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Abstract

This paper studies optimal insurance in partial equilibrium in case the
insurer is protected by limited liability. We focus on the optimal allocation
of remaining assets in default. We show existence of an equilibrium in the
market. In such an equilibrium, we get perfect pooling of the risk in the
market, but a protection fund is needed to charge levies to policyholders
with low losses. If policyholders cannot be forced ex post to pay a levy,
we show that the constrained equal loss rule is used in equilibrium. This
rule gained particular interest in the literature on bankruptcy problems.
Moreover, we show that in absence of a monitoring device, the insurer will
always invest all its assets in the risky technology. We illustrate the welfare
losses if other recovery rules are used in case of default; a different recovery
rule can substantially effect the profit of the insurer.

Keywords: bankruptcy problems, insurance, limited liability, partial equilibrium,
risk shifting.

1 Introduction

This paper studies optimal recoveries in insurance, and their effects on prices
in equilibrium. We use an agency model, where a mutual insurer is protected by
limited liability. In case of a default, the remaining assets of the insurer are (at least
partially) allocated to the policyholders. In practice, proportional methods are
very popular (Araujo and Páscoa, 2002; Sherris, 2006; Ibragimov et al., 2010; Laux
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and Muermann, 2010). We show that using a proportional method to allocate the
recoveries may yield welfare losses in the economy. Moreover, we characterize the
optimal method instead. In the literature on bankruptcy problems, this optimal
method is called a constrained equal loss (CEL) rule (see, e.g., Moulin, 2002;
Thomson, 2003).

A bankruptcy problem describes the situation in which we have to allocate a
given amount (often referred to as estate) among a group of claimants when the
available amount is not sufficient to cover all their claims. A bankruptcy rule
calculates shares for claimants such that 1) no agent gets more than its claim,
and 2) all get a non-negative share. For an overview of bankruptcy problems in
practice and bankruptcy rules, we refer to O’Neill (1982), Aumann and Maschler
(1985), Moulin (2000), or the overviews of Moulin (2002), and Thomson (2003). In
a natural way, any default situation with limited liability is related to a bankruptcy
problem where the realized risks are claims and the realized asset value is the size
of the estate. Then, any bankruptcy rule can be taken to define a solution to
allocate the remaining assets to the policyholders.

Habis and Herings (2013) and Koster and Boonen (2014) study stochastic
bankruptcy problems in risk sharing problems. Kıbrıs and Kıbrıs (2013) and
Karagözoğlu (2014) study an investment problem, where bankruptcy rules are
applied in case of default. In all these papers, default is however an exogenous
event, that is not affected by the aggregate investment decisions. We apply the
concept of stochastic bankruptcy rules to a partial equilibrium setting in insurance
with limited liability, where default occurs endogenously.

Initially, Doherty and Schlesinger (1990), Cummins and Mahul (2003), and
Bernard and Ludkovski (2012) study insurance contract design with limited lia-
bility by modeling default as an exogenous event that is correlated with the risk
of a policyholder. We follow the approach of Filipović et al. (2015) to study opti-
mal risk taking and premia of an insurer in equilibrium. They study this problem
with one insurer and one policyholder. Moreover, Biffis and Millossovich (2011),
Asimit et al. (2013) and Cai et al. (2014) study optimal reinsurance contracts
with default risk if there is one policyholder. We differ by allowing for multiple
policyholders. In case there are multiple policyholders, the issue to allocate the
remaining assets in default exists naturally. Pooling risk of multiple policyholders
reduces the probability of default. This pooling should therefore be reflected in
the insurance price. Sherris (2006), Ibragimov et al. (2010), Laux and Muermann
(2010) and Bauer and Zanjani (2015) all assume a proportional recovery rule. An
exception is Araujo and Páscoa (2002), who focus on existence of general equilib-
ria with a continuum of policyholders. There are frequent real life deviations from
the proportional rule and some are actually contemplated by law in the form of
seniority criteria. For instance, some rules lead to priority for some claimants such
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as tax authorities, employees, secured creditors and some among the unsecured
creditors (Araujo and Páscoa, 2002).

This paper extends the approach of Mahul and Wright (2004) to the setting
of equilibria in case the insurer is protected with limited liability. Mahul and
Wright (2004) study optimal risk sharing among insurers via pools in the context
of catastrophe insurance. Their perspective is to maximize a weighted utility of all
insurers. Then, all insurance risk is pooled ex post, and then redistributed among
the insurers. The premium may be decided ex post as well. This problem is in line
with classical Pareto optimal risk sharing as in Borch (1962), but with constraints.
Mahul and Wright (2004) describe the constrained equal loss recovery rule and
characterize it via an ex post participation constraint. Our focus is different as we
study the effect of rules to allocate default losses in equilibrium, and their effects
on insurance premia and the risk taking behavior of the insurer. We assume that
the premia are paid ex ante and determined by the insurer. Moreover, we do not
optimize the joint utility of all agents, but the insurer optimizes its utility under
participation constraints of the policyholders.

We show in this paper that the equilibrium exists. Moreover, we find that
it is optimal for the insurer to force some policyholders to pay ex post levies to
cover losses in default. This leads to an equilibrium with perfect pooling of the
insurance risk. If the insurer cannot force policyholders to pay ex post a levy, we
find that the constrained equal loss recovery rule is the only optimal recovery rule
in equilibrium. Our results also hold in absence of a monitoring device. Then, we
show that the insurer will always invest all its assets in the risky technology. We
illustrate that welfare losses may be substantial if other recovery rules are used.
Moreover, bankruptcy costs do not affect optimality of the CEL recovery rule, but
it may lead to a different insurance premium, and different risk taking behavior of
the insurer. We illustrate that even providing insurance may not be optimal for
the insurer.

