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Abstract—This paper presents a new conflict resolution
methodology for multiple-mobile robots while ensuring their
motion-liveness, especially for cluttered and dynamic environ-
ments. Our method constructs a mathematical formulation in
a form of an optimization problem by minimizing the overall
travel times of the robots subject to resolving all the conflicts
in their motion. This optimization problem can be easily solved
through coordinating only the robots’ speeds. To overcome the
computational cost in executing the algorithm for very cluttered
environments, we develop an innovative method through cluster-
ing the environment into independent sub-problems that can be
solved using parallel programming techniques. We demonstrate
the scalability of our approach through performing extensive
simulations. Simulation results showed that our proposed method
is capable of resolving the conflicts of 100 robots in less than 1.23
seconds in a cluttered environment that has 4357 intersections
in the paths of the robots. We also developed an experimental
testbed and demonstrated that our approach can be implemented
in real-time. We finally compared our approach with other exist-
ing methods in the literature both quantitatively and qualitatively.
This comparison shows while our approach is mathematically
sound, it is more computationally efficient, scalable for very large
number of robots, and guarantees the live and smooth motion of
robots.

Index Terms—Multiple Mobile Robots, Conflict Resolu-
tion, Collision Avoidance, Meta-heuristic Optimization, Motion-
liveness.

I. INTRODUCTION

Multiple-Mobile Robots (MMRs) have vital applications
in search and rescue, surveillance, cooperative robotics, and
scientific data collection [1–5]. Many of these applications re-
quire collision-free movement of robots, which allows for safe
and efficient operation, especially in cluttered environments
[6–9].

Different well-known approaches have been used for con-
flict resolution of MMRs such as incorporation of virtual force
[10], behavioral and avoidance potential functions [11], [12],
flocking algorithms [13] and centralized and decentralized co-
ordination [14], [15]. These approaches result in collision-free
motion of robots in small scale systems; however, they have
the known issue of local minima. Even though some works
have addressed the local minima, no results have shown that
these methods can cope with a large number of robots under
continuous motion without stopping or delays, especially in
cluttered environments [16–18]. Strategic decision rules in
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agent-based frameworks are also promising approaches with
a system perspective that can be used in MMRs conflict
resolution [19], but in practice the main challenge is to model
MMRs as multi-agents in order to adapt the strategic decisions
rules for MMRs conflict resolution. Many studies extended
the aforementioned methods to address the stated problem of
the local minima. We divide these approaches into two main
strategies: path coordination and velocity coordination.

Path coordination for conflict resolution such as low level
navigations [20] works well with a small number of robots,
but fails to resolve conflicts when the environment is cluttered.
Randomized motion planning techniques plan collision-free
motion through constructing roadmap for robots and it is
shown to be scalable [21]; however, the computation time of
these methods are high. Other path coordination approach is
prioritized planning [16] that uses behavioural algorithms with
priority scheme to find collision-free motion. It was shown in
[22] that this method can be scalable for a large number of
robots, but it suffers from a known issue of deadlock, which
has not been addressed properly especially when dealing with
cluttered environments. A deadlock is a state where robots
are forced to stop or move at a very low speed to avoid
collisions. The task allocation approach [23] and cooperative
navigation [24] are also shown to be scalable but have the same
problem of deadlock. Velocity coordination techniques adjust
the speed of the robots in order to avoid collisions. Enforcing
velocity coordination in the path of the robots will provide
more flexibility in motion [25]. A decoupled coordinated
trajectory planning was proposed in [26] using pre-specified
paths and scheduling the motions of the robots along their
paths, but for practical applications the path specification
procedure and deadlock problem of more than three robots
were not discussed. Reciprocal algorithms such as [27] are
velocity coordination techniques where each robot adjusts its
own velocity by observing other robots’ velocities and shown
to be scalable [28]. Cooperative collision avoidance techniques
based on the sensor networks are also practical solutions
to facilitate collision avoidance [29], which assures safety
while deadlocks are the main issues. There are also control
based techniques with implicit satisfaction for safety and live
motion, but to the best of our knowledge these methods cannot
maintain live motion in cluttered environments [30].

Within the context of conflict resolution, one parameter
that needs to be satisfied is motion-liveness. Motion-liveness
ensures the continuous motion flow of MMRs without stop-
ping. Satisfying motion-liveness is important, especially in
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cluttered environments with a large number of robots, but this
makes conflict resolution much more challenging [31], [32].
While many studies have been done on collision avoidance
to guarantee motion safety, very few of them have considered
motion-liveness in their approaches [11], [31], [33]. Motion-
liveness, as discussed in [34], is critical when one is dealing
with MMRs in a cluttered environment because of deadlocks
in conflict zones. To overcome the deadlocks in MMRs,
several models have been developed including partitioning the
planar space [35], treating robots as unexpected obstacles [36],
and using real-time management of resource allocation sys-
tems [37]. In another work, a conflict resolution method
was developed by combining priority schemes and multilevel
conflict resolution [38]. The computational complexity of this
problem was the main issue that needed to be addressed.

Scalability is another factor that needs to be considered
in developing conflict resolution, particularly for cluttered
environments. While scalability has been reported in [16],
[22], [28], [33], [39], [40], only few methods have considered
motion-liveness [27], [37], [41]. Amongst the methods that
are scalable, [40] and [42] studied dynamic environments,
cluttered environments were considered in [16], [24], [28], and
motion-liveness was addressed in [31], [41], [42]. However,
computational cost remains the main issue of these works,
notably in cluttered environments. One approach to deal with
large-scale systems is using meta-heuristic optimization tech-
niques [43], such as genetic algorithm (GA) [44], and Particle
Swarm Optimization (PSO) [45]. These works, in spite of
developing a systematic way to resolve the conflicts and taking
robots’ motion-liveness into consideration, did not address
the challenges of complexity in cluttered environments. For
example, conflict resolution was modeled as a well-known
scheduling problem in [33], but the combinatorial complexity
of the scheduling limited the applicability of this approach.
An immune algorithm [46] was shown to work better than
PSO and GA; however, only a system of two robots was
studied. In [47], the ant colony optimization algorithm was
used for on-line collision avoidance, nevertheless, it is an open
question whether this method can be implemented in real-
time because of its computational cost. To the best of our
knowledge, none of the works in the literature has been able
to develop a method that generates collision-free motion of
MMRs in cluttered environments with live and smooth motion,
that is computationally efficient for real-time implementation.

