ENGG1500 Concept Review Session

The Engineering Peer Helper Program

March 3rd, 7-8pm

Week 1

Concepts:

- Matrices: linear combination of vectors in matrix form
 - o Square Matrix
 - Zero Matrix: all zeros
 - Diagonal upper triangular:
 - o Identity matrix
 - o Square
- Vectors
 - Characteristics
 - Have both Magnitude and Direction
- Matrix Operations
 - Transpose-rows and columns swap |A|^T
 - Vector addition add the elements in the vectors element wise ${x}+{y} = {x1+y1, x2+y2}$
 - Can only be applied to vectors that are in the same direction or have the same number of components
 - o Scalar multiplication multiply each element by the scalar

Important Theories or Formulas:

- Matrix form of linear equations → a is the coefficient matrix, x is the variable and b is the righthand or constant vector
- Vector addition and multiplication

Tips:

- Practice problems
- Work to get quick at basic operations

Week 2

Concepts:

- REF pivots in each row are to the left of the pivots in the row below (all zeros below), pivot is the first non-zero number in a row (ROW OPERATIONS!!!! WRITE THEM DOWN!!! KEEP TRACK!!!) – try to make zeros below the pivots
- RREF Pivots are 1, unique
- When do we use REF vs RREF?
- RREF gives a unique value → a unique value is that there is only one solution (particular) when looking at the last row of the RREF matrix
- Matrix multiplication with a vector
 - the dimensions of the vector has to equal the number of columns in matrix

Important Theories or Formulas:

- REF and RREF row reduction steps
- Multiplying matrix with a vector

Tips:

- Keep practicing!!
- If you made an error identify where it was (may get marks for it)
- Order of row operations, make sure to be careful

Week 3

Concepts:

- Parametric From When to make it: you have more variables than useful rows (Non zero rows in RREF) so it gives a family of solutions add (free varible)ER to it
- How to pick a free variable in RREF (one column that doesn't reduce fully)
- Homogenous Form when output vector b is zero Ax = 0
- Augmented Matrices one matrix that contains A matrix and b vector (Ax = b), separated by a line
- Consistent- one or more solutions
- Inconsistent- do not have one solution (eg, one or more row looks like this 0 0 0 | 5, this would be inconsistent)

Important Theories or Formulas:

Free variables = unknowns - # equations

Tips:

- make sure to state all real elements when giving solution in parametric form

- Review class notes!!
- Study the application problems associated with the concepts
- Make sure to read the wording of questions carefully
- Cover applications
- Questions can be changed and become more complex

Week 4

Concepts:

Span and spanning set

2. Vector spanning (p. 18-19) 2-1 Spanning set and Span Subspaces formed by the linear combination of vector sets Theorem If $\{\vec{v}_1, \dots, \vec{v}_k\}$ is a set of vectors in \mathbb{R}^n , then $S = \{t_1 \vec{v}_1 + \dots + t_k \vec{v}_k \ t_1, \dots, t_k \in \mathbb{R}\}$, is a <u>subspace</u> of \mathbb{R}^n Spanning set $g = \{t_1 \vec{v}_1 + \dots + t_k \vec{v}_k \ t_1, \dots, t_k \in \mathbb{R}\}$,

Definition of Span

Definition (Span)

 $S = \{t_1 \vec{v}_1 + \cdots + t_k \vec{v}_k \mid t_1, \ldots, t_k \in \mathbb{R}\},\$

is called the subspace spanned by $\mathcal{B} = \{\vec{v}_1, \dots, \vec{v}_k\}$, and we say that \mathcal{B} spans S.

