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Abstract—The tracking control problem of docked mobile1

robot systems is challenging due to their nonlinear and underac-2

tuated system dynamics as well as limited access to the required3

states of robots. The majority of the previously developed4

controllers in the literature are not robust to model uncertainties5

and are based on the assumption that full-states are accessible.6

In this paper, we develop a new robust tracking controller for a7

docked nonholonomic mobile robotic system with online velocity8

estimation. Our proposed controller, composed of sliding mode9

and robust saturation controllers, is developed to be robust10

to external disturbances, unmodeled dynamics and parameter11

uncertainties. To provide the required states for the controller,12

a model-aided particle filter estimator is developed to estimate13

the translational and rotational velocities. We perform several14

experiments to verify the effectiveness of our proposed control15

and estimation methodologies as well as the integrated system.16

We also compare our results with some conventional controllers17

developed in the literature, such as sliding mode control, and18

demonstrate its superior performance in terms of unmodeled dy-19

namics and parametric uncertainties. This comparison indicated20

that the steady state tracking performance increases by up to21

28.7% and 22.2% under parametric uncertainties and unmodeled22

dynamics, respectively, showing a significant improvement over23

the sliding mode control. Our proposed integrated (controller-24

estimator) method can be used in uncertain systems with good25

tracking performance where accessing velocity directly is not26

possible.27

Index Terms—Docked Mobile Robots, Robust Tracking Con-28

trol, Velocity Estimator.29

I. INTRODUCTION30

Multiple mobile robots have enhanced functionalities com-31

pared to a single robot while being more efficient and re-32

liable. More specifically, when multiple robots are capable33

of being docked to each other, their range of operations will34

significantly increase, e.g., ability to transport heavier loads,35

transfer powers amongst robots (as charging units), mobility36

in rough terrains, robustness to hardware failure, and self-37

perception. Some important applications of docked mobile38

robots (DMR) are seen in agriculture [1], search and rescue in39

rough terrains [2], luggage carriers [3], and manipulation and40

transportation of wire-like objects [4].41

Mechanical structures of docking mechanisms in DMR can42

be generally classified into two categories: on-axle and off-43

axle hitching. In DMR with on-axle hitching, the joint between44

the leader (front robot) and follower (rear robot) is located at45
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the center of the rear axle of the leader robot. In DMR with 1

off-axle hitching, the joint between the leader and follower 2

robots is located at a point away from the rear axle of the 3

leader robot. Although DMR with on-axle hitching has been 4

widely used in the literature [5], [6], it confines the mobility 5

and maneuverability of the system as reported in [7]. On 6

the other hand, off-axle offers better tracking performance 7

and it is capable of traveling in the narrower tracks due to 8

requiring smaller width of path, yet, its kinematic structure is 9

more complicated [8]. In this paper, we are concerned with an 10

off-axle hitched DMR because it outperforms the trajectory 11

tracking compared to on-axle hitched DMR. 12

In practical applications of robotic systems, robust control 13

methods, such as sliding mode control [9], [10], H∞ optimal 14

control [11], [12], and adaptive robust control [13], [14], 15

have been proven to outperform conventional controllers. To 16

increase the functionality of DMR, thus, it is necessary to 17

develop realistic robust motion controllers that can effectively 18

navigate such robots. Several motion controllers for DMR 19

have been developed, such as tracking control, stabilization, 20

assistance, backward driving control, and formation control. 21

Among the aforementioned control problems, tracking control 22

is most important in applications where autonomous motion 23

is desirable. Tracking control of DMR is complex due to 24

being underactuated as well as having nonlinear dynamics and 25

nonholonomic constraints. There are several attempts to tackle 26

this problem which can be categorized into kinematics-based 27

tracking control design [5], [15–19] and dynamics-based [6], 28

[20], [21]. While most of the developed tracking controllers 29

in the literature use only kinematics of DMR in their design, 30

incorporating dynamics is crucial to improve the robustness 31

of the DMR system especially when dimension of system is 32

large, the weight of robots/vehicles is considerable, or when 33

they carry or drop off heavy loads. Thus, a controller needs to 34

be designed taking into account the dynamics of the system 35

such that it is robust to unmodeled dynamics uncertainties. 36

Only a few papers have considered dynamics of DMR in 37

their control design [6], [21]. In [21], a linear quadratic 38

regulator based on the linearized dynamic model was proposed 39

for a tractor-trailer system. However, the robustness of the 40

controller is questionable because of using linearization. In [6], 41

a robust adaptive tracking controller was designed for a tractor- 42

trailer robotic system including robots’ dynamics. As was also 43

mentioned in [6], the controller is not robust to unmodeled 44

dynamics uncertainties, and it is based on the assumption that 45

all the control states are available without providing details 46
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on how to obtain them. In addition, tracking errors reported1

