e¤ect of preferential treatment, and

ultimately leave the initial bene�ciaries worse o¤ than before the advent of preferential

treatment.

4 Discussion

The conditions under which Theorem 1 holds are discussed below.

4.1 Comparing bidders

Given Theorem 1, it is now possible to make more precise the sense in which bidder 3 is

�very weak�. For the cost function c3 to satisfy Theorem 1, it is clearly necessary that a

score of sh is prohibitively expensive for bidder 3. On the other hand, it is not prohibitively

expensive for bidders 1 and 2, since it is an equilibrium score. Hence, bidders 1 and 2 have

16It follows from Myerson�s (1981) analysis that in any mechanism where a bidder wins with positive
probability for a mass of types, these types must earn strictly positive payo¤, except possibly for the lowest
participating type.
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an advantage over bidder 3 at high scores; their reaches are higher, r1 > rh1 > r2 > s
h > r3,

where rh1 is bidder 1�s reach when he is handicapped.

Next, consider low scores. Since bidder 3 is active when there is no handicap in place,

there must be some pro�table score if bidders 1 and 2 use their strategies from �2. For

instance, if bidder 3 pro�ts by submitting a bid marginally above zero (as in the construct

in the proof of Theorem 1, illustrated in Figure 3), then

0 < q03(0)�
c03(0)

v
=
F ('2(0))

'2(0)
c02 (0)�

c03(0)

v
<
c02(0)

v
� c

0
3(0)

v
;

where the �rst equality follows from (4) and the last inequality from Assumption A. In

conclusion, c03(0) < c
0
2(0). Thus, bidder 3 has a cost advantage over bidder 2 for low scores,

but bidder 2 has the advantage when scores are high. Figure 1 illustrates cost structures for

which Theorem 1 is applicable.

Although it is tempting to make the mathematically expedient � and arguably more

elegant �assumption that the bidders�cost functions can be ordered (that they do not cross),

such an assumption may inadvertently cause the modeler to miss potentially important

consequences of a policy intervention. Moreover, there is little reason to believe that real-

world cost function can always be ranked in such a manner, and there may even be empirical

evidence to suggest that cost functions cross in some contests.

For example, Fryer (2009) studies the relationship between academic achievement and

social status among whites, blacks, and Hispanics in high-school. He �nds that social status

is increasing at a fast rate in grades for whites (Fryer (2009), Figure 1B). For blacks and

Hispanics, the curve has an inverse U shape; it has a peak. The curve for blacks is relatively

�at. For Hispanics, however, the curve is �rst increasing at a rate faster than the curve for

blacks (but not as quickly as for whites), but it reaches its peak much sooner, after which it

drops at a very fast rate.

Imagine now that obtaining higher grades involves two considerations on the costs side,

incurring higher e¤ort costs and experiencing an increase or decrease in one�s social status.

Assume the cost of e¤ort is the same for all groups. Since whites experience a large increase

in status from higher grades, their net costs are arguably lower than the overall costs of the

other groups. Since the status of a Hispanic student at �rst rises faster in achievement than

is the case for a black student, it could also be argued that blacks have the largest marginal

costs at low achievement levels. However, because the curve drops so dramatically, and early,

for Hispanic students, the overall costs of achieving high grades are very steep for Hispanics.

The costs functions of whites, blacks, and Hispanics, may then resemble those of bidder 1,

bidder 2, and bidder 3, respectively, in Figure 1.
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4.2 Risk aversion

So far, bidders have been assumed to be risk neutral. Assume now that bidder 3 is risk

averse, that w is his initial wealth, and that v measures the monetary value of winning the

auction. Any bid or score can then be viewed as producing a lottery with an outcome of

w+ v� c3(s) with probability qh3 (s) and an outcome of w� c3(s) with probability 1� qh3 (s).
Similarly, any point in Figure 3 can be viewed as representing a lottery, with a function of

costs on the horizontal axis and the win probability on the vertical axis. The curves q3(s)

and qh3 (s) can be thought of as feasible sets; a score of s results in a win probability of q3(s)

and qh3 (s) without and with a handicap, respectively.

For the risk neutral case, the curve q = c3(s)=v in Figure 3 captures an indi¤erence curve;

bidder 3 is indi¤erent between any combination of score (s) and win probability (q) on this

curve. Any lottery to the north-west of this curve would generate higher expected utility

than to not participate. Bidder 3 would �accept�such a lottery.

However, it is a standard result that the �acceptance set�diminishes as the agent becomes

more risk averse (the indi¤erence curve in Figure 3 shifts toward the north-west in the

interior). Thus, the more risk averse bidder 3 is, the less likely any given score is to produce a

lottery that bidder 3 would accept (compared to the risk-less alternative of not participating).