The set \mathcal{B} is called a spanning set for S. We denote S by

 $S = \operatorname{Span}\{\vec{v}_1, \ldots, \vec{v}_k\} = \operatorname{Span}\mathcal{B}.$

- Subspaces
 - A non-empty subset S of R^n is called a subspace of R^n if for all vectors x, y E S and t E R
 - Under linear combinations
- Column space

3.1 Column spaces

Definition (Columnspace)
The columnspace of an $m \times n$ matrix A is the set
$\operatorname{Col}(A) = \{ A\vec{x} \in \mathbb{R}^m \mid x \in \mathbb{R}^n \}.$

Alternative expression of the column space of a matrix A:

For $A = [\vec{a}_1 \cdots \vec{a}_n]$, $A \in \mathbb{R}^{m \times n}$, $\vec{a}_1 \cdots \vec{a}_n \in \mathbb{R}^m$, $Col(A) = span\{\vec{a}_1 \cdots \vec{a}_n\} = \{Ax \in \mathbb{R}^m\}$

- Null space

Theorem/Definition

Let A be an $m \times n$ matrix. The set

$$S = \{ \vec{x} \in \mathbb{R}^n \mid A\vec{x} = \vec{0} \}$$

of all solutions to a homogeneous system $A\vec{x} = \vec{0}$ is a subspace of \mathbb{R}^n . It is called the solution space of the system.

The nullspace of an $m \times n$ matrix A is

 $Null(A) = \{ \vec{x} \in \mathbb{R}^n \mid A\vec{x} = \vec{0} \}.$

- Basis
- Rank
 - o Number of linearly independent rows in a matrix
- Linearly independent- none of the vectors are linear combinations of other vectors
- Linearly dependent- any vector in a set is a linear combination of any other vectors
- Dimension

Important Theories or Formulas:

- For rank \rightarrow # of pivots when in RREF
 - Rank(A) = n or Ax=0 has only the trivial solution

Tips:

- YouTube resources for visualizing (3blue1brown)
- These concepts are good proof types of problems \rightarrow making a mind map can be helpful

C

- Use your textbook for proofs

Week "5"

Concepts:

MIDTERM WEEK!!!

- Col(A)
- Row(A)
- Null(A)

3.2 Determination of bases for row spaces, column spaces, and null spaces (p. 157)

The dimension of the nullspace of a matrix A is the nullity of A and is denoted by nullity(A).

-1C1-627

Important Theories or Formulas:

- Refer to page 157 in your textbook (may vary with edition number)
- REF and RREF

Tips:

- Go over theories in the textbook to help understanding concepts that could be asked as a proof question
- Try to make a mind map or concept review → relating concepts together to try and understand what they mean and how they relate to one another

Problem Solving Strategies

 A^{3x3} = calibration matrix

Гa	11	•••	a_{13}	11	1]		[7]	
	:	\sim	:	Ш	0	=	2	
la	31		a_{33}	IL	0		3	
ra_1	1	•••	a_{13}	[(ן([14]	l
1		Ν.	- :	1	L	=	4	l
a_3	1	•••	a ₃₃)]		6.	
ra_1	1	•••	<i>a</i> ₁₃	[(ך([15]	I
1		ъ.	- :			=	3	
a_3	1	•••	a_{33}	1			10	

Therefore,

	[7	14	15]
A =	2	4	3
	L3	6	10

Question is asking us to determine if there is only one way to combine the three column vectors of A into a relation of linear dependence. To do this, can check if the homogenous problem has only a trivial solution.

 $\begin{aligned} x_1 &= -2 \ x_2 \\ x_3 &= 0 \\ x_2 \text{ is a free variable} \end{aligned}$

Therefore, there an infinite number of solutions to the homogenous problem, so the sensor's requirement is not met.

Questions and Contact

- a) This will be posted on The Engineering Peer Helpers (EPH) Website.
 - i) <u>https://www.uoguelph.ca/engineering/content/current/peer-helper</u>
- b) There will not be a filled in version posted. Please write notes during the session.
- c) Stay tuned for more ENGG*1500 workshops/sessions before the final exam.
- d) Email for a small-group consultation. It's great to think of your questions and send them beforehand!
- e) Book a one-on-one consultation for ENGG*1500!