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ABSTRACT

ON THE TECHNOLOGICAL CHANGE AND VOLATILITY

IN CANADIAN AGRICULTURE

Horlick Ng Advisor:

University of Guelph, 2019 Professor Alan P. Ker

Feeding nine billion people by 2050 is arguably the most pressing challenge in global agricul-

ture. Increasing crop productivity, reducing animal-based protein consumption and reducing

food waste have been forwarded as possible solutions. However, reducing the latter two is

unlikely with rising global wealth; therefore, our ability to meet future food demand will, as

in the past, be dictated by technological change. Technological change not only increases av-

erage crop yield, it may also increase or decrease yield volatility. Oftentimes, yield volatility

does not change identically between upper and lower tails. The lower tail, which represents

the downside yield risk, has significant economic consequences. Increases in downside yield

risk contributes to food insecurity and subsequently economic insecurity for agricultural-

based economies (i.e. developing countries). Conversely, in developed countries, significant

public funds are funnelled to the farmers in order to mitigate downside yield risk. This

thesis focuses on the effects of technological change on yield volatility for the major crops

in Canada. Specifically, historical county-level yield data in Ontario and Saskatchewan were

analyzed for barley, canola, corn, oats, soybean and wheat. The overall results suggest that

all province-crop pairs generally exhibit a higher yield volatility over time in different mag-

nitudes. The implications are of particular interest to agricultural risk management policy

as well as public policy on agricultural research and development.
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1 Introduction

Meeting the expected food demand by the mid-21st century is one of the most serious chal-

lenges in global agriculture (Pretty et al., 2010; Conforti et al., 2011; Searchinger et al.,

2014; McKenzie and Williams, 2015). Technological change has played a dominant role in

feeding the rapidly-growing population by increasing average crop yields through innovations

in fertilizer, farming equipment, pesticides and seed genomics.1 In addition to technologi-

cal change, other possible solutions include shifting diets by reducing animal-based protein

consumption (White, 2000; Pimentel and Pimentel, 2003; De Boer and Aiking, 2011; Ran-

ganathan et al., 2016) and reducing food waste (Parfitt, Barthel, and Macnaughton, 2010;

Kummu et al., 2012; Gustafsson et al., 2013; Lipinski et al., 2013; Grafton, Daugbjerg, and

Qureshi, 2015). However, as more people in developing countries earn higher disposable

income, the per capita meat consumption can be expected to continue to increase (Machov-

ina, Feeley, and Ripple, 2015). Moreover, improved food affordability for these consumers

diminishes their incentives to avoid food waste (Godfray et al., 2010). As a result, reduc-

ing either animal-based protein consumption and the amount of food waste are particularly

challenging. Therefore, our ability to meet food demand has been, and will likely continue to

be, dictated by technological change. Historically, technological change has led to a sizable

increase in average crop yields. For example, the average crop yield in the United States for

corn has increased by more than five times and soybean has more than doubled since 1940

(U.S. Department of Agriculture, 2018).2

Although technological change increases the biological limit of crop yields over time, it

also alters yield volatility. To illustrate this relationship and provide some intuition, Figure

1(a) presents the estimated conditional yield distribution in 1955, 1975, 1995 and 2015

1Technological change refers to the adoption of innovation that results in an increase in average crop
yield. Average crop yield refers to crop yield per unit area of agricultural land, measured in bushels per acre.
It is typically used to measure crop productivity in literature, as a result of factors such as technological
change, climate change, soil quality and policy change.

2The United States is currently the world’s largest producer of corn and soybean.
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(a) Estimated Conditional Yield Distribution

(b) Conditional Quantile Regression

Figure 1: Middlesex County, Ontario, Corn Yields, 1949 - 2016.
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for corn yields from Middlesex County, Ontario.3 In 1955, the yield distribution appears

to be relatively symmetrical. The following patterns are evident over the course of time:

(i) technological change increases average crop yield as the yield distribution shifts to the

right; (ii) yield distribution becomes more dispersed, which suggests an increase in overall

yield volatility; and (iii) yield distribution develops a heavier lower tail, which indicates a

higher probability of low yield (hereafter, downside yield risk). Figure 1(b) presents the

corresponding conditional quantile regression at 5%, 25%, 50%, 75% and 95% (Koenker and

Bassett Jr, 1978). It clearly shows that the rate of technological change does not increase

identically across the quantiles of the distribution, which suggests that technological change

appears to impact the middle and upper tails of the yield distribution at a greater rate than

in the lower tail. Both Figure 1(a) and 1(b) clearly illustrate that the implementation of

technological change does not simply shift the entire distribution to the right (i.e. it does

not only shift at the mean), but also affects the higher moments of the distribution.

Analogously, a yield distribution can be seen as a mixture of various components, and

technological change contributes at a heterogeneous rate to these components. For instance,

innovative seed varieties improve average crop yields over time under ideal growing condi-

tions, but may not outperform their predecessors under catastrophic events. In this case,

technological change pushes the upper tail of the yield distribution to the right while the

lower tail lags behind and, therefore, the yield distribution exhibits a different rate of tech-

nological change across different components. While there exists literature modelling tech-

nological change in U.S. yields (i.e. Skees and Reed (1986); Kaylen and Koroma (1991);

Ramirez (1997); Goodwin and Ker (1998); Just and Weninger (1999); Sherrick et al. (2004);

Tolhurst and Ker (2015)), there is no corresponding literature in regards to Canadian crop

yields. This thesis aims to fill the gap. The objectives of this thesis are: (i) to investigate

whether crop yields have different rates of technological change across different components

3Conditional yield distribution refers to the estimated distribution of average crop yield in a given year.
Middlesex county is used in this example as the county produced the most corn in 2017 in the province of
Ontario.
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of the yield distribution; (ii) to estimate the effect of technological change on yield volatility;

(iii) to examine whether the trends vary across crops and provinces; and (iv) to estimate

whether crop insurance payouts (which is related to downside yield risk) will vary in the

next five and ten years. To this end, this thesis uses county-level crop yield data for six field

crops in the provinces of Ontario and Saskatchewan, which account for 9% and 46.8% of the

Canadian field crop area, respectively (Statistics Canada, 2016).4 Tolhurst and Ker (2015)

proposed modeling crop yields using finite mixture of normals (hereafter, mixture model)

with embedded trend functions for potentially different rates of technological change across

components. Their approach assumes component variances to be constant over time. This

thesis generalizes their approach by allowing the component variances to vary over time, and

tests whether there is a potential efficiency gain in estimating conditional yield distributions

as opposed to the approach from Tolhurst and Ker (2015). These estimates will provide

answers to the following questions: (i) what is the optimal number of components to model

yields; (ii) does the rate of technological change in one component outperform another; (iii)

are the probabilities of components changing over time; and (iv) are yield volatility and

downside yield risk changing over time? The answers to these questions will be used to

accomplish the thesis objectives.

The above-mentioned questions are worthwhile to investigate because they have economic

significance; changes in yield volatility and downside yield risk have important implications

to areas such as farm income variability, crop insurance and food security. Given the fact

that crop yields are closely linked to climate variation (Lobell and Asner, 2003; Lobell and

Field, 2007; Challinor et al., 2014), agricultural producers have no control over the impacts

of weather on their yields. As the vast majority of crops get harvested only once a year

in Canada, the inflexibility of farm income is detrimental because poor outcomes can be

fatal to the year-to-year survival of farm businesses. Consequently, significant public funds

4Field crop area is used rather than the quantity of crop production in the comparison because major
crops differ across provinces. For instance, western Canada mainly produces barley, canola, oats, and spring
wheat, whereas southern Canada mainly produces corn, soybean, and winter wheat.
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($3.23 billion between 2013 and 2018 under Business Risk Management programs and $3

billion between 2018 and 2023 under Canadian Agricultural Partnership) are funnelled to

assist farmers in mitigating production risks, partly by subsidizing crop insurance premiums,

which are cost-shared among the federal government, provincial governments and producers

at a 36:24:40 ratio, respectively (Agriculture and Agri-Food Canada, 2017). Downside yield

risk also contributes to food insecurity, notably in developing countries, which is a major

impediment to their economic development. On account of the interrelationship between

average crop yields and crop prices, rising food costs due to poor yields causes inadequate

access to food for vulnerable households, which pushes them further into food insecurity. In

Canada – a developed country – the concern about food insecurity is by no means trivial

as well. In 2014, one in eight households experienced food insecurity in Canada and more

than one in six children lived in these affected households (Tarasuk, Mitchell, and Dachner,

2016). Although developed countries tend to have a higher capacity to alleviate the impacts

of poor yield on food insecurity through food imports, food banks and food subsidies, the

rate of food insecurity surprisingly did not improve over the years in most part of Canada

since 2005. Thus, on the whole, more attention should be paid to understand better the

relationship between technological change and yield volatility.

The thesis proceeds as follows. The next chapter describes the data used for the empirical

analyses. The following chapter outlines the current approach to modelling crop yields,

details the empirical methods used in this thesis, and explains the estimation strategy. This

is followed by the estimation and hypothesis test results. The second last chapter discusses

the economic implications of the empirical results to expected yield loss (crop insurance

premium). The final chapter presents the summary of the thesis.

5



2 Data

Ideally, farm-level yield data would be used to empirically investigate the effects of tech-

nological change such that the data could accurately reflect each producer’s adoption of

innovation. Unfortunately, such data does not exist as there is always a trade-off between

data availability and disaggregation of data. Thus, county-level data were used in this thesis,

which are the least aggregated data that are available to the public with sufficient number

of counties and length of data period. Analyzing crop yield data at a more aggregated

level could be a concern because it averages out the heterogeneity of less aggregated data,

particularly with respect to the higher moments. While aggregating farm-level yields to

the county-level will mute the effects of technological change, it should not be completely

mitigated. To the extent that yields are spatially correlated within a county, the mitigation

effects should be lessened. In addition, with the exception of a few studies, modelling crop

yields in literature typically use county-level yield data. Nonetheless, the effects this analysis

empirically finds should be conservative relative to the effects at the farm level since the vari-

ation at the farm level is generally considered doubled or more than that at the county level

(Coble, Dismukes, and Thomas, 2007; Cooper et al., 2009; Claassen and Just, 2011). The

entire data set includes six field crops in the provinces of Ontario and Saskatchewan, which

consists of a total of 810 county-crop pairs. Note, only counties that have complete yield

histories throughout the data period were included in the analysis. Alberta and Manitoba

yield data were considered; however, only 40 years and 25 years of yield data, respectively,

are available to the public. The analysis was done for both provinces, but is not reported

in this thesis to avoid ambiguous conclusions. Table 1 summarizes the data used in the

analysis. A detailed data description for each province is as follows.

For Ontario, county-level corn, soybean and winter wheat yield data from the period 1949

to 2016 were used. Yield data were collected from the annual Agricultural Statistics Reports

published by the Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA).

Ontario is a major producer of corn, soybean and winter wheat, which accounted for 62%,
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Table 1: Summary of Data

Province Observations Summary Statistics of Crop Yield (bu/ac)

Crop Counties Period (Years) Min. Mean Median Max. Std. Dev.

Ontario
Corn 32 1949− 2016 (68) 20.2 92.9 85.0 192.9 33.3
Soybean 6 1949− 2016 (68) 16.0 33.0 32.0 56.4 9.0
Wheat 26 1949− 2016 (68) 22.0 50.8 46.3 109.5 17.1

Saskatchewan
Barley 204 1938− 2016 (79) 1.0 37.8 38.0 102.7 15.5
Canola 144 1970− 2016 (47) 1.5 23.0 22.2 59.5 8.2
Oats 131 1938− 2016 (79) 1.0 48.7 48 155.8 20.6
Wheat 267 1938− 2016 (79) 1.0 24.9 25.0 70.3 9.9

49.2% and 76.5% of national production in 2017, respectively (Statistics Canada, 2018).

Figure 2 depicts the data for each crop. As shown in Figure 2(a), there are data for 32

counties available for corn (shaded in purple). Unfortunately, there are only data for six

soybean counties with completed yield histories available as most of the soybeans were grown

in the southwestern Ontario back in 1970s. These six counties are shaded in brown in Figure

2(b). For winter wheat, the 26 counties are highlighted in green in Figure 2(c).

For Saskatchewan, county-level barley, oats and spring wheat yield data from the period

1938 to 2016 were used. Due to limited data availability, county-level canola yield data are

only included from 1970 to 2016. Yield data were collected from the Ministry of Agriculture.

Saskatchewan is a major producer of barley, canola, oats and spring wheat, which accounted

for 39.7%, 52.4%, 53.3% and 39.4% of national production in 2017, respectively (Statistics

Canada, 2018). Similar to the Ontario crops, Figure 3 depicts the Saskatchewan data by

each crop. For Saskatchewan barley, Figure 3(a) highlights the 204 counties in yellow.

Interestingly, for canola, no data are available in the southwestern part of Saskatchewan;

the 144 counties are shaded in red in Figure 3(b). For Saskatchewan oats, the 131 counties

are shaded in blue in Figure 3(c). Finally, for Saskatchewan spring wheat, the 267 counties

are highlighted in pink in Figure 3(d).
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Figure 4 illustrates the representative conditional quantile regression estimates for each

of the six crops. It clearly shows that technological change has remarkably increased average

crop yield over time for all the crops. What is more interesting is that technological change

has generally impacted the middle and upper quantiles at a greater rate than in the lower

quantile, causing an increase in yield volatility over time. This phenomenon can be seen

particularly in Ontario corn and Ontario soybean, but less so for the Saskatchewan crops.

(a) Ontario Corn (b) Ontario Soybean

(c) Ontario Wheat

Figure 2: Ontario Counties, by Crop
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(a) Saskatchewan Barley (b) Saskatchewan Canola

(c) Saskatchewan Oats (d) Saskatchewan Wheat

Figure 3: Saskatchewan Counties, by Crop

9



(a) Hoodoo, Saskatchewan Barley (b) Wolseley, Saskatchewan Canola

(c) Peel, Ontario Corn (d) Middlesex, Ontario Soybean

(e) Frenchman Butte, Saskatchewan Oats (f) Abernethy, Saskatchewan Wheat

Figure 4: Representative Conditional Quantile Regression Estimates for Each Crop
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3 Empirical Methods

3.1 Literature Review

Based on existing literature, the typical approach to model crop yields involve three steps:

(1) estimate a trend of crop yield over time; (2) estimate the residuals from the first step

and adjust for heteroscedasticity if needed, and (3) estimate a yield distribution based on

the results from step one and two. A detailed discussion for each step is as follows.

The time-conditional mean of average crop yield, or in other words, the rate of technolog-

ical change, can be estimated through various approaches ranging from a simple linear trend

to other examples including ARIMA(p, d, q) (Goodwin and Ker, 1998), Bayesian hierarchical

model (Ozaki and Silva, 2009), Kalman filter (Kaylen and Koroma, 1991), mixture of two

normals (Tolhurst and Ker, 2015), polynomial trend (Just and Weninger, 1999), stochastic

trend model (Moss and Shonkwiler, 1993) and two-knot linear spline (Skees and Reed, 1986;

Harri et al., 2011).

Based on the estimated trend, the residuals can be tested for heteroscedasticity, or in

other words, the effects of technological change on the second moment of a yield distribution.

Conditioning for heteroscedasticity has received surprisingly little attention in modelling

crop yields as previous studies tended to make untested assumptions or simply assume crop

yields to be homoscedastic. However, recent contributions have suggested that correctly

accounting for heteroscedasticty leads to significant economic consequences. Harri et al.

(2011) concluded that the assumption of a specific form of heteroscedasticity limits actuarial

soundness in crop insurance premium rate calculations. Ker and Tolhurst (2019) generalized

Harri et al. (2011) to incorporate the asymmetric affects of technological change in the third

moment of a yield distribution and found that premium rates can have statistically significant

difference under asymmetric heteroscedasticity treatments.