in [6] are rather large, and an on-axle trailer is considered2

which may limit maneuverability and adversely affect the3

tracking performance. In summary, the existing controllers in4

the literature for DMR are not robust to unmodeled dynamic5

uncertainties [6], [17], [18]. In this paper, we develop a6

new robust control method incorporating dynamics of DMR7

system, which is robust to model uncertainties (including8

unmodeled dynamics and parameter uncertainties) and without9

the assumption that full-state feedback is required.10

The majority of the developed controllers for DMR in11

the literature require accessing velocity to achieve good per-12

formance [5], [6], [15], [22], and hence their performance13

will be deteriorated when the required control states cannot14

be measured accurately. In real applications, accessing the15

velocity is difficult due to limitations in measuring velocity16

directly using sensors; and, even if measured, its signal would17

be noisy. This failure in measuring robots’ velocity leads to18

inefficient control performance. To make the controller more19

practical and applicable to a wider range of robotic tasks, it20

is necessary to develop an estimator to provide the necessary21

state(s) for the controller. Most of velocity estimators have22

been only developed for non-docked robots [23–26], and to23

the best of our knowledge, there is no work for DMR in24

the literature that has developed a methodology for estimating25

velocity and accordingly design a robust controller that can26

handle unmodeled uncertainties with good tracking error. Due27

to nonlinearities existing in the dynamics of DMR, a nonlinear28

estimator has to be developed that can accurately provide29

the required control states. In our paper, we develop a new30

estimator based on particle filter algorithm that fuses sensory31

data with the dynamics of DMR to provide a good estimate32

of translational and rotational velocities.33

In this paper, we develop (1) a new robust tracking con-34

troller composed of two controllers: sliding mode and robust35

saturation controller. The sliding mode controller is designed36

for tracking under disturbances yet it does not guarantee37

robustness under model uncertainties. The robust saturation38

controller handles the model uncertainties to achieve good39

robust tracking, (2) an estimator to provide the required40

states (for control) that cannot be measured directly. Our41

proposed methodology is general and can be extended (and42

applied) to any underactuated robotic system with nonlinear43

dynamics and nonholonomic constraints for trajectory tracking44

purposes. In summary, the contributions of the paper are as45

follows: (i) development of a new robust controller that can46

handle model uncertainties such as unmodeled dynamics and47

parametric uncertainties; useful when robots/vehicles carry48

uncertain loads, (ii) development of a new particle filter-based49

estimator to estimate rotational and translational velocities50

profile given the availability of position and orientation sensory51

data and a dynamic model of the system, (iii) validation of52

the performance of our developed integrated controller and53

estimator experimentally and demonstrate its effectiveness in54

comparison to some well-known controllers.55

The rest of the paper is organized as follows. Section II56

presents kinematics and dynamic models for a two-docked57

mobile robot system, Section III presents the control design,58

Table I: Parameters used to present DMR.

Symbol Definition
On geometric center of nth robot
COn center of mass of nth robot and docking link
(xn, yn) coordinates of nth robot’s center of mass
b half of the distance between wheels of robot
r radius of driving wheel
dn distance between nth robot geometric center and center of

mass
hn distance between the joint and center of mass of nth robot
mn mass of nth robot
mon mass of each docking link connected to nth robot
θn orientation of nth robot
vn translational velocity of nth robot
ωn rotational velocity of nth robot
In moment of inertia of nth robot and docking link
τR applied torque to the right wheel of leader robot
τL applied torque to the left wheel of leader robot

* n = 1, 2 corresponds to the leader and follower robots, respectively.

Section IV provides the development of the estimator, Sec- 1

tion V presents the simulation and experimental results, and 2

Section VI concludes the paper. 3

II. GOVERNING DYNAMICS 4

The DMR considered in this study is a two-docked mobile 5

robotic system shown in Fig. 1. This system includes a mobile 6

robot, defined as a leader (robot 1), docked to a follower robot 7

(robot 2) via rigid links and a flexible joint. The links and 8

joint allow the connected robots to have a relative rotational 9

motion with respect to each other. The nature of hitching in 10

the docking mechanism is considered to be off-axle. The two 11

mobile robots are nonholonomic differential drive identical to 12

each other but with different masses. The center of mass of 13

each robot has an offset (d1 and d2) with the geometric center 14

as shown in Fig. 1. The parameters of the considered DMR 15

are listed in Table I. The configuration of the DMR is given by 16

q = [x2, y2, θ2, θ1]T , where (x2, y2) is the coordinate of the 17

follower’s center of mass, and θ1 and θ2 are the orientations of 18

the leader and follower robots, respectively. The reason that we 19

can present the entire DMR system with only four generalized 20

coordinates is because the leader position can be found using 21

x1 = x2 + h2 cos θ2 + h1 cos θ1 (1)
y1 = y2 + h2 sin θ2 + h1 sin θ1. (2)

Two types of kinematic constraints exist in the system: (i) 22

docking constraints, and (ii) nonholonomic constraints. The 23

docking constraints indicate the relation between the leader 24

and follower robots’ translational and rotational velocities, and 25

are expressed as 26

v2 = v1 cos(θ1 − θ2) + ω1(h1 + d1) sin(θ1 − θ2)

ω2 =
1

2d2 + h2
[v1 sin(θ1 − θ2)− ω1(h1 + d1) cos(θ1 − θ2)].

(3)

The nonholonomic constraints are due to no-slip conditions 27

that do not allow robots to slide sideways and are given by 28

sin θ1ẋ2 − cos θ1ẏ2 − h2 cos(θ1 − θ2)θ̇2 + (d1 − h1)θ̇1 = 0

sin θ2ẋ2 − cos θ2ẏ2 + d2θ̇2 = 0. (4)
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The dynamics of DMR with nonholonomic constraints is1

described by2

M(q)q̈ + V (q, q̇)q̇ = B(q)τ −AT(q)λ (5)

in which M(q) ∈ <4×4 is the positive definite inertia matrix,3

V (q, q̇) ∈ <4×4 represents centrifugal and Coriolis terms,4

B(q) ∈ <4×2 is a transformation matrix, A(q) ∈ <2×4
5

is related to nonholonomic constraints, λ ∈ <2×1 is the6

constraint force vector, q is the generalized coordinates intro-7

duced previously, and τ ∈ <2×1 is the input vector indicating8

the applied torque required to drive the DMR. In this paper,9

because of kinematic constraints, we assumed that the follower10

robot is passive and cannot be actuated; thus, the input vector11

is τ = [τR, τL]T, where τR and τL are the applied torques of12

the right and left wheel of the leader robot, respectively.13

Assuming d1 and d2 are negligible, the matrices M(q),
V (q, q̇), B(q) and A(q) are found as

M(q) =

a11 0 a13 a14
0 a11 a23 a24
a13 a23 a33 a34
a14 a24 a34 a44



V (q, q̇) =


0 0 −h2(m1 +mo1 )c2θ̇2 −h1(m1 +mo1 )c1θ̇1

0 0 −h2(m1 +mo1 )s2θ̇2 −h1(m1 +mo1 )s1θ̇1

0 0 0 −h1h2(m1 +mo1 )s12θ̇1

0 0 h1h2(m1 +mo1 )s12θ̇2 0



B(q) =
1

r

 c1 c1
s1 s1
b −b

h2s12 h2s12

, A(q) =
[

s1 −c1 −h2c12 −h1
s2 −c2 0 0

]

where14

15
a11 = m1 +m2 +mo1

+mo2
, a13 = −h2(m1 +mo1

)s2,
a14 = −h1(m1 +mo1 )s1, a23 = h2(m1 +mo1 )c2,
a24 = h1(m1 +mo1

)c1, a33 = I2 + h2
2(m1 +mo1

),
a44 = I1 + h1h2(m1 +mo1 ), a34 = h1h2(m1 +mo1 )c12,
c12 = cos(θ1 − θ2), s12 = sin(θ1 − θ2),
c1 = cos θ1, c2 = cos θ2,
s1 = sin θ1, s2 = sin θ2.