In other words, he is less likely to participate in both �3 and �h3 . However, contingent on

bidder 3 remaining active in �3, the conclusion must be that handicapping bidder 1 is more

likely to scare o¤ bidder 3 the more risk averse he is; he was closer to giving up in �3 and it

takes less of a change to persuade him to stay out completely. The common assertion that

risk aversion is diminishing in wealth then suggests that the intervention is more likely to

deter bidder 3 the poorer he is. This is a thought-provoking conclusion since preferential

treatment is often intended to help precisely those with limited resources.

See Section 5 for a version of the model in which bidder 3 has a binding resource con-

straint. There, preferential treatment may also hurt bidder 3, even when he is risk neutral.

4.3 Complete versus incomplete information

Siegel (2009) considers a very general class of contests that encompasses all-pay auctions

with and without handicaps. While he allows bidders to be heterogenous in valuations and

costs, it is assumed that information is complete. The implication of his analysis is that

the bidder with the highest reach is the only bidder with strictly positive expected payo¤.

Thus, weak bidders earn zero payo¤. Clearly, the two weak bidders cannot be worse o¤

than this when they are given preferential treatment; preferential treatment cannot hurt the
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intended bene�ciaries in a complete-information contest.17 Consequently, the assumption of

incomplete information imposed in this paper is as important as it is realistic.

5 Disjoint equilibria

In this Section a slightly modi�ed but more tractable version of the model is presented.

The advantage is that an equilibrium can be characterized in which all three bidders are

active (prior to any intervention), such that the consequences of preferential treatment can

be better illustrated.

The equilibrium described below has two interesting features: (1) bidder 1 is the only

bidder to participate with probability one, and (2) bidder 1 wins more often than the other

two bidders combined. Thus, if a policy maker has observed successive cohorts of bidders

play the game over time, she will have seen successive incarnations of bidder 2 and bidder

3 appear disengaged or underrepresented (they are not always participating) and, partly

for that reason, fairly unsuccessful. Although these observations may motivate preferential

treatment of bidder 2 and bidder 3, Theorem 1 cautions that this may make matters worse,

at least for bidder 3.

Theorem 1 is driven by the curvature of c3. However, there is no need for c1 and c2 to

be strictly convex. In this Section, it will therefore be assumed that

ci(b) = �ib, i = 1; 2:

To introduce curvature into c3, it is assumed from now on that

c3(b) =

(
�3b if b 2 [0;m]
1 otherwise

; (6)

where m > 0 can be thought of as a resource constraint18. Depending on the context, this

could be a monetary constraint, a time constraint, or perhaps even a lack of access to higher

education (when b represents schooling).

It is assumed that �2 > �3 > �1 > 0; bidder 3 would be more competitive than bidder 2

had it not been for the constraint. To �x ideas, assume that �2 is so large compared to �3 and

�1 that an equilibrium exists in which bidder 2 is inactive if m is su¢ ciently high. In such an

17More generally, a handicap reduces the reach of the handicapped bidder. The other bidders cannot
be made worse o¤ as a consequence. Thus, if bidder i is handicapped, the other two bidder are not hurt,
i = 1; 2; 3:

18For �symmetry�in modeling, c1 and c2 could be allowed to take a similar form as c3, but with a large
and therefore irrelevant resource constraint.
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equilibrium the interaction between bidder 1 and bidder 3 will yield a version of (3), which

then implies that bidder 2�s payo¤ of entering with a positive bid is convex in the bid, given

that his bidding costs are linear. Thus, the optimal action is at a corner. The assumption

that bidder 2 is inactive is therefore equivalent to the assumption that v��2b�2 � 0, where
b�2 is the maximal bid in an auction without bidder 2 when m is so high that it does not

play a role (m > b�2). As m is reduced and falls below b�2, bidder 3 is unable to bid as high

as he would like. It is then possible that bidder 1 would bid m or marginally above m for

a mass of types to guarantee a win. However, as m falls further, it must eventually be the

case that bidder 2 would want to become active �with a high bid (due to the convexity of

the objective function). This constitutes a challenge to bidder 1, who might then want to

start bidding above m again, in order to deal with the new competitor.

The thought experiment in the previous paragraph suggest that an equilibrium with a

particularly simple structure may exist when v � �2m > 0. In a disjoint equilibrium, bidder

1 and bidder 3 are the only bidders active at bids below m, whereas bidder 1 and bidder 2

are the only bidders active at bids above m. There is no overlap between the bids of bidder

2 and bidder 3; their equilibrium strategies are disjoint. Characterizing the equilibrium is

then made easier, since only two bidders are active at any bid. However, it is possible that

bidder 1 bids m for a mass of types in a disjoint equilibrium.19,20

De�ne m = v=�2 as the critical value of m where bidder 2 has an incentive to become

active in the auction, v��2m = 0. For the reasons outlined above, assume thatm < m < b�2.