Conditional yield distribution, which is commonly used for measuring risk, has been ex-

tensively investigated in a wide variety of contributions. In general, methods of modelling

11



yield distributions can be categorized into parametric, semi-parametric and non-parametric

models. Parametric models consist of a finite number of parameters to model yields and,

therefore, would require a prior assumption on the functional form of the distribution. Many

of the previous studies adopted parametric methods and different types of distributions have

been considered and tested, including but not limited to: beta distribution (Nelson and

Preckel, 1989; Turvey, Zhao et al., 1999; Ozaki, Goodwin, and Shirota, 2008; Zhu, Goodwin,

and Ghosh, 2011), gamma distribution (Gallagher, 1987), inverse hyperbolic sine distribu-

tion (Moss and Shonkwiler, 1993), logistic distribution (Atwood, Shaik, and Watts, 2003),

log-normal distribution (Day, 1965), maximum entropy distribution (Stochs and LaFrance,

2004; Wu and Zhang, 2012; Tack, Harri, and Coble, 2012), mixture model (Woodard and

Sherrick, 2011; Tolhurst and Ker, 2015), normal distribution (Botts and Boles, 1958; Just

and Weninger, 1999), reverse lognormal distribution (Claassen and Just, 2011) and Weibull

distribution (Chen, Miranda et al., 2004; Sherrick et al., 2004). One concern of the para-

metric methods is that the initial assumption may lead to a lack of flexibility and accuracy

to model yields because the true yield distributions are always unknown.

In contrast to the parametric methods, the non-parametric methods do not require any

specifications on the functional form of the distributions such that the shape of distribution is

solely derived by the observations. Thus, the use of the non-parametric methods is extremely

flexible and prevents any false assumptions. Kernel density estimation, one of the most

popular non-parametric methods, has been considered to model yields by Goodwin and

Ker (1998), Ker and Goodwin (2000), Goodwin and Mahul (2004), Norwood, Roberts, and

Lusk (2004), Racine and Ker (2006), Ker and Tolga Ergun (2007) and Ker, Tolhurst, and

Liu (2016). However, Ker and Coble (2003) pointed out that the non-parametric methods

tend to be more inefficient than parametric methods in two circumstances: (1) when the

prior assumption of the parametric distribution can accurately model yields and (2) a small

number of observations. In light of their respective merits, they proposed a semi-parametric

estimator to model yields that can account for the benefits of both parametric and non-

12



parametric methods while mitigating their shortfalls.

Although the ”best” method to model crop yields can hardly be determined, many of

the reviewed studies concluded that yield distributions tend to be non-normally distributed,

meaning that the lower tail and upper tail of the distribution are not symmetrical. Early

work includes Day (1965), who argued that yield distributions, in general, are not normally

distributed or positively skewed and suggested that the degree of skewness and kurtosis de-

pends on the type of crops and soil nutrient. Indeed, empirical evidence from subsequent

literature has supported that the majority of field crops have negatively skewed yield distri-

butions (Gallagher, 1987; Nelson and Preckel, 1989; Goodwin and Ker, 1998; Atwood, Shaik,

and Watts, 2003; Ramirez, Misra, and Field, 2003; Tolhurst and Ker, 2015). One exception

is cotton, which is well recognized to have positively skewed yield distribution (Day, 1965;

Goodwin and Ker, 1998; Ramirez, Misra, and Field, 2003). All of the above-mentioned

studies have considered the higher moments of the distribution with the exception of Botts

and Boles (1958) and Just and Weninger (1999). The former study suggested that crop

insurance premia be calculated based on a normally distributed yield distribution. However,

the reason to assume normality was not explained. Since then, modelling yields using nor-

mal distribution had been silent until the latter study argued that crop yields are normally

distributed because of misspecification and data limitation problems.

Nonetheless, considering the higher moments of yield distribution is crucial because they

have significant economic consequences. For instance, Gallagher (1987) found that negatively

skewed soybean yield distributions in the United States are associated with a higher chance

of low yields. Goodwin and Ker (1998) and Atwood, Shaik, and Watts (2003) found that the

assumption of normality, in the majority of cases, may understate the rate of crop insurance

premia. The non-normality can be generated by different factors in a crop-specific fashion,

including but not limited to, bad weather (Hennessy, 2009), crop rotation (Du, Hennessy,

and Yu, 2012), number of overheat days (Du et al., 2015), response to fertilizers (Nelson and

Preckel, 1989) and technological change (Tolhurst and Ker, 2015).
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3.2 Mixture Model

As noted above, the vast majority of the yield distribution estimation approaches have

considered the higher moments of a distribution. To this end, the mixture model is proposed

to model yields in this thesis. Although the mixture model is a parametric model, it is able

to recognize the higher moments of a distribution due to its exceedingly flexible parametric

specifications (Goodwin, Roberts, and Coble, 2000). Such flexibility allows for the use of

different numbers of parameters to model any shape on a continuous distribution function

to any desired level of bounded error (Everitt and Hand, 1981). From an economic point

of view, soft clustering the data corresponds to one of the thesis objectives, which is to

investigate whether the rate of technological change differs across different components. The

mixture model is widely used in different fields. Specifically, in agricultural economics, it has

been used in areas such as agricultural commodity prices (Hall, Brorsen, and Irwin, 1989;

Goodwin, Roberts, and Coble, 2000) and crop yields (Woodard and Sherrick, 2011; Tolhurst

and Ker, 2015). The mixture model is defined as:

yt ∼
K∑
k=1

λk N (µk, σ
2
k) (1)

where yt is the average crop yield over year t and t = 1, ..., T and where K is the number

of mixture components (i.e. normal distributions). λk is the probability of a particular

component k (subject to λk > 0 and
∑K

k=1 λk = 1) and is obtained by taking the mean of

each data point’s probability that it belongs to component k in each year (denoted by wk,t)

such that λk =
∑T

t=1wk,t/T . N (µk, σ
2
k) are the normal distributions with mean µk and

variance σ2
k. Given the yield data yt, the motivation is to estimate the unknown parameters

λ, µ and σ that maximize the log-likelihood function, which is:

lnL(λ, µ, σ | yt) =
T∑
t=1

(
ln

K∑
k=1

λk N (µk, σ
2
k | yt)

)
(2)
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3.3 Model Selection and Estimation Strategy

In order to estimate yield distribution for each county-crop pair by the mixture model,

two decisions had to be made: (1) the optimal number of components (K) to include in the

model and (2) the number of parameters used to estimate the probability, mean and variance

for each component. Theoretically, the likelihood estimate should improve along with the

increasing use of (1) and (2), however, this may overfit the data. In view of the overfitting

problem, Akaike information criterion (AIC) was employed to balance the trade-off between

the complexity of the model and goodness of fit (Akaike, 1974). AIC is defined as:

AIC = (−2) lnL+ 2p (3)

where L is the maximum likelihood derived from the model and p represents the number of

parameters used within the model. The penalized term 2p increases along with the number

of parameters, which eventually inflates the AIC estimate. The preferred model, among a

selection of models used in the comparison, is indicated by the lowest AIC estimate.5 Only

models with one and two components were considered in the comparison. As suggested by

the AIC estimates, including more than two components overfits the data. Table 2 provides

an overview of the models that are used in the AIC comparison. A detailed explanation of

each model is as follows.

The first model has one component. Note, K = 1 represents a conventional normal

distribution, which is:

yt ∼ N (α + βt, γ) (Model 1)

where the mean of the component µ was estimated by a linear time trend α + βt. In

other words, it represents the mean rate of technological change over time. The component

variance σ2 is represented by γ. Model 1 assumes γ to be constant over time.

5The purpose of AIC is to evaluate the relative efficiency between models. In this thesis, the model with
the lowest AIC estimate is the preferred model; however, it is by no means certain that such a model is the
best among the selection of models.
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Table 2: Overview of Models for Selection

Number of Number of
Model Components Technological Trends Restriction Mean(s) Variance(s)

1 One One No Temporal Constant
2 One One No Temporal Temporal
3 Two One No Temporal Constant
4 Two Two No Temporal Constant

4R Two Two Yes Temporal Constant
5 Two Two No Temporal Temporal

5R Two Two Yes Temporal Temporal

The next model also has one component. The component mean, which is the same as

Model 1, is conditional to time with a linear trend; however, the variance is allowed to change

over time for the adjustment of heteroscedasticity, where σ2 = γ + δt. That is:

yt ∼ N (α + βt, γ + δt) (Model 2)

After considering one-component models, the following models are two-component (i.e.

K = 2) such that the estimated yield distribution is a mixture of two normal distributions.

Intuitively, the two components can be interpreted as the lower component (i.e. average crop

yields under poor growing conditions) and the upper component (i.e. average crop yields

under ideal growing conditions), which are denoted by subscript ` and u, respectively. The

first two-component model is given by:

yt ∼ λN (α + βt, γ`) + (1− λ)N (α + βt, γu) (Model 3)

where this model assumes both components to have the same rate of technological change

over time, which are both represented by α + βt. However, each component has its unique

variance (denoted by γ` and γu) and both variances are constant over time.

In comparison to Model 3, the following two-component model considers each component

to have different rates of technological change. Note, this is the approach proposed by
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Tolhurst and Ker (2015), that is:

yt ∼ λN (α` + β`t, γ`) + (1− λ)N (αu + βut, γu) (Model 4)

for j ∈ {`, u}, the mean of each component µj is estimated by αj +βjt, which represents the

rate of technological change for the respective component. The variance of each component

γj is constant over time.

Model 5 builds on Model 4 by incorporating a linear trend into the estimation of variance

for both components, that is:

yt ∼ λN (α` + β`t, γ` + δ`t) + (1− λ)N (αu + βut, γu + δut) (Model 5)

for j ∈ {`, u}, the component’s mean µj is estimated by αj + βjt, whereas the component’s

variance σ2
j is estimated by γj + δjt.

To this end, the one-component models (Models 1 and 2) were estimated by ordinary least

squares regression, whereas the unknown parameters in the two-component models (Models

3, 4 and 5) were estimated using the expectation-maximization (EM) algorithm, under a

maxmimum likelihood framework (Bilmes et al., 1998; Chen and Li, 2009; McLachlan, 2018).

In the case of two components, the log-likelihood function is given by:

lnL(λ, µ, σ | yt) =
T∑
t=1

(
ln
(
λN (µ`, σ

2
` | yt) + (1− λ)N (µu, σ

2
u | yt)

))
(4)

The EM algorithm involves two steps: E-step and M-step. To begin with, each data point

(yt) is arbitrarily assigned to an initial probability that it belongs to the lower component

(denoted by w`,t), which then forms an initial set of parameters through weighted least

squares. The E-step computes w`,t for each yt using the current value of the parameters,

whereas the M-step computes a new set of parameters that improve the log-likelihood. The

algorithm iterates between E-step and M-step until convergence such that the log-likelihood
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function is maximized. However, one of the shortfalls in the EM algorithm is that the

convergence may happen at local maxima rather than the global maximum especially when

the log-likelihood function has multiple local peaks and is relatively flat (Karlis and Xekalaki,

2003; Tolhurst and Ker, 2015; McLachlan, 2018). As suggested by several studies, multiple

starting values can be used to assign an initial probability to w`,t in order to avoid the

convergence at local maxima (Finch, Mendell, and Thode Jr, 1989; Atwood et al., 1992; Karlis

and Xekalaki, 2003). To do so, five different starting values were used in the estimation.6

Among the five sets of estimated parameters, the one that gave the highest log-likelihood

was chosen to be the final estimates in the EM algorithm.

Even though the convergence is less likely to happen at local maxima by using multiple

starting values, another concern of the EM algorithm is that the component probabilities

λk have a bias towards 1/K in small samples. For instance, λ in a two-component mixture

model (K = 2) is biased towards 0.5. This suggests that the data generating process of

average crop yield has half a chance to be drawn from a relatively bad year. To mitigate

the bias, a penalty function P (λ − 0)2 is proposed to add to the log-likelihood function in

equation (4) such that the penalized log-likelihood function exhibits a penalty when λ is

moving further away from 0. The new penalized log-likelihood function is given by:

lnL(λ, µ, σ | yt) =
T∑
t=1

(
ln
(
λN (µ`, σ

2
` | yt) + (1− λ)N (µu, σ

2
u | yt)

))
− P (λ− 0)2 (5)

The objective of the penalized log-likelihood function is to investigate if there is any

set of estimated parameters that can give a higher log-likelihood by searching through a

lower value of λ̂. To do so, parameters that were derived from the EM algorithm were re-

estimated by maximizing the penalized log-likelihood function rather than the log-likelihood

function, under different penalty values (P ) ranging from 1 to 50. Since a higher value of

P will subject to a heavier penalty, this would lead to a lower estimate of λ̂ (it also alters

6Yields yt were regressed at 20%, 35%, 50%, 65% and 80% on time t using conditional quantile regression.
For each quantile regression, residuals êt < 0 were assigned to the lower component with a probability of 1,
otherwise 0.
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(a) EM Algorithm Estimates (b) Penalized Log-likelihood Estimates

Figure 5: EM Algorithm and Penalized Log-likelihood Estimates, Prince Edward County,
Ontario, Corn Yields, 1949 - 2016.

other parameter estimates). Among the different penalty values, the set of parameters that

gave the highest log-likelihood in equation (4) was chosen to be the final estimates in the

penalized log-likelihood estimation. Eventually, the set of parameters that gave a higher log-

likelihood between the penalized log-likelihood estimation and the EM algorithm was chosen

to be the final estimates for the corresponding county-crop pair. To demonstrate, Figure

5(a) and 5(b) depict the estimated technological trends from the EM algorithm and the

penalized log-likelihood, respectively, for corn yields from Prince Edward County, Ontario.

These two technological trends are essentially the temporal means for the two components

(for j ∈ {`, u}, αj + βjt). Figure 5(b) clearly shows that the probability of the low yield

component (λ̂) is less than the probability in Figure 5(a) as the yields have less chance to

be drawn from the lower component.

After obtaining the final estimated parameters for each county-crop pair, one of the

limitations is that the two technological trends from the set of parameters that maximize the

log-likelihood may or may not intersect if no restrictions are imposed. This limitation only

happens in Models 4 and 5 as they are the only models that have two unique technological

trends. To provide some insight, Figure 6 presents the two technological trends for corn

yields from Brant County, Ontario. Figure 6(a) clearly illustrates that the unrestricted two
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(a) Without Non-crossing Restriction (b) With Non-crossing Restriction

Figure 6: Crossing and Non-crossing Technological Trends, Brant County, Ontario, Corn
Yields, 1949 - 2016.

trends are crossing in the year 1960. Since the upper component intuitively should always

be higher than the lower component, as illustrated in Figure 6(b), a restriction was imposed

to avoid crossing (hereafter, non-crossing restriction).7

Other than the non-crossing restriction, another limitation appears when the component

variances turn negative if they are estimated by a time trend (for j ∈ {`, u}, γj +δjt). Recall

that one of the thesis objectives is to estimate the crop insurance payouts in the next five and

ten years (i.e. year 2023 and 2028). Therefore, a restriction was imposed on the time-varying

component variances such that they were prohibited from turning negative before the 2028

(hereafter, non-negative restriction).8 Note, this restriction only applies to Model 5 as it is

the only model that has estimated time-varying variances turning negative before 2028.

If the unrestricted two trends are initially not crossing, then the non-crossing restriction

does not bind. Similarly, if the unrestricted time-varying variances do not turn negative

before the year 2028, the non-negative restriction also does not bind. Therefore, in both

cases, the estimated parameters are identical with and without restrictions. In the analysis,

7Restriction was set up in two ways: (1) the two trends were restricted to start from the same intercept,
and (2) the non-crossing two trends that gave the highest log-likelihood in the convergence process were
picked. Estimated parameters that obtained a higher log-likelihood were chosen between the two.

8For instance, the year 2028 is the 80th year from 1949 and, therefore, t = 80 such that γ̂ + 80 δ̂ has to
be greater than 0.
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Models 4 and 5 were restricted in all cases. The restricted Models 4 and 5 were labelled as

Models 4R and 5R, respectively.

For ease of interpretation, each county-crop pair’s AIC estimate for each model was

aggregated in box plots. Figure 7 and Figure 8 illustrate the box plots by crop for Ontario

and Saskatchewan, respectively. Table 3 presents the median of each box plot. Consider

the medians of the box plots: 3 out of the 7 province-crop pairs obtain the lowest median

in Model 4, 2 out of the 7 in Model 4R, 1 out of the 7 in Model 5 and 1 out of the 7 has

the same median between Model 4 and 4R. This confirms that using two-component models

to model crop yields from the data set achieves better efficiency than using one-component

models, which suggests that the consideration of the higher moments better explains the data.

