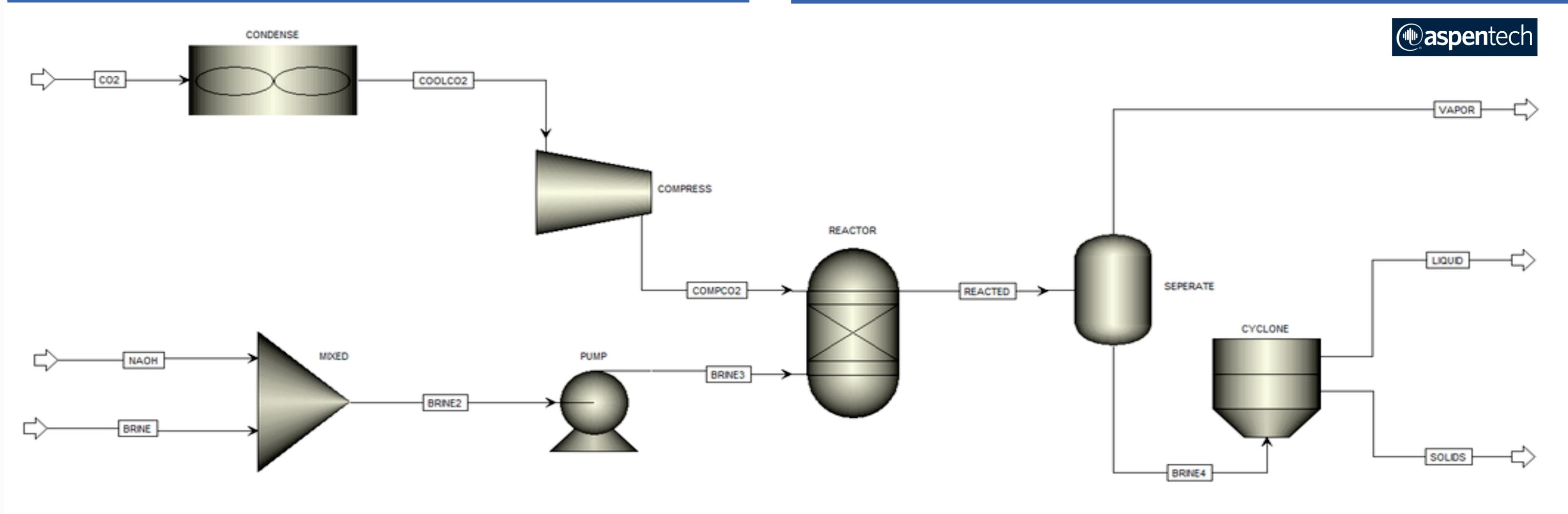
# Carbon Capture & Sequestration of a Desalination Plant

# Ye Eun Chai • Andrea Cline • Danielle Nyarko • Hannah Toews




### Background

- Carbon dioxide (CO<sub>2</sub>) is a greenhouse gas that contributes to climate change.
- Desalination plants produce a brine waste stream which has potential to be used for Carbon Capture Sequestration (CCS) using carbon mineralization.

## **Design Solution**

- Combines CO<sub>2</sub> emissions with the brine from a desalination plant, composed primarily of Na<sup>†</sup>, Ca<sup>2†</sup>, Cl<sup>¯</sup>, and Mg<sup>†</sup>.
- Gas and liquid streams mix in a tubular reactor, maintained at 50°C, where the precipitates into CaCO<sub>3</sub> and MgCO<sub>3</sub>.
- NaOH is added to maintain the reactor at a pH of ~8.
- A flash separator removes the gas stream, and a hydrocyclone removes the liquid stream.

| Constraints and Criteria |                                            |                                                                               |  |
|--------------------------|--------------------------------------------|-------------------------------------------------------------------------------|--|
|                          |                                            |                                                                               |  |
| General                  | Model                                      | Functional model using Aspen Plus V10.                                        |  |
|                          | Maintenance                                | Minimal upkeep.                                                               |  |
|                          | Economic, social, and environmental impact | No severe negative impacts on the environment or the neighboring communities. |  |
| Carbon sequestration     | Carbon capture                             | Maximize the capture of the CO <sub>2</sub> .                                 |  |
|                          | Carbon emissions                           | Must produce less CO <sub>2</sub> than what it captures.                      |  |
| By-product               | Reusable                                   | Should produce a reusable by-product.                                         |  |
|                          | Marketable                                 | By-product should have market value to offset the operational costs.          |  |
| Cost                     | Capital cost                               | Minimize capital costs.                                                       |  |
|                          | Operational cost                           | Minimize operational costs.                                                   |  |



#### Results

- Captures 99.95% of the CO<sub>2</sub> emissions from the desalination plant.
- 6700 kg of CaCO<sub>3</sub> and 1000 kg of MgCO<sub>3</sub> are mineralized every hour.
- The capture cost is \$2.88/kg.

| Capital Cost (USD)        | 33 million  |
|---------------------------|-------------|
| Operating Cost (USD/year) | 59 million  |
| Product Profit (USD/year) | 7.5 million |

#### Recommendations

- NaOH regeneration to reduce operational costs.
- Renewable energy could assist in the reduction of operating costs associated with the design.
- Carbon mineralization is an exothermic reaction and the heat generated could be used to generate electricity.
- Future iterations of the model could run the reaction twice to aid in the separation of CaCO<sub>3</sub> and MgCO<sub>3</sub>.