In this paper, we develop a new velocity based strategy
for conflict resolution of MMRs while ensuring motion-
liveness, especially for cluttered environments with a large
number of robots’ paths intersections. We propose a strategy
that is scalable for a large number of robots and can be
performed in real-time and in dynamic environments. As
for the contributions of this paper, (i) we propose a new
methodology of conflict resolution for MMRs with smooth
paths and motion-liveness in dynamic and cluttered environ-
ments, (ii) we formulate conflict resolution as an optimization
problem that considers robots motion constraints, (iii) we
develop a novel environment clustering approach for conflict
resolution that improves computational efficiency in cluttered
environments which can be implemented in real-time, (iv) we
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Fig. 1: Global coordinates and mobile robot parameters.

present extensive simulations using optimization techniques to
demonstrate the effectiveness of our proposed strategies, and
(v) we also develop an experimental testbed to validate our
approach.

The rest of the paper is organized as follows: Section II
provides the path planning strategy for MMRs, Section III
presents the conflict resolution strategy, Section IV presents
the simulation and experimental results, and Section V con-
cludes the paper.

II. PATH PLANNING

The main contribution of this paper is developing conflict
resolution strategies. However, to be able to perform these
methods we need to obtain the robots paths first and then
coordinate the robots trajectories. In this section, we briefly
present our path planning approach for non-holonomic mobile
robots.

Throughout this paper, the parameters of the ith robot are
shown by the index i (i = 1, ..., n), where n is the number
of MMRs. A non-holonomic mobile robot with its kinematic
and geometrical parameters is shown in Fig.1. The coordinate
frame {x, y} is used to show the position and orientation of
the ith robot. The equation of the ith robot’s motion in the
global coordinate frame is expressed as follows:

ẋi = υi cos θi

ẏi = υi sin θi

θ̇i = ωi (1)

where xi, yi, and θi are positions and orientation of the ith

robot, respectively, ẋi, ẏi are the translational velocities, θ̇i
is the angular velocity, and υi and ωi are translational and
angular velocities, respectively. The non-holonomic constraint
for the ith robot is expressed as

ẋi sin θi − ẏi cos θi = 0 (2)

The constraint given in (2) will be used later in Section III-D
to generate feasible paths for non-holonomic MMRs.

In our proposed method of path planning, we find the
shortest paths for the robots satisfying their motion constraints
while avoiding obstacles. Therefore, we define a path for the
ith robot by a set of points P i = {pi,0,pi,1, ...,pi,q} starting
from the robot’s starting point (pi,0) to its target (pi,q), as
shown in Fig 2. The number of points, q, is chosen according
to the complexity of the environment, i.e., the number and the
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Fig. 2: Path planning and smoothing.

position of the obstacles. After finding P i for all the robots,
we smooth the paths by spline fitting. We initially start with a
small number of points, e.g., q = 4, and then increase it to find
the optimal path. For the obstacle avoidance, we calculate a
matrix map of the environment. The matrix map assigns values
to all the positions in the environment quantifying how close
the position is to obstacles. To find the matrix map of the
environment, we use the value of repulsive potential function
[48] at a position (x, y) of the environment given by

g(x, y) =

no∑
o=1

w

min ||[x, y]′ − Io||
(3)

where g(x, y) is the repulsive potential function, x and y
denote a position of any point in the environment, w is a
constant value, o is the index of an obstacle, no is the number
of obstacles, ||.|| is a Euclidean norm, and Io is the set of
border coordinates of the oth obstacle. We use a large number
for w, e.g., 103, and use this constant as a weighting penalty if
a path is too close to an obstacle resulting in a high value for
g. The path planning problem is now defined as minimizing
the distance between the points in P i and also minimizing the
maximum value of g(x, y) through the path by (3) as follows:

minimize
pi,0,pi,1,...,pi,q

(
q∑
z=1

‖pi,z − pi,z−1‖+ max
x,y∈Ai

g(x, y)

)
(4)

where Ai is a set of all the connecting points from pi,0 to
pi,q . We use Genetic Algorithm (GA) to solve (4). P i is
initialized by a set of waypoints on a straight line connecting
pi,0 to pi,q . After finding the paths points, P i, we smooth the
paths as shown in Fig. 2. In this figure, the potential repulsive
function, g(x, y), is shown with contours around the obstacles.
To smooth the paths, we consider the path of the ith robot, ri,
to be a spline of order m given by the following expression:

ri(γi) = xi(γi)i+ yi(γi)j (5)

where

xi(γi) =

m∑
d=0

αd,iγ
d
i , yi(γi) =

m∑
d=0

βd,iγ
d
i , γi ∈ [0, 1] (6)

where α0,i, ..., αm,i, β0,i, ..., βm,i are spline’s coefficients of
order m. These coefficients are obtained by fitting (5) on
the robots’ paths points P i, subjected to the robots’ velocity
constraints, which are explained further in Section III-D. The
order of spline m is chosen based on the complexity of the
robot’s path, e.g., between 3 to 7. In (5), γi is the parameter
that we use to adjust the robots speeds in our conflict resolution
methodology, which will be elaborated in Section III-A.
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Fig. 3: Potential collision zones in a cluttered environment.

To simplify the notations, we will consider ri, xi, yi as
short for ri(γi), xi(γi), yi(γi), respectively.

III. CONFLICT RESOLUTION FOR MMRS

This section presents our developed methodologies for
conflict resolution of MMRs. These methods are based on
a mathematical formulation that can also provide robots with
smooth and live motion. In this paper, using our strategy shown
in Section II, we assume the trajectories of the robots are
known and then we develop techniques for conflict resolution
by navigating the robots through only adjusting their speeds.
This is the emphasis of our work.

It should be noted that only changing the robots’ paths
will not effectively solve the conflict resolution, especially for
cluttered environments. Using a velocity approach, we can
resolve the conflicts efficiently while guaranteeing motion-
liveness (as will be shown later). In this paper, we find
the paths for each robot, as presented in Section II, and
then perform conflict resolution with velocity profiles without
changing the paths. It should be noted that even if the paths of
the robots are fixed, coordinating an MMR system is still very
challenging because of existence of a lot of potential collision
zones.

In this section, we first define the velocity rates to adjust
the robots’ speeds, and then formulate collision-free motion
as a function of velocity rates by finding potential collision
zones.