Since b�2 depends on �1 and �3, and m depends on �2, the latter inequality represents a

joint restriction on the parameters (�1; �2; �3). In the following, it is convenient to think of

(�1; �2; �3) as �xed. It will then be established that a disjoint equilibrium exists for some

values of m (values close to, but below, m).

Existence and uniqueness are discussed next, and the disjoint equilibrium is fully charac-

terized. It is then veri�ed that the equilibrium has the properties claimed in the beginning

of this Section. The consequences of preferential treatment is then examined in this model.

Since equilibrium can be characterized, it is also possible to consider the e¤ects of preferential

treatment on those that are handicapped.

19To ensure the existence of an equilibrium it is necessary to alter the tie-breaking rule to accommodate
a mass of types taking the same action. In the following, it is assumed that bidder 2 wins any tie he is
involved in, bidder 1 wins if he is in a tie with bidder 3 only, and bidder 3 loses any tie. It will remain the
case that a tie occurs with probability zero, in equilibrium. It is the discontinuity in c3 which may cause a
mass of types to submit the same bid.

20Bidder 2 and bidder 3 must bid m with probability zero. Otherwise, bidder 1 would have an incentive
to bid slightly above m (to experience a jump in his winning probability) when he is supposed to bid slightly
below m. However, bidder 1 can bid m with positive probability, because it is impossible or prohibitively
costly for bidder 3 to bid above m. Given the tie-breaking rule described in the previous footnote, there is
therefore no incentive for bidder 3 to jump from a bid below m to a bid of m, or higher.
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5.1 Characterizing disjoint equilibria

I begin by outlining how a disjoint equilibrium is characterized. Details are in the proof of

Proposition 3, below.

Let bv2 denote bidder 2�s lowest active type, i.e. the type that bids exactly m. Let bv1
denote bidder 1�s highest type that bids m. Thus, if v > bvi, bidder i bids above m, i = 1; 2.
Let ev1 denote bidder 1�s lowest type that bids m. In other words, bidder 1 bids below m if

his type is below ev1. He bids precisely m if his type is in the interval [ev1; bv1].
For bids abovem, the interaction between bidder 1 and bidder 2 is as described in Section

3. However, since marginal costs are assumed constant, (1) becomes an autonomous system.

The solution method proposed by Amann and Leininger (1996) can then be used to derive

a �tying function�, k2(v), where k2(v) is the type of bidder 2 who bids the same as bidder 1

with type v, v 2 [bv1; v]. A key step is to realize that the boundary condition is k2(v) = v,
since both bidders submit the maximum bid, b, when their type is v. Given the function

k2(v), bv1 and bv2 = k2(bv1) are derived from the fact that bidder 2 with type bv2 must be
indi¤erent between not participating and bidding m. Finally, bidding strategies for bidder i

with type above bvi, i = 1; 2, can be derived by �integrating up�the �rst order conditions.
Likewise, for any guess concerning ev1, a function k3(vjev1) can be derived that describes

the type of bidder 3 who bids the same as bidder 1 with type v, v 2 [v; ev1], with k3(ev1jev1) = v.
It turns out that bidder 3 stays out if his type is low, k3(vjev1) > v for any ev1. Since bidder
1 with type v and bidder 3 with type k3(vjev1) bid zero, bidding strategies for higher types
can once again be found be integrating up the �rst order condition. Then, ev1 is pin-pointed
by the observation that bidder 1 with type ev1 and bidder 3 with type v bid exactly m. It is
necessary to check that ev1 � bv1, as a disjoint equilibrium does not exist if otherwise.

Since bidding strategies follow directly from the �rst order conditions once (ev1; bv1; bv2) is
known, the unique triplet (ev1; bv1; bv2) completely characterizes the disjoint equilibrium. The
following Proposition proves the existence and uniqueness of a disjoint equilibrium when m

is not too small (an example will later demonstrate that disjoint equilibria do not always

exist when m is small). Bidders 2 and 3 are relatively unsuccessful in such an equilibrium.

Proposition 3 Assume that m < b�2. Then, there exists some m < m, such that a unique

disjoint equilibrium exists if m 2 (m;m).

Proof. See the Appendix.

Corollary 3 In a disjoint equilibrium, bidder 1 is the only bidder to submit strictly positive
bids with probability one. Ex ante, bidder 1 wins more often than bidders 2 and 3 combined.

Proof. See the Appendix.
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5.2 Preferential treatment of a diverse group

In light of the low participation- and success-rate of the weaker bidders, it may be tempting to

intervene in the contest by handicapping the strong bidder. However, the point of Theorem

1 is that such an intervention may be harmful to bidder 3. The following example illustrates

Theorem 1.