16

To include the nonholonomic constraints, we introduce17

q̇ = J(q)z (6)

y
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Figure 1: DMR with off-axle hitching.

where z is given by [6] 1

z =

[
v1 cos(θ1 − θ2)

ω1

]
. (7)

Using (3), we propose J(q) to be as follows

J(q) =


cos θ2 h1 cos θ2 sin(θ1 − θ2)
sin θ2 h1 sin θ2 sin(θ1 − θ2)

1

h2
tan(θ1 − θ2) −

h1

h2
cos(θ1 − θ2)

0 1

 (8)

such that JT(q)AT(q) = 0. Therefore, by substituting (6) into 2

(5), the system dynamics takes the following form: 3

ż = M
−1

(q)[−V (q, q̇)z +B(q)τ ] (9)

where M(q)=JT(q)M(q)J(q), B(q) = JT(q)B(q), and 4

V (q, q̇)=JT(q)(M(q)J̇(q, q̇) + V (q, q̇)J(q)). 5

Note that when the passive follower robot in the DMR 6

system skids during sharp turning, backward motion and fast 7

paces [8], the leader and follower robots get perpendicu- 8

lar with respect to each other (jack-knife phenomenon) and 9

consequently (9) reaches singular points. At this point, the 10

determinant of M(q) is zero and thus M
−1

(q) does not 11

exist. The following assumption is thus made and will be used 12

in the design of the controller: 13

Assumption 1. The robots trajectories do not contain sharp 14

turnings and no backward movement and fast speed is allowed 15

for the DMR. Thus, the inertia matrix M(q) is invertible 16

throughout the entire motion and the system is stabilizable. 17

In the following sections, our derived dynamics, (9), is used 18

to design a robust controller and a velocity estimator. 19

III. CONTROL DESIGN 20

Assume the DMR system described by (9) has some exter- 21

nal disturbances and uncertainties in the parameters and the 22

dynamic model. Therefore, M(q) and V (q, q̇) are as follows 23

(note that B(q) does not contain uncertain parameters): 24

M(q) = M0(q) + ∆M(q) (10)

V (q, q̇) = V 0(q, q̇) + ∆V (q, q̇) (11)

where M0(q) and V 0(q, q̇) are nominal matrices, ∆M(q) 25

and ∆V (q, q̇) represent system uncertainty. A bounded input 26

disturbance τ d is also considered for the DMR, where it is 27

assumed to be upper bounded by a positive number. There- 28

fore, by including uncertainties and disturbances, (9) can be 29

expressed as follows: 30

ż = M
−1

0 (q)
[
−V 0(q, q̇)z +B(q)τ + h(t)

]
(12)

where 31

h(t) = −∆M(q)ż −∆V (q, q̇)z − τ d. (13)

We propose our robust control law to be as follows: 32

τ = τSMC + ∆τ (14)

where τSMC is a sliding mode controller that controls DMR 33

to track desired trajectories, yet, it does not guarantee the 34

robustness to model uncertainties [27]. The term ∆τ is a 35
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robust saturation controller that handles model uncertainties,1

i.e., unmodeled dynamics and parameter uncertainties, when it2

is combined with the sliding mode controller. Later, in Section3

V, the effectiveness and robustness of our proposed approach4

is demonstrated experimentally.5

In this section, first we design a sliding mode controller for6

the DMR system with no uncertainty and disturbance (we call7

it nominal system) to obtain τSMC . Next, we develop a robust8

saturation controller, ∆τ , to achieve a robust tracking for the9

entire DMR system in the presence of model uncertainties and10

disturbances.11

A. Sliding Mode Controller Design12

Under the condition of no uncertainties and disturbances in13

the DMR, the following nominal system is obtained by letting14

h(t) to be zero in (12) and substituting τSMC into τ :15

ż = M
−1
0 (q)

[
−V 0(q, q̇)z +B(q)τSMC

]
. (15)

We design the controller in polar coordinates because it16

makes it easier to define the sliding surfaces and later prove the17

stability. Thus, we assume the desired trajectory of the DMR18

in polar coordinates is given by qd = [ρd1 , φd1 , θd1 , θd2 ]T ,19

where ρd1 and φd1 represent the desired radial and angular20

coordinates of the leader, and θd1 and θd2 denote desired21

orientations of the leader and follower robots, respectively.22

Similarly, the given general coordinates of the system, q, can23

be obtained in polar coordinates as qp = [ρ1, φ1, θ1, θ2]T ,24

by using the expressions given in (1) and (2), and then a25

transformation from Cartesian to polar coordinates. Also, the26

derivative of qp is obtained as follows:27

q̇p =


ρ̇1
φ̇1
θ̇1
θ̇2

 =


v1 cos(φ1 − θ1)

−v1
ρ1

sin(φ1 − θ1)

ω1

ω2

 . (16)

Before proceeding to the design of sliding mode control,28

the following assumption on DMR trajectory is given:29

Assumption 2. The difference between the leader robot ori-30

entation (θ1) and its angular position (φ1) should not be π

2
.31

This implies that the leader robot should not have a posture32

whose orientation is tangential of any circle drawn around the33

origin of polar coordinates.34

We define tracking errors in polar coordinates as eρ = ρ1−35

ρd1 , eφ = φ1 − φd1 , eθ1 = θ1 − θd1 , and eθ2 = θ2 − θd2 . The36

sliding surface vector is defined as37

S =

[
s1
s2

]
=

[
ėρ + λ1eρ + λ2

∫
eρ

ėθ1 + λ3eθ1 + λ4
∫
eθ1 + γsgn(eθ1)|eφ|

]
(17)

where λ1, ..., λ4 and γ are positive constants, and sgn(.)38

represents sign function. The control law should be chosen39

such that states reach the sliding surfaces. To do so, we design40

the controller with the reaching condition of Ṡ = 0, where Ṡ is41

Ṡ =

[
ṡ1
ṡ2

]
=

[
ëρ + λ1ėρ + λ2eρ

ëθ1 + λ3ėθ1 + λ4eθ1 + γsgn(eθ1)sgn(eφ)ėφ

]
.