A. Potential Collision Zones

By considering γi to be a continuous function of time, we
can adjust the speed of the robots in order to navigate them
safely (to avoid collision) without stopping them (to satisfy
motion-liveness). We assume γi to be a linear function of the
time as follows:1:

γi = kit ki ∈
[

1

tui

,
1

tli

]
(7)

1We also considered γ to be a quadratic function of time; details and
derivations are presented in Appendix A. We showed that when using a
quadratic form, the formulation becomes complex and computational cost
will be higher compared to a linear function. Therefore, it is not suitable for
cluttered fast changing environments.
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where t represents time, ki indicates the ith robot’s velocity
rate parameter (the ith robot’s travelling time is k−1i ) , tli
and tui are lower and upper bounds of the travel time of the
ith robot. The ith robot cannot reach its target sooner than
tli because of its speed limitation, and cannot reach its target
later than tui

based on the problem definition. We find the
velocity of the ith robot using the time derivative of (5) as

υi = γ̇i
∂ri
∂γi

= ki

m∑
d=1

(dαd,ii+ dβd,ij) γ
d−1
i (8)

As can be seen from (8), the velocity of each robot is a
function of ki and we can adjust the speed of the robots using
this parameter without changing the robots’ paths.

In order to solve the conflict resolution problem of MMRs,
instead of checking the safety constraints among robots con-
stantly, which is computationally expensive, we first find all
the potential collision zones and then find collision-free motion
conditions.

After finding the paths of the robots, there are some inter-
sections in the environment, referred to as potential collision
zones. Figure 3a shows potential collision zones for five
robots as an example, in which the potential collision zone
between the ith and jth robot is denoted by cij . For collision-
free motion, we need to ensure all the robots maintain a
safe distance amongst each other only in potential collision
zones. To find potential collision zones, we find places in the
environment where the Euclidean distance between the ith and
jth robot is shorter than a safety radius, as shown in Fig. 3b,
i.e.,

‖ri(γi)− rj(γj)‖ ≤ ρij i, j = 1, ..., n and i 6= j (9)

where ri and rj designate the paths of the ith and jth robots,
respectively, and ρij is the safety radius between them. The
safety radius is determined based on the robots’ size. We
usually assign a value between one to three times of the
summation of the ith and jth robots’ bases to ρij .

We assume the potential collision zone, cij , is a circle
with a center located at rij , which is the intersection of ri
and rj , as shown in Fig 3b. This circle represents the area
where the ith and jth robots may collide (please see (9)).
To identify cij , we need to find rij . This intersection point
(rij) can be found from ‖ri − rj‖ = 0; however in some
cases, even though the intersection point does not exist, the
robots do not satisfy the safety constraints, e.g., c15 in Fig. 3a.
First, we obtain the borderlines of the collision zone (beyond
which the safety constraint is satisfied). These borderlines are
obtained by ‖ri − rj‖ = ρij and finding a set of solutions:
{(rji1 , rij1), (rji2 , r

i
j2

)}. Second, to obtain rij , we assume that
robots are moving on straight lines inside cij . This assumption
will not affect the position of rij significantly. In addition, a
safety margin will be considered in assigning the safety radius
ρij to compensate this assumption. Thus, rij is simply the
intersection of two straight lines connecting rji1 to rij1 and
rji2 to rij2 . Third, we assign the maximum of the distances
between rij and the points in {rji1 , rij1 , r

j
i2
, rij2} as the radius

of cij . Note that circle cij is the circumscribed circle of the
solution points with a center of rij .

After finding the potential collision zones, we propose a
condition for collision-free motion. To find this condition, we
relate γs of the ith and jth robots to each other in a potential
collision zone cij . Therefore, we find collision γs, γji and γij
of the ith and jth robots, respectively, where

rij ' ri(γji ) ' rj(γij) (10)

As mentioned, the potential collision point rij does not always
lie on the paths ri and rj . Consequently, rij , ri(γ

j
i ), and

rj(γ
i
j) are not necessarily the same point, although they are

very close. By having a set of solutions {γji , γij}, we relate γji
to γij by assuming a collision is occurring at time tij on rij .
From (7), we have

tij = γji /ki = γij/kj (11)

Therefore, for the potential collision zone cij using (9), (11)
and

γij = γji kj/ki (12)

we obtain a condition for collision-free movement in the
potential collision zone cij as follows:

‖ri(γji )− rj(γji kj/ki)‖ > ρij

∀i, j ∈ {1, ..., n} and i 6= j (13)

where the condition expressed in (13) is a sufficient condition
for collision-free movement of robots i and j. This condition
implies that only if the distance between the robots is larger
than their safety radius in the potential collision zones, there
will be no collision in the environment. Therefore, to guarantee
collision-free movement, (13) must be satisfied for all the
potential collision zones. The non-equality constraints given
by (13) constitute the conflict resolution for a MMR system.

In the solutions set of potential collision points, there are
some solutions which lie in the same potential collision zone,
i.e., there are duplicates of the zones. To find the unique
number of potential collision zones, we use the K-means
clustering algorithm. For every two robots, we initially find
np pairs of potential collision points, (γji , γ

i
j). We then use

Algorithm 1 to cluster the solutions and find a unique number
of potential collision zones with no overlap.

Algorithm 1 Clustering Algorithm for Finding Unique Poten-
tial Collision Zones: Cluster(γji , γ

i
j)

1: let c = 1, Dc = ∅
2: while maxDc < a and c ≤ np do
3: Classify pairs of (γji , γ

i
j) to c clusters using K-means

clustering algorithm
4: c⇐ c+ 1
5: end while

where a is the maximum acceptable distance of the points in
each collision zone’s cluster and is a small value ∼ 0.1. Large
a results in more overlap on the potential collision zones and
ultimately more duplicates. Dc is the set of distances between
each cluster point to the center of the cluster, and np is the
initial number of solutions of potential collision points, i.e.,
(10) for all i, j ∈ {1, ..., n}, found a priori in Section III-A.
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Fig. 4: Our proposed procedure for finding potential collision
zones by coordinating robots’ speeds.

A summary of our proposed strategy to find collision-free
motion constraints is presented in Fig. 4. The given steps in
the figure show that in order to find collision-free motion equa-
tions for robots i and j, we must first find potential collision
points in terms of γs. Next, we use the clustering algorithm to
eliminate the duplicates of these potential collision zones. At
the end, by having collision points in terms of γs, we propose
collision-free motion as a function of the velocity rates ki and
kj . In the next step of conflict resolution, we find optimal
velocity rates for all the robots in an optimization problem,
which will be explained in the next section.