Example 1: Assume that F (v) = v � 1, v 2 [1; 2], and �x �1 = 1, �2 = 2. The parameters
of bidder 3�s cost function, (�3;m), then determines the equilibrium. Assuming that m is

su¢ ciently large, note that bidder 2 would stay out of the auction if b�2 � 1, which can be
shown to be satis�ed if and only if �3 falls below a critical value of approximately 1:677,

such that the contest between bidder 1 and bidder 3 is not too uneven. Assuming that �3 is

below this critical value, bidder 2 will nevertheless be active in equilibrium if m falls below

1 and su¢ ciently constrains bidder 3�s ability to compete.

Figure 4 describes the parameters of bidder 3�s cost function, assuming that m 2 [0; 1]
and �3 2 [�1; �2] = [1; 2]. A disjoint equilibrium as de�ned above exists if and only if (�3;m)
is to the north-west of the steep, unbroken, curve in Figure 4. On the curve, ev1 = bv1; above
it, ev1 < bv1. Since the curve is increasing, a disjoint equilibrium will not necessarily exist if

m is small, as claimed earlier. Indeed, if (�3;m) is to the south-east of the �at, unbroken,

curve, there is an equilibrium in which bidder 3 does not participate in the auction.21,22

Assume next that bidder 1 is handicapped. The dashed lines summarizes bidder 3�s entry

decision for di¤erent handicaps. The �at lines applies if h(s) = 2s (a very severe handicap,

for which ch1(s) = c2(s)) and the steeper line applies if h(s) = 5
4
s (a moderate handicap).

If (�3;m) is to the south-east of these lines, then there is an equilibrium in which bidder 3

never participates. Thus, Figure 4 con�rms Theorem 1; there is an overlap of regions where

all bidders are initially active (in a disjoint equilibrium) but where bidder 3 drops out once

he and bidder 2 is given �preferential treatment�.23 This occurs when both �3 and m are

relatively low, which is consistent with the earlier assertion that c3 needs to have su¢ cient

�curvature� for Theorem 1 to hold. For �xed �3, preferential treatment is therefore more

likely to be harmful to bidder 3 the more disadvantaged he is initially (the lower m is). It

should also be pointed out that bidder 3 may not participate even when �3 is smaller than

ch1(0). That is, to participate it is not su¢ cient to have a cost advantage over all other

bidders at low bids. �

21The details of the example are omitted, but are available upon request.
22When (�3;m) is in the region between the two curves, it is conjectured that all three bidders are active

for a set of bids below m.
23There is also a region where the opposite conclusion applies. If �3 is high and m is in a medium range,

there are situations where bidder 3 is inactive before preferential treatment is introduced, but not after.
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Figure 4: Disjoint equilibria and Theorem 1.

Assume that a disjoint equilibrium exists. One of the advantages of being able to char-

acterize the equilibrium is that it is possible to examine the consequences of handicaps that

are so small that a disjoint equilibrium still exists, meaning that bidder 3 is still active. The

impact of a small handicap is described below, under the assumption that h(s) is linear.

Proposition 4 Assume that h(s) = �s, � � 1, and that a disjoint equilibrium exists when

� = 1 (no handicap). For any handicap � 0 2 (1; �3
�1
) for which a disjoint equilibrium exists,

it holds that bidder 2 and bidder 3 participate more often, and win more often.

Proof. See the Appendix.
Proposition 4 implies that small handicaps are successful on two dimensions; they entice

the two weaker bidders to participate more often, and lead them to win more often as well.

In this model, then, preferential treatment can be disadvantageous to its recipients only

when it is large enough to alter the structure of the equilibrium.

5.3 Handicapping a diverse group

The analysis thus far has assumed that the set of bidders receiving preferential treatment is

diverse, but that this is not the case for the set of bidders who are handicapped (since there

is only one such bidder). In the following, I will switch the focus to the handicapped group,

and ask whether diversity within that group matters.

Assume now that just one bidder receives preferential treatment. It is easy to check that

if bidder 1 or bidder 3 is given preferential treatment (as captured by a decrease in �1 or a

decrease in �3 and an increase in m, respectively) then the remaining bidders are adversely

a¤ected. The consequences of giving preferential treatment to bidder 2 are more surprising.
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Proposition 5 Assume that bidder 2 and only bidder 2 is given preferential treatment; with
a bid of b he outscores a rival who bids b, where  > 1. Assume a disjoint equilibrium exists

before and after preferential treatment. When preferential treatment is introduced, bidder 1

wins less often, bidder 2 participates and wins more often, and bidder 3 also participates and

wins more often.