(18)

The control torque input using the computed torque method 1

is expressed as 2

τSMC = B
−1

(q)
[
V 0(q, q̇)z +M0(q)(żd + u)

]
(19)

where u is an auxiliary control variable, u ≡ [u1, u2]T, and 3

zd = [zd1 , zd2 ]T is the desired value of z in (7) that is 4

expressed as 5

zd =

[
vd1cos(θd1 − θd2)

ωd1

]
(20)

where vd1 and ωd1 are desired magnitudes of translational 6

and rotational velocities of the leader robot, respectively. The 7

components of the auxiliary control variable u, i.e., u1 and 8

u2, are given according to the following theorem: 9

Theorem 1. The control law given by the following expres- 10

sions: 11

u1 = − cos(θ1 − θ2)

cos(φ1 − θ1)

[
κ1s1 + ζ1sgn(s1)− ρ̈d1 + λ1ėρ

+λ2eρ +
v21
ρ1

sin2(φ1 − θ1) + v1ω1 sin(φ1 − θ1)
]

−v1(ω1 − ω2) sin(θ1 − θ2)− żd1 (21)
12

u2 = −κ2s2 − ζ2sgn(s2)− λ3ėθ1 − λ4eθ1
−γsgn(eθ1)sgn(eφ)ėφ. (22)

stabilizes the sliding surface vector (17). 13

Proof: Consider the following Lyapunov function: 14

V1 =
1

2
STS. (23)

The sufficient condition for the asymptotic stability of the 15

closed-loop system is 16

V̇1 = STṠ = s1ṡ1 + s2ṡ2 < 0. (24)

Before proving the stability, we substitute (19) into (15) to get 17

ż = żd + u, which can be alternatively expressed as 18[
u1
u2

]
=

[
ż1
ż2

]
−
[
żd1
żd2

]
. (25)

We use (25) in the rest of the proof. 19

To obtain ṡ1, we first find ëρ = ρ̈1−ρ̈d1 by getting derivative 20

of ρ̇1 given in (16) that yields 21

ëρ = v̇1 cos(φ1 − θ1) +
v21
ρ1

sin2(φ1 − θ1)

+v1ω1 sin(φ1 − θ1)− ρ̈d1 . (26)

Also, getting derivative of the first component of z expressed 22

in (7), z1, follows that 23

ż1 = v̇1 cos(θ1 − θ2)− v1(ω1 − ω2) sin(θ1 − θ2). (27)

By substituting (26) and (27) into u1 given in (21), it follows 24

that 25

u1 = − cos(θ1 − θ2)

cos(φ1 − θ1)
[κ1s1 + ζ1sgn(s1) + ëρ

+λ1ėρ + λ2eρ] + (ż1 − żd1). (28)



5

Alternatively, from (25) it yields that u1 = ż1− żd1 . Thus, we1

further express (28) as ëρ = −κ1s1−ζ1sgn(s1)−λ1ėρ−λ2eρ.2

Consequently, by substituting ëρ into ṡ1 given by (18), the final3

expression for ṡ1 is obtained as follows:4

ṡ1 = −κ1s1 − ζ1sgn(s1). (29)

Similarly, for obtaining ṡ2, we use u2 = ż2 − żd2 given in5

(25) which can be further written as u2 = ëθ1 and substitute6

it into (22) to find ëθ1 as7

ëθ1 = −κ2s2 − ζ2sgn(s2)− λ3ėθ1 (30)
−λ4eθ1 − γsgn(eθ1)sgn(eφ)ėφ.

Using (30) and ṡ2 in (18), ṡ2 is alternatively expressed as8

ṡ2 = −κ2s2 − ζ2sgn(s2). (31)

Finally, we substitute (29) and (31) into (24) to get9

V̇1 = −κ1s21 − ζ1|s1| − κ2s22 − ζ2|s2|. (32)

Therefore, for V̇1 to be negative definite, it is sufficient to have10

κ1, κ2, ζ1, and ζ2 to be positive.11

The sliding mode controller designed in this section guar-12

antees the trajectory tracking of the DMR under no system13

uncertainty and disturbance.14

B. Robust Saturation Controller Design15

We now design the robust saturation controller to handle ex-16

ternal disturbances and model uncertainties. Before designing17

the controller, the following assumptions are made for proving18

uniformly ultimately boundedness of the system [28–31]:19

Assumption 3. The norm of J(q) matrix is upper bounded20

such that ‖J(q)‖ ≤ Jα, where ‖.‖ denotes L2 norm for vector21

and induced norm for matrix.22

Assumption 4. The inertia matrix M0(q) is upper bounded,23

i.e., ‖M0(q)‖ ≤Mα.24

Assumption 5. The upper bound of the norm of control inputs25

for most robotic systems that do not have acceleration term26

can be described by a positive function as follows [31]:27

‖τ‖ ≤ α0 + α1‖q‖+ α2‖q̇‖2 (33)

where α0, α1, α2 are positive numbers that are only used in the28

proof of Lemma 1, and we show later that our methodology29

does not depend on them.30

Lemma 1. The norm of the system uncertainty h(t) in (13)31

is upper bounded by a positive function described by32

‖h(t)‖ ≤ β0 + β1‖q‖+ β2‖z‖‖J̇‖+ β3‖z‖2 (34)

where positive numbers β0, β1, β2, β3 are the upper bound33

parameters of the system uncertainty which will be estimated34

later using adaptive laws.35

Proof: The proof of Lemma 1 is given in the Appendix.36

37

To design the robust saturation controller, let us define38

ε ≡ z − zd considering system uncertainties. To find the39

DMR error dynamics, first we find τ by substituting (19) into40

(14), and then, we use the obtained τ in expression (12) to 1

get 2

ż = żd + u+M
−1

0 (q)B(q)∆τ +M
−1

0 (q)h(t). (35)

Afterwards, by getting derivative of the defined ε and sub- 3

stituting it into (35), the error dynamics of the DMR can be 4

obtained as follows: 5

ε̇ = u+M
−1

0 (q)B(q)∆τ +M
−1

0 (q)h(t). (36)

