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Abstract—1In this paper the path planning of robots is
formulated in the context of an optimization framework. It
is shown that generating motion trajectories for mobile robots
in real environment is cast into a non-convex problem. Global
optimization techniques in the non-convex framework are thus
exploited to obtain the desired trajectories. The approach pre-
sented in this paper can easily take the robot speed limitations
into consideration and hence is more effective than other well-
known existing techniques. Simulation results are presented to
demonstrate how robot trajectories are obtained. It is found that
using the proposed methodology herein results in more realistic
solutions for mobile robots path planning. Trajectory generation
using optimization with non-convex constraints is an important
move forward toward efficient path planning algorithms. Thus,
results of this paper are of great significant especially in real
experiments.

I. INTRODUCTION

Path planning is an important aspect in mobile robot
research. Sampling based techniques such as probabilistic
road map (RPM) and Rapidly-exploring Random Trees
(RRT) have gained popularity amongst roboticists because
of their efficiency in certain applications [1]. Amongst the
recently developed sampling-based algorithms, RRT is the
most well-known. This algorithm expands the search in all
directions and as such its efficiency is also limited because
distribution of the points is entirely random without any
clear objective towards the goal. Moreover, for complicated
kinodynamic constraints the RRT algorithm becomes inef-
ficient [3]. They also suffer from generating non-smooth
path [5] and there are attempts to improve this method [4].
Other popular techniques such as potential field, although
very efficient, suffer from the local minima problem. In
summary, the existing probabilistic approaches require the
intelligence and vision required to clear a feasible solution
in a timely manner. Implementation of those approaches
in dynamic environments is another concern that should
also be considered. Alternative methods for path planning
are optimization techniques that formulate the trajectory
generation as an optimization problem. Doing so will enable
taking into account non-holonomic robot constraints. Control
techniques such as optimal control and model predictive
control (MPC) have been used to generate trajectories for
UAVs and robots. Particularly, MPC has recently become
an attractive tool for planning and navigation [8]. In general,
obstacles are non-convex. Hence, path planning involves with
non- convex constraints. However, nonlinear MPC strate-
gies induce non-convexity in their structures and thus are
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known to suffer from the drawback of the local minima
problem [9]-[10]. Most recently, there have been attempts to
tackle this issue using other complementary methods such
as sampling based MPC [13]. However, achieving a globally
optimal solution depends on the sample points. Thus, the
computational time required using cluttered environments is
expected to be significant. Due to this limitation, it remains
an open question if these strategies can be efficient for such
environments; especially for systems requiring fast response.
Recently, research have been dedicated on the development
of efficient algorithms for the deployment of multiple robots.
In [12] a solution for Voronoi coverage of multiple robots
was presented for environments with non-convex polygons.
The proposed solution combines classical as well as path
planning algorithms for the motion of the robots. The
methodology has been developed for static environments
and in the experiments only simple obstacles (triangles)
have been used. Most recently, Schwager et al. [11] unified
geometric, probabilistic, and potential field approaches for
multiple robots and showed that these strategies are related to
a same cost function. Accordingly, controllers were designed
to converge to the local minimum of the proposed function.
The closing conclusion of their paper is that the multi robot
deployment in fact requires non-convex optimization. In the
literature, researchers have attempted optimal control and
model predictive control (MPC) to generate trajectories for
UAVs and robots. However, trajectory generation, as will be
shown in this section, is a non-convex problem and to find
global solutions, it must be solved using global optimization.
This will also answers the local minima problem. Recently,
there has been interest in using global optimization to tackle
the path planning of mobile robots [6]. However, the existing
approaches do not consider non-holonomic robot or non-
convex environmental constraints. The benefit of finding the
trajectories using the proposed framework allows one to
formulate other similar problems (with even different and
difficult constraints); hence, providing a more general theme
for trajectory generation.

The organization of this paper is as follows: Section
IT reviews the most well-known path planning algorithms.
Sections III and IV present our general approach for path
planning using optimization, Section V provides simulations,
and Section VII concludes the paper.

II. PATH PLANNING: REVIEW

Path planning for robot manipulators and mobile robots is
one of the key concepts in robotics research. Path planning
is defined as finding trajectories that guides the robot from



starting point to the goal while avoiding obstacles, see Figure
1. In the literature, numerous algorithms for path planning
have been proposed. This section reviews the most popular
algorithms used in robotics.

A. Potential Fields

Potential fields approach is probably the most widely
adopted path planning algorithm and it was first proposed by
Khatib [14] because of their simplicity have been extensively
applied; however, this approach suffers from the drawbacks
of local minima. Moreover, to effectively navigate a robot to
a goal, the parameters of the potential functions need to be
tuned which is not a straightforward task.