This is also consistent with other literature that estimating yield distribution with a single

normal distribution (one component) may not be appropriate, even with the adjustment

of heteroscedasticity (i.e. Gallagher (1987); Nelson and Preckel (1989); Goodwin and Ker

(1998); Atwood, Shaik, and Watts (2003); Ramirez, Misra, and Field (2003); Tolhurst and

Ker (2015)). Interestingly, Ontario corn and soybean have notable decreases in their medians

using two-component models, but less so for other province-crop pairs. It is also worth

noting that Ontario corn and soybean achieve better efficiency by using the restricted model

(Model 4R) rather than the unrestricted model (Model 4). This happens when the initial

two technological trends cross each other such that they are restricted to start from the same

intercept (non-crossing restriction). Consequently, instead of estimating α` and αu, only one

intercept term needs to be estimated. As a result, the AIC estimate is lower if the reduced

log-likelihood is offset by the decreased use of parameters.

To select the appropriate model for each province-crop pair, Table 4 reports the number

of counties that obtained the lowest AIC estimate under each model. Among all of the seven

province-crop pairs, Ontario corn is the only pair that dominates in Model 5R: 62.5% of

counties achieve the highest efficiency using Model 5R. The remaining six pairs dominate in

Model 4R: 66.7% for Ontario soybean, 42.3% for Ontario wheat, 49% for Saskatchewan
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(a) Ontario Corn (b) Ontario Soybean

(c) Ontario Wheat

Figure 7: AIC Estimates of Each Model in Box Plots, by Crop in Ontario

Table 3: Median of AIC Estimates of Each Model, by Crop and Province

Province Observations Model

Crop Counties Years 1 2 3 4 4R 5 5R

Ontario
Corn 32 68 547.54 536.92 546.79 528.09 527.42 527.93 527.48
Soybean 6 68 411.86 406.65 398.99 390.61 389.29 391.40 391.25
Wheat 26 68 462.74 458.45 461.55 458.65 456.76 455.25 456.76

Saskatchewan
Barley 204 79 597.94 598.76 599.20 592.91 594.64 596.91 597.29
Canola 144 47 303.66 302.11 305.53 297.60 301.62 302.54 304.74
Oats 131 79 641.26 642.04 643.65 636.73 637.55 640.86 642.45
Wheat 267 79 530.10 531.27 531.69 528.38 528.38 530.75 531.48
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(a) Saskatchewan Barley (b) Saskatchewan Canola

(c) Saskatchewan Oats (d) Saskatchewan Wheat

Figure 8: AIC Estimates of Each Model in Box Plots, by Crop in Saskatchewan

Table 4: Number of Counties that Obtained the Lowest AIC Estimate, by Crop and Province

Province Observations Model

Crop Counties Years 1 2 3 4 4R 5 5R

Ontario
Corn 32 68 0 5 0 NA 7 NA 20
Soybean 6 68 0 0 0 NA 4 NA 2
Wheat 26 68 0 6 0 NA 11 NA 9
Saskatchewan
Barley 204 79 55 17 9 NA 100 NA 23
Canola 144 47 33 35 9 NA 46 NA 21
Oats 131 79 27 11 7 NA 72 NA 14
Wheat 267 79 84 14 26 NA 101 NA 42

Notes : Model 4 and 5 were assigned NAs since models were restricted in all cases.
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barley, 31.9% in Saskatchewan canola, 55% in Saskatchewan oats and lastly, 37.8% for

Saskatchewan wheat. For Saskatchewan canola, the numbers of counties that give the lowest

AIC are not far behind when compare Model 4R (46 counties) to Models 1 and 2 (33 and 35

counties, respectively), which suggests that some of its counties can be sufficiently explained

by using one-component models. This is not surprising with 47 years of data (relatively less

than other province-crop pairs); the model theoretically should require fewer parameters to

fit the data. The overall results in Table 4 suggest that the most efficient model for each

county varies within a province-crop pair. Nonetheless, the model with the highest number

of counties was employed to model yields for the corresponding province-crop pair. That is,

all counties within the province-crop pair were estimated under the same model. As a result,

all province-crop pairs, with the exception of Ontario corn, were estimated using Model 4R.

Ontario corn is the only province-crop pair that was estimated using Model 5R.

With the exception of Saskatchewan canola, the AIC estimates between the unrestricted

and restricted models are quite similar as evidenced by the box plots. As a robustness check,

a likelihood ratio test was performed at the five percent significance level to investigate

whether the restricted models have statistically significant differences from the unrestricted

models. Table 5 reports the number of counties that require the restrictions, and the number

of counties that reject the null hypothesis of no difference (between the restricted and the

unrestricted model) for each province-crop pair.

Note, a multiple testing problem arises since more than one hypothesis test is performed

simultaneously such that the probability of type I error is no longer at five percent.9 To

mitigate the issue, Table 5 also reports the rejection counts under the Holm-Bonferroni

(family-wise) p-value (Holm, 1979). Note, the Holm-Bonferroni adjustment is widely believed

to be overly conservative because all the tests are assumed to be independent, however,

counties are spatially correlated. The adjustment also has a very low power when the number

9For example, given that Ontario corn has 32 counties, the probability of type I error (family-wise error
rate) is 1−0.9532 = 0.806 if the 32 tests are independent, meaning that the chance of incorrectly rejecting the
null hypothesis at least once among the 32 hypotheses is 80.6% without the Holm-Bonferroni adjustment.
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Table 5: Restriction and Rejection of Restricted Model, by Crop and Province

Province Observations Non-crossing Non-negative Both

Crop Counties Years R P F R P F R P F

Ontario
Corn 32 68 11 4 0 3 0 0 4 1 1
Soybean 6 68 3 0 0 NA NA NA NA NA NA
Wheat 26 68 20 5 1 NA NA NA NA NA NA

Saskatchewan
Barley 204 79 57 9 0 NA NA NA NA NA NA
Canola 144 47 74 10 2 NA NA NA NA NA NA
Oats 131 79 56 32 8 NA NA NA NA NA NA
Wheat 267 79 98 44 3 NA NA NA NA NA NA

Notes : Statistical significance evaluated at the 5% using a likelihood ratio test. The non-crossing restric-
tion avoids the two technological trends crossing in any given year. The non-negative restriction avoids
components variances turning negative before the year 2028. R represents the number of counties that
require the above-mentioned restriction(s). P represents the number of counties that reject the restriction(s)
using standard p-values. F represents the number of counties that reject the restriction(s) using family-wise
p-values.

of simultaneously tested hypotheses are large (especially for Saskatchewan counties in this

thesis) (Chen, Feng, and Yi, 2017). Nonetheless, the Holm-Bonferroni adjustment serves to

provide a lower bound of these rejections. To interpret the results, consider Ontario corn as

an example: 11 out of the 32 counties require non-crossing restriction and 4 of these restricted

counties reject the restriction at the standard five percent significance level; however, none

of these counties are able to reject the restriction under the family-wise p-value. For the

non-negative restriction, 3 out of the 32 counties require the restriction but none of the

three reject the restriction. Next, 4 out of the 32 counties require both the non-crossing

and non-negative restrictions and 1 of the 4 rejects both restrictions under the standard

and family-wise p-value. Recall that the non-negative restriction only applies to Ontario

corn due to the time-varying component variances and, therefore, it is not applicable to

other province-crop pairs. In general, the percentage of counties that require non-crossing

restriction are between 25% to 50% for each province-crop pair, with the exception of Ontario

wheat (76.9%). Not surprisingly, the rejection rates of the restricted models are fairly low
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for all province-crop pairs under standard p-value (ranging from 0% to 24.4%), and much

lower under family-wise p-value (ranging from 0% to 6.1%). The overall results suggest that

the imposed restrictions, in most cases, do not statistically significantly affect the estimation

efficiency.
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4 Empirical Results and Implications

4.1 Estimation Results

Figure 9 illustrates the representative two-component technological trend and yield dis-

tribution estimates in pairs for each of the six crop. Recall that Ontario corn counties

were estimated in the two-component model with time-varying variances, whereas for other

province-crop pairs the component variances were assumed to be constant over time. There-

fore, the interpretation of the estimated variance parameters is slightly different between the

two models. To demonstrate, Figure 9(e) and 9(k) present the two-component technological

trend estimates for Peel, Ontario corn and Abernethy, Saskatchewan wheat. First, for Peel,

Ontario corn, the lower rate of technological change is estimated at α̂`+β̂`t for a given year t,

where α̂` = 48.18 and β̂` = 1.47. The upper technological trend is estimated at α̂u+ β̂ut for a

given year t, where α̂u = 49.17 and β̂u = 1.81. The slope coefficients of technological change

β̂` and β̂u represent the annual increase in average crop yield (measured in bushels per acre)

for the lower component and upper component, respectively. In this case, β̂u > β̂` suggests

that the rate of technological change in relatively good years is higher than in relatively bad

years, which also indicates a higher year-to-year dispersion of average crop yield over time.

As for the component variances, the variance of the lower component is estimated at γ̂` + δ̂`t

for a given year t, where γ̂` = 2.31 and δ̂` = 2.9. The variance of the upper component

is estimated at γ̂u + δ̂ut for a given year t, where γ̂u = 31.37 and δ̂u = 0.96. The slope

coefficients of variance δ̂` and δ̂u represent the annual increase in the variances of average

crop yield for the lower component and upper component, respectively. In this case, δ̂` > δ̂u

suggests that the yield dispersion in both components are increasing asymmetrically over

time, but higher in relatively bad years than in relatively good years, which also indicates a

higher downside yield risk over time.

Interpreting the parameter estimates of the estimated yield distribution, which is illus-

trated at different time frames in Figure 9(f), is rather straightforward. For a given year

t, the data generating process of average crop yield has a probability of λ̂ = 0.41 to fall
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(a)

(b)

Figure 9: Hoodoo, Saskatchewan Barley
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(c)

(d)

Figure 9: Wolseley, Saskatchewan Canola
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(e)

(f)

Figure 9: Peel, Ontario Corn
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(g)

(h)

Figure 9: Middlesex, Ontario Soybean
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(i)

(j)

Figure 9: Frenchman Butte, Saskatchewan Oats
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(k)

(l)

Figure 9: Abernethy, Saskatchewan Wheat
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within the lower component N (48.18 + 1.47t, 2.31 + 2.9t) or a probability of 1 − λ̂ = 0.59

to fall within the upper component N (49.17 + 1.81t, 31.37 + 0.96t). Estimating the yield

distribution for an exact year can be done by substituting the number of the year into t. For

instance, the year 2015 is the 67th year from the starting period year 1949 and, therefore,

t = 67. As a result, the estimated yield distribution in year 2015 is a mixture of 41% at

the lower component N (146.67, 196.61) and 59% at the upper component N (170.44, 95.69).

If the current trends of technological change and component variances remain unchanged,

then the hypothetical yield distribution in year 2050 will be a mixture of 41% at the lower

component N (198.12, 298.11) and 59% at the upper component N (233.79, 129.29).

Moving forward to Abernethy, Saskatchewan wheat, the interpretation of the variance

estimates is slightly different (interpretation of other parameters remains unchanged). Unlike

Peel, Ontario corn, the variance of the lower and upper components are represented by γ̂`

and γ̂u, respectively, where γ̂` = 0.41 and γ̂u = 41.04 such that they were both assumed

to be constant over time. Interestingly, γ̂` is much lower than γ̂u, which suggests that the

yield dispersion in relatively bad years is much lower than in relatively good years. In Figure

9(k), the lower technological trend is estimated at 13.9 + 0.13t and the upper technological

trend is estimated at 20.21 + 0.26t. The average crop yield has a probability of λ̂ = 0.09 to

fall within the lower component N (13.9 + 0.13t, 0.41) and a probability of 1 − λ̂ = 0.91 to

fall within the upper component N (20.21 + 0.26t, 41.04). Similar to the previous example,

β̂u > β̂` suggests that the rate of technological change outperforms in relatively good years;

however, in contrast to the last example, this county has a much lower λ̂. It is not surprising

that a lower λ̂ would be accompanied by a lower γ̂`, because, if only a few observations have a

particularly high weight in the lower component, the variation of these observations also tends

to be low. Table 6 summarizes the median of parameter estimates for all the 810 county-crop

pairs (see Appendix 7.1 for the detailed summary statistics). There are several patterns that

are worthwhile to mention. Consider the medians of β̂` and β̂u: all the province-crop pairs

exhibit a higher β̂u than β̂`, which suggests that the rate of technological change in relatively
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Table 6: Median of Estimated Parameters, by Crop and Province

Province Observations Parameters

Crop Counties Years λ α` β` γ` δ` αu βu γu δu

Ontario
Corn 32 68 0.42 46.54 1.06 4.13 2.01 47.24 1.54 6.46 1.67
Soybean 6 68 0.19 19.00 0.19 17.74 NA 19.70 0.40 8.03 NA
Wheat 26 68 0.19 26.14 0.38 15.83 NA 26.14 0.77 30.10 NA

Saskatchewan
Barley 204 79 0.17 14.52 0.31 54.24 NA 20.52 0.53 52.59 NA
Canola 144 47 0.47 15.25 0.17 19.38 NA 17.27 0.42 13.64 NA
Oats 131 79 0.33 19.18 0.44 86.58 NA 28.14 0.65 101.29 NA
Wheat 267 79 0.18 8.85 0.19 16.28 NA 16.36 0.28 28.24 NA

good years generally outperforms the rate in relatively bad years. For the magnitude of β̂`

and β̂u, the annual increase in average crop yield is clearly higher in Ontario corn for both

components (median of β̂` = 1.06 bu./ac., β̂u = 1.54 bu./ac.), but less so for other province-

crop combinations, particularly for Saskatchewan wheat (median of β̂` = 0.19 bu./ac., β̂u =

0.28 bu./ac.). It is not surprising that corn has a higher yield improvement than other crops

over time, due to its early widespread commercialization of hybrid varieties since the early

20th century (Crow, 1998; Edgerton, 2009). In contrast, advances in the variety development

for other crops have relatively lagged behind. The significant yield improvement for Ontario

corn also leads to an increasing volatility over time in both components, especially in the

downside yield risk (as δ̂` > δ̂u). The year-to-year dispersion of crop yields in relatively bad

years has generally increased by 2.01 bu./ac. annually, which is higher than 1.67 bu./ac.

in relatively good years. Finally, considering the median of λ̂ is also interesting because of

the heterogeneity among the province-crop pairs: the data generating process of yields for

Ontario soybean, Ontario wheat, Saskatchewan barley, and Saskatchewan wheat have less

than a 20% probability of being drawn from a relatively bad year. Conversely, the estimates

are much higher for Ontario corn and Saskatchewan canola, which have a probability of 42%
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and 47%, respectively.

4.2 H1
0 : β` = βu

The estimated parameters also allow further investigation of the above-mentioned tendencies

by testing a number of hypotheses. Table 7 (column 3 and 4) summarizes the rejection counts

for the first hypothesis: H1
0 : β` = βu, and reports under the standard p-value as well as

the family-wise p-value. Using a likelihood ratio test for each of the 810 county-crop pairs,

the first hypothesis is a two-sided test which looks at whether the upper technological trend

has a statistically significant difference from the lower technological trend. Interestingly, this

null hypothesis has a higher rejection rate in Ontario than Saskatchewan with a standard

p-value. Namely, Ontario corn (25 of the 32 counties), Ontario wheat (15 out of 26), and

Ontario soybean (3 out of 6). In total, 297 of the 810 county-crop pairs reject the null. With

the family-wise p-value, the rejection rate for Saskatchewan crops is very low (less than 10

counties for each of the four crops). Given that Saskatchewan has many more counties than

Ontario, as mentioned in the Methods section, it is not surprising that most of the counties

are not statistically significant when a large number of hypotheses are tested simultaneously.

Nonetheless, Ontario corn and soybean still maintain a relatively high rejection rate (12 out

of 32 and 3 out of 6, respectively). In total, 42 of the 810 county-crop pairs reject the null

with the family-wise p-value.

Based on the first hypothesis, a one-sided test: H0 : βu ≤ β` was also considered. This

hypothesis looks at whether the upper technological trend is statistically significantly larger

than the lower technological trend. The reason for focusing on this direction is that an in-

crease in yield volatility is, in most cases, caused by the two diverging technological trends.