To design ∆τ , we choose the Lyapunov function as 6

V2 =
1

2
εTLε (37)

where L is a 2 × 2 diagonal matrix with the main diagonals 7

of l1 and l2. Therefore, ∆τ is designed such that the tracking 8

error, ε, converges to zero under large system uncertainties. 9

The discontinuous control law is given as follows: 10

∆τ =


(∇V T

2 LM
−1
0 (q)B(q))T

‖∇V T
2 LM

−1
0 (q)B(q))‖2

ν ‖∇V2‖ 6= 0

0 ‖∇V2‖ = 0

(38)

where ν = −∇V T
2 Lu− ‖∇V2‖‖LM

−1

0 (q)‖(β0 + β1‖q‖+ 11

β2‖z‖‖J̇‖+ β3‖z‖2). 12

The robust saturation control law designed in (38) requires a 13

prior knowledge of the upper bounds of the system uncertainty 14

(β0, β1, β2, β3), which is difficult to access due to nonlinear 15

nature of the DMR system. An adaptive estimation technique 16

is then used to find these parameters. Assuming β̂0, β̂1, β̂2, β̂3 17

are the estimates and using the following rules: 18

˙̂
β0 = k0‖∇V2‖‖LM

−1

0 (q)‖ (39)
˙̂
β1 = k1‖∇V2‖‖LM

−1

0 (q)‖‖q‖ (40)
˙̂
β2 = k2‖∇V2‖‖LM

−1

0 (q)‖‖z‖‖J̇‖ (41)
˙̂
β3 = k3‖∇V2‖‖LM

−1

0 (q)‖‖z‖2 (42)

the upper bound parameters of ‖h(t)‖ can be estimated. In 19

expressions (39)-(42), the positive constants k0, k1, k2, k3 and 20

initial values of β̂0, β̂1, β̂2, β̂3 can be selected arbitrarily. 21

Theorem 2. Using the control law given by sliding mode 22

controller in (19) and robust saturation controller in (38), the 23

system (12) is uniformly ultimately bounded. 24

Proof: Consider the following function which is a part of 25

the Lyapunov candidate as 26

V3 =
1

2

3∑
j=0

k−1j

(
βj − β̂j

)2
. (43)

Therefore, using (23), (37), and (43), the complete Lyapunov 27

function is 28

V = V1 + V2 + V3

=
1

2
STS +

1

2
εTLε+

1

2

3∑
j=0

k−1j

(
βj − β̂j

)2
. (44)

Observe that V > 0, we now show V̇ < 0. In the proof 29

of Theorem 1, it was shown that V̇1 < 0 along the system 30
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Figure 2: Schematic diagram of proposed methodology.

trajectories. Thus, it is sufficient to prove that V̇2 + V̇3 < 0.1

Consider the following two cases:2

1) If ‖∇V2‖ 6= 0, one has3

V̇2 =
1

2
ε̇TLε+

1

2
εTLε̇

= ∇V T
2 Lε̇

= ∇V T
2 L

[
u+M

−1
0 (q)B(q)∆τ +M

−1
0 (q)h(t)

]
= ∇V T

2 Lu+ ν +∇V T
2 LM

−1
0 (q)h(t)

= ∇V T
2 Lu−

[
∇V T

2 Lu+ ‖∇V2‖‖LM
−1
0 (q)‖

×
(
β̂0 + β̂1‖q‖+ β̂2‖z‖‖J̇‖+ β̂3‖z‖2

) ]
+∇V T

2 LM
−1
0 (q)h(t)

= ∇V T
2 LM

−1
0 (q)h(t)− ‖∇V2‖‖LM

−1
0 (q)‖

×
(
β̂0 + β̂1‖q‖+ β̂2‖z‖‖J̇‖+ β̂3‖z‖2

)
(45)

where × denotes multiplication. Also, V̇3 can be obtained as4

follows:5

V̇3 = −
3∑
j=0

k−1j
˙̂
βj

(
βj − β̂j

)
= −‖∇V2‖‖LM

−1
0 (q)‖

×
[
(β0 − β̂0) + (β1 − β̂1)‖q‖

+(β2 − β̂2)‖z‖‖J̇‖+ (β3 − β̂3)‖z‖2
]

(46)

Subsequently, using (45) and (46), V̇2 + V̇3 is expressed as6

V̇2 + V̇3 = ∇V T
2 LM

−1
0 (q)h(t)− ‖∇V2‖‖LM

−1
0 (q)‖

×
(
β0 + β1‖q‖+ β2‖z‖‖J̇‖+ β3‖z‖2

)
< 0

2) If ‖∇V2‖ = 0, it is straightforward to show V̇2 + V̇3 ≤ 0.7

Therefore, for both cases, V̇ < 0.8

Note that the components of the auxiliary control variable9

u given in (21) and (22) are a function of the leader’s10

translational and rotational velocities (v1 and ω1). However,11

in practice, measuring absolute velocity of the robots is not12

possible due to the limited sensing capability of available13

sensors. In the following section, we develop an estimator to14

estimate these velocities.15

Figure 3: Experimental DMR.

IV. ESTIMATOR DESIGN 1

In this section, we propose an estimator that fuses sensory 2

data and dynamics of the DMR to estimate the required 3

velocities. Considering the nonlinearities in the DMR system 4

dynamics, a nonlinear estimator such as extended Kalman 5

filter, unscented Kalman filter, or particle filter, has to be 6

developed. We choose particle filter because of its capability 7

in dealing with non-Gaussian and nonlinear systems [32]. 8

To develop the particle filter, we discretize the system 9

with constant velocity assumption and designate the discrete 10

current state vector as xk = [x1, y1, θ1, θ2, ẋ1, ẏ1, θ̇1, θ̇2]
T, that is 11

obtained at each time step using the state information from the 12

dynamic model (9), the transformation (6), and the expressions 13

(1) and (2). To predict the velocities at each time step, we 14

define the following measurement model: 15

yk =

[√
ẋ21 + ẏ21
θ̇1

]
. (47)

In addition, DMR translational and rotational velocities are 16

measured at time k by differentiating the docked robots’ 17

position and orientation feedback from a centralized vision 18

system, i.e., vm and ωm, that might be noisy or subjected 19

to error. To model the velocity measurements realistically, 20

we assume that these measurements are also corrupted by 21

an additive noise. Hence, the measured velocity vector is 22

ϑk = [vm, ωm]T + δk, where δk can be a zero mean white 23

Gaussian or non-Gaussian noise. 24

Our particle filter algorithm is developed to generate a 25

particle set which can be the best representation of the true 26

velocities. Each particle set is composed of current state 27

sample and its weight. Our particle filter takes the current 28

torque and prior particle sets as its input to estimate the true 29
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Figure 4: Experimental results of the first trajectory under measurement noise: (a) leader-follower trajectories; (b) tracking
error; (c) estimated (green), measured (blue), and true (red) states; (d) estimation error; (e) velocity error covariance.

Table II: System and control design parameters.