B. Probabilistic Road Map (PRM)

Another well-known approach is probabilistic road map
(PRM) that has gained significant popularity amongst robo-
tists. Although its simplicity, this approach is plagued by a
significant amount of time that is required for collision avoid-
ance checking; hence, making it computationally very expen-
sive. Furthermore, the PRM method is ineffective for some
environments such as constrained surfaces. Over the years,
various complementary algorithms have been developed to
address the limitations of this algorithm. Nevertheless, due
to the sampling-based nature of this algorithm which almost
blindly searches for a feasible trajectory, it lacks the intelli-
gence that is necessary for trajectory generation. As a result,
the applicability of this approach especially in real-time as
well as in multi-robots is very limited.

C. Rapidly-exploring Random Trees (RRT)

Most recently, another sampling-based technique, Rapidly-
exploring Random Trees (RRT) algorithm, has been de-
veloped and shown to be efficient for certain applications.
This algorithm randomly samples points from a workspace
and creates motion trajectories in various directions that
ultimately results in a feasible solution. While this algo-
rithm, unlike PRM, expands the search in all directions, its
efficiency is also limited because distribution of the points is
entirely random without any clear objective towards the goal.
Also, for difficult kinodynamic constraints the applicability
of this approach is limited [3].

III. PATH PLANNING USING OPTIMIZATION

Our approach in the design of trajectory is based on the
optimization of a desired function, which is called objective,
i.e., energy, time to travel, etc. In this research, we focus
on minimizing the energy. We also assume that, without
loss of generality, objects/obstacles are circumscribed by
circles. Thus, we can formulate the trajectory generation in
the context of constrained optimization problem in which
obstacle avoidance our constraints.

Suppose the trajectories of the robot at a time instant, ¢
are designated as z(t) and y(¢). The control input for the
robot is also given by u = [u(t), v(t)], where u(t) and v(¢)
are control inputs for the left and right wheels of the robot,
respectively. Then the objective is expressed as

fonj = u?(t) +v3(2) (1)
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Fig. 1. Mobile robot path planning.
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To formulate the constraints, assume obstacle ‘%
cumscribed by a circle given by

(z—2:)’+(y—w)’=R; 2)

where x;, y; are the coordinates and R; is the radius of the
circle. Therefore, to avoid this obstacle, the trajectory must
satisfy

is cir-

(z—2:)* + (y—w)* > R} 3)

Now the optimization problem can be formulated as

Minimize — fop; = u?(t) + v3(t)
Subject to
T=u
P 4)
Vi:(z—2)?+ (y—vi)? > R?
Umin <u< Umazx
Umin S v S Umax

where Umin max and Umin,max are the bounds of the control
inputs. The first two constraints are related to the dynamics
and the third constraints, as discussed, is due to the obstacles.
It is useful to review the definition of a convex function.
Definition 1: [15] Given 0 < 6 < 1, a function f is
convex if for Va,y € f,

[0z + (1=0)y) =0f(x)+(1-0)f(y) )
The above definition is useful when path planning is formu-
lated as an optimization problem.

If the robots are non-holonomic, then extra constraints
must be added. Hence, the optimization problem can be
expressed as
Minimize Job; = u?(t) + v2(t)

Subject to
T=1u
y=v (6)
Vi:(z—2)® + (y —yi)® > R}
Umin S U S Umax
Umin S v S Umax
cos — ysind =0

where 6 is the angular position of the robot. The last
constraint appears because of the non-holonomic constraints.



If an optimization problem is convex, it is guaranteed to
achieve global solutions. There exists several numerical tech-
niques for solving convex optimization problems. It is easy to
see that (4) is a non-convex optimization problem, due to the
inequality required to avoid obstacles, i.e., (3). In real envi-
ronments, objects are non-convex, and consequently convex
optimization techniques cannot be exploited. Therefore, this
problem must be solved as a global nonlinear optimization
problem. Global optimization techniques such as simulated
annealing, branch and bound, or genetic algorithm can be
also readily adopted. Matlab nonlinear optimization toolbox
was used for solving this problem.

IV. NON-CIRCULAR OBJECTS

This section discusses the case where the objects are not
circular.

A. Ellipse
For an ellipse, the constraint is expressed as
(z—x:)*  (y—w)°
2 + B2 > 1 @)

B. Circumscribed circle

If the objects can be circumscribed with a circle,
circumscribed-circle, then the above methodology can be
easily adopted for those cases as well; the radius of each
circumscribed-circle is replaced with R; in (6).