This paper is set out as follows. Section 2 defines the model set-up. Section 3
characterizes the optimal pooling and recovery rules. Section 4 shows existence of
the equilibrium. Section 5 studies risk shifting. Section 6 shows in an illustration
the welfare losses of suboptimal recovery rules and the effect of the number of
policyholders on insurance contracts in equilibrium. Section 7 illustrates the effect
of positive dead-weight costs in default. Finally, Section 8 concludes. All proofs
are delegated to the appendix.
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2 Preferences

2.1 Preferences insurer

We consider a one-period economy with a given future reference period. The in-
surer has initial wealthW ≥ 0. LetN = {1, . . . , n} be the finite set of policyholders
with n ∈ IN. Every policyholder i ∈ N pays a single premium given by π ≥ 0
to insure its risk Xi ∈ L1 with the insurer, where L1 is the set of non-negative
random variables on a given probability space for which the expectation exists.
The insurer cannot observe possible heterogeneity in the risks that policyholders
withhold, and therefore charges the same premium to everyone. Denote the set of
risks as X := (Xi)

n
i=1. The risk-free rate is given by rf ≥ 0. The insurer can invest

a fraction α ∈ [0, 1] of its wealth in a risky technology that generates a stochastic
excess return R, for which the support is a subset of [−(1 + rf ),∞).

Before covering the insurance claims, the assets of the insurer at the given
future time are given by

A(α, π) := (W + nπ) (1 + rf + αR),

which is stochastic at time 0. The insurer remains solvent if the assets are higher
than the realized insurance claims, i.e., when the following event occurs:

S(α, π) :=

{
A(α, π) ≥

n∑
i=1

Xi

}
.

There are no costs of bankruptcy included for the insurer, but the policyholders
are cut in their indemnities to cover the deficits. The objective of the insurer
is to maximize E [(A(α, π)−

∑n
i=1Xi)

+] under participation constraints of the
policyholders, which we will specify in Subsection 2.2.

2.2 Preferences policyholders

In this paper, we study the effects of limited liability. In case of default, the
remaining assets are allocated to the policyholders. The way this should be done
is non-trivial, and the central topic of this paper.

We focus on a function f : L1 × (L1)n → (L1)n that maps every stochastic
realization of the risks to an allocation. It satisfies

n∑
i=1

fi (A,X) =

{
(1− δ)A, if A <

∑n
i=1Xi,∑n

i=1Xi, otherwise,
(1)

and fi (A,X) ≤ Xi for all i ∈ N , where the fraction δ ∈ [0, 1] reflects the costs of
default that are deducted from the remaining assets as in Biffis and Millossovich
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(2011). Here, f(A,X) is an n-dimensional set of stochastic variables that represent
the payments from the insurer to the n policyholders. In other words, f is the
set of the insurance indemnities. In this and the next sections, we set δ = 0 and
ignore deadweight costs of default. We will discuss the effect of the bankruptcy
cost δ numerically in Section 7.

Definition 2.1 Let F the collection of the mappings f : L1 × (L1)n → (L1)n that
are continuous in the first argument (assets A), and such that

∑n
i=1 fi(A,X) =

min{A,
∑n

i=1Xi} and fi (A,X) ≤ Xi for all i ∈ N . Moreover, let RR ⊂ F the
collection of mappings f that are also such that f(A,X) ≥ 0 for all (A,X) ∈
L1 × (L1)n.

We assume that the rule f is common knowledge before the insurance contract
is sold. Therefore, it might influence the insurance premium in equilibrium. We
model the preferences of the policyholders by agents with expected utility function
u and initial wealth w0, i.e., the utility of policyholder i is given by

E [u(w0 − π −Xi + fi(A(α, π), X))] .

Throughout this paper, we impose the following regularity assumptions.

Assumption 2.1: We impose the following assumptions:

• (R,X) has a compact support, which is a subset of [−(1 + rf ),∞) × IRn
+,

and admits a jointly continuous density function. Moreover, it holds that
E[R] > 0.

• the no-default event S(α, π) happens with positive probability for all (α, π) ∈
[0, 1]× IR+, and R is non-negatively correlated with the event S(α, π).

• the utility function u : IR→ IR is such that u′(·) > 0, u′′(·) < 0, limx→−∞ u(x) =
−∞ and limx→−∞ u

′(x) =∞.

• the density of (R,X) is such that the utility of the insurer are real-valued
and differentiable in some neighborhood of the domain [0, 1]× IR+ of (α, π).

Assumption 2.1 is similar to the assumptions in Filipović et al. (2015), but are
now imposed for the case where we possible have multiple policyholders.

The policyholders’ individual rationality constraints are given by

E [u(w0 − π −Xi + fi(A(α, π), X))] ≥ u, (2)

for all i ∈ N , where u ≤ minj∈N E
[
u(w0 − π∗ −Xj + f ∗j (A(α∗, π∗), X))

]
for some

(f ∗, α∗, π∗).
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The effect of the rule f is key in the participation constraint (2). As the par-
ticipation constraint (2) ensures individual rationality, we maximize the expected
profit of the insurer E [(A(α, π)−

∑n
i=1Xi)

+] under this constraint, where we de-
fine (y)+ = max{y, 0}. Possible sharing of welfare gains is possible by choosing
the value of u wisely. Interestingly, the utility of the policyholders in (2) is not
necessarily decreasing in the premium π.

3 Optimal pooling and recovery rules

3.1 Problem statement

Every policyholder is seeking to insure its risk given by Xi = Yi +Z, i ∈ N , where
X ∈ (L1)n. Here, Yi, i ∈ N, are independent and identically distributed (i.i.d.),
and independent of Z. This resembles a common shock model, where the risk
Z is a common shock that effects all insurance claims (see, e.g., Marshall and
Olkin, 1967; Promislow, 2006). We assume that excess return R is independent
of the idiosyncratic insurance risks Yi, i ∈ N . A tuple (f, α, π) is called a partial
equilibrium if it yields the highest expected profit for the insurer, provided that
the policyholders’ individual rationality constraints are satisfied. More precisely,
the set of partial equilibria is given by the solutions of the following optimization
problem:

max
f,α,π

E[((W + nπ)(1 + rf + αR)−
n∑
i=1

Xi)
+], (3)

s.t. E[u(w0 − π −Xi + fi(A(α, π), X))] ≥ u, for all i ∈ N, (4)

(f, α, π) ∈ F̂ × [0, 1]× IR+, (5)

where F̂ ∈ {F , RR} and u ≤ E [u(w0 − π∗ −Xi + f ∗i (A(α∗, π∗), X))] for some
given (f ∗, α∗, π∗) ∈ F̂ × [0, 1] × IR+ and all i. For instance, we may set u at the
utility level in the status quo, i.e., u = E [u(w0 −Xi)]. For now, we assume that
the problem in (3)-(5) has a solution. We will later show existence of this solution
formally in Theorem 4.2.