Parameter Value Parameter Value
b 0.0850 m λ1, λ2, λ3, λ4 400

h1, h2 0.05 m κ1, κ2 25, 15
m1 0.65 Kg ζ1, ζ2 25, 15
m2 0.55 Kg γ 400
mo 0.050 Kg l1, l2 10, 5
I1, I2 0.0026 Kg.m2 k0, k1, k2, k3 12

belief of velocities, vest and ωest, using dynamic model (9)1

and measurement model (47). The dynamic model (9) is used2

to propagate samples forward in each time step based on the3

previous particles and the current inputs. The measurement4

model (47) is used to predict the velocities using samples of5

current state vector. To assign a weight to each state sample,6

we find the normal probability density function of measured7

velocity vector ϑk using a normal distribution centered at each8

sample of predicted velocity vector. Afterwards, resampling9

is done with the purpose of transforming the predicted belief10

particle set to belief using importance sampling. If we consider11

the current input as τ k and prior state as xk−1, then we can12

define the measurement model in (47) as p(yk|xk) which is13

the probability of measurement y occurring at time k given the14

state x, and similarly, we can define the motion model given in15

(9) as p(xk|xk−1,τ k). Assuming the total number of particles16

is I , the distribution of samples for predicted belief of current17

state and measurement vector as well as the belief of current18

state and measurement vector respectively are denoted by x̄[i]
k ,19

ȳ
[i]
k , x[i]

k , and y[i]
k , for i = 1, ..., I. Each particle set, s[i]k , is a20

combination of the sample (x[i]
k ) and its weight (w[i]

k ) that is21

shown with s[i]k ={x[i]
k ,w[i]

k }. We now present the details of our22

developed particle filter velocity estimator in Algorithm 1.23

Algorithm 1 Particle Filter for Velocity Estimation

Inputs: Prior particle sets Sk−1 = {s[1]k−1, ..., s
[I]
k−1}, current

input τ k, and measured velocity ϑk
Outputs: True belief of velocities vest and ωest

for each particle in Sk−1 do
Sampling: propagate sample forward using motion

model (9): x̄[i]
k ∼ p(xk|x

[i]
k−1, τ k)

Prediction: predicting measurements using sample x̄[i]
k

and measurement model (47): ȳ
[i]
k ∼ p(yk|x̄

[i]
k )

Weighting: define weights from measured velocities ϑk,
with normal distribution centered at predictions ȳ[i]

k : w[i]
k

Store in interim particle set: S̄k = S̄k + {s̄[i]k }, where
s̄
[i]
k = {x̄[i]

k ,w
[i]
k }.

end for
Normalize weights
for each particle in S̄k do

Resampling: draw particle x̄[i]
k with probability w

[i]
k :

s
[i]
k = {x[i]

k ,w
[i]
k }

Add to final particle set: Sk = Sk + {s[i]k }
Calculate true velocities through measurement

model (47): y[i]
k =[v

[i]
k ,ω

[i]
k ]T = p(yk|x

[i]
k )

end for
Calculate mean of v[i]k and mean of ω[i]

k over i = 1, ..., I to
get vest and ωest.

where I is the total number of particles, s[i]k is the combination
of sample and weight of ith particle, and x̄[i]

k , ȳ[i]
k , x[i]

k , y[i]
k are

respectively the ith predicted belief of states, predicted belief
of measurements, current belief of states and current belief of
measurements, all at time k for i = 1, ..., I .
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Figure 5: Experimental results of the second trajectory under unmodeled dynamics (a) leader-follower trajectories; (b) tracking
error; (c) estimated (green), measured (blue), and true (red) states; (d) estimation error; (e) velocity error covariance.

In summary, Algorithm 1 inputs the prior particle sets,1

current control input and velocity measurements, and conse-2

quently it outputs the true belief of leader’s translational and3

rotational velocities. To verify the developed controller and4

estimator algorithms, experiments were carried out and are5

presented in the next section.6

V. EXPERIMENTAL STUDIES7

The entire closed-loop system composed of a trajectory8

planner, particle filter estimator, and robust controller is shown9

in Fig. 2. The trajectory planner generates desired trajectories10

required for the controller to provide the input torque of the11

leader’s wheels, i.e., τ . Our proposed controller also inputs12

the position, and translational and rotational velocities of13

the DMR. The position of the DMR, q, can be measured14

accurately using Vicon system. By getting the derivatives15

of these terms, we can find the translational and rotational16

velocities. However, to model velocities realistically that can17

behave like real sensory data, we corrupt these signals by white18

Gaussian noise and then we deploy an estimator to obtain the19

velocity profile more accurately. The particle filter estimator20

fuses the measured velocity ϑk obtained by Vicon, and current21

state xk which is calculated using the DMR dynamic model.22

Afterwards, the estimated velocities (vest and ωest), measured23

states (q), and desired states (qd, zd and żd) are used by the24

controller to generate the input torque required for control.25

A. Experimental Setup26

Two Arduino mobile robots docked via two rigid links27

connected through an off-axle hitch were used in experiments.28

The experimental setup is shown in Fig. 3. The robots were29

equipped with wireless Xbee modules for communication with 1

the computer with the sampling frequency of 10 Hz. 2

For tracking the DMR position and orientation, we used the 3

Vicon vision system. The translational and rotational velocities 4

were given by the Vicon, and the known sampling rate of 0.1 5

sec. We later added noise to these. The control input of the 6

leader robot is input voltage in the range of [−5V, 5V ]. 7

The parameters of the DMR system and the controller 8

used for experiments are given in Table II. To determine 9

the control design parameters prior to experiments, we used 10

Genetic Algorithm. For implementing the particle filter, it 11

was assumed that the initial velocities are unknown and the 12

particles are spread randomly. For the sake of accuracy and 13

calculation time, the number of particles was assumed to be 14

200 that enables the estimator to perform online estimation. 15

We assumed a zero mean white Gaussian noise δk is added to 16

the velocity profile given by Vicon, where standard deviations 17

are 0.1 m/sec and 0.3 rad/sec for v1 and ω1, respectively. 18

B. Experimental Results 19

The performances of our methodology are demonstrated in 20

five sections. In sections 1 to 3, we present the results under 21

three case studies: (1) measurement noise, (2) unmodeled 22

dynamics, and (3) parametric uncertainty. In section 4, we 23

compare the performance of our proposed control strategy with 24

the case that only sliding mode is deployed. In section 5, we 25

compare our results with previously developed controllers in 26

the literature. 27

1) Robustness to measurement noise: to investigate the 28

robustness of our approach to measurement noise, we added a 29

white Gaussian noise with the standard deviation of 0.4 m 30

for both x1 and y1, and 0.05 rad for θ1. Fig. 4 presents 31
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Figure 6: Experimental results of the third trajectory under parametric uncertainty: (a) leader-follower trajectories; (b) tracking
error; (c) estimated (green), measured (blue), and true (red) states; (d) estimation error; (e) velocity error covariance.