As expected, most of the counties that reject the first null (297 counties in total) are also

able to reject this null (260 counties in total), meaning that counties that have statistically

significant differences in the rate of technological change between the two components, are

very likely to have a higher rate in the upper component than the lower component. This
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Table 7: Hypothesis Test One and Two: Rejection Counts

Province Observations H1
0 : β` = βu H2

0 : λt = λ

Crop Counties Years P F P F J

Ontario
Corn 32 68 25 12 4 4 0
Soybean 6 68 3 3 3 3 1
Wheat 26 68 15 3 2 2 1

Saskatchewan
Barley 204 79 89 5 49 5 9
Canola 144 47 32 6 10 0 0
Oats 131 79 45 4 14 4 0
Wheat 267 79 88 9 85 10 13

All 810 NA 297 42 167 28 24

Notes : Statistical significance evaluated at the 5% using a likelihood ratio test for H1
0 . Statistical significance

evaluated at the 5% using a t-test for H2
0 . P represents the number of counties that reject the respective

null hypothesis using standard p-values. F represents the number of counties that reject the respective null
hypothesis using family-wise p-values. J represents the number of counties that reject H2

0 using jackknife
p-values.

Table 8: Summary Statistics for Ratio of β̂u/β̂`

Province Observations Summary Statistics

Crop Counties Years Minimum Mean Median Maximum Std. Dev.

Ontario
Corn 32 68 0.90 1.77 1.43 5.54 1.05
Soybean 6 68 1.01 2.23 2.10 4.28 1.13
Wheat 26 68 1.36 2.02 1.89 3.50 0.54

Saskatchewan
Barley 204 79 0.13 4.89 1.90 241.60 18.55
Canola 144 47 −11.78 53.03 2.71 5459.43 457.62
Oats 131 79 0.09 3.63 1.62 57.77 7.81
Wheat 267 79 0.19 95.53 1.86 20690.64 1269.79

Notes : The positive extreme values (for example a maximum ratio of 20690.64 for Saskatchewan wheat) and
negative extreme values (for example a minimum ratio of -11.78 for Saskatchewan canola) appear because

β̂` → 0, which inflates the ratio. β̂` → 0 from the positive side generates positive extreme values whereas
β̂` → 0 from the negative side generates negative extreme values. Note, β̂u > 0 for all county-crop pairs.
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result is also in line with Table 8, which shows that counties generally have diverging tech-

nological trends as suggested by the medians of β̂u/β̂` ratio. Conversely, for Saskatchewan

wheat, only 64 out of the 88 rejections in the first null are able to reject the second null.

This indicates that 24 counties do have statistically significantly converging technological

trends over time, which is not consistent with the overall results. In total, 45 of the 810

county-crop pairs reject the second null with the family-wise p-value. For Ontario soybean,

Ontario wheat and Saskatchewan canola, all counties that reject the first null are also able

to reject the second null under both p-values.

Contributing factors to asymmetrical rate of technological change between components

are countless. The diverging two technological trends over time can be explained by, but

not limited to, the technological advancement in seed genomics. An innovative seed variety

may improve crop productivity in ideal growing conditions. However, it still requires a

certain level of growing condition to develop and, therefore, has little or no effect in bad

growing conditions. Moreover, technological change has increased the number of plants per

acre. However, if the demand for water remains fixed over time, the minimum amount of

precipitation would theoretically also increase over time. This is not conjectural as literature

has suggested that crop productivity is positively correlated to drought sensitivity (DeLucia

et al., 2014; Ort and Long, 2014), which consequently results in a higher downside yield risk.

Another explanation could be that the Canadian subsidized crop insurance program (60%

subsidized by government) has encouraged producers to adopt high-risk and high-return

technologies over time, given that these producers have been shielded from the downside

yield risk (Ker et al., 2017).

4.3 H2
0 : λt = λ

The next hypothesis test: H2
0 : λt = λ investigates whether technological change has sta-

tistically significantly changed the probability of crop yields drawing from relatively bad
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years over time.10 This hypothesis is of particular interest because technological change may

decrease or increase the probability of the lower component: probability decreases when

crops have better productivity and tolerance to various stresses, and probability increases

when producers adopt high-risk and high-return seed varieties under the protection of the

subsidized crop insurance. In the meantime, other factors, such as the outcome of weather,

may also increase or decrease the chance of low yield depending on the severeness of the

weather and geographical location. Using a t-test for each of the 810 county-crop pairs,

Table 7 (column 5-7) reports the rejection counts under the standard p-value, family-wise

p-value, and jackknife p-value. Note, the jackknife p-value was not previously employed in

this thesis as the jackknife standard error is not applicable to the likelihood ratio test (which

were used in all the previous tests). The conventional standard error is downward biased due

to three factors: (1) it does not account for the estimated regressor; (2) it does not account

for the multiple testing problem; and (3) it does not account for the spatial correlation of the

810 counties. Given this downward bias, for comparison the jackknife standard error is also

reported. The jackknife estimate of standard error, following Efron and Tibshirani (1994),

is given by:

√√√√T − 1

T

T∑
t=1

(θ̂−t − ¯̂
θ)2 (6)

where θ̂−t is the coefficient estimate of regression of probability in the lower component on

time excluding year t and
¯̂
θ is the sample mean of these estimates. Note, Efron and Stein

(1981) and Efron and Tibshirani (1994) both pointed out that the jackknife standard error

tends to be biased upwards. In addition, as noted previously, the family-wise p-value is also

overly-conservative. Nonetheless, rejection counts are reported under all three p-values.

Consider first the standard p-value: across the province-crop pairs, rejection rates are

relatively high for Ontario soybean (3 of the 6 counties), Saskatchewan wheat (85 of the

10To obtain λt, weights in the lower component w`,t were regressed on time t.
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Table 9: Summary Statistics for the Regression Coefficient of λ̂t

Province Observations Summary Statistics

Crop Counties Years Minimum Mean Median Maximum Std. Dev.

Ontario
Corn 32 68 −0.00663 −0.00152 −0.00175 0.00477 0.00254
Soybean 6 68 −0.00709 −0.00304 −0.00351 0.00446 0.00405
Wheat 26 68 −0.00845 −0.00356 −0.00424 0.00103 0.00297
Saskatchewan
Barley 204 79 −0.00678 −0.00155 −0.00176 0.00631 0.00249
Canola 144 47 −0.01039 −0.00081 −0.00060 0.01116 0.00395
Oats 131 79 −0.00654 −0.00109 −0.00110 0.00584 0.00248
Wheat 267 79 −0.00712 −0.00169 −0.00194 0.00627 0.00274

267), and Saskatchewan barley (49 of the 204). In contrast, only 10 of the 144 counties

and 2 out of 26 reject this null for Saskatchewan canola and Ontario wheat, respectively.

Overall, 167 of the 810 counties reject this null under the standard p-value. Not surprisingly,

the rejection counts under the family-wise and jackknife p-values are much lower. Only

28 counties and 24 counties are able to reject the null under the family-wise and jackknife

p-values, respectively.

Based on the second hypothesis, this hypothesis: H0 : λt ≥ λ is a one-sided test which

looks at whether the probability of a relatively bad year has statistically significantly de-

creased over time. Interestingly, the rejection counts in this one-sided null (187 out of the

810 counties) is larger than the previous two-sided null (167 counties in total) under the

standard p-value. With respect to the family-wise and jackknife p-values, 38 counties and

41 counties are able to reject the one-sided null, respectively. Since there are more rejection

counts in the one-sided null, this suggests that for counties have a statistically significant

change in the probability of the lower component, the probabilities are most likely heading

downward. Table 9 summarizes the regression coefficient for λ̂t. Consider the medians of the

estimated coefficients: all the province-crop pairs exhibit a negative value, which indicates

that the probability of a relatively bad year has generally decreased over time. Interestingly,
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the magnitude is quite heterogeneous among the province-crop pairs. For Ontario wheat, the

probability of a yield realization being drawn from a relatively bad year has been decreasing

by 0.4% annually, whereas the probability for Saskatchewan canola has remained relatively

constant over time.
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5 Economic Implications for Crop Insurance

The previous section shows that yield volatility has a tendency to increase over time when

the rate of technological change in relatively good years outperforms relatively bad years. In

light of this, the change in yield volatility should theoretically also alter the expected yield

loss, which affects the payout for the risk management programs in Canada. Like most of the

developed countries, the Canadian government directs a significant amount of public monies

to agricultural producers through risk management programs ($3 billion to the latest five-year

framework). Ker et al. (2017) suggested that risk management has become a popular tool

to funnel monies to agricultural producers because publicly subsidized agriculture insurance

is compliant with trade agreements and a relatively easy political sell to both producers and

general public. Thus, subsidized crop insurance is likely to continue to play a significant role

in the future.

Agricultural support programs are by no means new, as the first program was offered

to all the Canadian farmers in 1958. For a more thorough history of the Canadian agricul-

tural support programs in Canada, see Barichello (1995) and Ker et al. (2017). The latest

policy framework – Canadian Agricultural Partnership (CAP) – is a five-year commitment

(2018 to 2023) funded by the Canada’s federal, provincial, and territorial governments that

aims to support the agricultural and food sector. The Business Risk Management (BRM)

policy under CAP consists of four products: AgriInvest, AgriStability, AgriRecovery and

AgriInsurance. They each have different functionality to mitigate production risks.

AgriInvest aims to ease the immediate cash flow problem for producers. Producers can

deposit up to 100% of their Allowable Net Sales into the account and will receive a matching

contribution from the government for the first 1%. Note, the maximum matching contribu-

tion is limited to $10000 and producers have the right to withdraw the fund at any time.

With respect to AgriStability, a producer will get compensated by the program if the net

farming income declines more than 70% of the reference margin, which is calculated by the

Olympic average (i.e. removing the highest and lowest observations) of the most recent five
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years of production margin. For AgriRecovery, this framework is meant to mitigate the

impacts of natural disasters. However, there is a lack of clarity on how AgriRecovery will

be triggered. In general, a joint investigation is undertaken by the provincial/territorial and

federal government if a disaster ever occurs. A payment will be made to the targeted pro-

ducers based on the investigation. Finally, for AgriInsurance, the crop insurance program

insures producers up to a certain percentage of the yield losses incurred. Producers can

choose from different coverage levels depending on their farming operations and budgets for

insurance premiums. The insurance premium is cost-shared among the federal government,

provincial/territorial government and producer at a 36:24:40 ratio, respectively. Specifically,

AgriInsurance insures Ontario and Saskatchewan producers up to 90% and 80% of the yield

losses incurred, respectively.

Among the four products, AgriInsurance is most relevant with respect to yield volatil-

ity since the payout is directly triggered by the average crop yield. Given that 60% of the

insurance premium is subsidized by the federal government and provincial/territorial gov-

ernments, the change of expected yield loss would be accompanied by the use of taxpayer

money. Taken together, a better understanding of yield volatility is important as it has

significant implications on the budgeted amount in the support programs. Recall that the

data are analyzed at a county level, whereas the Canadian crop insurance premium ratings

are evaluated at a farm level. Therefore, it is not surprising that these results are relatively

conservative as variation at the farm level is generally higher than at the county level (Coble,

Dismukes, and Thomas, 2007; Cooper et al., 2009; Claassen and Just, 2011). Nonetheless,

these results serve to motivate the relevance of empirically investigated technological change

on the crop insurance premium. To do so, the expected yield loss was compared between

2018 and 2023 (the period for the CAP framework), and between 2018 and 2028. Given that

the county-level variation is underestimated, measuring expected yield loss at the highest

possible coverage level would be more relevant. Therefore, a 90% coverage level was chosen

to be the threshold, as it is the highest coverage level available for producers. The expected
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yield loss (denoted by ρ) is given by:

ρ =

∫ y90%

0

(y90% − y)fydy (7)

where y is the actual crop yield and y90% is the crop yield at 90% coverage level. The

expected yield loss is equivalent to the area under the estimated yield distribution between

zero and average crop yield at 90% coverage level.

Figure 10(a) summarizes the ratio of expected yield loss ratio between 2023 and 2018 for

all the 810 county-crop pairs in box plots. The ratio is equal to the expected yield loss in

2023 divided by the expected yield loss in 2018, meaning that the expected yield loss in 2023

is greater than in 2018 when the ratio is greater than one. Consider the medians of the box

plots: all province-crop pairs are projected to encounter an increase in expected yield loss

in the next five years, however, their magnitudes are quite different. For instance, expected

yield loss is projected to increase 8.72% for Saskatchewan canola, 8.02% for Ontario wheat,

and 7.74% for Ontario soybean. In contrast, the rate is much lower for Saskatchewan wheat

(1.54%) and Saskatchewan oats (1.84%). Figure 10(b) presents the expected yield loss ratio

between 2028 and 2018. It is not surprising that the results exhibit a wider range if the

current trends remain unchanged. For example, expected yield loss in the next decade is

projected to increase 17.79% for Saskatchewan canola and 16.07% for Ontario wheat. The

overall results suggest that expected yield loss is projected to increase in the next five and

ten years. Thus, it is not surprising that more taxpayer money will be funneled into the

agricultural support programs in the future.
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(a) Ratio of ρ2023/ρ2018

(b) Ratio of ρ2028/ρ2018

Figure 10: Ratio of Expected Yield Loss at 90% Coverage Level
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6 Conclusions

The ability to meet future food demand will very likely continue to be dictated by techno-

logical change as other possible solutions are hindered by the rapid growth in developing

countries. Although technological change increases yields over time, it may also increase

or decrease yield volatility. This thesis aimed to achieve four objectives: (1) to investigate

whether rate of technological change behaves heterogeneously across different components of

a yield distribution; (2) to investigate how rate of technological change has an effect on yield

volatility in a Canadian context, which has huge implications on areas such as farm income

variability, rating crop insurance and food insecurity; (3) to examine whether these trends

vary across crops and provinces; and (4) to estimate whether expected yield loss will vary in

the next five and ten years. To this end, the analysis considered county-level yields for the

major crops (barley, canola, corn, oats, soybean and wheat) in Ontario and Saskatchewan.

Another contribution of this thesis is methodological; specifically, this thesis generalized the

approach from Tolhurst and Ker (2015) and developed a procedure to test whether there is

any potential efficiency gains to model yields by using different combinations of parameters.

All province-crop pairs, with the exception of Ontario corn, were estimated using a two-

component mixture model with constant variances. Ontario corn was the only province-crop

pair that was estimated using a two-component mixture model with time-varying variances

for potentially different yield dispersion over time within a component. As a result, several

interesting conclusions were reached. First, for Ontario corn, the annual increase in the

variance of average crop yield for the lower component was generally higher in relatively bad

years than in relatively good years, meaning that the downside yield risk has exhibited an

increase over time.

Second, the vast majority of counties exhibited a higher rate of technological change in

relatively good years than in relatively bad years. The diverging two technological trends

also indicate that yield volatility has been increasing over the course of time. In addition, sta-

tistical significance was tested using a likelihood ratio test for all the 810 county-crop pairs.
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Interestingly, Ontario had a relatively higher percentage of counties than Saskatchewan to

exhibit a statistically significant different rate of technological change across the two com-

ponents under a standard p-value, namely: Ontario corn (78%), Ontario wheat (58%), and

Ontario soybean (50%). In a total of 810 counties, 297 counties rejected this null hypothesis

under a standard p-value. As expected, most of the counties that had statistically significant

differences in the rate of technological change between the two components, were very likely

to have a higher rate of growth in the upper component than the lower component. In order

to avoid the multiple testing issue, the rejection counts under the overly-conservative family-

wise p-value were also reported. In total, 42 of the 810 counties remain to have statistically

significant differences in the rate of technological change between the two components under

the family-wise p-value. The asymmetrical rate of technological change between the two com-

ponents can be contributed by countless factors, including but not limited to, technological

advancement in seed genomics, increasing demand for the minimum amount of precipitation

per plant, and the subsidized crop insurance which encourages producers to adopt high-risk

and high-return technologies.