For triangles, there exists an analytical expression for the
circumcircle. The circumcircle equation for a triangle with
vertices x;,y; (¢ = 1,2) is given by [16]

z? + y? z y 1
2 2
7+ Y7 1 oy 1

=0 8
Byl wy oy 1 ®
34y;  ws oys 1

Using the circumcircle as constraint, even though will result
in a desired solution it excludes the regions between the
exterior of a triangle and its circumscribed. To include those
regions, one may consider adding them as extra constraints
in formulating the optimization problem. To include the
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Fig. 2. A triangular obstacle with its circumscribed circles.

segments (shown with the hash in Fig. 2), the following

additional constraints should be considered:

(.’E _x0)2 + (y_y0)2 S Tee
xg—rcos(a+f) <z <xg+rcosa
yo +rsina <y <y + rsin(a + F) 9)

where 7., is the radius of the circumcircle. The first con-
straint given in (9) is convex and hence easier to solve. If
the

For a regular polygon with side a, it is known that the
radius of a circumscribed circle is given by

1 1
R = —csc <8O>
2 n

where n is the side number of the polygon. Therefore, it is
straightforward to solve the problem for this case as well.

(10)

C. Polygons

For a general concave polygon the circumscribed circle
may not always exist. However, one simple approach is to
divide the polygon into several triangles or regular polygon
and consider the corresponding circumcircles. This approach

Fig. 3. A concave polygon decomposed into triangle/polygon and their
corresponding circumscribed circles.

excludes the segments of the circumscribed circles that can
be viable points of a robot path. However, the simplicity
of this approach makes it very attractive and applicable to
concave polygons with complex geometries.

V. SIMULATIONS

This section presents the simulation results of path plan-
ning for several objects. Two sets of simulations are per-
formed and results are reported. The first set of simulations
present the path planning results in the absence of velocity
constraints. The second part presents the path planning
results considering velocity as constraints.

A. Path planning without velocity constraints

This part illustrates the simulation results of path planning
for several objects. We begin with a single circular object.
Simulations are run in two-dimensional environments. Given
the robot starting point at zop = 0,y = 0, the optimization
algorithm should find the robot path to navigate it to the goal



while avoiding a circular object located atx = 0.7,y = 0.2
with a radius of 0.13. Figure 4 demonstrates the output path
of the algorithm which effectively shows the strength of this
approach.
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Fig. 4. One circular object.

The next experiment is to have two circular objects in the
environment. Figure 5 shows the generated path for this case
and demonstrate the effectiveness of this approach.
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Fig. 5. Two circular objects.

When objects are polygons, based on the proposed
method, it is easy to find the path. To illustrate this, an
environment with three non-regular polygons are considered.
Figure 6 shows the path generated for the robot which can
effectively navigate the robot by solving the optimization
algorithm.

B. Path planning with velocity constraints

The second part is dedicated to simulation results when
the velocity of the robot is constrained. The max and
min velocities for the robot in x and y directions are as

Fig. 6. Polygon objects.

follows: Vyin = 0.07m/s, Vemax = 0.21m/s, Vymin =
—0.01m/s, Vymax = 1m/s. Figure 7 gives the generated
path for the robot considering the above constraints.
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Fig. 7. Path planning with velocity constraints.

Figure 8 compares the generated paths without and with
velocity constraints. As can be seen from the graph, the ve-
locity bounds impact the path generated by the algorithm. In
real-time experimentation for certain environments, the robot
speed are needed to be limited. Consequently, generating
path for a robot requires accounting for the speed limitations.
Therefore, the results of this section particularly is more
realistic and of great use for practical implementations. This
also showcases the potential of this approach, because it
can render path planning by incorporating the bounds of the
robot’s speed. Other path planning methods such as potential
field, RPM, and RRT all lack addressing velocity constraints
in generating a path, unless those original algorithms are
modified.
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Fig. 8. Path planning with/without velocity constraints.

VI. DISCUSSION

To further efficiently generate motion trajectories, it is
desirable to reduce the computational time required to run the
proposed algorithm. A very effective method is to partition
the working space into several sections and run the algorithm
in parallel. Doing so will reduce the computational complex-
ity of the problem significantly. Furthermore, it will reduce
the time needed to generate trajectories which is crucial
for dynamic environments. To accomplish this ‘local’ start-
goal are define in each subdivision and the path planning
algorithm for each domain is executed. The start and goal
of the subdivisions must be connected to each other to
render a feasible solution at the end. Figure 9 illustrates one
such partition and reflects the trajectories produces in each
domain.

Fig. 9. Path planning with/without velocity constraints.

VII. CONCLUSIONS

In this paper, the path planning of non-holonomic mobile
robots for non-convex obstacles are considered. The path
planning was formulated in the form of a constrained op-
timization problem, which as a result must be solved in
the context of global optimization. Simulations for some
simple non-convex obstacles demonstrated that the proposed
strategy is a viable solution for path planning with several
non-convex constraints that could also include robot velocity
bounds (if exist). The proposed method also does not suffer
from the drawback of local minima. As future work, the
proposed technique will be extended to more complex ge-
ometries. As well, different global optimization techniques
will be used to compare their computational complexity.
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