In the following lemma, we show the qualitative behavior of the preferences of
the insurer.

Lemma 3.1 For all (α, π) ∈ (0, 1)× IR++, we have

∂

∂α
E

[
(A(α, π)−

n∑
i=1

Xi)
+

]
> 0,
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and for all (α, π) ∈ [0, 1]× IR++, we have

∂

∂π
E

[
(A(α, π)−

n∑
i=1

Xi)
+

]
> 0.

From Lemma 3.1, we get that for a fixed α ∈ [0, 1] the utility of the insurer is
strictly increasing in premium π. For a given premium π, we get from E[R] > 0
and the risk-loving preferences of the insurer that the utility of the insurer is
strictly increasing in α.

3.2 Optimal pooling

In this subsection, we consider the case that F̂ = F , i.e., the case where we
allow that fi(A(α, π), X) < 0. Then, an insurer in default can force policyholders
with small realized losses to sponsor the policyholders with large losses. This
mechanism is for instance enforced by a protection fund, that charges levies in
case of default. In an optimal insurance contract, the total claims at default are
pooled and, then, the losses are pro rata shared among the policyholders. In other
words, the assets are allocated such that the risk Xi − fi(A(α, π), X) is the same
for every policyholder i. We call this solution perfect pooling (PP), and we show
this result in the following proposition.

Proposition 3.2 For every solution (f, α, π) of (3)-(5) with F̂ = F , we get that
f = PP , where

PPi(A(α, π), X) =

{
Xi + (A(α, π)−

∑n
j=1Xj)/n if A(α, π) <

∑n
j=1 Xj,

Xi otherwise,
(6)

for all i ∈ N .

The solution PP in (6) can be seen as perfect risk pooling as all insurance risk is
pooled and then shared equally among all policyholders. To enforce this egalitarian
mechanism, some policyholders might need to pay after the risk occurs (ex post).
This happens when fi (A,X) < 0. This is typically difficult to enforce, as it
requires policyholders to pay a compensation on top of their risk after the risks
are realized. This is why we focus in the next section on the case where we impose
the condition f (A,X) ≥ 0. So, such a rule is ex ante not necessarily optimal.
However, in practice, it is difficult to enforce cross-payments among policyholders
at a future time period.
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3.3 Optimal recovery rules

There is substantial literature on bankruptcy problems, which are also called ra-
tioning problems. In a standard bankruptcy problem, there is one deterministic
estate E > 0 and a deterministic claim vector d ∈ IRn

+ such that
∑n

i=1 di > E.
A bankruptcy rule ϕ is such that ϕ(E, d) ≥ 0 and

∑n
i=1 ϕi(E, d) = E (see, e.g.,

O’Neill, 1982, or the overviews of Moulin, 2002, and Thomson, 2003). In this pa-
per, we generalize the concept of bankruptcy rules to allow the estate and claims
to be stochastic. Also, the generalization of bankruptcy rules is well-defined in
case of no default. We call such a rule a recovery rule.

We focus on the following recovery rules that are inspired by well-known
bankruptcy rules (Moulin, 2000, 2002; Thomson, 2003):

• Proportional rule: for each (A,X),

fi (A,X) = PROPi(A,X) = min

{
A∑n
j=1 Xj

·Xi, Xi

}
,

for all i ∈ N .

• Constraint Equal Award (CEA): for each (A,X), fi(A,X) = CEAi(A,X) =
min{Xi, γ}, where γ ≤ maxj Xj is such that

∑n
j=1 min{Xj, γ} = min{A,

∑n
j=1Xj}.

• Constraint Equal Loss (CEL): for each (A,X), fi(A,X) = CELi(A,X) =
max{0, Xi − γ}, where γ ≤ maxj Xj is such that

∑n
j=1 max{0, Xj − γ} =

min{A,
∑n

j=1Xj}.

• Talmud rule:

f(A,X) = TR(A,X) =


X if

∑n
i=1Xi ≤ A,

CEA(A, 1
2
X) if

∑n
i=1Xi ≥ 2A,

X − CEA(
∑n

i=1Xi − A, 1
2
X), otherwise,

for each (A,X).

The intuition of the first three recovery rules is straightforward. Proportional re-
covery rules seem the most natural way to allocate assets in default, and is popular
in the literature (Sherris, 2006; Ibragimov et al., 2010; Laux and Muermann, 2010).
It is easy to communicate to the policyholders. The constrained equal award rule
strives to obtain egalitarianism in bankruptcy problems (see, e.g., Koster and Boo-
nen, 2014). The constrained equal loss rule strives to obtain egalitarianism for the
dual problem, i.e., for the risks Xi − fi(A,X), i ∈ N . In fact, Young (1988) shows
for bankruptcy problems that the rules CEL and CEA are dual of each other,
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whereas the proportional rule is self-dual. The Talmud rule is more advanced, and
is characterized by a consistency axiom (Aumann and Maschler, 1985).

For all these four recovery rules above, we have

fi(A(α, π), X)|(R,Z)
d
= fj(A(α, π), X)|(R,Z), fi(A(α, π), X)

d
= fj(A(α, π), X),

and Xi − fi(A(α, π), X)
d
= Xj − fj(A(α, π), X) for all i, j ∈ N . So, there is an ex

ante equal treatment of the policyholders. Note that some recovery rules might
yield the same posterior joint risk f(A,X). For instance, if Xi = Z for all i ∈ N ,
we have that all recovery rules defined above yield the same solution, which is
fi(A,X) = min{A

n
, Z} for all i ∈ N .