B. Motion-liveness

Motion-liveness enables MMRs to reach their targets with-
out stopping while in movement, resulting in smooth motion
of MMRs. Therefore, our attempt is to avoid any collision in
the system and maximize the speed of the robots. To do so,
we construct an optimization problem where the objective is
to maximize the speeds of the robots on smooth paths, as
discussed earlier, while avoiding conflicts. Maximizing the
speed of the robots satisfies motion-liveness in addition to
getting the robots to reach their targets in a short amount of
time. To achieve this, it is sufficient to maximize kis, i.e.,
minimizing robots’ traveling time k−1i , subject to collision-
free motion condition expressed in (13)

minimize
k1,...,kn

n∑
i=1

ki
−1 (14)

subject to: ‖ri(γji )− rj(γji kj/ki)‖ > ρij (15)
t−1ui
≤ ki ≤ t−1li (16)

i, j = 1, ..., n i 6= j

where tui and tli are explained in (7), and γji and γij are found
in Section III-A. Solving an optimization problem with non-
linear constraints is more computationally expensive compared

to a linear constrained problem, especially for large-scale
problems. We convert this optimization problem into a new
one by enforcing the non-linear constraints stated in (13) to
the objective function with a penalty factor of λ

minimize
k1,...,kn

n∑
i=1

ki−1 + λ

n∑
j=i

f2ijU(fij)

 (17)

subject to: (16)

where U is the step function, λ is the penalty factor for the
collision-free movement constraints and is a large number ('
1015), and

fij ≡ ρij − ‖ri(γji )− rj(γji kj/ki)‖ (18)

When the constraints stated in (13) are not satisfied, i.e.,
fij ≥ 0, U(fij) = 1, the objective value (given by (17))
becomes large and the solution becomes infeasible. When
the constraints are satisfied, i.e., fij < 0, then U(fij) = 0
and the solution becomes feasible. In summary, if (17) has a
feasible solution, collision-free motion with motion-liveness is
guaranteed.

Since our optimization problem is highly constrained and
multi-modal, one of the most efficient methods for solving
it is to use meta-heuristic algorithms. We use three of the
well-known meta-heuristic optimization methods: Genetic Al-
gorithm (GA) [49], Particle Swarm Optimization (PSO) [50],
and Simulated Annealing (SA) [51].

In dynamic environments with moving obstacles, a strategy
is required to generate collision-free motion while performing
obstacle avoidance. A sample of a dynamic environment and
potential collision zones are illustrated in Fig. 5. When there
are moving obstacles in the environment, the robots’ paths
have to be updated to avoid obstacle collision (path re-
planning). Consequently, some new potential collision zones
will be created in the environment. The dotted paths in Fig. 5
show the robots’ paths before the obstacles have moved, and
solid lines illustrate the updated paths. For these dynamic envi-
ronments, on-line conflict resolution is required to overcome
new potential collision zones (blue circles in Fig. 5) which
result from path re-planning.

In our strategy of conflict resolution for dynamic envi-
ronments, we find γs where the paths of the robots collide
with obstacles. Next, we perform the following steps: a)
resolve conflicts before facing new obstacles, b) re-plan the
robot paths to avoid the obstacles, c) find the new potential
collision zones, and d) resolve new conflicts according to
(17). Algorithm 2 shows the details of our proposed dynamic
conflict resolution.

C. An Innovative Algorithm for Fast Conflict Resolution

The conflict resolution problem in cluttered environments is
computationally expensive. The computational cost increases
exponentially with an increase in the number of robots. In real-
time applications, having fast conflict resolution is necessary.
We propose a novel algorithm of Environment Clustering (EC)
that can resolve the conflicts for cluttered environments with
very low computational cost.
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Fig. 5: Potential collision zones in a dynamic environment
with moving obstacles.

Algorithm 2 Conflict Resolution for Dynamic Environments

Input: Io
Output: k1, ..., kn

Perform conflict resolution: find k1, ..., kn by solving (17)
for robots i = 1, ..., n do

Solve min ‖ri(γoi )− Io‖ = ρij for γoi ∈ [0, 1]
Find collision time: toi = γoi /ki
Path re-planning ri (using (4)) to bypass the oth obsta-

cle, on γi ∈ [γoi , 1]
end for
Find h : the index of the first robot that collides with the
obstacle: toh = min{to1, ..., ton}
Perform conflict resolution on γi ∈ [kit

o
h, 1],∀i ∈ {1, ..., n}:

find k1, ..., kn by solving (17)
where Io is the set of border coordinates of the oth obstacle,
γoi is γi when the ith robot collides the obstacle, toi is time
when ith robot collides with the obstacle, and h is the index
of the first robot that collides with the obstacle.
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E21 E22 E23

E31 E32 E33

(a) Division of robots’ paths in
environment clustering.
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(b) Division of the ith robot’s path
in environment cluster Eps.

Fig. 6: Environment clustering.

Our proposed method is to cluster the environment into
smaller environments and resolve the conflicts of each cluster
separately. The procedure for this clustering algorithm is as
follows:
• First, we divide the environment into p× s smaller envi-

ronments. As an example, 3×3 environment clusters are
shown in Fig. 6a. The parameters p and s are determined
depending on the environment complexity and required
accuracy2.

• Second, for each robot ri, we find [inγi,
out γi)ps in

ri which are the boundaries of γi of the ith robot in
environment cluster Eps. These boundaries specify the
path section of the ith robot in Eps as illustrated in Fig.
6b, i.e., when γi ∈ [inγi,

out γi)ps the ith robot is in Eps.
To find the boundaries of γi in Eps we find the points
ri
(
inγips

)
and ri

(
outγips

)
where the borders of Eps

intersect ri as shown in Fig 6b.
• Third, we find potential collision zones’ boundaries in

each environment cluster Eps as

‖ri(γi)− rj(γj)‖ = ρij

γi ∈ [inγi,
out γi)ps

γj ∈ [inγj ,
out γj)ps (19)

For each individual environment, we subsequently find
the potential collision zones constraints of collision-free
motion given by (13).

• Forth, we execute conflict resolution on each independent
environment.

The main advantage of using this approach is that parallel
programming techniques can be exploited, thus reducing exe-
cution time.

D. MMRs Motion Constraints

This section presents the procedure of generating feasible
paths for the robots considering velocity and non-holonomic
constraints. Based on the velocity equation found in (8), the
components of the velocity in x and y directions are

ẋi = ki

m∑
d=1

(
dαdiγ

d−1
i

)
, ẏi = ki

m∑
d=1

(
dβdiγ

d−1
i

)
(20)

The maximum velocity of the robot is

max
γ∈[0,1]

υi = max
γ∈[0,1]

√
ẋ2 + ẏ2 ≤ RiΩi (21)

where Ri is the wheel radius of the ith robot, and Ωi is the
maximum angular velocity of the ith robot’s wheels. Then from
(20) with the given upper bound for ki ≤ t−1li from (7), we
rewrite (21) as

max
γ∈[0,1]

√(∑m
d=1

(
dαdiγ

d−1
i

))2
+
(∑m

d=1

(
dβdiγ

d−1
i

))2
≤ RiΩitli (22)

2Although increasing the number of clusters will improve the computation
efficiency, based on our observations, increasing the number of clusters after
a certain number (e.g., more than 4 by 4 in our problem) results in potential
collision zones overlap among the clusters and duplicates of the zones. It is
obvious that duplicates of potential collision zones increase the computation.
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Start
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Fig. 7: Proposed conflict resolution method for cluttered
environments.