Third, the probability of a relatively bad year has been decreasing over time for the

vast majority of counties. The results are of particular interest because factors such as

technological change and climate change may increase or decrease the probability of lower

component over time. This indicates that the data generating process of average crop yield

is less likely to be drawn from a relatively bad year over time. Using a standard t-test

for each of the 810 county-crop pairs, 167 out of the 810 counties exhibited a statistically

significant increase or decrease probability of the lower component over time. In addition,

28 counties and 24 counties rejected the null under the family-wise p-value and jackknife

p-value, respectively. Surprisingly, for counties have a statistically significant change in the

probability of the lower component, the probabilities are most likely heading downward.

Under a standard p-value, 187 out of the 810 counties exhibited a statistically significant

decrease in the probability of the lower component. 38 counties and 41 counties rejected the
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null under the family-wise p-value and jackknife p-value, respectively.

Finally, the expected yield loss will likely continue to increase in the future. Perhaps a

more relevant economic measure — particularly with respect to the Canadian Agricultural

Partnership framework — is the expected change of crop insurance payouts in the next five

and ten years. Payouts were estimated to increase over time in different magnitudes. For

instance, payout for Ontario wheat was projected to increase 8.02% and 16.07% at the 90%

coverage level by 2023 and 2028, respectively. In contrast, payout for Saskatchewan wheat

was projected to increase 1.54% and 3.1% at the 90% coverage level by 2023 and 2028,

respectively. The overall increase in crop insurance payout suggests that more taxpayer’s

monies are expected to funnel into the Canadian agricultural support programs, given that

60% of the crop insurance premium is subsidized by the provincial/territorial governments

and federal government.

In summary, this thesis provided a compelling evidence that technological change has led

to a change in yield volatility over time. Unfortunately, most of the counties exhibited an

increase in yield volatility. If these current trends remain changed, the expected yield loss is

likely to continue to increase in the future, which consequently also requires a higher amount

of taxpayer money to subsidize the crop insurance premium. For future research, several

interesting applications that are related to this thesis are suggested: (i) decompose the effects

of technological change, climate change, soil quality and policy change on yield volatility; (ii)

investigate why certain counties or crops have relatively lower rate of technological change

in the lower component; (iii) provide solutions to increase rate of technological change in

the lower component, which may be helpful to decrease the overall variation of crop yields,

and (iv) investigate how the Canadian crop insurance program would affect agricultural

producer’s willingness to adopt new technologies.
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7 Appendix

7.1 Summary Statistics of Estimated Parameters, by Province
and Crop

Table 10: Summary Statistics of Estimated Parameters, by Province and Crop, Part 1 of 2

Province Crop Parameter Min. Mean Median Max. Std. Dev.

ON Corn λ 0.03 0.37 0.42 0.96 0.26
α` 10.75 42.23 46.54 51.85 10.20
β` 0.20 1.06 1.06 1.99 0.40
γ` 0.00 19.09 4.13 241.57 46.07
δ` −1.85 2.06 2.01 9.63 2.13
αu 38.46 46.63 47.24 54.21 4.02
βu 1.10 1.53 1.54 1.91 0.23
γu 0.00 11.75 6.46 47.46 12.94
δu −0.22 1.99 1.67 5.62 1.65

ON Soybean λ 0.06 0.18 0.19 0.26 0.07
α` 14.37 18.92 19.00 23.92 3.09
β` 0.09 0.22 0.19 0.42 0.11
γ` 7.28 22.87 17.74 82.81 4.88
αu 18.74 20.81 19.70 23.94 2.47
βu 0.34 0.39 0.40 0.45 0.04
γu 4.50 9.13 8.03 16.96 0.57

ON Wheat λ 0.02 0.25 0.19 0.72 0.23
α` 13.56 25.79 26.14 32.16 3.77
β` 0.25 0.40 0.38 0.64 0.10
γ` 0.45 10.80 15.83 46.36 3.53
αu 18.43 26.49 26.14 32.16 2.73
βu 0.54 0.77 0.77 1.09 0.14
γu 8.51 32.04 30.10 158.63 2.97

SK Barley λ 0.02 0.31 0.17 0.98 0.30
α` 0.22 13.51 14.52 27.23 6.16
β` 0.00 0.29 0.31 0.63 0.14
γ` 0.58 42.09 54.24 237.64 13.29
αu 10.40 21.41 20.52 39.29 5.35
βu 0.03 0.53 0.53 1.09 0.14
γu 0.21 47.11 52.59 150.56 6.85
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Table 11: Summary Statistics of Estimated Parameters, by Province and Crop, Part 2 of 2

Province Crop Parameter Min. Mean Median Max. Std. Dev.

SK Canola λ 0.03 0.43 0.47 0.98 0.27
α` 0.24 14.37 15.25 22.06 4.87
β` −0.03 0.18 0.17 0.55 0.13
γ` 0.21 15.75 19.38 151.87 4.27
αu 10.97 17.23 17.27 22.07 2.30
βu 0.19 0.42 0.42 0.85 0.11
γu 0.05 13.45 13.64 316.27 3.55

SK Oats λ 0.01 0.38 0.33 0.98 0.29
α` 0.08 17.99 19.18 39.87 8.90
β` 0.01 0.41 0.44 0.86 0.19
γ` 1.51 73.75 86.58 452.03 17.92
αu 14.80 28.56 28.14 56.14 7.38
βu 0.04 0.67 0.65 1.71 0.26
γu 0.79 91.05 101.29 447.54 13.96

SK Wheat λ 0.02 0.34 0.18 1.00 0.32
α` 0.03 9.71 8.85 22.10 5.41
β` 0.00 0.18 0.19 0.42 0.11
γ` 0.29 17.46 16.28 168.25 6.24
αu 4.17 16.17 16.36 28.58 4.32
βu 0.05 0.29 0.28 0.66 0.10
γu 0.08 23.74 28.24 88.81 3.35
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Codes in R

Model 4 and 4R

#Read crop data
crop <− read . csv (” Crop Data . csv ”)
#Munic ipa l i ty number (−1 i s to exc lude the year column )
munic ipal <− colnames ( crop [ , −1 ] )
#number o f m u n i c i p a l i t i e s
n munic ipa l <− l ength ( munic ipal )
l i b r a r y ( opt imiza t i on )
l i b r a r y ( quantreg )
#Model 4 and 4R 2−component Constant Variance
p f i n a l p e n a l t y <− matrix (0 , n munic ipal , 7)
l f i n a l p e n a l t y <− matrix (0 , n munic ipal , 1)

#Mult ip l e S ta r t i ng Value
s t a r t i n g <− c ( . 2 , . 3 5 , . 5 , . 6 5 , . 8 )
f o r ( i in 1 : n munic ipa l ){
y <− crop [ , i +1]
#pena l i z ed log−l i k e l i h o o d
fun<−f unc t i on ( s t a r t ) {−(sum( log ( s t a r t [ 1 ] ∗ dnorm(y , s t a r t [2 ]+ s t a r t [ 3 ] ∗ t ,
s t a r t [4])+(1− s t a r t [ 1 ] ) ∗ dnorm(y , s t a r t [5 ]+ s t a r t [ 6 ] ∗ t ,
s t a r t [ 7 ] ) ) ) − penal ty ∗( s t a r t [1 ]−0)ˆ2)}
#log−l i k e l i h o o d
fun . unr<−f unc t i on ( s t a r t )
{−(sum( log ( s t a r t [ 1 ] ∗ dnorm(y , s t a r t [2 ]+ s t a r t [ 3 ] ∗ t , s t a r t [ 4 ] )+
(1− s t a r t [ 1 ] ) ∗ dnorm(y , s t a r t [5 ]+ s t a r t [ 6 ] ∗ t , s t a r t [ 7 ] ) ) ) ) }
to l <−.001
conv<−0
i t . conv<−0
T<−l ength ( y )
t<−seq ( 1 :T)
p loop <− matrix (0 , l ength ( s t a r t i n g ) , 7)
l l o o p <− matrix (0 , l ength ( s t a r t i n g ) , 1)
f o r ( s in 1 : l ength ( s t a r t i n g ) ){
r e s u l t<−rq ( y˜t , s t a r t i n g [ s ] )
w<−rep (0 ,T)
w[ r e s u l t $ r e s i d u a l s <0]<−1
yy<−c (y , y )
x1t<−c ( t , rep (0 ,T) )
x2t<−c ( rep (0 ,T) , t )
x1<−c ( rep (1 ,T) , rep (0 ,T) )
x2<−c ( rep (0 ,T) , rep (1 ,T) )
yy<−c (y , y )
ww<−c (w,1−w)
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XXR<−cbind ( x1 , x1t , x2 , x2t )
c o e f . l a s t<−rep (0 , 7 )
temp . a<−10000
j<−1
TT<−T+1
TTT<−2∗T
whi le ( conv < 1){
ww<−c (w,1−w)
r e s u l t<−lm( yy˜XXR−1, weights=ww)
ss2 <− (sum((1−w)∗ ( r e s u l t $ r e s i d u a l s [TT:TTT] ) ˆ 2 ) / ( sum(1−w) ) ) ˆ . 5
s s1 <− pmax ( ( 0 . 1∗ s s2 ) ,
(sum(w∗( r e s u l t $ r e s i d u a l s [ 1 :T] ) ˆ 2 ) / ( sum(w) ) ) ˆ . 5 )
p1<−dnorm(y , r e s u l t $ f i t t e d . va lue s [ 1 :T] , s s1 )
p2<−dnorm(y , r e s u l t $ f i t t e d . va lue s [TT:TTT] , s s2 )
w <− p1 /( p1+p2 )
mw<−mean(w)
c o e f . new<−
c (mw, r e s u l t $ c o e f f i c i e n t s [ 1 : 2 ] , ss1 , r e s u l t $ c o e f f i c i e n t s [ 3 : 4 ] , s s2 )
temp . a <− sum( abs ( c o e f . new−c o e f . l a s t ) )
i f ( j >500) temp . a<−0
i f ( temp . a<t o l ) {conv<−1
i t . conv<−j }
c o e f . l a s t<−c o e f . new
j<−j+1
}
p loop [ s , ] <− c o e f . new
l l o o p [ s ] <− fun . unr ( c o e f . new)
}
c o e f . new <− p loop [ which . max( l l o o p ) , ]
f i t 1<−c o e f . new [2 ]+ c o e f . new [ 3 ] ∗ t
f i t 2<−c o e f . new [5 ]+ c o e f . new [ 6 ] ∗ t
s t a r t<−as . numeric ( c o e f . new)
s t a r t 2 <− c ( pmin (1 , s t a r t [ 1 ] ) , s t a r t [ 2 : 7 ] )
l l<−rep (99999999 ,100)
t r i a l <− matrix (0 , 100 , 7)
f o r ( k in 1 :100){
penalty<−k/2
r e s u l t . opt<−optim ( s ta r t2 , fun )
c o e f . opt<−r e s u l t . opt$par
l l [ k]<−fun . unr ( c o e f . opt )
i f ( c o e f . opt [1 ]>1) l l [ k]<−9999999999 #avoid lambda > 1
i f (min ( c o e f . opt )<0) l l [ k]<−9999999999 #avoid parameters < 0

#lower var i ance has to be above 10% of the upper to avoid c o l l a p s e
i f ( c o e f . opt [4 ] <0 .1∗ c o e f . opt [ 7 ] ) l l [ k]<−9999999999
t r i a l [ k , ] <− r e s u l t . opt$par
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}
penalty<−which . min ( l l )
c o e f . opt <− t r i a l [ penalty , ]
l l [ which ( l l == ”NaN” ) ] <− 9999999999
i f (min ( l l )> fun . unr ( c o e f . new )){ c o e f . opt <− c o e f . new}
i f (min ( l l )>5000){ c o e f . opt <− c o e f . new}
opt1<−c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗ t
opt2<−c o e f . opt [5 ]+ c o e f . opt [ 6 ] ∗ t
p l o t ( t , y )
l i n e s ( t , f i t 1 , c o l=”red ”)
l i n e s ( t , f i t 2 , c o l=”red ”)
l i n e s ( t , opt1 , c o l=”blue ”)
l i n e s ( t , opt2 , c o l=”blue ”)
fun ( c o e f . new)
fun ( c o e f . opt )
fun . unr ( c o e f . new)
fun . unr ( c o e f . opt )
p f i n a l p e n a l t y [ i , ] <− c ( c o e f . opt [ 1 ] , c o e f . opt [ 2 ] , c o e f . opt [ 3 ] ,
c o e f . opt [ 4 ] , c o e f . opt [ 5 ] , c o e f . opt [ 6 ] , c o e f . opt [ 7 ] )
l f i n a l p e n a l t y [ i ] <− −(fun . unr ( c o e f . opt ) )
}
#Make sure the blue l i n e i s the upper trend
uu <− matrix (0 , n munic ipal , 1)
f o r ( i in 1 : n munic ipa l ){
i f (mean( p f i n a l p e n a l t y [ i ,2 ]+ p f i n a l p e n a l t y [ i , 3 ] ∗ t ) >
mean( p f i n a l p e n a l t y [ i ,5 ]+ p f i n a l p e n a l t y [ i , 6 ] ∗ t ) ){uu [ i ]<−1}
}
mm<− which (uu==1)
#switch back the parameters
f o r ( i in mm){
s t o r e <− p f i n a l p e n a l t y [ i , ]
p f i n a l p e n a l t y [ i , 1 ] <− 1− p f i n a l p e n a l t y [ i , 1 ]
p f i n a l p e n a l t y [ i , 2 ] <− p f i n a l p e n a l t y [ i , 5 ]
p f i n a l p e n a l t y [ i , 3 ] <− p f i n a l p e n a l t y [ i , 6 ]
p f i n a l p e n a l t y [ i , 4 ] <− p f i n a l p e n a l t y [ i , 7 ]
p f i n a l p e n a l t y [ i , 5 ] <− s t o r e [ 2 ]
p f i n a l p e n a l t y [ i , 6 ] <− s t o r e [ 3 ]
p f i n a l p e n a l t y [ i , 7 ] <− s t o r e [ 4 ]
}
#Find out c r o s s i n g t rends
oo <− matrix (0 , n munic ipal , 1)
f o r ( i in 1 : n munic ipa l ){
i f ( ( p f i n a l p e n a l t y [ i ,2]> p f i n a l p e n a l t y [ i , 5 ] )
|
( ( p f i n a l p e n a l t y [ i ,2 ]+ p f i n a l p e n a l t y [ i , 3 ] ∗T)>
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( p f i n a l p e n a l t y [ i ,5 ]+ p f i n a l p e n a l t y [ i , 6 ] ∗T) ) )
{oo [ i ,1]<−1}
}
aa <− which ( oo == 0)
bb <− which ( oo == 1)
#R e s t r i c t the two trends not to c r o s s
p f i n a l r e s t r i c t p e n a l t y <− matrix (0 , n munic ipal , 7)
l f i n a l r e s t r i c t p e n a l t y <− matrix (0 , n munic ipal , 1)
f o r ( i in aa ){
p f i n a l r e s t r i c t p e n a l t y [ i , ] <− p f i n a l p e n a l t y [ i , ]
l f i n a l r e s t r i c t p e n a l t y [ i ] <− l f i n a l p e n a l t y [ i ]
}
#Set count i e s that c r o s s to s t a r t from the same i n t e r c e p t
p f i n a l r e s t r i c t p e n a l t y 8 <− matrix (0 , n munic ipal , 7)
l f i n a l r e s t r i c t p e n a l t y 8 <− matrix (0 , n munic ipal , 1)
f o r ( i in bb){
#Pena l i zed log−l i k e l i h o o d
fun<−f unc t i on ( s t a r t )
{−(sum( log ( s t a r t [ 1 ] ∗ dnorm(y , s t a r t [2 ]+ s t a r t [ 3 ] ∗ t ,
s t a r t [4])+(1− s t a r t [ 1 ] ) ∗ dnorm(y , s t a r t [2 ]+ s t a r t [ 5 ] ∗ t ,
s t a r t [ 6 ] ) ) ) − penal ty ∗( s t a r t [1 ]−0)ˆ2)}
#log−l i k e l i h o o d
fun . unr<−f unc t i on ( s t a r t )
{−(sum( log ( s t a r t [ 1 ] ∗ dnorm(y , s t a r t [2 ]+ s t a r t [ 3 ] ∗ t ,
s t a r t [4])+(1− s t a r t [ 1 ] ) ∗ dnorm(y , s t a r t [2 ]+ s t a r t [ 5 ] ∗ t , s t a r t [ 6 ] ) ) ) ) }
y<−crop [ , i +1]
to l <−.001
conv<−0
i t . conv<−0
T<−l ength ( y )
t<−seq ( 1 :T)
p loop <− matrix (0 , l ength ( s t a r t i n g ) , 6)
l l o o p <− matrix (0 , l ength ( s t a r t i n g ) , 1)
f o r ( s in 1 : l ength ( s t a r t i n g ) ){
r e s u l t<−rq ( y˜t , s t a r t i n g [ s ] )
w<−rep (0 ,T)
w[ r e s u l t $ r e s i d u a l s <0]<−1
yy<−c (y , y )
x1t<−c ( t , rep (0 ,T) )
x2t<−c ( rep (0 ,T) , t )
x1<−c ( rep (1 ,T) , rep (1 ,T) )
yy<−c (y , y )
ww<−c (w,1−w)
XXR<−cbind ( x1 , x1t , x2t )
conv<−0
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c o e f . l a s t<−rep (0 , 6 )
temp . a<−10000
j<−1
TT<−T+1
TTT<−2∗T
whi le ( conv < 1){
ww<−c (w,1−w)
r e s u l t<−lm( yy˜XXR−1, weights=ww)
ss2 <− (sum((1−w)∗ ( r e s u l t $ r e s i d u a l s [TT:TTT] ) ˆ 2 ) / ( sum(1−w) ) ) ˆ . 5
s s1 <− pmax ( ( 0 . 1∗ s s2 ) ,
(sum(w∗( r e s u l t $ r e s i d u a l s [ 1 :T] ) ˆ 2 ) / ( sum(w) ) ) ˆ . 5 )
mw<−mean(w)
p1<−dnorm(y , r e s u l t $ f i t t e d . va lue s [ 1 :T] , s s1 )
p2<−dnorm(y , r e s u l t $ f i t t e d . va lue s [TT:TTT] , s s2 )
w <− p1 /( p1+p2 )
c o e f . new<−c (mw, r e s u l t $ c o e f f i c i e n t s [ 1 : 2 ] , ss1 ,
r e s u l t $ c o e f f i c i e n t s [ 3 ] , s s2 )
temp . a <− sum( abs ( c o e f . new−c o e f . l a s t ) )
i f ( j >500) temp . a<−0
i f ( temp . a<t o l ) {conv<−1
i t . conv<−j }
c o e f . l a s t<−c o e f . new
j<−j+1
}
p loop [ s , ] <− c o e f . new
l l o o p [ s ] <− fun . unr ( c o e f . new)
}
c o e f . new <− p loop [ which . max( l l o o p ) , ]
f i t 1<−c o e f . new [2 ]+ c o e f . new [ 3 ] ∗ t
f i t 2<−c o e f . new [2 ]+ c o e f . new [ 5 ] ∗ t
s t a r t<−as . numeric ( c o e f . new)
s t a r t 2 <− c ( pmin (1 , s t a r t [ 1 ] ) , s t a r t [ 2 : 6 ] )
l l<−rep (99999999 ,100)
t r i a l <− matrix (0 , 100 , 6)
f o r ( k in 1 :100){
penalty<−k
r e s u l t . opt<−optim ( s ta r t2 , fun )
c o e f . opt<−r e s u l t . opt$par
l l [ k]<−fun . unr ( c o e f . opt )
i f ( c o e f . opt [1 ]>1) l l [ k]<−9999999999 #avoid lambda i s > 1
i f (min ( c o e f . opt )<0) l l [ k]<−9999999999 #avoid parameters < 0