Proof. See the Appendix.
The intuition behind Proposition 5 is as follows. Bidder 2�s advantage leads him to

participate more often. Thus, bidders 1 and 3 are less likely to win with a low bid, other

things being equal. Consequently, they bid more cautiously. This opens up a gap between

the small bids, those submitted by bidder 1 with type below ev1, and the high bids, those
submitted by bidder 1 with type above ev1. Therefore, if bidder 1 was supposed to bid m,
he can lower his bid without lowering his chance of winning. However, once bidder 1 starts

submitting low bids more often, bidder 3 must respond by bidding more aggressively. Thus,

if his type is close to v, bidder 3 will now outscore more of bidder 1�s types than before.

This e¤ect �trickles down�and a¤ects the entire system or relationship between bidder 1

and bidder 3. The implication is that bidder 3 beats bidder 1 more often and participates

more often (k3(vjev1) decreases). The following counterpart to Corollary 2 is immediate.
Corollary 4 Bidder 3 may be made better o¤ when he and bidder 1 are handicapped.

Proof. See the Appendix.

6 Conclusion

This paper considered a contest with a number of realistic features: There are more than two

contestants, contestants are heterogenous, and information is incomplete. In this environ-

ment, preferential treatment may have surprising and most likely unintended consequences.

Speci�cally, when a diverse group of contestants are given preferential treatment compared

to the remaining contestants, a subset of the intended bene�ciaries may become worse o¤.

The reason is that the dynamics within the �favored� group changes. In particular, the

stronger of the favored contestants may become more aggressive. From the point of view of

the weaker of the favored contestants, this e¤ect may outweigh the advantage that is gained

over contestants who do not receive preferential treatment. Similarly, a contestant who is

not given preferential treatment may in fact be made better o¤ by its introduction.

The possibility that preferential treatment may be disadvantageous was demonstrated in

a setting with very speci�c cost structures, in which multiple equilibria were not ruled out.
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However, since the result is a negative result, the main point remains valid: Jumping to the

conclusion that preferential treatment is unambiguously bene�cial to the weaker contestants

is not justi�ed. The theory of contests with more than two heterogeneous contestants is un-

derdeveloped, and more research is needed to better assess the consequences of manipulating

or regulating the contest.
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Appendix: Proofs

Proof of Proposition 1. Consider the game �h2 . The system described by (1) is monotonic

in sh. If sh is reduced to esh < sh, it must be the case that 'hi (esh) = v after the change, but
that 'i(esh) < v before the change. Given (1), F ('hj (s)) must therefore be strictly �atter

than before at s = esh. Continuing this argument as s is reduced implies that F ('h1(�)) and
F ('h2(�)) shift up when sh is reduced. Thus, there is precisely one value for which sh and the
resulting unique paths of F ('h1(s)) and F ('

h
2(s)) satisfy the equilibrium requirement that

F ('h1(0)) = 0 and F ('
h
2(0)) � 0 or vice versa.

Next, note that if F ('h1(s)) = F ('
h
2(s)) then '

h
1(s) = '

h
2(s), in which case Assumption C

and (1) together imply that F ('h1(s)) is strictly steeper than F ('
h
2(s)). Thus, F ('

h
1(s)) and

F ('h2(s)) coincide at most once. In fact, this occurs at s
h, since F ('h1(s

h)) = F ('h2(s
h)) = 1.

Since F ('h1(s)) is strictly steeper than F ('
h
2(s)) at s

h, the implication is that F ('h1(s)) <

F ('h2(s)) for all s 2 [0; sh), as claimed. These arguments also apply to �2.

Proof of Proposition 2. Assume that sh = s. In this case 'hi (s) = 'i(s) = v, i = 1; 2,

and it follows from Assumption B that F ('h2(�)) is strictly steeper than F ('2(�)) at s. Hence,
'h2 < '2 immediately to the left of s, which implies that F ('

h
1(�)) is strictly steeper than

F ('1(�)), and which in turn implies that 'h1 < '1. These arguments repeat themselves as s is
reduced even further, and it follows that F ('h1(�)) becomes zero for some s > 0. As discussed
earlier, this contradicts that sh and 'h1 ; '

h
2 form an equilibrium. It is easily seen that sh > s

would lead to a similar contradiction. Thus, sh < s, and F ('h1(s
h)) = 1 > F ('1(s

h)).

