2008 Winter Semester ENGG*1210: ENGINEERING MECHANICS I

Instructor:	Dr. Hongde Zhou		Room 1341, Ext. 56990, Email: <u>hzhou@uoguelph.ca</u> Office Hours: Wednesday 11:00AM – noon.		
GTAs:	Lindsay LaFleur: Rong Hu: Max Gong: Jennifer Drake:	Room 303, Room 305,	Room 313, Ext. 53588, email: llafleur@uoguelph.ca Room 303, Ext. 52132, email: rhu@uoguelph.ca Room 305, Ext. 52132, email: mgong@uoguelph.ca Room 318, Ext. 52132, email: jdrake@uoguelph.ca		
Lectures:	Room: MACN 113 Time: Tuesday and Thursday 10:00AM to 11:20AM				
Tutorials:	Section 101: Section 102: Section 103: Section 104:	Tuesday Wednesday Thursday Friday	1:30PM - 2:20PM, 9:30AM - 10:20AM, 1:30PM - 2:20PM, 9:30AM - 10:20AM,	MACK 315 MACK 315 MACK 310 MACK 314	

TEXTBOOK

Hibbeler, R.C. (2007). *Engineering Mechanics: Statics and Dynamics*. 11th Edition, Pearson Prentice Hall, Upper Saddle River, NJ.

Notes on pertinent material will be posted on the web course link BlackBoard throughout the semester. A number of standard engineering mechanics books are also available in the library which may be consulted.

COURSE OBJECTIVES

This course is to introduce the basic principles of engineering mechanics with emphasis on their analysis and application to practical engineering problems. After learning this course, you should develop the ability to:

- 1) Solve for the resultants of any force systems
- 2) Determine equivalent force systems
- 3) Determine the internal forces in plane frames, simple span trusses and beams
- 4) Solve the mechanics problems associated with friction forces
- 5) Obtain the centroid, first moment and second moment of an area
- 6) Describe the motion of a particle in terms of its position, velocity and acceleration in different frames of reference
- 7) Analyze the forces causing the motion of a particle
- 8) Use the equation of motion to describe the accelerated motion of a particle
- 9) Apply work, energy, impulse and momentum relationships for a particle in motion
- 10) Describe the motion of a rigid body in different frames of reference

TENTATIVE COURSE OUTLINE

Date	Lectures	Торіс	Chapters	
Jan. 8	1	Introduction	1	
		Course orientation		
		Units, definitions and basic principles		
Jan. 10 - 15	2	Force Vectors	2	
		Basic vector calculations		
		Force resolution and combination		
Jan. 17	1	Equilibrium of a Particles	3	
		Free body and force diagrams		
		Equilibrium of a particle		
Jan. 22 - 24	2	Rigid Body Force Systems	4	
		Moment of a force about a point		
		Moment of a force about an axis		
		Couples		
		Reduction of force and couple systems		
Jan. 29	1	Equilibrium of a Rigid Body	5	
		Internal and external forces	7.1	
		Equilibrium of a rigid body		
Jan. 31 - Feb.	2	First Moments and Centroids	9.1 to 9.3	
5		Determination by integration	9.6	
		Centroids of a composite lines or areas		
		Fluid pressure		
Feb. 7 - 12	2	Analysis of Structures	6	
		Trusses: method of joints		
		Trusses: method of sections		
		Forces in frames and beams		
Feb. 14 - 26	2	Friction	8.1 to 8.5	
		Law of friction		
		Angles of friction		
		Wedges		
Feb. 28		MIDTERM		
Mar. 4 - 6	1.5	Moments of Inertia	10.1 to 10.5	
		Moments of inertia by integration	1011 00 1010	
		Polar moment of inertia		
		Radius of gyration		
		Parallel axis theorem		
		Composite areas		
Mar. 6 - 11	1.5	Particle Kinematics	12	
		Review: rectilinear motion		
		Curvilinear motions		
		Relative motion		
		Absolute dependent motion		
Mar. 13	1	Kinetics of a Particle: Force & Acceleration	13	
		Newton's second law: General	-	
		Rectangular coordinates		

		Normal and Tangential coordinates	
		Cylindrical coordinates	
Mar. 18 - 20	1.5	Kinetics of a Particle: Work & Energy	14
		Work of a force	
		Principles of work and energy	
		Conservative forces and potential energy	
		Power and efficiency	
Mar. 20 – 25	1.5	Kinetics of a Particle: Impulse & Momentum	15
		Principle of linear impulse and momentum	-
		Impact	
		Angular momentum	
Mar. 27 -	2	Planar Kinematics of a Rigid Body	16.1 to 16.3
Apr. 1		Translation and rotation	16.5 to 16.8
1		Relative motion analysis	10.5 to 10.0
Apr. 3	1	Review	
April 7		FINAL EXAM (7:00PM to 9:00PM)	

Course topics will be covered by both lectures and tutorials. The main purposes of the tutorials are twofold: 1) provide additional discussion and sample problems compatible with the lecture materials, and 2) have a more informal opportunity to explore issues and ask questions about lectures, texts and previously assigned materials which require clarification.

MARK DISTRIBUTION

Assignments:	15 %
Quizzes:	15 %
Midterm:	30 %
Final Exam:	40 %

All the quizzes, midterm and final tests will be closed-book. The quizzes will be held during the regular lecturing classes one week prior to the announcement and typically last 20 minutes. Only the best three of four quizzes will be used to calculate your final quiz mark.

The solutions to all the assignments, quizzes, midterm and final must be presented in an <u>orderly</u>, <u>neat</u> fashion. All equations used must be written in general symbol form before the specific numerical values are substituted. In some cases, a sketch should be given as part of the solutions. The answers must be underlined <u>clearly</u> with the appropriate units.

You may appeal any mark **within one week** after it has been reported to you with the written reasons for remarking.

You must achieve a passing grade combined with the assignments and quiz components to pass the course. If you fail to it, your final grade will be equal to that failing percentage.

Late submission of an assignment will be devalued by 50% per day. If you miss an assignment or a quiz or midterm and have an acceptable, properly written excuse, the weight of the missed component will be added to the weight of the final exam.

Please note that other university policies specified in University Undergraduate Calendar 2007/08 will be followed **strictly**.