#lower var i ance has to be above 10% of the upper
i f ( c o e f . opt [4 ] <0 .1∗ c o e f . opt [ 6 ] ) l l [ k]<−9999999999
t r i a l [ k , ] <− r e s u l t . opt$par
}
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penalty<−which . min ( l l )
c o e f . opt <− t r i a l [ penalty , ]
i f (min ( l l )> fun . unr ( c o e f . new )){ c o e f . opt <− c o e f . new}
opt1<−c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗ t
opt2<−c o e f . opt [2 ]+ c o e f . opt [ 5 ] ∗ t
p l o t ( t , y )
l i n e s ( t , f i t 1 , c o l=”red ”)
l i n e s ( t , f i t 2 , c o l=”red ”)
l i n e s ( t , opt1 , c o l=”blue ”)
l i n e s ( t , opt2 , c o l=”blue ”)
fun ( c o e f . new)
fun ( c o e f . opt )
fun . unr ( c o e f . new)
fun . unr ( c o e f . opt )
p f i n a l r e s t r i c t p e n a l t y 8 [ i , ] <−
c ( c o e f . opt [ 1 ] , c o e f . opt [ 2 ] , c o e f . opt [ 3 ] ,
c o e f . opt [ 4 ] , c o e f . opt [ 2 ] , c o e f . opt [ 5 ] , c o e f . opt [ 6 ] )
l f i n a l r e s t r i c t p e n a l t y 8 [ i ] <− −(fun . unr ( c o e f . opt ) )
}
#Find the non−c r o s s i n g parameters with the h i ghe s t l i k e l i h o o d
p f i n a l r e s t r i c t p e n a l t y 9 <− matrix (0 , n munic ipal , 7)
l f i n a l r e s t r i c t p e n a l t y 9 <− matrix (0 , n munic ipal , 1)
s t a r t i n g <− c ( . 2 , . 3 5 , . 5 , . 6 5 , . 8 )
f o r ( i in bb){
y <− crop [ , i +1]
#pena l i z ed log−l i k e l i h o o d
fun<−f unc t i on ( s t a r t ) {−(sum( log ( s t a r t [ 1 ] ∗ dnorm(y , s t a r t [2 ]+ s t a r t [ 3 ] ∗ t ,
s t a r t [4])+(1− s t a r t [ 1 ] ) ∗ dnorm(y , s t a r t [5 ]+ s t a r t [ 6 ] ∗ t ,
s t a r t [ 7 ] ) ) ) − penal ty ∗( s t a r t [1 ]−0)ˆ2)}
#log−l i k e l i h o o d
fun . unr<−f unc t i on ( s t a r t )
{−(sum( log ( s t a r t [ 1 ] ∗ dnorm(y , s t a r t [2 ]+ s t a r t [ 3 ] ∗ t ,
s t a r t [4])+(1− s t a r t [ 1 ] ) ∗ dnorm(y , s t a r t [5 ]+ s t a r t [ 6 ] ∗ t , s t a r t [ 7 ] ) ) ) ) }
to l <−.001
conv<−0
i t . conv<−0
T<−l ength ( y )
t<−seq ( 1 :T)
p loop <− matrix (0 , l ength ( s t a r t i n g ) , 7)
l l o o p <− matrix (0 , l ength ( s t a r t i n g ) , 1)
f o r ( s in 1 : l ength ( s t a r t i n g ) ){
r e s u l t<−rq ( y˜t , s t a r t i n g [ s ] )
w<−rep (0 ,T)
w[ r e s u l t $ r e s i d u a l s <0]<−1
yy<−c (y , y )

62



x1t<−c ( t , rep (0 ,T) )
x2t<−c ( rep (0 ,T) , t )
x1<−c ( rep (1 ,T) , rep (0 ,T) )
x2<−c ( rep (0 ,T) , rep (1 ,T) )
yy<−c (y , y )
ww<−c (w,1−w)
XXR<−cbind ( x1 , x1t , x2 , x2t )
c o e f . l a s t<−rep (0 , 7 )
temp . a<−10000
j<−1
TT<−T+1
TTT<−2∗T
whi le ( conv < 1){
ww<−c (w,1−w)
r e s u l t<−lm( yy˜XXR−1, weights=ww)
ss2 <− (sum((1−w)∗ ( r e s u l t $ r e s i d u a l s [TT:TTT] ) ˆ 2 ) / ( sum(1−w) ) ) ˆ . 5
s s1 <− pmax ( ( 0 . 1∗ s s2 ) , (sum(w∗( r e s u l t $ r e s i d u a l s [ 1 :T] ) ˆ 2 ) /
(sum(w) ) ) ˆ . 5 )
p1<−dnorm(y , r e s u l t $ f i t t e d . va lue s [ 1 :T] , s s1 )
p2<−dnorm(y , r e s u l t $ f i t t e d . va lue s [TT:TTT] , s s2 )
w <− p1 /( p1+p2 )
mw<−mean(w)
c o e f . new<−c (mw, r e s u l t $ c o e f f i c i e n t s [ 1 : 2 ] , ss1 ,
r e s u l t $ c o e f f i c i e n t s [ 3 : 4 ] , s s2 )
temp . a <− sum( abs ( c o e f . new−c o e f . l a s t ) )
i f ( j >500) temp . a<−0
i f ( temp . a<t o l ) {conv<−1
i t . conv<−j }
c o e f . l a s t<−c o e f . new
j<−j+1
}
p loop [ s , ] <− c o e f . new
l l o o p [ s ] <− fun . unr ( c o e f . new)
}
c o e f . new <− p loop [ which . max( l l o o p ) , ]
f i t 1<−c o e f . new [2 ]+ c o e f . new [ 3 ] ∗ t
f i t 2<−c o e f . new [5 ]+ c o e f . new [ 6 ] ∗ t
s t a r t<−as . numeric ( c o e f . new)
s t a r t 2 <− c ( pmin (1 , s t a r t [ 1 ] ) , s t a r t [ 2 : 7 ] )
l l<−rep (99999999 ,100)
t r i a l <− matrix (0 , 100 , 7)
f o r ( k in 1 :100){
penalty<−k/2
r e s u l t . opt<−optim ( s ta r t2 , fun )
c o e f . opt<−r e s u l t . opt$par
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l l [ k]<−fun . unr ( c o e f . opt )
i f ( c o e f . opt [1 ]>1) l l [ k]<−9999999999 #avoid lambda > 1
i f (min ( c o e f . opt )<0) l l [ k]<−9999999999 #avoid parameters < 0

#lower var i ance has to be above 10% of the upper
i f ( c o e f . opt [4 ] <0 .1∗ c o e f . opt [ 7 ] ) l l [ k]<−9999999999
i f ( ( mean( c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗ t ) <
mean( c o e f . opt [5 ]+ c o e f . opt [ 6 ] ∗ t ) )
&
( ( c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗T) > ( c o e f . opt [5 ]+ c o e f . opt [ 6 ] ∗T) ) )
{ l l [ k]<−9999999999}
i f ( ( mean( c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗ t ) <
mean( c o e f . opt [5 ]+ c o e f . opt [ 6 ] ∗ t ))&
( c o e f . opt [2]> c o e f . opt [ 5 ] ) ) { l l [ k]<−9999999999}
i f ( ( mean( c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗ t ) >
mean( c o e f . opt [5 ]+ c o e f . opt [ 6 ] ∗ t ))&
( ( c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗T) < ( c o e f . opt [5 ]+ c o e f . opt [ 6 ] ∗T) ) )
{ l l [ k]<−9999999999}
i f ( ( mean( c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗ t ) >
mean( c o e f . opt [5 ]+ c o e f . opt [ 6 ] ∗ t ))&
( c o e f . opt [2]< c o e f . opt [ 5 ] ) )
{ l l [ k]<−9999999999}
t r i a l [ k , ] <− r e s u l t . opt$par
}
penalty<−which . min ( l l )
c o e f . opt <− t r i a l [ penalty , ]
l l [ which ( l l == ”NaN” ) ] <− 9999999999
i f (min ( l l )>5000) { c o e f . opt <− c (0 , 0 , 0 , 0 , 0 , 0 , 0 )}
i f ( ( fun . unr ( c o e f . new)< fun . unr ( c o e f . opt ) )

& ( c o e f . new[2]< c o e f . new [ 5 ] )
&
( ( c o e f . new [2 ]+ c o e f . new [ 3 ] ∗T) < ( c o e f . new [5 ]+ c o e f . new [ 6 ] ∗T) )
){ c o e f . opt <− c o e f . new}
opt1<−c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗ t
opt2<−c o e f . opt [5 ]+ c o e f . opt [ 6 ] ∗ t
p l o t ( t , y )
l i n e s ( t , f i t 1 , c o l=”red ”)
l i n e s ( t , f i t 2 , c o l=”red ”)
l i n e s ( t , opt1 , c o l=”blue ”)
l i n e s ( t , opt2 , c o l=”blue ”)
fun ( c o e f . new)
fun ( c o e f . opt )
fun . unr ( c o e f . new)
fun . unr ( c o e f . opt )
#log−l i k e l i h o o d
p f i n a l r e s t r i c t p e n a l t y 9 [ i , ] <− c ( c o e f . opt [ 1 ] ,
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c o e f . opt [ 2 ] , c o e f . opt [ 3 ] ,
c o e f . opt [ 4 ] , c o e f . opt [ 5 ] , c o e f . opt [ 6 ] , c o e f . opt [ 7 ] )
l f i n a l r e s t r i c t p e n a l t y 9 [ i ] <− −(fun . unr ( c o e f . opt ) )
}
cbind ( l f i n a l r e s t r i c t p e n a l t y 8 , l f i n a l r e s t r i c t p e n a l t y 9 )
#choose between same i n t e r c e p t and d i f f e r e n t i n t e r c e p t
f o r ( i in bb){
i f ( l f i n a l r e s t r i c t p e n a l t y 8 [ i ] == ”0” |
l f i n a l r e s t r i c t p e n a l t y 8 [ i ] ==
”− I n f ”){ l f i n a l r e s t r i c t p e n a l t y 8 [ i ]<−−999999}
i f ( l f i n a l r e s t r i c t p e n a l t y 9 [ i ] == ”0” |
l f i n a l r e s t r i c t p e n a l t y 9 [ i ] ==
”− I n f ”){ l f i n a l r e s t r i c t p e n a l t y 9 [ i ]<−−999999}
}
f o r ( i in bb){
i f ( l f i n a l r e s t r i c t p e n a l t y 8 [ i ] > l f i n a l r e s t r i c t p e n a l t y 9 [ i ] ) {
p f i n a l r e s t r i c t p e n a l t y [ i , ] <− p f i n a l r e s t r i c t p e n a l t y 8 [ i , ]
l f i n a l r e s t r i c t p e n a l t y [ i ] <− l f i n a l r e s t r i c t p e n a l t y 8 [ i ]}
i f ( l f i n a l r e s t r i c t p e n a l t y 8 [ i ] < l f i n a l r e s t r i c t p e n a l t y 9 [ i ] ) {
p f i n a l r e s t r i c t p e n a l t y [ i , ] <− p f i n a l r e s t r i c t p e n a l t y 9 [ i , ]
l f i n a l r e s t r i c t p e n a l t y [ i ] <− l f i n a l r e s t r i c t p e n a l t y 9 [ i ]}
}
##Fina l check on c r o s s i n g t rends and r e s t r i c t##
#make sure the blue l i n e i s the upper trend
uu <− matrix (0 , n munic ipal , 1)
f o r ( i in 1 : n munic ipa l ){
uu [ i ] <− (mean( p f i n a l r e s t r i c t p e n a l t y [ i ,2 ]+
p f i n a l r e s t r i c t p e n a l t y [ i , 3 ] ∗ t)>mean( p f i n a l r e s t r i c t p e n a l t y [ i ,5 ]+
p f i n a l r e s t r i c t p e n a l t y [ i , 6 ] ∗ t ) )
}
ss<− which (uu==1)
#switch back the parameters
f o r ( i in s s ){
s t o r e <− p f i n a l r e s t r i c t p e n a l t y [ i , ]
p f i n a l r e s t r i c t p e n a l t y [ i , 1 ] <− 1− p f i n a l r e s t r i c t p e n a l t y [ i , 1 ]
p f i n a l r e s t r i c t p e n a l t y [ i , 2 ] <− p f i n a l r e s t r i c t p e n a l t y [ i , 5 ]
p f i n a l r e s t r i c t p e n a l t y [ i , 3 ] <− p f i n a l r e s t r i c t p e n a l t y [ i , 6 ]
p f i n a l r e s t r i c t p e n a l t y [ i , 4 ] <− p f i n a l r e s t r i c t p e n a l t y [ i , 7 ]
p f i n a l r e s t r i c t p e n a l t y [ i , 5 ] <− s t o r e [ 2 ]
p f i n a l r e s t r i c t p e n a l t y [ i , 6 ] <− s t o r e [ 3 ]
p f i n a l r e s t r i c t p e n a l t y [ i , 7 ] <− s t o r e [ 4 ]
}
#f i n a l check i f there ’ s e r r o r
oo <− matrix (0 , n munic ipal , 1)
f o r ( i in 1 : n munic ipa l ){