Moving to the left, consider the �rst s 2 (0; sh) to the left of sh, if it exists, for which
F ('h1(�)) and F ('1(�)) coincide, or 'h1 = '1. Since F ('

h
1(�)) > F ('1(�)) to the right of

this point, by de�nition, F ('h1(�)) must be at least as steep as F ('1(�)), which implies that
'h2 � '2 or F ('h2) � F ('2). As 'h1 = '1, it follows from Assumption B and (1) that F ('h2(�))
is strictly steeper than F ('2(�)) at this point, which means that 'h2 < '2 just to the left of
this score. As before, this leads to the conclusion that F ('h1(�)) is steeper than F ('1(�)) to
the left of this point. Once again, this can be ruled out, because F ('h1(�)) becomes zero for
some s > 0. Thus, by contradiction, F ('h1(s)) > F ('1(s)) for all s 2 (0; sh].
Assumption B and 'h1(0) = '1(0) = v imply that F ('h2(�)) is strictly steeper than

F ('2(�)) at s = 0. Assume now that F ('h2(0)) � F ('2(0)) or '
h
2(0) � '2(0). Then,

'h2 > '2 for small, strictly positive s, implying that F ('
h
1(�)) is strictly �atter than F ('1(�)).

Consequently, 'h1 < '1 for small s. However, this contradicts the property that bidder 1 is

less aggressive when he is handicapped.
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Proof of Theorem 1. To begin, note that qh3 as de�ned in (2) is exogenous to the games

�3 and �h3 , since it depends only on the strategies '
h
1 and '

h
2 from the game �h2 . For similar

reasons, q3(s) � F ('1(s))F ('2(s)) is also exogenous to the games �3 and �h3 . In particular,
neither depends on bidder 3�s characteristics, since he is assumed absent from �2 and �h2 .

So, assume bidder 3�s cost function takes the form c3(s) = �vqh3 (s), with 1 < � <

q03(0)=q
h0
3 (0). This is a strictly increasing and strictly convex function. Since � > 1, (5)

reveals that there is no incentive for bidder 3 to become active in �h3 when bidders 1 and 2

follow the increasing strategies from �h2 . Given bidder 3 stays out with probability one, there

is no incentive for bidders 1 and 2 to deviate from the increasing strategies in �h2 . Thus, it

is an equilibrium for bidder 3 to always stay out, and for bidders 1 and 2 to continue using

the increasing strategies from �h2 . Clearly, bidder 3 wins the auction with probability zero.

Consider now the game without a handicap, �3. If bidder 3 wins with probability zero,

no strictly positive score or bid can be rationalized. Thus, bidder 3 must either stay out, or

bid zero. The arguments leading to Proposition 1 still apply, and bidder 1 and bidder 2�s

increasing strategies from �2 are the unique pair of candidates for their increasing equilibrium

strategies. However, (5) and � < q03(0)=q
h0
3 (0) imply that bidder 3 should deviate; there is

no equilibrium in increasing strategies of �3 where bidder 3 wins with probability 0.

Proof of Proposition 3. The proof is in three steps.

Step 1 (Constructing an equilibrium candidate): A simple application of the

method proposed by Amann and Leininger (1996) reveals that k2(v) is implicitly given by

�2

Z v

k2(v)

f(x)

x
dx = �1

Z v

v

f(x)

x
dx: (7)

See Amann and Leininger (1996) for details. Note that k2(v) is strictly increasing and

k2(v) = v. Note also that once bv1 is derived, bidding strategies are trivially characterized by
the �rst order conditions. For instance, bidder 2�s �rst order condition can be written as

d'1(b)

db
=

�2
'2(b)f('1(s))

:

Since '2(b) = k2('1(b)), inverting and letting v = '1(b) yields b
0
1(v) = k2(v)f(v)=�2, where

b1 refers to bidder 1�s bidding strategy. Therefore,

b1(v) = m+

Z v

bv1
k2(x)

�2
f(x)dx, v 2 [bv1; v] : (8)

Bidder 2�s bid can be derived in a similar manner, or directly from b2(v) = b1(k
�1(v)).
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To �nd bv1 it is useful to reconsider bidder 2�s problem. In a disjoint equilibrium, bidder
2 is supposed to stay out if his type is below bv2, and then jump to a bid of m if his type isbv2. Consequently, bidder 2 must be indi¤erent between the two actions if his type is bv2, or

bv2F (bv1)� �2m = 0; (9)

since a bid of m wins the auction if bidder 1�s type is below bv1 (given the tie-breaking rule).
For the �rst order conditions to be satis�ed it must hold that bv2 = k2(bv1), or

k2(bv1)F (bv1)� �2m = 0; (10)

which has a unique solution. Thus, bv1 and bv2 have been identi�ed, as have strategies for
bidder i with type v 2 [bvi; v], i = 1; 2.
Consider now bids below m. For bidder 1, such a bid wins only if it beats bidder 3 and

bidder 2 stays out. Thus, bidder 1�s expected payo¤ from a bid of b is

vF ('3(b))F (k2(bv1))� �1b; (11)

if his type is v. A similar expression holds for bidder 3. Although the �rst order conditions

now contain a F (bv2) term, this will cancel out when Amann and Leininger�s (1996) method
is used to derive the tying function k3(vjev1), which is implicitly de�ned by