the experimental results. The DMR trajectories are shown in1

Fig. 4a, where the black square denotes the starting point of the2

desired trajectory. To show how the developed particle filter3

estimates the velocities, Figs. 4c, 4d, and 4e are provided. In4

Figs. 4c and 4d convergence of the estimated velocities to the5

true values obtained by Vicon and the estimation errors to zero6

are illustrated, respectively. The convergence and boundedness7

of the estimation errors covariance are also shown in Fig. 4e.8

From these graphs, it is evident that the estimator is capable of9

estimating the required states with good accuracy. The tracking10

performance of the integrated estimator and controller system11

is shown to be good in Fig. 4b. As can be seen, the tracking12

error of the controller is small. The peak observed in tracking13

error is because of the orientation mismatch between the leader14

and follower robots arising from turning on the trajectory, thus15

making the robots to have some errors in following their paths.16

After passing the turning point, the tracking error gets smaller17

as it is demonstrated. The root mean square of errors (erms)18

are 6 cm, 6.8 cm, 0.07 rad for x, y, θ, respectively.19

2) Robustness to unmodeled dynamics: to implement un-20

modeled dynamics, we set h1 = 0 (on-axle hitched DMR) in21

the dynamics (9) that is used in estimation and control while22

in the experiments h1 6= 0 (off-axle hitched DMR shown in23

Fig. 3). Fig. 5 displays the estimation and control results under24

unmodeled dynamics effects. The estimation results provided25

in Figs. 5c, 5d, and 5e show that the outputs have converged26

to true velocities obtained by Vicon. It is shown in Figs. 5a27

and 5b that DMR successfully tracks the trajectory with small28

errors, where erms is 19.7 cm, 6.8 cm, 0.09 rad respectively29

for x, y, θ.30

3) Robustness to parametric uncertainty: we assess the31

performance of the proposed approach in the presence of32

parametric uncertainty, which is important in loading and33

unloading applications. To do so, we added 15% mass un- 1

certainty to the leader robot using the uncertain mass box 2

shown in Fig. 3. The results are shown in Fig. 6. From 3

Figs. 6c, 6d and 6e it is evident that the designed particle filter 4

estimator converges to true DMR velocities. Tracking results 5

are demonstrated in Figs. 6a and 6b which confirms the robust 6

tracking performance of our approach. The erms was found 7

to be 17.2 cm, 9.5 cm, 0.15 rad for x, y, θ, respectively. 8

4) Comparison with sliding mode controller: in this part, 9

we compare the performance of our proposed controller in 10

(14) with the case when only sliding mode is deployed. Both 11

controllers were integrated with the developed estimator and 12

tested under the same conditions, i.e., measurement noise, 13

unmodeled dynamics and parametric uncertainties To further 14

investigate the robustness of our proposed methodology, we 15

tested each condition for three different trajectories (three 16

trials). In Table III, the tracking performance of controllers 17

are compared in terms of erms and the percentage maximum 18

tracking error during steady state phase (ess). This table shows 19

that our proposed robust controller outputs lower tracking 20

error and improves robustness under measurement noise and 21

model uncertainties in comparison to the case when only 22

sliding mode controller is used. In average, the improvement 23

for measurement noise, unmodeled dynamics, and parametric 24

uncertainties for three trials, are respectively 5.1%, 22.2%, and 25

28.7% during the steady state1. It has not escaped our notice 26

that horizontal steady state tracking error of the pure sliding 27

mode controller seems smaller than our proposed controller; 28

however, by taking into account both horizontal and vertical 29

tracking errors in steady state, we can conclude that the robust 30

controller still outperforms the sliding mode controller. As also 31

1Average of steady state error for each trial:
exss + eyss + eθss

3
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Table III: Comparing tracking performance of sliding mode controller (τSMC) and robust controller (τSMC + ∆τ ).

Case Control law (exrms , eyrms , eθrms ) (cm, cm, rad) (exss , eyss , eθss )%
Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

Measurement noise τSMC (5.5, 10.1, 0.15) (6.0, 8.2, 0.08) (19.7, 19.5, 0.28) (0.05, 27.7, 12.1) (1.5, 5.9, 34.8) (6.6, 7.8, 29.2)
τSMC +∆τ (6, 6.8, 0.07) (5.1, 6, 0.06) (17.3, 11.7, 0.26) (4.7, 12, 9.4) (0.02, 5.5, 18.5) (5.1, 2.5, 20.5)

Unmodeled dynamics τSMC (24.1, 17, 0.16) (35.0, 27, 0.32) (17.5, 35.4, 0.44) (10.3, 11.3, 31.2) (4.4, 13.1, 75.2) (9.5, 28.4, > 100)
τSMC +∆τ (19.7, 6.8, 0.09) (5.6, 4.8, 0.08) (6.3, 14.7, 0.24) (4.4, 4.9, 24.1) (0.1, 7.6, 18.9) (1.08, 3.5, 18.4)

Parametric uncertainties τSMC (21, 15.9, 0.19) (21.5, 34.8, 0.4) (21.0, 17.3, 0.33) (3.9, 2.1, > 100) (2.8, 24.9, 77.9) (5.3, 10.9, > 100)
τSMC +∆τ (17.2, 9.5 , 0.15) (8, 4.1, 0.07) (12.8, 13.2, 0.28) (3.7, 5.0, 17.8) (0.01, 1.7, 21.8) (1.1, 2.2, 15.4)

Table IV: Performance of different controllers under parametric uncertainties (Trial 1) and unmodeled dynamics (Trial 2 and 3).