Theorem 3.3 For every solution (f, α, π) of (3)-(5) with F̂ = RR, we get that

f(A(α, π), X) = CEL(A(α, π), X).

If f is the CEL rule, then the participation constraint in (2) writes as

E [u(w0 − π −min{Xi, γ})] ≥ u, (7)

where γ is a random variable such that

n∑
i=1

min{Xi, γ} =

(
n∑
i=1

Xi − (W + nπ)(1 +R)

)+

.

Hence, the Constrained Equal Loss recovery rule resembles deductible insurance,
but where the deductible is random as well.

4 Existence of the equilibrium

In order to show existence of the equilibrium, we first show convexity of the utility
of the insurer, and concavity of the utility of the policyholder, both with respect
to α and π. This result holds straightforward in case n = 1 (see Filipović et al.,
2015), but concavity of the utility function of the policyholder is more complicated
to show in case n > 1. We assert this result in the following lemma.

Lemma 4.1 Let f ∈ {PP,CEL}. The utility of the insurer is convex in α and π
and the utility of the policyholders is concave in α and strictly concave in π.

Lemma 4.1 illustrates the qualitative behavior of utility functions of the insurer
and policyholder, but also helps us to show existence of an equilibrium satisfying
(3)-(5). For sake of exposition, we assume that the utility of the policyholder is
partially differentiable with respect to premium π ≥ 0 whenever f ∈ {PP,CEL}.
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Theorem 4.2 Let F̂ ∈ {F , RR}. For any reservation utility level u, there exists
at least one optimal policy (f ∗, α∗, π∗) that solves (3)-(5). It is such that the
participation constraint in (5) is binding. Moreover, for any α∗ ∈ [0, 1], there
exists at most one equilibrium policy (f ∗, α∗, π), where π is such that (5) is binding
and ∂

∂π
E[u(w0 − π +Xi + f ∗i (A(α∗, π), X)) ≤ 0.

In case of multiple policyholders, the utility for the policyholder does not need

to be monotonic in the premium π, even if R
d
= 0. Therefore, we cannot straight-

forwardly extend the results of Filipović et al. (2015) to our setting. Filipović et
al. (2015) show uniqueness of the equilibrium.

It is important to remark that if u is high, it is not rational for the insurer
to offer the insurance contracts. Therefore, we need to verify ex post whether the
equilibrium solving (3)-(5) is rational for the insurer; if rationality is violated there
is no insurance in equilibrium.

5 Risk shifting

In this section, we study risk shifting in insurance. For instance, suppose that
the premium π is such that W + nπ >

∑n
i=1Xi for any X, the policyholder

would prefer the insurer to invest completely risk-free. The policyholder is also
willing to pay a higher premium to achieve this. In absence of a regulator, there
is however no guarantee that the insurer will invest everything risk-free. This is
called counterparty risk or risk shifting in insurance (see, e.g., Filipović et al.,
2015).

Suppose the investment decision is not observed by the policyholder. After the
policyholders pay the insurance premium, the insurer will invest its assets in order
to maximize its own utility. Then, the set of partial equilibria with risk shifting is
given by the solutions of the following optimization problem:

max
f,α,π

E[((W + nπ)(1 + rf + αR)−
n∑
i=1

Xi)
+], (8)

s.t. E[u(w0 − π −Xi + fi(A(α, π), X))] ≥ u, for all i ∈ N, (9)

(f, π) ∈ F̂ × IR++, (10)

α ∈ argmaxα′∈[0,1]E[((W + nπ)(1 + α′R)−
n∑
i=1

Xi)
+], (11)

where F̂ ∈ {F , RR}, and where u = E[u(w0−π∗−Xi + fi(A(1, π∗), X))] for some
π∗ > 0. We assume that ∂

∂π
E[u(w0 − π∗ − Xi + fi(A(1, π∗), X))] ≤ 0. This is

without loss of generality since E[u(w0− π−Xi + fi(A(1, π), X))] is differentiable
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(and so continuous) in π, and limπ→∞E[u(w0 − π −Xi + fi(A(1, π), X))] = −∞.
Note that we explicitly require π > 0 in (10), which we need to prove the following
result.

Theorem 5.1 Let F̂ ∈ {F , RR} and the reservation utility be given by u =
E[u(w0− π∗−Xi + fi(A(1, π∗), X))] for some π∗ > 0. Then, there exists a unique
solution (f, α, π) to the problem (8)-(11). This is such that (α, π) = (1, π∗).

6 Calibration study

In this section, we show the effect of recovery rules on equilibrium prices, and risk
taking behavior of the insurer. We provide an extensive example of an insurer
whose financial position is relatively poor. In this case, we show that the effect of
the type of recovery rules is important.

Let rf = 0%, X1, . . . , Xn
i.i.d.∼ exp(1), and R = eG − 1, G ∼ N(µ, σ2), with

µ = 0% and σ = 16%, and independent of Xi. Moreover, policyholders use the
exponential (Constant Absolute Risk Aversion) utility function u(x) = − exp(λx)
with λ = 0.2. It is well-known that initial wealth w0 is irrelevant for exponential
utilities. The initial assets of the insurer are set at W = 0, and moreover we have
n = 10. We set u = E[u(w0−Xi)]. In absence of default, we get from straightfor-
ward calculations that the indifference price for insurance is approximately 1.108,
i.e., the risk premium is given by 10.8%. We simulate the risks in the economy
100,000 times for every case.