�3

Z v

k3(vjev1)
f(x)

x
dx = �1

Z ev1
v

f(x)

x
dx: (12)

Note that '3(0) = k3(vjev1) > 0 since �3 > �1 and v � ev1, meaning that bidder 3 stays out
of the auction with positive probability. Repeating a previous argument then produces

b3(k3(vjev1)jev1; bv1) = b1(vjev1; bv1) = F (k2(bv1))Z v

v

k3(xjev1)
�3

f(x)dx, v 2 [0; ev1] : (13)

Note that b3(vjv; v) = b1(vjv; v) = b�2.
It remains to determine ev1. In a disjoint equilibrium, bidder 3�s highest bid is m, or

b3(vjev1; bv1) = b1(ev1jev1;bv1) = m:
Bidder 3�s maximal bid can also be written as

b3(vjev1; bv1) = F (k2(bv1))Z v

k3(vjev1)
k�13 (xjev1)
�1

f(x)dx: (14)
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Since k3 shifts down when ev1 increases, b3(vjev1; bv1) is increasing in ev1. Thus, there is at most
one value of ev1 for which b3(vjev1; bv1) = m. However, it is not obvious that a solution exists
for all m. In particular, small values of bv1 imply that the right hand side of (14) is small
as well. Moreover, the equilibrium construct assumes that ev1 is bounded above by bv1, orev1 � bv1. Thus, the existence of a disjoint equilibrium is not guaranteed.

Step 2 (Existence): Recall that any (ev1; bv1; bv2) triplet completely characterizes an
equilibrium candidate. To summarize, bv2 is derived from bv2 = k2(bv1), while the pair (ev1; bv1)
is derived from the pair of equations

k2(bv1)F (bv1)
�2

= m (15)

b3(vjev1; bv1) = m: (16)

To form a credible equilibrium candidate, it is required that ev1 � bv1 < v. Note that if

m = m then (15) is satis�ed at bv1 = v and if m < m it is satis�ed at some bv1 < v. Second,
b�2 = b3(vjv; v) > m, by assumption. Since b3(vjev1; bv1) is strictly increasing in ev1 and is
zero at ev1 = v, there is some ev1 2 (v; v) for which b3(vjev1; v) = m, satisfying (16). Thus,

both conditions are satis�ed at m = m, by some ev1 < bv1 = v. It is also the case that

k2(bv1)F (bv1) and b3(vjev1; bv1) are continuous and increasing in bv1 and ev1. Thus, by continuity
and monotonicity, all conditions remain satis�ed if m is reduced slightly.

Finally, to prove that (ev1; bv1; bv2) characterizes a disjoint equilibrium, pro�table deviations
must be ruled out. First, local or small deviations can be ruled out for bidder 2 and bidder

3, as well as for bidder 1 with types outside the interval [ev1; bv1]. The reason is that strategies
are derived from �rst order conditions (and these conditions are su¢ cient, as explained in

an earlier footnote). Large deviations must then be ruled out. Bidder 3 is unable to jump

to bids in excess of m, and the tie-breaking rule ensures he has no incentive to jump to m,

given the �rst order condition speci�es what the optimal bid in the range [0;m] is. Bidder 2

has no incentive to pick bids in the range (0;m), due to the convexity of his payo¤ function

in that range. The tie-breaking rule guarantees that bidder 2 wins if he is in a tie at bid

m, so he has no incentive to jump from such a bid when his equilibrium strategy dictates

that he bids m. Since the single-crossing condition is satis�ed and type bv2 earns zero payo¤,
there is no incentive to change the entry decision for types below or above bv2. Consider now
bidder 1. For him, the probability of a tie at a bid of m is zero, so there is no jump in payo¤

from bidding marginally higher than m. The �rst order conditions then ensure that bidder

1 with type outside [ev1; bv1] is playing a best response. The single-crossing condition then
implies that types between ev1 and bv1 must be maximizing by bidding exactly m, as required.
In summary, there is no incentive to deviate.
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Step 3 (Uniqueness): Assuming existence, bv1 is unique because the left hand side of
(15) is strictly increasing in bv1. It follows that bv2 = k2(bv1) is unique as well. Finally, for this
(and any other) �xed value of bv1, the left hand side of (16) is strictly increasing in ev1, which
means that ev1 is unique as well.
Proof of Corollary 3. At least one bidder must submit strictly positive bids with

probability one, or there would be an incentive to submit a small bid for someone who is

supposed to bid zero or stay out. By construction, bidder 2 stays out bids with probability

F (bv2) > 0 and bidder 3 with probability F (k3(vjev1)) > 0. Hence, bidder one is the only

bidder to submit strictly positive bids with probability one.