65



i f ( p f i n a l r e s t r i c t p e n a l t y [ i ,1]==0){ oo [ i ]<−1}
i f ( l f i n a l r e s t r i c t p e n a l t y [ i ]==0){oo [ i ]<−1}
}
nn<− which ( oo==1)

66



Model 5 and 5R

p f i n a l p e n a l t y c v <− matrix (0 , n munic ipal , 9)
l f i n a l p e n a l t y c v <− matrix (0 , n munic ipal , 1)
s t a r t i n g <− c ( . 2 , . 3 5 , . 5 , . 6 5 , . 8 )
f o r ( i in 1 : n munic ipa l ){
y <− crop [ , i +1]
#pena l i z ed log−l i k e l i h o o d
fun<−f unc t i on ( s t a r t ){−(sum( log ( s t a r t [ 1 ] ∗ dnorm(y , s t a r t [2 ]+ s t a r t [ 3 ] ∗ t ,
( s t a r t [4 ]+ s t a r t [ 5 ] ∗ t )ˆ0.5)+(1− s t a r t [ 1 ] ) ∗ dnorm(y , s t a r t [6 ]+ s t a r t [ 7 ] ∗ t ,
( s t a r t [8 ]+ s t a r t [ 9 ] ∗ t )ˆ0 .5)))− penal ty ∗( s t a r t [1 ]−0)ˆ2)}
#log−l i k e l i h o o d
fun . unr<−f unc t i on ( s t a r t ) {−(sum( log ( s t a r t [ 1 ] ∗ dnorm(y , s t a r t [ 2 ]
+s t a r t [ 3 ] ∗ t ,
( s t a r t [4 ]+ s t a r t [ 5 ] ∗ t )ˆ0.5)+(1− s t a r t [ 1 ] ) ∗ dnorm(y , s t a r t [ 6 ]
+s t a r t [ 7 ] ∗ t , ( s t a r t [8 ]+ s t a r t [ 9 ] ∗ t ) ˆ 0 . 5 ) ) ) ) }
to l <−.001
conv<−0
i t . conv<−0
T<−l ength ( y )
t<−seq ( 1 :T)
p loop <− matrix (0 , l ength ( s t a r t i n g ) , 9)
l l o o p <− matrix (0 , l ength ( s t a r t i n g ) , 1)
f o r ( s in 1 : l ength ( s t a r t i n g ) ){
r e s u l t<−rq ( y˜t , s t a r t i n g [ s ] )
w<−rep (0 ,T)
w[ r e s u l t $ r e s i d u a l s <0]<−1
yy<−c (y , y )
x1t<−c ( t , rep (0 ,T) )
x2t<−c ( rep (0 ,T) , t )
x1<−c ( rep (1 ,T) , rep (0 ,T) )
x2<−c ( rep (0 ,T) , rep (1 ,T) )
yy<−c (y , y )
ww<−c (w,1−w)
XXR<−cbind ( x1 , x1t , x2 , x2t )
c o e f . l a s t<−rep (0 , 9 )
temp . a<−10000
j<−1
TT<−T+1
TTT<−2∗T
whi le ( conv < 1){
ww<−c (w,1−w)
r e s u l t<−lm( yy˜XXR−1, weights=ww)
ss1 <− lm ( ( r e s u l t $ r e s i d u a l s [ 1 :T] ˆ 2 ) ˜ t , weights = w)
i f ( s s 1 $ c o e f f i c i e n t s [1 ]<0) { s s s1<−
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lm ( ( r e s u l t $ r e s i d u a l s [ 1 :T] ˆ2 )˜ t−1, weights = w)
s s 1 $ c o e f f i c i e n t s [1]<−0
s s 1 $ c o e f f i c i e n t s [2]<− s s s 1 $ c o e f f i c i e n t s [ 1 ]
s s 1 $ f i t t e d . va lues<−s s s 1 $ f i t t e d . va lue s }
i f (min ( s s 1 $ f i t t e d . va lue s )<0)
{ s s 1 $ c o e f f i c i e n t s [1]<−mean( r e s u l t $ r e s i d u a l s [ 1 :T] ˆ 2 )
s s 1 $ c o e f f i c i e n t s [2]<−0
s s 1 $ f i t t e d . va lues<−s s 1 $ c o e f f i c i e n t s [ 1 ] }
s s2 <− lm ( ( r e s u l t $ r e s i d u a l s [TT:TTT] ˆ 2 ) ˜ t , weights = 1−w)
i f ( s s 2 $ c o e f f i c i e n t s [1 ]<0) { s s s2<−
lm ( ( r e s u l t $ r e s i d u a l s [TT:TTT] ˆ 2 ) ˜ t−1, weights = 1−w)
s s 2 $ c o e f f i c i e n t s [1]<−0
s s 2 $ c o e f f i c i e n t s [2]<− s s s 2 $ c o e f f i c i e n t s [ 1 ]
s s 2 $ f i t t e d . va lues<−s s s 2 $ f i t t e d . va lue s }
i f (min ( s s 2 $ f i t t e d . va lue s )<0)
{ s s 2 $ c o e f f i c i e n t s [1]<−mean( r e s u l t $ r e s i d u a l s [TT:TTT] ˆ 2 )
s s 2 $ c o e f f i c i e n t s [2]<−0
s s 2 $ f i t t e d . va lues<−s s 2 $ c o e f f i c i e n t s [ 1 ] }
p1<−dnorm(y , r e s u l t $ f i t t e d . va lue s [ 1 :T] , ( s s 1 $ f i t t e d . va lue s ) ˆ 0 . 5 )
p2<−dnorm(y , r e s u l t $ f i t t e d . va lue s [TT:TTT] , ( s s 2 $ f i t t e d . va lue s ) ˆ 0 . 5 )
w <− p1 /( p1+p2 )
mw<−mean(w)
c o e f . new<−c (mw, r e s u l t $ c o e f f i c i e n t s [ 1 : 2 ] , s s 1 $ c o e f f i c i e n t s ,
r e s u l t $ c o e f f i c i e n t s [ 3 : 4 ] , s s 2 $ c o e f f i c i e n t s )
temp . a <− sum( abs ( c o e f . new−c o e f . l a s t ) )
i f ( j >500) temp . a<−0
i f ( temp . a<t o l ) {conv<−1
i t . conv<−j }
c o e f . l a s t<−c o e f . new
j<−j+1
}
p loop [ s , ] <− c o e f . new
l l o o p [ s ] <− fun . unr ( c o e f . new)
}
c o e f . new <− p loop [ which . max( l l o o p ) , ]
f i t 1<−c o e f . new [2 ]+ c o e f . new [ 3 ] ∗ t
f i t 2<−c o e f . new [6 ]+ c o e f . new [ 7 ] ∗ t
s t a r t<−as . numeric ( c o e f . new)
s t a r t 2 <− c ( pmin (1 , s t a r t [ 1 ] ) , s t a r t [ 2 : 9 ] )
l l<−rep (99999999 ,100)
t r i a l <− matrix (0 , 100 , 9)
f o r ( k in 1 :100){
penalty<−k/2
r e s u l t . opt<−optim ( s ta r t2 , fun )
c o e f . opt<−r e s u l t . opt$par
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l l [ k]<−fun . unr ( c o e f . opt )
i f ( c o e f . opt [1 ]>1) l l [ k]<−9999999999 #avoid lambda > 1
i f ( c o e f . opt [1 ]<0) l l [ k]<−9999999999 #avoid lambda < 0
i f ( c o e f . opt [2 ]<0) l l [ k]<−9999999999 #avoid a1 < 0
i f ( c o e f . opt [3 ]<0) l l [ k]<−9999999999 #avoid a1 < 0
i f ( c o e f . opt [4 ]<0) l l [ k]<−9999999999 #avoid g1 < 0
i f ( c o e f . opt [6 ]<0) l l [ k]<−9999999999 #avoid a2 < 0
i f ( c o e f . opt [8 ]<0) l l [ k]<−9999999999 #avoid g2 < 0
t r i a l [ k , ] <− r e s u l t . opt$par
}
penalty<−which . min ( l l )
c o e f . opt <− t r i a l [ penalty , ]
l l [ which ( l l == ”NaN” ) ] <− 9999999999
i f (min ( l l )> fun . unr ( c o e f . new )){ c o e f . opt <− c o e f . new}
i f (min ( l l )>5000){ c o e f . opt <− c o e f . new}
opt1<−c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗ t
opt2<−c o e f . opt [6 ]+ c o e f . opt [ 7 ] ∗ t
p l o t ( t , y )
l i n e s ( t , f i t 1 , c o l=”red ”)
l i n e s ( t , f i t 2 , c o l=”red ”)
l i n e s ( t , opt1 , c o l=”blue ”)
l i n e s ( t , opt2 , c o l=”blue ”)
fun ( c o e f . new)
fun ( c o e f . opt )
fun . unr ( c o e f . new)
fun . unr ( c o e f . opt )
#log−l i k e l i h o o d
p f i n a l p e n a l t y c v [ i , ] <− c ( c o e f . opt [ 1 ] , c o e f . opt [ 2 ] , c o e f . opt [ 3 ] ,
c o e f . opt [ 4 ] , c o e f . opt [ 5 ] , c o e f . opt [ 6 ] ,
c o e f . opt [ 7 ] , c o e f . opt [ 8 ] , c o e f . opt [ 9 ] )
l f i n a l p e n a l t y c v [ i ] <− −(fun . unr ( c o e f . opt ) )
}
#make sure the blue l i n e i s the upper trend
uu <− matrix (0 , n munic ipal , 1)
f o r ( i in 1 : n munic ipa l ){
i f (mean( p f i n a l p e n a l t y c v [ i ,2 ]+ p f i n a l p e n a l t y c v [ i , 3 ] ∗ t ) >
mean( p f i n a l p e n a l t y c v [ i ,6 ]+ p f i n a l p e n a l t y c v [ i , 7 ] ∗ t ) ){uu [ i ]<−1}
}
mm<− which (uu==1)
#switch back the parameters
f o r ( i in mm){
s t o r e <− p f i n a l p e n a l t y c v [ i , ]
p f i n a l p e n a l t y c v [ i , 1 ] <− 1− p f i n a l p e n a l t y c v [ i , 1 ]
p f i n a l p e n a l t y c v [ i , 2 ] <− p f i n a l p e n a l t y c v [ i , 6 ]
p f i n a l p e n a l t y c v [ i , 3 ] <− p f i n a l p e n a l t y c v [ i , 7 ]
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p f i n a l p e n a l t y c v [ i , 4 ] <− p f i n a l p e n a l t y c v [ i , 8 ]
p f i n a l p e n a l t y c v [ i , 5 ] <− p f i n a l p e n a l t y c v [ i , 9 ]
p f i n a l p e n a l t y c v [ i , 6 ] <− s t o r e [ 2 ]
p f i n a l p e n a l t y c v [ i , 7 ] <− s t o r e [ 3 ]
p f i n a l p e n a l t y c v [ i , 8 ] <− s t o r e [ 4 ]
p f i n a l p e n a l t y c v [ i , 9 ] <− s t o r e [ 5 ]
}
#Find out c r o s s i n g t rends and negat ive var iance in 2028 and r e s t r i c t
oo <− matrix (0 , n munic ipal , 2)
#column 1 f o r c r o s s i n g , column 2 f o r negat ive var
#year2028−year1949
YY <− 79
#c r o s s i n g
f o r ( i in 1 : n munic ipa l ){
i f ( ( p f i n a l p e n a l t y c v [ i ,2]> p f i n a l p e n a l t y c v [ i , 6 ] )
|
( ( p f i n a l p e n a l t y c v [ i ,2 ]+ p f i n a l p e n a l t y c v [ i , 3 ] ∗T)>
( p f i n a l p e n a l t y c v [ i ,6 ]+ p f i n a l p e n a l t y c v [ i , 7 ] ∗T) ) )
{oo [ i ,1]<−1}
}
#negat ive var
f o r ( i in 1 : n munic ipa l ){
i f ( ( ( p f i n a l p e n a l t y c v [ i ,4 ]+ p f i n a l p e n a l t y c v [ i , 5 ] ∗YY)<0)
|
( ( p f i n a l p e n a l t y c v [ i ,8 ]+ p f i n a l p e n a l t y c v [ i , 9 ] ∗YY)<0))
{oo [ i ,2]<−1}
}
aa <− which ( oo [ , 1 ] == 0 & oo [ , 2 ] == 0) #no need r e s t r i c t i o n
bb <− which ( oo [ , 1 ] == 1 & oo [ , 2 ] == 0) #c r o s s i n g , good var
cc <− which ( oo [ , 1 ] == 0 & oo [ , 2 ] == 1) #not c ro s s ing , bad var
dd <− which ( oo [ , 1 ] == 1 & oo [ , 2 ] == 1) #c r o s s i n g and bad var
ee <− which ( oo [ , 1 ] == 1) #c r o s s i n g
f f <− which ( oo [ , 2 ] == 1) #bad var

#EM and Pena l i zed Res t r i c t ed , 2−component & Changing va r i ance s
p f i n a l r e s t r i c t p e n a l t y c v <− matrix (0 , n munic ipal , 9)
l f i n a l r e s t r i c t p e n a l t y c v <− matrix (0 , n munic ipal , 1)
f o r ( i in aa ){
p f i n a l r e s t r i c t p e n a l t y c v [ i , ] <− p f i n a l p e n a l t y c v [ i , ]
l f i n a l r e s t r i c t p e n a l t y c v [ i ] <− l f i n a l p e n a l t y c v [ i ]
}
p f i n a l r e s t r i c t p e n a l t y 8 c v <− matrix (0 , n munic ipal , 9)
l f i n a l r e s t r i c t p e n a l t y 8 c v <− matrix (0 , n munic ipal , 1)