In the baseline model, we let f = CEL, but we first study different recov-
ery rules as well. For instance, and in line with Araujo and Páscoa (2002) and
Ibragimov et al. (2010), bankruptcy losses may be ex post pro rata shared among
policyholders. In general, the equilibria do not need to be unique. In this example,
it turns out to be the case that the equilibrium is unique. We show the outcome
on prices and risk taking in Table 1. We find that the effects of the choice of the
recovery rule are substantial. For instance, when the insurer uses CEA instead of
CEL, then the insurance premium will drop from 0.96 to 0.88. As a result, the
probability of default increases and the expected profit for the insurer is smaller.
For recovery rules, the results in Table 1 confirm Theorem 3.3 in that CEL is
optimal to use for the insurer. It leads to a higher premium, and the utility for
the insurer is highest. If it is possible to have perfect pooling as in Section 3.2, we
find that there exist additional expected profits for the insurer, but the difference
is rather small. For the optimal recovery rule CEL, the insurer will invest less in
the risky asset, which leads to the highest solvency probability. Because insurer
receives a higher premium π if it uses CEL than for any other recovery rule, it
does not need to invest very risky to guarantee solvency. On the other hand, if
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the premium is much lower than the expected loss, the policyholders may want
the insurer to invest more risky in order to benefit from the risk premium.

f CEL CEA PROP TR PP
π 0.96 0.88 0.94 0.95 0.96
α 86% 94% 100% 90% 93%

P(S(α, π)) 49.8% 40.0% 47.5% 48.7% 49.8%
E[(A(α, π)−

∑n
i=1 Xi)

+] 1.21 0.83 1.15 1.17 1.24

Table 1: Overview of numerical result corresponding to Section 6. This table
displays the effect of the recovery rule f . The definition of PP is provided in (6),
and the other alternatives of f are shown in Subsection 3.3. This table shows the
equilibrium solution (α, π) of (3)-(5) with given f , and the no-default probability
and the utility of the insurer in this equilibrium.

Next, we show the effect of the number of policyholders, which is given by n.
We display these effects in Table 2. If n = 1, then it is likely that default occurs
when the insured risk X1 is high. In order to prevent this, the policyholder is
willing to pay a higher premium. This is beneficial for the profit of the insurer. If
n = 10, we get that the premium in equilibrium is rather low. The default event is
less correlated with Xi, but the risk aversion of the policyholders is such that they
are not willing to pay more than 1, which is the expected loss in absence of limited
liability. The profit per contract for the insurer is therefore low. When n gets
larger, the total insurance losses get approximately normally distributed due to the
central limit theorem. Then, default particularly occurs when investment returns
are low, which is assumed to be independent of the insured risks. Since the insurer
is risk-loving, it is not true that diversification of risk is good for profitability.
However, more policyholders lead to more aggregately received premia that can
be invested in the risky technology.

n 1 100 1, 000 10, 000
π 1.11 1.08 1.09 1.09
α 100% 89% 95% 96%

P(S(α, π)) 66.9% 68.2% 71.8% 71.6%
E[(A(α, π)−

∑n
i=1Xi)

+] 0.45 12.8 129.4 1,292
1
n
E[(A(α, π)−

∑n
i=1Xi)

+] 0.45 0.13 0.13 0.13

Table 2: Overview of numerical results corresponding to Section 6, where we vary
the number of policyholders n. This table shows the equilibrium (α, π) as defined
in (3)-(5) with given f = CEL, and the no-default probability and the utility of
the insurer in this equilibrium.
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Finally, we conclude this section with analyzing the effect of a common shock.
Let n = 10, and the common shock be given by Z = γeḠ, with Ḡ ∼ N(µγ, 1)
and γ ∈ [0, 1]. Moreover, we assume Xi = Z + (1 − γ)Yi, i = 1, . . . , 10, with

Y1, . . . , Y10
i.i.d.∼ exp(1). For every γ, we let µγ be such that expectation of Xi is

the same. The marginal distribution of R is the same as above, but (Ḡ, G) are
bivariate normally distributed where the correlation coefficient is assumed to be
-0.25.1 We adjust the reservation utility u to be the utility of the policyholder in
case it does not insure its risk.

γ 0 0.25 0.5 0.75 1
π 0.96 0.80 0.71 0.85 1.87
α 86% 99% 95% 94% 100%

P(S(α, π)) 49.8% 34.9% 36.4% 59.2% 85.3%
E[(A(α, π)−

∑n
i=1 Xi)

+] 1.21 0.67 0.69 2.12 11.07

Table 3: Overview of numerical results corresponding to Section 6 with the com-
mon shock, where we vary the parameter γ. This table shows the equilibrium
(α, π) as defined in (3)-(5) with given f = CEL, and the no-default probability
and the utility of the insurer in this equilibrium.

From Table 3, we get that the common shock has substantial impact on the
profits in equilibrium. We get that the equilibrium premiums are U-shaped in the
severity of the common shock. In case of the common shock is high, the losses in
default may be substantial. These losses are borne by the policyholder. As a result,
the policyholder is willing to pay a higher premium in equilibrium if the common
shock is severe. This high premium prevents that the insurer is likely to become
bankrupt. In particular, it prevents bankruptcy in cases where the policyholder’s
risk is high as well. On the other hand, due to the risk-loving preferences of
the insurer, the insurer benefits from the systematic risk as the common shock
increases the aggregate risk in the economy. When the common shock is smaller
(γ = 0.25 or 0.5), the policyholder is not willing to pay a high premium anymore.
The reason is that the risk of default is too high to justify the premium, where the
default event is less strongly correlated with the policyholder’s risk.

7 Effects bankruptcy costs

In this section, we discuss the effect of deadweight bankruptcy costs δ. Recall from
(1) how δ affects the insurance indemnities. The preferences of the policyholder

1This yields an approximate linear correlation of 0.25 between −R and Xi. Under Solvency
II, the market and insurance risk are assumed to have a linear correlation coefficient of 0.25 (see
Filipović et al., 2015).
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may however no longer be concave or, even, continuous. Therefore, an equilibrium
does not need to exist if δ > 0. If equilibria exist, it is not difficult to see that
Proposition 3.2 and Theorem 3.3 still hold for δ ∈ (0, 1). Of course, when δ = 1,
the choice for recovery rules is irrelevant.