To find the ri’s coefficients α0i, ..., αmi, β0i, ..., βmi, we fit
(5) on the desired path points, P i, subject to the velocity con-
straints over the robots’ paths. Spline fitting is an optimization
problem that minimizes the distance between the path ri and
the desired points P i of the ith robot

minimize
α0,i,...,αm,i,β0,i,...,βm,i

||ri − P i||+ max
γi

g(ri) (23)

subject to: (22)

The desired orientation of the robot is found by the non-
holonomic constraint as

θi = tan−1(ẏi/ẋi) (24)

Equations (23) and (24) give the desired position and orien-
tation of the ith robot, which satisfy both velocity and non-
holonomic constraints and will be used for robot control using
the controller developed in [52].

Our complete conflict resolution method is shown in the
given flow chart in Fig. 7. We first generate the robots’
paths by enforcing the robots’ and environments’ constraints.
Thereafter, we execute the conflict resolution algorithm, which
is as follows: cluster the environment and subsequently find
the potential collision zones. Using these collision zones, the
algorithm determines if there are moving obstacles in the
environment. If so, the dynamic algorithm will be performed,
otherwise, the collision-free constraints and the robots’ maxi-
mum speeds are found, and will be sent to the robots.

TABLE I: Optimization parameters used for conflict resolu-
tion.

GA PSO SA
Population size 150 Population size 100 Initial temperature 1000
Crossover rate 0.85 Cognitive attraction 0.6 Reannealing interval 200
Mutation rate 0.15 Social attraction 1.25
Pareto fraction 0.3 Generations 1000
Generations 30000

TABLE II: Run time of conflict resolution using the environ-
ment clustering algorithm.

Run Time (sec)

Number of robots
Number of
potential

Collision zones

No environment
clustering, (SA)

Clustering to
3× 3

environments,
(SA-EC)

20 196 0.92 0.63
60 1974 1.12 0.87

100 4357 1.46 1.23

IV. RESULTS AND DISCUSSION

A. Simulation Results

This section presents the simulation results using different
metaheuristic optimization techniques, GA, PSO and SA,
conflict resolution of a dynamic environment, and conflict res-
olution of cluttered environment using Environment Clustering
(EC).

MATLAB program on Intel (R) CoreTM i5-4690K with
3.50 GHz CPU is used to run the optimization algorithms
for conflict resolution. Table I shows the parameters used in
the implementation of the optimization algorithms.

1) A Large Number of Robots in Cluttered Environments:
We discuss the conflict resolution results in two perspectives:
(i) computational cost, and (ii) performance. In the first case,
we explore the run time for different algorithms which takes
to find collision-free motion. In the second case, we discuss
the performance of these optimization algorithms in finding
maximum velocities of MMRs moving collision-free. An
example of a cluttered environment can be seen in Fig. 10.

For case (i), computational cost perspective, results for
different numbers of robots using different optimization al-
gorithms are shown in Fig. 8. The axis on top of this

Number of robots
20 40 60 80 100

Ru
n 

tim
e 

(C
PU

 se
c)

10-1

100

101

102

103

104

PSO
GA
SA
SA-EC

Number of Potential Collision Zones
196 820 1974 3217 4357

Fig. 8: Run time of conflict resolution for cluttered environ-
ments using different optimization methods.
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figure denotes the number of potential collision zones in the
environment (e.g., for 60 robots the environment has 1974
potential collision zones). As can be seen the algorithm is
capable of solving the problem even for 100 of robots where
there are 4357 potential collision zones. We observed that SA
is the fastest method for conflict resolution and finds collision-
free movements of 100 robots in 1.46 seconds. GA is slightly
slower than SA, but it finds the solution in 4 minutes while
PSO takes 40 minutes. We also improved the run time by
combining SA with EC, which its results are discussed in
Section IV-A3.

For case (ii), performance perspective, as Fig. 9 shows GA
finds better solution which means robots have higher speeds
than the solutions found by SA and PSO. To compare the
performance of these algorithms, we introduce a performance
index called the average traveling time of the robots. We
plotted this index for the three optimization algorithms in Fig.
9. GA resulted in a faster motion of the robots compared to
SA and PSO.

2) Dynamic Environments: For dynamic environments with
moving obstacles, we implemented our conflict resolution
algorithm (Algorithm 2). Figure 10 illustrates a sample
dynamic environment with 30 robots and four obstacles. First,
as a result of conflict resolution, robots begin moving collision-
free, then, the obstacles enters causing all the robots’ that are
in contact with the obstacle re-plan their paths (updated paths
are shown in red dotted lines in Fig. 10b). As a result of re-
planning, new potential collision zones are created, and then
using SA we found collision-free motion in 0.35 seconds.

3) Environment Clustering: The computational times of
conflict resolution for three different numbers of robots with
Simulated Annealing and Environment Clustering (SA-EC)
are shown in Fig. 8. We clustered the environment to 3 × 3
environments. It is evident that the environment clustering
algorithm enables the conflict resolution problem to be solved
more quickly, 100 of robots in less than 1.23 seconds. The
computation time is decreased by up to 32% with SA-EC as
shown in Table II.
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Fig. 9: Average traveling time of the robots using different
optimization methods.
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Fig. 10: Results of conflict resolution in a dynamic environ-
ment.

B. Experimental Results

This section presents the implementation of conflict reso-
lution in an experimental setup of five non-holonomic mobile
robots. We developed a testbed to verify our methodologies
experimentally as well. Fig. 11 shows the diagram of our
experimental setup. We used five Arduino mobile robots
equipped with wireless Xbee modules for communication
among them and a computer. For measuring the robots’ posi-
tion and orientation, we used VICON system. The computed
outputs of our developed algorithm were sent to the robots
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Motion Planning

Xbee Wireless

Conflict Resultion

Coordinator
Vision System

Fig. 11: Experimental setup of multiple-mobile robots.

TABLE III: Experiments: parameters and results.

Parameter Value
Parameters used in experiment:

n number of robots 5
Number of potential collision zones 5
safety radius ρij for each two robots 30 cm
tli 2 sec
tui 10 sec

Experiment results:
Conflict resolution run time 0.2 sec
Objective function value 20
Minimum distance among the robots, measured during the experiment 40 cm
Average traveling time of the robots 4 sec

with wireless communications. The frequency of the sampling
rate of the wireless communication between the computer and
the modules (Xbee) is 100 Hz. The same frequency is used for
feedback with VICON system. The maximum speed of robots
is 0.65 m/s with the wireless communication range of 100 m.