For the second part, it is easily veri�ed that (i) k3(vjev1) > v, v 2 [v; ev1), (ii) k3(vjev1) is de-
creasing in ev1, and (iii) k2(v) > k3(vjv) > v, v 2 [v; v). Thus, bidder 1 wins with probability
F (k2(v)) > F (v) when his type is v 2 [bv1; v), and probabilityF (k2(bv1)) > F (bv1) > F (v) when
his type is v 2 [ev1; bv1). When v 2 [v; ev1), his winning probability is F (bv2)F (k3(vjev1)), which is
no smaller than F (k2(bv1))F (k3(vjbv1)). Viewing the last expression as a function of bv1, obser-
vation (ii) and Assumption A can be used to show that it is single-peaked in bv1, for a �xed v.
Thus, the expression is minimized when bv1 = v or bv1 = v. At bv1 = v, F (k2(bv1))F (k3(vjbv1)) =
F (k3(vjv)) > F (v), while at bv1 = v, F (k2(bv1))F (k3(vjbv1)) = F (k2(v)) > F (v). In summary,
it has been shown that bidder 1�s winning probability strictly exceeds F (v) for all v 2 [v; v).
Hence, his ex ante winning probability is strictly larger thanZ v

v

F (v)f(v)dv =
1

2
;

which proves the last part of the Corollary.

Proof of Proposition 4. Imposing a linear handicap is equivalent to changing �1 to

�01 = ��1. Starting �at the top�, (7) reveals that k2(v) decreases; bidder 2 is emboldened

by bidder 1�s handicap, and wins more often for any type that participates. Combining

(7) and (9) implies that bv2 decreases but bv1 increases. Since k2(v) and bv2 decrease, the
part of the Proposition dealing with bidder 2 follows. The increase in �1 also leads k3(vjev1)
to decrease, for �xed ev1. Coupled with the decrease in bv2, (13) implies that b1(ev1jev1; bv1)
declines, for �xed ev1. Since b1(ev1jev1; bv1) = b3(vjev1; bv1), the latter must also have decreased.
To maintain b3(vjev1; bv1) = m, it is therefore necessary that ev1 increases. The increase in ev1
and �01 then means that k3 decreases (bidder 3 is more successful against bidder 1, but less

successful against bidder 2). In particular, k3(v) must decrease, thereby proving that bidder

3 participates more often. The assumption that � 0 < �3
�1
ensures that k3(v) > v (bidder 3

does not participate with probability one, but bidder 1 does). Suppressing the dependence

29



on ev1, bidder 3�s ex ante winning probability is initially
w3 =

Z v

k3(v)

F (k2(bv1))F �k�13 (x�)f(x)dx:
Substituting z = k�13 (x) and noting, from (12), that k03(z) =

�1
�3

k3(z)
z

f(z)
f(k3(z))

yields

w3 =

Z ev1
v

F (k2(bv1))F (z) f(k3(z))k03(z)dz = Z ev1
v

F (k2(bv1))k3(z)
�3

f(z)

�
�1
F (z)

z

�
dz:

Note that it is only the term in parenthesis that separates w3 from the constant m, by (13).

Let G(z) = F (z)
z
; by Assumption A, G0(z) > 0. Integration by parts produces

w3 = �1

Z ev1
v

�
m�

Z z

v

F (k2(bv1))k3(x)
�3

f(x)dx

�
G0(z)dz:

The term in parenthesis is positive, by (13). Recall that since ev1 and �1 increase, k3(x) de-
creases. Moreover, bv2 = k(bv1) decreases when bidder 1 is handicapped. Thus, the term in the
parentheses is positive and increases when bidder 1 is handicapped. Since the multiplicative

�rst term (�1) on the right hand side increases and the upper bound on the integration (ev1)
increases as well, w3 must increase.

Proof of Proposition 5. The advantage to bidder 2 is equivalent to lowering �2 to �2=.

Such a decrease in �2 lowers k2(v). Since the last term on the left hand side of (10) decreases,

the �rst term must do the same. Thus, it cannot be the case that bv2 = k2(bv1) increases,
since that would necessitate an increase in F (bv1), and therefore an increase in bv2F (bv1). In
conclusion, bv2 decreases; bidder 2 participates more often. Since k2(v) has been lowered,
bidder 2 also wins more often.

Since k2(bv1) decreases, ev1 must increase. Thus, k3(vjev1) decreases, implying that bidder
3 participates more often (k3(vjev1) decreases). An argument similar to that in Proposition 4
can be used to prove that bidder 3 wins more often as well. Thus, bidder 1 wins less often.

Proof of Corollary 4. Since bidder 3 participates more often in the disjoint equilibria

in Proposition 5, he has a set of types who earn positive payo¤ after bidder 2 is given

preferential treatment but who earned zero payo¤ (and did not participate) before.
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