We study the effect of δ numerically in cases where the equilibrium exists.
We assume that the F = RR, i.e., the recoveries need to be non-negative. The
recovery rule in equilibrium is due to Theorem 3.3 given by f = CEL. We use the
same setting as in Section 6, but vary δ. We find that the equilibrium exists and
is unique. For δ larger than approximately 30%, we obtain that the equilibrium is
such that π = 0, i.e., there is no trade. If the deadweight welfare losses are small,
we find that there is an insurance trade. We display the equilibrium contracts in
Table 4. We find that the insurer will ask a relatively low premium if δ is large,
so that it is unlikely to be solvent. As a result, it will gamble by investing all it
assets in the risky technology. This effect diminishes when δ gets closer to 0.

δ 5% 10% 15% 20% 25% 30%
π 0.90 0.81 0.64 0.43 0.30 0
α 88% 100% 100% 100% 100% -

P(S(α, π)) 42.7% 32.7% 13.7% 1.6% 0.3% 0
E[(A(α, π)−

∑n
i=1 Xi)

+] 0.95 0.62 0.17 1.2 · 10−3 6.4 · 10−4 0

Table 4: Overview of the equilibrium (α, π) as defined in (3)-(5) corresponding to
Section 7, where the initial wealth is given by W = 0 and where we vary the value
of δ.

The results in Table 4 partially follow from the fact that we set W = 0, i.e.,
the insurer has no initial wealth. Next, we assume that W = 5. We show the
results in Table 5. Note that we should compare the utility of the insurer with
the utility in case the insurer does not provide insurance, and only invests its
initial assets. We find that the reservation utility of the insurer in this case is
given by approximately 5.06. Hence, if δ is 90% or 100%, the insurer will not offer
insurance to the policyholders. Moreover, we find that if δ gets larger, the insurer
will invest less in the risky technology. This follows from the fact that bankruptcy
gets more harmful for the policyholders. As a result, the insurer has to charge a
lower insurance premium, which leads to a lower profit.

8 Conclusion

This paper studies the effect of recovery rules on insurance policies in equilibrium.
We study the well-known common shock model for the joint distribution of the
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δ 0% 10% 25% 50% 75% 90% 100%
π 1.10 1.09 1.07 1.04 1.00 0.96 0.90
α 100% 100% 100% 64% 39% 40% 32%

P(S(α, π)) 93.8% 93.1% 92.4% 93.1% 92.9% 91.7% 89.5%
E[(A(α, π)−

∑n
i=1 Xi)

+] 6.39 6.29 6.04 5.71 5.19 4.88 4.36

Table 5: Overview of the equilibrium (α, π) as defined in (3)-(5) corresponding to
Section 7, where the initial wealth is given by W = 5 and where we vary the value
of δ.

risks of the policyholders. We find that the constrained equal loss rule is opti-
mal. This rule is popular in the literature on bankruptcy problems (e.g., Moulin,
2002; Thomson, 2003), but it is not commonly studied in the literature about lim-
ited liability in insurance. In the literature, proportionality is typically assumed
exogenously.

If a protection fund can charge levies to policyholders with low losses, it is
optimal to perfectly pool the risk. This yields the highest utility in the market.
We show existence of an equilibrium in the market, and study the welfare losses
if other recovery rules are used in default. Moreover, we show that in absence
of a monitoring device, the insurer will always invest all its assets in the risky
technology. Therefore, the insurance price should include this risk-taking as it
affects likelihood and magnitude of a default event.

A very interesting extension of our proposed model would be to consider more
general distributions of the insured risks of the policyholders. In this case, asym-
metric information will be important to consider, which may lead to separating or
pooling equilibria. As a result, the insurer needs to consider selection effects as
well (see, e.g., Finkelstein and Poterba, 2004). This may lead to optimal recovery
rules that are ex ante discriminating across policyholders. The characterization of
such recovery rules is a question we leave open for further research.
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A Proofs

Proof of Lemma 3.1 Let (α, π) ∈ [0, 1]× IR++. We get

∂

∂π
E

[
(A(α, π)−

n∑
i=1

Xi)
+

]
= E[n(1 + rf + αR)1S(α,π)]

= n(1 + rf + αE[R|S(α, π)])P(S(α, π)) > 0,

where the inequality follows the assumption that P(S(α, π)) > 0, and from the
fact that (R,X) admits a jointly continuous density function implying P(R >
−1|S(α, π)) > 0 for any (α, π).
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Moreover, we get for any (α, π) ∈ (0, 1)× IR++ that:

∂

∂α
E

[
(A(α, π)−

n∑
i=1

Xi)
+

]
= E[(W + nπ)R1S(α,π)]

= (W + nπ)E[R1S(α,π)]

= (W + nπ)(E[R]P(S(α, π)) + cov{R, 1S(α,π)})
≥ (W + nπ)E[R]P(S(α, π)) > 0,

which is due to the fact that R and S(α, π) are non-negatively correlated, E[R] > 0,
and P(S(α, π)) > 0. This concludes the proof.

Proof of Proposition 3.2 It holds by construction that
∑n

i=1 PPi(A(α, π), X) =
min{A(α, π),

∑n
i=1Xi} and PPi(A(α, π), X) ≤ Xi for all i, and so we have PP ∈

F . Fix (α, π). Let f ∈ F . We take a Taylor expansion of u around Ŵ :=
w − π − (

∑n
j=1 Xj − A(α, π))+/n to the second order:

u(w0 − π −Xi + fi(A(α, π), X)) = u(Ŵ ) + u′(Ŵ )(w0 − π −Xi + fi(A(α, π), X)− Ŵ )

+
1

2
u′′(ζi)(w0 − π −Xi + fi(A(α, π), X)− Ŵ )2,

where ζi is in between w0 − π−Xi + fi(A(α, π), X) and Ŵ . Clearly, it holds that∑n
i=1(w0 − π − Xi + fi(A(α, π), X) − Ŵ ) = 0, and so the second term vanishes.