Our environment, consisting of five robots with five collision
zones, is shown in Fig. 12. The robots’ paths which were found
based on the motion constraints explained in Section III-D,
are also shown in this figure. The safety radius among the
robots was 30 cm. Since SA was the fastest algorithm in the
simulations, we used it to perform the experiments. The results
showed that the algorithm can be successfully implemented
in real-time. The SA algorithm finds collision-free motion of
robots in 0.3 seconds.

Table IV presents the advantages of our conflict resolu-
tion approach in comparison to other works reported in the
literature. While some methods such as [16], [33] reported
scalability with a reasonable run time, very few considered live
motions [41], [42] or incorporated cluttered environments [16],
[24], [28]. Compared with [22], our method resolves MMRs
conflicts in cluttered environments with a significantly higher
number of intersections within a short run time. Although,
cluttered environments were addressed in [24], our method
proposed a new perspective to conflict resolution which is
scalable and guarantees robots motion-liveness. The run time
of [39] is less than other works; however, it should be noted
that [39] deals with a task assignment problem, which has
a different objective than ours. Using our developed strategy

TABLE IV: Comparisons of different approaches reported in
the literature.
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[28] ?a − − −
[47] ?a − − − −
[37] ?a − − −
[31] ?a ?a − − −
[16] 10 for 60 robots 2.3 − − −
[33] 0.38 for 30 robots 2.4 − − − −
[40] ?a − ?a 5
[42] ?a − − 4
[24] 0.05 for 30 robots 3 ?a − − 2
[27] 20 for 8 robots 3.07 − − 4
[41] 10b for 100 robots ?a − 6
[39] 0.1b for 100 robots ?a − − − 8
[22] 1.5 for 100 robots 1.5 − − − 3

Our method 1.23 for 100 robotsc 3.50 5

aNot reported.
bThe robots’ targets were unlabeled and being assigned to avoid intersec-

tions in these works. It is applicable to tasks with unlabeled robots without
individual targets. Therefore, they cannot be applied to this problem of conflict
resolution.

cThis is for a highly cluttered environment with 4357 potential collision
zones (please see the results presented in Table II).

we showed that one can generate collision-free motion for
a large number of robots - with thousands of intersections in
the robots’ paths- within only a few seconds (e.g., it takes less
than a second to find collision-free motion for 60 robots with
around 2000 path intersections, see Fig. 8). Our methodology
can solve the main themes of conflict resolution in terms
of scalability, motion-liveness, effectiveness in cluttered and
dynamic environments.

V. CONCLUSION

In this paper, we developed a new conflict resolution
method that guarantees motion-liveness for a large number of
robots in cluttered environments. We presented a mathematical
formulation for conflict resolution and constructed it as an
optimization problem that can be solved using meta-heuristic
optimization techniques. We used Genetic Algorithm (GA),
Particle Swarm Optimization (PSO), and Simulated Anneal-
ing (SA). Our extensive simulation results showed that our
approach is capable of solving conflict resolution problems es-
pecially for a large number of robots in cluttered and dynamic
environments. The simulation results for different numbers of
robots showed that SA gives the best results when compared
to GA and PSO. SA finds the collision-free motion for 100
robots in less than 1.23 seconds where there are 4357 potential
collision zones (robots’ path intersections) using an Intel core-
i5 3.5 GHz CPU while other methods took significantly longer.
Conflict resolution using GA resulted in a faster motion of the
robots in the cluttered environment; around 60% faster motion
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(a) Potential collision-zones and the paths of the robots.

(b) t = 0.5 sec. (c) t = 1 sec. (d) t = 2 sec.

(e) t = 3 sec. (f) t = 4 sec. (g) t = 5.5 sec.

Fig. 12: Experimental results of five robots conflict resolution.

than results obtained by using SA and PSO. This algorithm
can be easily implemented in on-line conflict resolution while
avoiding obstacles. We proposed an innovative environment
clustering technique for real-time implementations as well.
By clustering the environment, we reduced the execution time
down by 32%. Using this clustering algorithm, we divided the
conflict resolution problem into independent problems where
parallel programming techniques can be exploited. We also
validated our proposed methods using an experimental testbed
that we developed. The experimental results verified that our
approach is applicable to real-time applications. While the
experiments were limited to 5 robots, simulations provide ev-
idence that our strategy can also be adapted for large numbers
as well. We compared our approach with other methods in the
literature and showed not only our approach can solve the main
themes of conflict resolution in terms of scalability, motion-
liveness, effectiveness, it is readily applicable in cluttered and
dynamic environments.

Our future work is focused on considering the dynamics of
the mobile robots in solving the conflict resolution problem.
This formulation can also easily be extended from planar to
aerial vehicles.
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APPENDIX A

This appendix presents a formulation of collision-free mo-
tion constraint by using a quadratic γi. We define a quadratic
γi function for the ith robot as γi = ki,1t

2 + ki,2t, where ki,1
and ki,2 are γi’s coefficients, and t is time. By following the
same procedure defined in the paper, we derive a collision-
free motion constraint. Assume a collision at ri(γi(tij)) '
rj(γj(tij)) ' rij , we relate collision γs, γji = γi(tij) and

γij = γj(tij) of the ith and the jth robots at the collision
point rij , respectively,

γji = ki,1t
2
ij + ki,2tij (25)

γij = kj,1t
2
ij + kj,2tij (26)

By finding collision time from equations (25) and (26), we
write the following equation to relate γji and γij at the collision
time

tij =
−ki,2 ±

√
k2i,2 + 4ki,1γ

j
i

2ki,1
=
−kj,2 ±

√
k2j,2 + 4kj,1γij

2kj,1
(27)

Then, by solving (27), we find γij

γij =
k2i,2kj,1 − ki,1ki,2k2j,1kj,2 + 2ki,1kj,1γ

j
i ± σij

2k2i,1
(28)

where σij is

σij =
√

4γji k
3
i,1k

2
j,2 + k2i,1k

2
i,2k

4
j,1k

2
j,2 − 8γji k

2
i,1ki,2k

3
j,1kj,2

−2ki,1k3i,2k
3
j,1kj,2 + 4γji ki,1k

2
i,2k

2
j,1 + k4i,2k

2
j,1 (29)

Thus, the collision-free motion of the ith and jth robots is

||ri(γji )−rj
(
k2i,2kj,1 − ki,1ki,2k2j,1kj,2 + 2ki,1kj,1γ

j
i ± σij

2k2i,1

)
||

> ρij ∀i, j ∈ {1, ..., n}, i 6= j (30)

where σij is expressed in (29). This constraint is a function of
ki,1, ki,2, kj,1 and kj,2, to be found for collision-free motion.