Control method (exrms , eyrms , eθrms ) (cm, cm, rad) (exss , eyss , eθss )% (σur , σul ) (V )
Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3

Our method (17.2, 9.5, 0.15) (5.6, 4.8, 0.08) (6.3, 14.7, 0.24) (3.7, 5.0, 17.8) (0.1, 7.6, 18.9) (1.08, 3.5, 18.4) (2.9, 2.5) (3.2, 3.1) (3.5, 3.2)
Lyapunov [33] (16.2, 28.3, 0.24) (12.6, 13.2, 0.09) (22.9, 23.1, 0.36) (4.0, 12.7, 100) (0.8, 16.8, 80.6) (10.3, 5.7, > 100) (2.2, 1.7) (2.9, 2.8) (2.4, 1.9)

PD (46.4, 28.8 , 0.3) (37.5, 29.2, 0.34) (28.1, 19.5, 0.31) (12.3, 24.7 , > 100) (5.2, 17.7, 87.5) (16.6, 7.5, > 100) (0.8, 0.9) (2.5, 1.7) (2.6, 2.4)
PID (9.5, 12.7, 0.16) (14.4, 10.6, 0.12) (29.1, 20.8, 0.37) (4.0, 1.0, > 100) (4.6, 16.5, 80.9) (13.4, 4.7, > 100) (1.7, 1.9) (2.1, 2.0) (3.1, 2.9)

stated previously, the pure sliding mode controller is capable1

of handling some disturbances and measurement noises, yet2

it does not guarantee robustness under model uncertainties.3

Therefore, it is reasonable that the tracking performance4

improvement of our controller over the sliding mode controller5

is not much distinctive under measurement noise.6

5) Comparison with other controllers: we also compared7

the performance of our controller with previously developed8

controllers in the literature. The experiments were conducted9

with three various trajectories under parametric uncertainties10

(Trial 1) and unmodeled dynamics (Trials 2 and 3) for dif-11

ferent controllers, i.e., Lyapunov-based [33], PD, and PID12

controllers. Results are summarized in Table IV based on13

the tracking error and control effort. In this table, the control14

effort is represented by the standard deviation (σ) of input15

voltage range for each wheel of the leader robot (right and16

left). The results verify that our controller outperforms other17

controllers in terms of tracking and robustness, although it18

requires a bit more control effort. It is worth noting that19

among the presented controllers, the tracking performance of20

the PID controller is comparable with our methodology under21

parametric uncertainties (trial 1); however, it is obvious in22

Table IV that the steady state error for orientation obtained by23

implementing our proposed approach is significantly smaller24

than the PID control. Moreover, applying unmodeled dynamic25

uncertainties (Trial 2 and 3), the advantage of our robust26

controller can be observed more apparent over standard PID27

control. In average, the improvement that our proposed con-28

troller makes over PID controller in tracking three reference29

trajectories are respectively 26.1%, 25.1% and 31.6% during30

the steady state. In tuning all of these controllers, we noticed31

that our controller is less sensitive to the design parameters32

while others require careful tuning of control parameters and33

are significantly sensitive to the parameters change.34

VI. CONCLUSION35

In this paper, we developed a new integrated system com-36

posed of a robust tracking controller and an estimator for a37

nonholonomic docked mobile robotic system without having38

access to translational and rotational velocities directly. Our39

extensive experimental results showed that, first, the developed40

estimator is able to estimate the velocities with good accuracy41

required for control, and second, the integrated estimator 1

and controller have very good tracking performance under 2

measurement noise, unmodeled dynamics, and parameter un- 3

certainties. It was concluded that if only the sliding mode 4

control method (integrated with the estimation) is implemented 5

on the robots, tracking performance is deteriorated in the 6

presence of uncertainties. Thus, we showed that the robust 7

saturation control has to be combined with the sliding mode 8

control to achieve robust tracking, especially with parametric 9

uncertainties that can decrease the steady state tracking error 10

by up to 28.7%. Experimental results were also compared to 11

previously developed control methods in the literature and 12

it was demonstrated that the performance of our proposed 13

methodology is superior to other developed controllers in 14

the literature in terms of tracking accuracy and robustness 15

to model uncertainties. Moreover, our controller requires 16

less tuning effort compared to other methods due to being 17

less sensitive to parameter changes. Therefore, the proposed 18

methodology can be used for tracking applications without 19

relying on velocity measurements and hence making it a viable 20

approach for effective navigation of DMR systems. 21

APPENDIX 22

Proof of Lemma 1: substituting (12) into (13) gives 23

h(t) =
(
I + ∆M(q)M

−1
0 (q)

)−1
×
[
∆M(q)M

−1
0 (q)

(
V 0(q, q̇)z −B(q)τ

)
−∆V (q, q̇)z − τ d

]
. (48)

Using (48), it follows that 24

‖h(t)‖ ≤ ‖
(
I + ∆M(q)M

−1
0 (q)

)−1
‖

×
[
‖∆M(q)M

−1
0 (q)‖ ×

(
‖V 0(q, q̇)z‖

+‖B(q)‖‖τ‖
)

+ ‖∆V (q, q̇)z‖+ ‖τ d‖
]

(49)
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From the Assumptions 1 to 4, each term of (49) is bounded1

from above as follows:2

‖(I + ∆M(q)M
−1
0 (q))−1‖ < a1 (50)

‖∆M(q)M
−1
0 (q)‖ < a2 (51)

‖V 0(q, q̇)z‖ < a3 + a4‖q‖+ a5‖q̇‖2 + a6‖z‖‖J̇‖ (52)
‖∆V (q, q̇)z‖ < a7 + a8‖q‖+ a9‖q̇‖2 + a10‖z‖‖J̇‖ (53)

‖B(q)‖ < a11 (54)
‖τ d‖ < d1 (55)

where a1, ..., a11 are positive. Using (50)-(55) and Assump-3

tion 5, upper bound of ‖h(t)‖ can be obtained as follows:4

‖h(t)‖ ≤ a1(a2a3 + a7 + a2a11α0 + d1)

+a1(a2a4 + a8 + a2a11α1)‖q‖
+a1(a2a6 + a10)‖z‖‖J̇‖
+a1(a2a5 + a2a3a11α2 + a9)‖q̇‖2

Using (6) and Assumption 3, it yields that ‖q̇‖ ≤ Jα‖z‖.5

Thus, upper bound of ‖h(t)‖ can be alternatively expressed as6

‖h(t)‖ ≤ β0 + β1‖q‖+ β2‖z‖‖J̇‖+ β3‖z‖2 (56)

where7

β0 = a1(a2a3 + a7 + a2a11α0 + d1) (57)
β1 = a1(a2a4 + a8 + a2a11α1) (58)
β2 = a1(a2a6 + a10) (59)
β3 = a1Jα(a2a5 + a2a3a11α2 + a9). (60)

Therefore, h(t) is upper bounded as shown in (56).8
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