Therefore, we get by summing over all policyholders i and taking the expectation
that

n∑
i=1

E[u(w0 − π −Xi + fi(A(α, π), X))]

= nE[u(Ŵ )] +
1

2

n∑
i=1

E[u′′(ζi)(w0 − π −Xi + fi(A(α, π), X)− Ŵ )2

≤ nE[u(Ŵ )],

which is due to u′′(·) < 0. If fi 6= PPi := Xi − (
∑n

j=1 Xj − A(α, π))+/n for some
i ∈ N , we get a strict inequality. Hence, PP , which is defined in (6), uniquely
solves the following the system

max
f∈F

n∑
i=1

E [u(w0 − π −Xi + fi(A(α, π), X))] , (12)

s t.
n∑
i=1

fi(A(α, π), X) = min

{
A(α, π),

n∑
i=1

Xi

}
. (13)
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Suppose that f ∗(A(α, π), X) is an optimal rule such that f ∗ 6= PP . Since PP
solves (12)-(13) uniquely, we get that there exists a policyholder i ∈ N such that

E[u(w0 − π −Xi + f̂i(A(α, π), X))] > E[u(w0 − π −Xi + f ∗i (A(α, π), X))].

Then, we have for this policyholder i that

E[u(w0 − π −Xi + f̂i(A(α, π), X))] > E[u(w0 − π −Xi + f ∗i (A(α, π), X))]

≥ u.

Since the utility level E
[
u(w0 − π −Xi + f̂i(A(α, π), X))

]
is the same for every

policyholder i, we get that if f ∗(A(α, π), X) is optimal, then the participation
constraint in (5) is slack. Since f is assumed to be continuous in the first argument,
the utility of the policyholder is continuous in π. So, there exists a premium π̂ > π
such that the participation constraint in (5) is still satisfied. Since the utility of the
insurer is strictly increasing in the price π, we get a higher utility for the insurer.
This is a contradiction with the assumption that f ∗ is optimal. Hence, f ∗ = PP is
the unique rule for all solutions (f ∗, α∗, π∗) to the problem (3)-(4). This concludes
the proof.

Proof of Theorem 3.3 Fix (π, α), and moreover fix a realization R = r and
X = (x1, . . . , xn). Then, if (W + nπ)(1 + rf + αr) ≥

∑n
i=1 xi, then the recovery

rule f ∈ RR is fixed. So, let Â := (W + nπ)(1 + rf + αr) <
∑n

i=1 xi. Define the
following problem:

max
b1,...,bn

n∑
i=1

u(w0 − π − xi + bi), (14)

s t. bi ≥ 0, (15)
n∑
i=1

bi = Â. (16)

The objective function in (14) is concave and the constraints are affine. Hence, we
get all solutions from the Karush-Kuhn-Tucker (KKT) conditions:

u′(w0 − π − xi + bi) + γi = u′(w0 − π − x1 + b1) + γ1, for all i ∈ N, (17)
n∑
i=1

bi = Â

where γibi = 0 and γi ≥ 0. If policyholder i is such that bi > 0, then γi = 0. So,
due to u′′(·) < 0, we have that all xi+bi is the same for all policyholders i such that
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bi > 0. If bi = 0, then γi ≥ 0 and, so, u′(w0 − π − xi) ≤ u′(w0 − π − x1 + b1) + γ1.
So, due to u′′(·) < 0, we get that if bi = 0, the utility of policyholder i is higher
than the utility of policyholder j with bj > 0: xi ≤ xj − bj. Moreover, Â <∑n

i=1 xi and (17) guarantee that −x + b ≤ 0. Therefore, we directly get that

b = CEL(Â, (xi)
n
i=1) is the unique solution of (14)-(16). Hence, when we solve (14)-

(16) for any realization of (R,X), we get that f(A(α, π), X) = CEL(A(α, π), X)
solves uniquely the problem

max
f

n∑
i=1

E [u(w0 − π −Xi + fi(A(α, π), X))] ,

s t. f(A(α, π), X) ≥ 0,
n∑
i=1

fi(A(α, π), X) = min

{
A(α, π),

n∑
i=1

Xi

}
.

Suppose that f ∗(A(α, π), X) is an optimal recovery rule. Since f = CEL solves
(14)-(16) uniquely, we get that there exists a policyholder i such that

E[u(w0 − π −Xi + CELi(A(α, π), X))]

> E[u(w0 − π −Xi + f ∗i (A(α, π), X))].

Then, we have for this policyholder i that

E[u(w0 − π −Xi + CELi(A(α, π), X))] > E[u(w0 − π −Xi + f ∗i (A(α, π), X))]

= u,

where CEL is a recovery rule as well. Since Xi − CELi(A(α, π), X)
d
= Xj −

CELj(A(α, π), X) for all i, j ∈ N , we have that the ex ante expected utility level
E [u(w0 − π −Xi + CELi(A(α, π), X))] is the same for every policyholder i. So,
we get that if f ∗(A(α, π), X) is an optimal recovery rule, then the participation
constraint in (5) is slack. Since f is assumed to be continuous in the first argument,
the utility of the policyholder is continuous in π. So, there exists a premium π̂ > π
such that the participation constraint (5) is still satisfied. Since the utility of the
insurer is strictly increasing in the premium π, we get a higher utility for the
insurer. This is a contradiction with the assumption that the recovery rule f ∗ is
optimal. Hence, f = CEL is the unique solution to (12)-(13). This concludes the
proof.