It can be easily seen that using this quadratic function of
time will make the methodology complicated and computa-
tionally expensive.



11

REFERENCES

[1] W. Hu, L. Liu, and G. Feng, “Consensus of linear multi-agent systems by
distributed event-triggered strategy,” IEEE Transactions on Cybernetics,
vol. 46, pp. 148–157, Jan 2016.

[2] D.-H. Lee, S. Zaheer, and J.-H. Kim, “Ad hoc network-based task
allocation with resource-aware cost generation for multirobot systems,”
IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6871–
6881, 2014.

[3] H. I. Son, A. Franchi, L. Chuang, J. Kim, H. Bulthoff, and P. Giordano,
“Human-centered design and evaluation of haptic cueing for teleoper-
ation of multiple mobile robots,” IEEE Transactions on Cybernetics,,
vol. 43, pp. 597–609, April 2013.

[4] Y. Su and J. Huang, “Cooperative output regulation with application to
multi-agent consensus under switching network,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 42, pp. 864–
875, June 2012.

[5] M. U. Khan, S. Li, Q. Wang, and Z. Shao, “Cps oriented control design
for networked surveillance robots with multiple physical constraints,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, pp. 778–791, May 2016.

[6] X. Wang, J. Qin, and C. Yu, “Iss method for coordination control of
nonlinear dynamical agents under directed topology,” IEEE Transactions
on Cybernetics, vol. 44, pp. 1832–1845, Oct 2014.

[7] C. Yu, M. Zhang, F. Ren, and G. Tan, “Multiagent learning of coor-
dination in loosely coupled multiagent systems,” IEEE Transactions on
Cybernetics, vol. 45, pp. 2853–2867, Dec 2015.

[8] C. Teulire, E. Marchand, and L. Eck, “3-d model-based tracking for
uav indoor localization,” IEEE Transactions on Cybernetics, vol. 45,
pp. 869–879, May 2015.

[9] W. Li, “Notion of control-law module and modular framework of
cooperative transportation using multiple nonholonomic robotic agents
with physical rigid-formation-motion constraints,” IEEE Transactions on
Cybernetics, vol. 46, pp. 1242–1248, May 2016.

[10] S. Wen, W. Zheng, J. Zhu, X. Li, and S. Chen, “Elman fuzzy
adaptive control for obstacle avoidance of mobile robots using hybrid
force/position incorporation,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C: Applications and Reviews, vol. 42, pp. 603–608,
July 2012.

[11] S. Hoshino and K. Maki, “Safe and efficient motion planning of multiple
mobile robots based on artificial potential for human behavior and robot
congestion,” Advanced Robotics, vol. 29, no. 17, pp. 1095–1109, 2015.

[12] H. Poonawala, A. Satici, H. Eckert, and M. Spong, “Collision-
free formation control with decentralized connectivity preservation for
nonholonomic-wheeled mobile robots,” IEEE Transactions on Control
of Network Systems, vol. 2, no. 2, pp. 122–130, 2015.

[13] T.-T. Han and S. S. Ge, “Styled-velocity flocking of autonomous vehi-
cles: A systematic design,” IEEE Transactions on Automatic Control,
vol. 60, no. 8, pp. 2015–2030, 2015.

[14] V. Digani, L. Sabattini, C. Secchi, and C. Fantuzzi, “Hierarchical traffic
control for partially decentralized coordination of multi agv systems
in industrial environments,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA), (Hong Kong, China), pp. 6144–6149,
May 2014.

[15] M. U. Khan, S. Li, Q. Wang, and Z. Shao, “Formation control and
tracking for co-operative robots with non-holonomic constraints,” J.
Intell. Robotics Syst., vol. 82, pp. 163–174, Apr. 2016.

[16] M. Cap, P. Novak, A. Kleiner, and M. Selecky, “Prioritized planning
algorithms for trajectory coordination of multiple mobile robots,” IEEE
Transactions on Automation Science and Engineering, vol. 12, no. 3,
pp. 835–849, 2015.

[17] M. Defoort and K. C. Veluvolu, “A motion planning framework with
connectivity management for multiple cooperative robots,” Journal of
Intelligent & Robotic Systems, vol. 75, no. 2, pp. 343–357, 2014.

[18] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of
multi-robot coordination,” International Journal of Advanced Robotic
Systems, vol. 10, p. 399, 2013.

[19] M. Bristow, L. Fang, and K. W. Hipel, “Agent-based modeling of
competitive and cooperative behavior under conflict,” IEEE Transactions
on Systems, Man, and Cybernetics: Systems, vol. 44, pp. 834–850, July
2014.

[20] G. Hollinger, S. Singh, et al., “Multirobot coordination with periodic
connectivity: Theory and experiments,” IEEE Transactions on Robotics,
vol. 28, no. 4, pp. 967–973, 2012.

[21] S. Kloder and S. Hutchinson, “Path planning for permutation-invariant
multirobot formations,” IEEE Transactions on Robotics, vol. 22, no. 4,
pp. 650–665, 2006.

[22] M. Peasgood, C. M. Clark, and J. McPhee, “A complete and scalable
strategy for coordinating multiple robots within roadmaps,” IEEE Trans-
actions on Robotics, vol. 24, no. 2, pp. 283–292, 2008.

[23] J. Chen and D. Sun, “Coalition-based approach to task allocation
of multiple robots with resource constraints,” IEEE Transactions on
Automation Science and Engineering, vol. 9, no. 3, pp. 516–528, 2012.

[24] M. Hoy, A. S. Matveev, and A. V. Savkin, “Collision free cooperative
navigation of multiple wheeled robots in unknown cluttered environ-
ments,” Robotics and Autonomous Systems, vol. 60, no. 10, pp. 1253–
1266, 2012.

[25] D. Zhu, H. Huang, and S. Yang, “Dynamic task assignment and path
planning of multi-auv system based on an improved self-organizing
map and velocity synthesis method in three-dimensional underwater
workspace,” IEEE Transactions on Cybernetics, vol. 43, pp. 504–514,
April 2013.

[26] R. Cui, B. Gao, and J. Guo, “Pareto-optimal coordination of multiple
robots with safety guarantees,” Autonomous Robots, vol. 32, no. 3,
pp. 189–205, 2012.

[27] D. Hennes, D. Claes, W. Meeussen, and K. Tuyls, “Multi-robot collision
avoidance with localization uncertainty,” in Proceedings of the 11th In-
ternational Conference on Autonomous Agents and Multiagent Systems-
Volume 1, pp. 147–154, International Foundation for Autonomous
Agents and Multiagent Systems, 2012.