Proof of Lemma 4.1 Let f = CEL. For fixed R = r and X = (x1, . . . , xn), the
function ((W + nπ)(1 + rf + αr) −

∑n
i=1 xi)

+ is convex in π and in α. Taking
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expectation preserves these properties. Hence, the utility of the insurer is convex
in α and π

Next, we show strict concavity of the utility of the policyholder with respect
to premium π. Let 0 ≤ π1 < π2, α ∈ [0, 1], and λ ∈ (0, 1). Then, we get

n∑
i=1

[λCELi(A(α, π1), X) + (1− λ)CELi(A(α, π2), X)]

= λmin{A(α, π1),
n∑
i=1

Xi}+ (1− λ) min{A(α, π2),
n∑
i=1

Xi}

≤ min{A(α, λπ1 + (1− λ)π2),
n∑
i=1

Xi}, (18)

which holds due to λA(α, π1)+(1−λ)A(α, π2) = A(α, λπ1 +(1−λ)π2). Moreover,
we get

0 ≤ λCELi(A(α, π1), X) + (1− λ)CELi(A(α, π2), X) ≤ Xi for all i. (19)

Moreover, we get from Theorem 3.3 that there exists a policyholder i such that

E[u(w0 − (λπ1 + (1− λ)π2)−Xi + CELi(A(α, λπ1 + (1− λ)π2), X))] (20)

≥ E[u(w0 − (λπ1 + (1− λ)π2)−Xi + fi(A(α, λπ1 + (1− λ)π2), X))], (21)

for all f ∈ RR. Hence, from (18)-(19), we get that this also holds for f̂i =
λCELi(A(α, π1), X) + (1 − λ)CELi(A(α, π2), X), i ∈ N due to the assumption
that u is increasing. Since f̂ also yields the same ex ante expected utility for all
policyholders, we get

E[u(w0 − (λπ1 + (1− λ)π2)−Xi + CELi(A(α, λπ1 + (1− λ)π2), X))]

≥ E[u(w0 − (λπ1 + (1− λ)π2)−Xi + λCELi(A(α, π1), X) + (1− λ)CELi(A(α, π2), X))]

> λE[u(w0 − π1 −Xi + CELi(A(α, π1), X))]

+ (1− λ)E[u(w0 − π2 −Xi + CELi(A(α, π2), X))].

Here, the last inequality follows from strict concavity of u, and the fact that from
π1 < π2, S(α, π2) ≥ S(α, π1), and P(S(α, π1)) > 0 it follows that −π1 − Xi +

CELi(A(α, π1), X)
d

6= −π2 − Xi + CELi(A(α, π2), X). Hence, the utility of the
policyholder is strictly concave in π.

Showing concavity of the utility of the policyholder with respect to parameter
α is analogous to the proof of concavity with respect to the premium π.

The proof for when f = PP is similar, but easier, since for any fixed R = r and
X = (x1, . . . , xn) we get that u(w0 − π − (

∑n
i=1 xi − (W + nπ)(1 + rf + αr))+/n)

is concave in α and π.
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Proof of Theorem 4.2 Let F̂ ∈ {F , RR}. If a solution to (3)-(5) exists, we
get f ∗ = CEL if F̂ = RR (Theorem 3.3), or f ∗ = PP if F̂ = F (Proposition
3.2). Since the objective is strictly increasing in π, we aim for every α ∈ [0, 1]
to find the largest π such that the participation constraint in (5) is satisfied. If
π →∞, we get E[u(w0− π−Xi + f ∗i (A(α, π), X))] < E[u(w0− π)]→ −∞ due to
limx→−∞ u(x) = −∞. Then, the participation constraint in (4) is violated. Since
the rule f ∗ is continuous in the assets A, the policyholder’s expected utility is
continuous in the premium π. Since the utility of the insurer is strictly increasing
in π, we get that for any fixed α ∈ [0, 1] there can be at most one optimal premium
π satisfying (3)-(5). If it exists, (α, π) is such that the participation constraint in
(4) is binding. By concavity of the utility of the policyholder for given α (see
Lemma 4.1), it is characterized by the fact that it must also satisfy ∂

∂π
E[u(w0 −

π +Xi + f ∗i (A(α, π), X)) ≤ 0.
By assumption, we have that there exist (f, α, π) ∈ F̂ × [0, 1] × IR+ with

E[u(w0 − π + Xi + fi(A(α, π), X))] ≥ u. From Proposition 3.2 and Theorem 3.3,
it follows that this also hold for f = PP when F̂ = F and for f = CEL when
F̂ = RR.

Since f ∗ is continuous in the first argument, we have that E[u(w0 − π −Xi +
f ∗i (A(α, π), X))] is continuous on [0, 1]×IR+. From this and limπ→∞ maxα∈[0,1]E[u(w0−
π −Xi + f ∗i (A(α, π), X))] = −∞, we get that the level set {(α, π) ∈ [0, 1]× IR+ :
E[u(w0−π−Xi+f ∗i (A(α, π), X))] ≥ u} is a compact subset of [0, 1]× IR+. More-
over, this set is non-empty as shown above. Since E[(W + nπ)(1 + rf + αR) −∑n

i=1Xi)
+] is continuous on [0, 1]× IR+ as well, we conclude that the maximum in

(3)-(5) for the respective reservation utility level u, is attained in [0, 1]× IR+ due
to Weierstrass’ extreme value theorem.

Proof of Theorem 5.1 Let F̂ ∈ {F , RR}. First, we let π > 0. From Lemma
3.1, we get for any α ∈ (0, 1) that

∂

∂α
E

[
((W + nπ)(1 + rf + αR)−

n∑
i=1

Xi)
+

]
> 0.

So, since the utility of the insurer is continuous, we get that the constraint (11)
yields α = 1. Hence, all optimal solutions to (8)-(11) are such that α = 1.

Then, the problem (8)-(11) boils down to maximize for a fixed α = 1 the
objective (8) over all π ≥ 0 and f such that (9) is satisfied. In line with Proposition
3.2 and Theorem 3.3, it holds that the optimal mapping f is unique, and given
by f = PP if F̂ = F , and f = CEL if F̂ = RR. The objective function in (8) is
continuous and strictly increasing in the premium π ≥ 0. Moreover, by definition,
there exists a π∗ > 0 such that E[u(w0 − π∗ − Xi + fi(A(1, π∗), X))] ≥ u, and
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moreover we have limπ→∞E[u(w0−π−Xi + fi(A(1, π), X))] = −∞. Hence, there
is a unique solution, and it is such that the participation constraint is binding.
Because the utility of the policyholder is strictly concave in the premium π (Lemma
4.1) and ∂

∂π
E[u(w0−π∗−Xi+fi(A(1, π∗), X))] ≤ 0, we have π = π∗. This concludes

the proof.
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