[28] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha, “Reciprocal
n-body collision avoidance,” in Robotics research, pp. 3–19, Springer,
2011.

[29] L. W. Chen and P. C. Chou, “Big-cca: Beacon-less, infrastructure-
less, and gps-less cooperative collision avoidance based on vehicular
sensor networks,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. PP, no. 99, pp. 1–11, 2015.

[30] H.-T. Zhang, Z. Cheng, G. Chen, and C. Li, “Model predictive flocking
control for second-order multi-agent systems with input constraints,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62,
no. 6, pp. 1599–1606, 2015.

[31] E. Roszkowska and S. Reveliotis, “A distributed protocol for motion
coordination in free-range vehicular systems,” Automatica, vol. 49, no. 6,
pp. 1639–1653, 2013.

[32] F. Pasqualetti, A. Franchi, and F. Bullo, “On cooperative patrolling: Op-
timal trajectories, complexity analysis, and approximation algorithms,”
IEEE Transactions on Robotics, vol. 28, no. 3, pp. 592–606, 2012.

[33] A. Colombo and D. Del Vecchio, “Least restrictive supervisors for inter-
section collision avoidance: A scheduling approach,” IEEE Transactions
on Automatic Control, vol. 60, no. 6, pp. 1515–1527, 2015.

[34] L. Pallottino, V. G. Scordio, A. Bicchi, and E. Frazzoli, “Decentralized
cooperative policy for conflict resolution in multivehicle systems,” IEEE
Transactions on Robotics, vol. 23, no. 6, pp. 1170–1183, 2007.

[35] Z.-H. Mao, D. Dugail, and E. Feron, “Space partition for conflict
resolution of intersecting flows of mobile agents,” IEEE Transactions
on Intelligent Transportation Systems, vol. 8, no. 3, pp. 512–527, 2007.

[36] J. Alonso-Mora, T. Naegeli, R. Siegwart, and P. Beardsley, “Collision
avoidance for aerial vehicles in multi-agent scenarios,” Autonomous
Robots, vol. 39, no. 1, pp. 101–121, 2015.

[37] S. A. Reveliotis and E. Roszkowska, “Conflict resolution in free-
ranging multivehicle systems: A resource allocation paradigm,” IEEE
Transactions on Robotics, vol. 27, no. 2, pp. 283–296, 2011.

[38] Y. Ma, H. Wang, and M. Zamirian, “A novel approach for multiple
mobile objects path planning: Parametrization method and conflict
resolution strategy,” Physics Letters A, vol. 376, no. 4, pp. 377–386,
2012.

[39] M. Turpin, N. Michael, and V. Kumar, “Capt: Concurrent assignment and
planning of trajectories for multiple robots,” The International Journal
of Robotics Research, vol. 33, no. 1, pp. 98–112, 2014.

[40] E. Ferrera, A. R. Castano, J. Capitán, P. J. Marrón, and A. Ollero, “Multi-
robot operation system with conflict resolution,” in ROBOT2013: First
Iberian Robotics Conference, pp. 407–419, Springer, 2014.

[41] M. Turpin, K. Mohta, N. Michael, and V. Kumar, “Goal assignment
and trajectory planning for large teams of interchangeable robots,”
Autonomous Robots, vol. 37, no. 4, pp. 401–415, 2014.

[42] J. Snape, J. Van den Berg, S. J. Guy, and D. Manocha, “Smooth
and collision-free navigation for multiple robots under differential-drive
constraints,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, Citeseer, 2010.

[43] A. Tuncer and M. Yildirim, “Dynamic path planning of mobile robots
with improved genetic algorithm,” Computers & Electrical Engineering,
vol. 38, no. 6, pp. 1564–1572, 2012.



12

[44] R. Kala, “Multi-robot path planning using co-evolutionary genetic pro-
gramming,” Expert Systems with Applications, vol. 39, no. 3, pp. 3817–
3831, 2012.

[45] Y. Zhang, D.-W. Gong, and J.-h. Zhang, “Robot path planning in un-
certain environment using multi-objective particle swarm optimization,”
Neurocomputing, vol. 103, pp. 172–185, 2013.

[46] Q. Xu, “Collision avoidance strategy optimization based on danger
immune algorithm,” Computers & Industrial Engineering, vol. 76,
pp. 268–279, 2014.

[47] J.-H. Liang and C.-H. Lee, “Efficient collision-free path-planning of
multiple mobile robots system using efficient artificial bee colony
algorithm,” Advances in Engineering Software, vol. 79, pp. 47–56, 2015.

[48] R. Raja, A. Dutta, and K. Venkatesh, “New potential field method for
rough terrain path planning using genetic algorithm for a 6-wheel rover,”
Robotics and Autonomous Systems, vol. 72, pp. 295–306, 2015.

[49] K. Deb, “An efficient constraint handling method for genetic algorithms,”
Computer Methods in Applied Mechanics and Engineering, vol. 186,
no. 24, pp. 311 – 338, 2000.

[50] R. C. Eberhart and Y. Shi, “Particle swarm optimization: developments,
applications and resources,” in Proceedings of the 2001 Congress on
Evolutionary Computation, 2001., vol. 1, pp. 81–86, IEEE, 2001.

[51] R. Eglese, “Simulated annealing: a tool for operational research,”
European journal of operational research, vol. 46, no. 3, pp. 271–281,
1990.

[52] A. De Luca, G. Oriolo, and M. Vendittelli, “Control of wheeled mobile
robots: An experimental overview,” in Ramsete, pp. 181–226, Springer,
2001.

Mohammadali Shahriari (S15) received the B.Sc.
degree in electrical engineering from the Iran Uni-
versity of Science and Technology, Tehran, Iran,
in 2011 and the M.A.Sc. degree in mechatronics
engineering from the Sharif University of Technol-
ogy, Tehran, Iran, in 2013. He is currently working
toward the Ph.D. degree in the School of Engineer-
ing, University of Guelph, Guelph, ON. His research
interests include multiple mobile robots, intelligent
control, optimization, and nonlinear control with
applications to robotics systems.

Mohammad Biglarbegian (S07-M’??-SM??) re-
ceived the B.Sc. degree (with honors) in mechanical
engineering from the University of Tehran, Tehran,
Iran, in 2002, the M.A.Sc. degree in mechanical
engineering from the University of Toronto, Toronto,
ON, and the Ph.D. degree in the Department of
Mechanical and Mechatronics Engineering, Univer-
sity of Waterloo, Waterloo, ON. He is currently an
Associate Professor with the School of Engineering
Engineering, University of Guelph, Guelph, ON. His
research interests include intelligent control, type-2

fuzzy logic systems and control, and nonlinear control with applications to
mechatronics systems.