#Set count i e s that c r o s s to s t a r t from the same i n t e r c e p t
f o r ( i in s o r t ( c ( ee , f f ) ) ){
#pena l i z ed log−l i k e l i h o o d
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fun<−f unc t i on ( s t a r t ) {−(sum( log ( s t a r t [ 1 ] ∗ dnorm(y , s t a r t [ 2 ]
+s t a r t [ 3 ] ∗ t , ( s t a r t [4 ]+ s t a r t [ 5 ] ∗ t )ˆ0.5)+(1− s t a r t [ 1 ] ) ∗
dnorm(y , s t a r t [2 ]+ s t a r t [ 6 ] ∗ t ,
( s t a r t [7 ]+ s t a r t [ 8 ] ∗ t )ˆ0 .5)))− penal ty ∗( s t a r t [1 ]−0)ˆ2)}
#log−l i k e l i h o o d
fun . unr<−f unc t i on ( s t a r t ) {−(sum( log ( s t a r t [ 1 ] ∗ dnorm(y , s t a r t [ 2 ]
+s t a r t [ 3 ] ∗ t , ( s t a r t [4 ]+ s t a r t [ 5 ] ∗ t )ˆ0.5)+(1− s t a r t [ 1 ] )
∗dnorm(y , s t a r t [2 ]+ s t a r t [ 6 ] ∗ t , ( s t a r t [7 ]+ s t a r t [ 8 ] ∗ t ) ˆ 0 . 5 ) ) ) ) }
y<−crop [ , i +1]
to l <−.001
conv<−0
i t . conv<−0
T<−l ength ( y )
t<−seq ( 1 :T)
p loop <− matrix (0 , l ength ( s t a r t i n g ) , 8)
l l o o p <− matrix (0 , l ength ( s t a r t i n g ) , 1)
f o r ( s in 1 : l ength ( s t a r t i n g ) ){
r e s u l t<−rq ( y˜t , s t a r t i n g [ s ] )
w<−rep (0 ,T)
w[ r e s u l t $ r e s i d u a l s <0]<−1
yy<−c (y , y )
x1t<−c ( t , rep (0 ,T) )
x2t<−c ( rep (0 ,T) , t )
x1<−c ( rep (1 ,T) , rep (1 ,T) )
yy<−c (y , y )
ww<−c (w,1−w)
XXR<−cbind ( x1 , x1t , x2t )
conv<−0
c o e f . l a s t<−rep (0 , 8 )
temp . a<−10000
j<−1
TT<−T+1
TTT<−2∗T
whi le ( conv < 1){
ww<−c (w,1−w)
r e s u l t<−lm( yy˜XXR−1, weights=ww)
ss1 <− lm ( ( r e s u l t $ r e s i d u a l s [ 1 :T] ˆ 2 ) ˜ t , weights = w)
i f ( s s 1 $ c o e f f i c i e n t s [1 ]<0) { s s s1<−
lm ( ( r e s u l t $ r e s i d u a l s [ 1 :T] ˆ 2 ) ˜ t−1, weights = w)
s s 1 $ c o e f f i c i e n t s [1]<−0
s s 1 $ c o e f f i c i e n t s [2]<− s s s 1 $ c o e f f i c i e n t s [ 1 ]
s s 1 $ f i t t e d . va lues<−s s s 1 $ f i t t e d . va lue s }
i f ( ( min ( s s 1 $ f i t t e d . va lue s )<0) |( s s 1 $ c o e f f i c i e n t s [1 ]+
s s 1 $ c o e f f i c i e n t s [ 2 ] ∗YY<0))
{ s s 1 $ c o e f f i c i e n t s [1]<−mean( r e s u l t $ r e s i d u a l s [ 1 :T] ˆ 2 )
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s s 1 $ c o e f f i c i e n t s [2]<−0
s s 1 $ f i t t e d . va lues<−s s 1 $ c o e f f i c i e n t s [ 1 ] }
s s2 <− lm ( ( r e s u l t $ r e s i d u a l s [TT:TTT] ˆ 2 ) ˜ t , weights = 1−w)
i f ( s s 2 $ c o e f f i c i e n t s [1 ]<0) { s s s2<−
lm ( ( r e s u l t $ r e s i d u a l s [TT:TTT] ˆ 2 ) ˜ t−1, weights = 1−w)
s s 2 $ c o e f f i c i e n t s [1]<−0
s s 2 $ c o e f f i c i e n t s [2]<− s s s 2 $ c o e f f i c i e n t s [ 1 ]
s s 2 $ f i t t e d . va lues<−s s s 2 $ f i t t e d . va lue s }
i f ( ( min ( s s 2 $ f i t t e d . va lue s )<0) |( s s 2 $ c o e f f i c i e n t s [1 ]+
s s 2 $ c o e f f i c i e n t s [ 2 ] ∗YY<0))
{ s s 2 $ c o e f f i c i e n t s [1]<−mean( r e s u l t $ r e s i d u a l s [TT:TTT] ˆ 2 )
s s 2 $ c o e f f i c i e n t s [2]<−0
s s 2 $ f i t t e d . va lues<−s s 2 $ c o e f f i c i e n t s [ 1 ] }
mw<−mean(w)
p1<−dnorm(y , r e s u l t $ f i t t e d . va lue s [ 1 :T] , ( s s 1 $ f i t t e d . va lue s ) ˆ 0 . 5 )
p2<−dnorm(y , r e s u l t $ f i t t e d . va lue s [TT:TTT] , ( s s 2 $ f i t t e d . va lue s ) ˆ 0 . 5 )
w <− p1 /( p1+p2 )
c o e f . new<−c (mw, r e s u l t $ c o e f f i c i e n t s [ 1 : 2 ] , s s 1 $ c o e f f i c i e n t s ,
r e s u l t $ c o e f f i c i e n t s [ 3 ] , s s 2 $ c o e f f i c i e n t s )
temp . a <− sum( abs ( c o e f . new−c o e f . l a s t ) )
i f ( j >500) temp . a<−0
i f ( temp . a<t o l ) {conv<−1
i t . conv<−j }
c o e f . l a s t<−c o e f . new
j<−j+1
}
p loop [ s , ] <− c o e f . new
l l o o p [ s ] <− fun . unr ( c o e f . new)
}
c o e f . new <− p loop [ which . max( l l o o p ) , ]
f i t 1<−c o e f . new [2 ]+ c o e f . new [ 3 ] ∗ t
f i t 2<−c o e f . new [2 ]+ c o e f . new [ 6 ] ∗ t
s t a r t<−as . numeric ( c o e f . new)
s t a r t 2 <− c ( pmin (1 , s t a r t [ 1 ] ) , s t a r t [ 2 : 8 ] )
l l<−rep (99999999 ,100)
t r i a l <− matrix (0 , 100 , 8)
f o r ( k in 1 :100){
penalty<−k
r e s u l t . opt<−optim ( s ta r t2 , fun )
c o e f . opt<−r e s u l t . opt$par
l l [ k]<−fun . unr ( c o e f . opt )
i f ( c o e f . opt [1 ]>1) l l [ k]<−9999999999 #avoid lambda i s > 1
i f ( c o e f . opt [1 ]<0) l l [ k]<−9999999999 #avoid lambda i s < 0
i f ( c o e f . opt [2 ]<0) l l [ k]<−9999999999 #avoid a1 i s < 0
i f ( c o e f . opt [3 ]<0) l l [ k]<−9999999999 #avoid b1 i s < 0
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i f ( c o e f . opt [4 ]<0) l l [ k]<−9999999999 #avoid g1 i s < 0
i f ( c o e f . opt [7 ]<0) l l [ k]<−9999999999 #avoid g2 i s < 0
i f ( ( ( c o e f . opt [4 ]+ c o e f . opt [ 5 ] ∗YY)<0) |
( ( c o e f . opt [7 ]+ c o e f . opt [ 8 ] ∗YY)<0)){ l l [ k]<−9999999999}
t r i a l [ k , ] <− r e s u l t . opt$par
}
penalty<−which . min ( l l )
c o e f . opt <− t r i a l [ penalty , ]
i f (min ( l l )> fun . unr ( c o e f . new )){ c o e f . opt <− c o e f . new}
opt1<−c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗ t
opt2<−c o e f . opt [2 ]+ c o e f . opt [ 6 ] ∗ t
p l o t ( t , y )
l i n e s ( t , f i t 1 , c o l=”red ”)
l i n e s ( t , f i t 2 , c o l=”red ”)
l i n e s ( t , opt1 , c o l=”blue ”)
l i n e s ( t , opt2 , c o l=”blue ”)
fun ( c o e f . new)
fun ( c o e f . opt )
fun . unr ( c o e f . new)
fun . unr ( c o e f . opt )
p f i n a l r e s t r i c t p e n a l t y 8 c v [ i , ] <− c ( c o e f . opt [ 1 ] , c o e f . opt [ 2 ] ,
c o e f . opt [ 3 ] , c o e f . opt [ 4 ] , c o e f . opt [ 5 ] , c o e f . opt [ 2 ] , c o e f . opt [ 6 ] ,
c o e f . opt [ 7 ] , c o e f . opt [ 8 ] )
l f i n a l r e s t r i c t p e n a l t y 8 c v [ i ] <− −(fun . unr ( c o e f . opt ) )
}
#Set count i e s that c r o s s to not c r o s s
p f i n a l r e s t r i c t p e n a l t y 9 c v <− matrix (0 , n munic ipal , 9)
l f i n a l r e s t r i c t p e n a l t y 9 c v <− matrix (0 , n munic ipal , 1)
s t a r t i n g <− c ( . 2 , . 3 5 , . 5 , . 6 5 , . 8 )
f o r ( i in s o r t ( c ( ee , f f ) ) ){
y <− crop [ , i +1]
#pena l i z ed log−l i k e l i h o o d
fun<−f unc t i on ( s t a r t ){−(sum( log ( s t a r t [ 1 ] ∗ dnorm(y , s t a r t [2 ]+
s t a r t [ 3 ] ∗ t , ( s t a r t [4 ]+ s t a r t [ 5 ] ∗ t )ˆ0.5)+(1− s t a r t [ 1 ] ) ∗
dnorm(y , s t a r t [6 ]+ s t a r t [ 7 ] ∗ t , ( s t a r t [8 ]+ s t a r t [ 9 ] ∗ t ) ˆ 0 . 5 ) ) )
−penal ty ∗( s t a r t [1 ]−0)ˆ2)}
#log−l i k e l i h o o d
fun . unr<−f unc t i on ( s t a r t ){−(sum( log ( s t a r t [ 1 ] ∗
dnorm(y , s t a r t [2 ]+ s t a r t [ 3 ] ∗ t , ( s t a r t [4 ]+ s t a r t [ 5 ] ∗ t )ˆ0.5)+
(1− s t a r t [ 1 ] ) ∗ dnorm(y , s t a r t [6 ]+ s t a r t [ 7 ] ∗ t ,
( s t a r t [8 ]+ s t a r t [ 9 ] ∗ t ) ˆ 0 . 5 ) ) ) ) }
to l <−.001
conv<−0
i t . conv<−0
T<−l ength ( y )
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t<−seq ( 1 :T)
p loop <− matrix (0 , l ength ( s t a r t i n g ) , 9)
l l o o p <− matrix (0 , l ength ( s t a r t i n g ) , 1)
f o r ( s in 1 : l ength ( s t a r t i n g ) ){
r e s u l t<−rq ( y˜t , s t a r t i n g [ s ] )
w<−rep (0 ,T)
w[ r e s u l t $ r e s i d u a l s <0]<−1
yy<−c (y , y )
x1t<−c ( t , rep (0 ,T) )
x2t<−c ( rep (0 ,T) , t )
x1<−c ( rep (1 ,T) , rep (0 ,T) )
x2<−c ( rep (0 ,T) , rep (1 ,T) )
yy<−c (y , y )
ww<−c (w,1−w)
XXR<−cbind ( x1 , x1t , x2 , x2t )
c o e f . l a s t<−rep (0 , 9 )
temp . a<−10000
j<−1
TT<−T+1
TTT<−2∗T
whi le ( conv < 1){
ww<−c (w,1−w)
r e s u l t<−lm( yy˜XXR−1, weights=ww)
ss1 <− lm ( ( r e s u l t $ r e s i d u a l s [ 1 :T] ˆ 2 ) ˜ t , weights = w)
i f ( s s 1 $ c o e f f i c i e n t s [1 ]<0) { s s s1<−
lm ( ( r e s u l t $ r e s i d u a l s [ 1 :T] ˆ 2 ) ˜ t−1, weights = w)
s s 1 $ c o e f f i c i e n t s [1]<−0
s s 1 $ c o e f f i c i e n t s [2]<− s s s 1 $ c o e f f i c i e n t s [ 1 ]
s s 1 $ f i t t e d . va lues<−s s s 1 $ f i t t e d . va lue s }
i f (min ( s s 1 $ f i t t e d . va lue s )<0)
{ s s 1 $ c o e f f i c i e n t s [1]<−mean( r e s u l t $ r e s i d u a l s [ 1 :T] ˆ 2 )
s s 1 $ c o e f f i c i e n t s [2]<−0
s s 1 $ f i t t e d . va lues<−s s 1 $ c o e f f i c i e n t s [ 1 ] }
s s2 <− lm ( ( r e s u l t $ r e s i d u a l s [TT:TTT] ˆ 2 ) ˜ t , weights = 1−w)
i f ( s s 2 $ c o e f f i c i e n t s [1 ]<0) { s s s2<−
lm ( ( r e s u l t $ r e s i d u a l s [TT:TTT] ˆ 2 ) ˜ t−1, weights = 1−w)
s s 2 $ c o e f f i c i e n t s [1]<−0
s s 2 $ c o e f f i c i e n t s [2]<− s s s 2 $ c o e f f i c i e n t s [ 1 ]
s s 2 $ f i t t e d . va lues<−s s s 2 $ f i t t e d . va lue s }
i f (min ( s s 2 $ f i t t e d . va lue s )<0)
{ s s 2 $ c o e f f i c i e n t s [1]<−mean( r e s u l t $ r e s i d u a l s [TT:TTT] ˆ 2 )
s s 2 $ c o e f f i c i e n t s [2]<−0
s s 2 $ f i t t e d . va lues<−s s 2 $ c o e f f i c i e n t s [ 1 ] }
p1<−dnorm(y , r e s u l t $ f i t t e d . va lue s [ 1 :T] , ( s s 1 $ f i t t e d . va lue s ) ˆ 0 . 5 )
p2<−dnorm(y , r e s u l t $ f i t t e d . va lue s [TT:TTT] , ( s s 2 $ f i t t e d . va lue s ) ˆ 0 . 5 )

74



w <− p1 /( p1+p2 )
mw<−mean(w)
c o e f . new<−c (mw, r e s u l t $ c o e f f i c i e n t s [ 1 : 2 ] , s s 1 $ c o e f f i c i e n t s ,
r e s u l t $ c o e f f i c i e n t s [ 3 : 4 ] , s s 2 $ c o e f f i c i e n t s )
temp . a <− sum( abs ( c o e f . new−c o e f . l a s t ) )
i f ( j >500) temp . a<−0
i f ( temp . a<t o l ) {conv<−1
i t . conv<−j }
c o e f . l a s t<−c o e f . new
j<−j+1
}
p loop [ s , ] <− c o e f . new
l l o o p [ s ] <− fun . unr ( c o e f . new)
}
c o e f . new <− p loop [ which . max( l l o o p ) , ]
f i t 1<−c o e f . new [2 ]+ c o e f . new [ 3 ] ∗ t
f i t 2<−c o e f . new [6 ]+ c o e f . new [ 7 ] ∗ t
s t a r t<−as . numeric ( c o e f . new)
s t a r t 2 <− c ( pmin (1 , s t a r t [ 1 ] ) , s t a r t [ 2 : 9 ] )
l l<−rep (99999999 ,100)
t r i a l <− matrix (0 , 100 , 9)
f o r ( k in 1 :100){
penalty<−k/2
r e s u l t . opt<−optim ( s ta r t2 , fun )
c o e f . opt<−r e s u l t . opt$par
l l [ k]<−fun . unr ( c o e f . opt )
i f ( c o e f . opt [1 ]>1) l l [ k]<−9999999999 #avoid lambda > 1
i f ( c o e f . opt [1 ]<0) l l [ k]<−9999999999 #avoid lambda < 0
i f ( c o e f . opt [2 ]<0) l l [ k]<−9999999999 #avoid a1 < 0
i f ( c o e f . opt [3 ]<0) l l [ k]<−9999999999 #avoid a1 < 0
i f ( c o e f . opt [4 ]<0) l l [ k]<−9999999999 #avoid g1 < 0
i f ( c o e f . opt [6 ]<0) l l [ k]<−9999999999 #avoid a2 < 0
i f ( c o e f . opt [8 ]<0) l l [ k]<−9999999999 #avoid g2 < 0
i f ( ( ( c o e f . opt [4 ]+ c o e f . opt [ 5 ] ∗YY)<0) |
( ( c o e f . opt [7 ]+ c o e f . opt [ 8 ] ∗YY)<0)){ l l [ k]<−9999999999}
i f ( ( mean( c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗ t ) <
mean( c o e f . opt [6 ]+ c o e f . opt [ 7 ] ∗ t ))&
( ( c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗T) >
( c o e f . opt [6 ]+ c o e f . opt [ 7 ] ∗T) ) ){ l l [ k]<−9999999999}
i f ( ( mean( c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗ t ) <
mean( c o e f . opt [6 ]+ c o e f . opt [ 7 ] ∗ t ))&
( c o e f . opt [2]> c o e f . opt [ 6 ] ) ) { l l [ k]<−9999999999}
i f ( ( mean( c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗ t ) > mean( c o e f . opt [ 6 ]

+c o e f . opt [ 7 ] ∗ t ))&(( c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗T) <
( c o e f . opt [6 ]+ c o e f . opt [ 7 ] ∗T) ) ){ l l [ k]<−9999999999}
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i f ( ( mean( c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗ t ) > mean( c o e f . opt [ 6 ]
+c o e f . opt [ 7 ] ∗ t ))& c o e f . opt [2]< c o e f . opt [ 6 ] ) ) { l l [ k]<−9999999999}
t r i a l [ k , ] <− r e s u l t . opt$par
}
penalty<−which . min ( l l )
c o e f . opt <− t r i a l [ penalty , ]
l l [ which ( l l == ”NaN” ) ] <− 9999999999
i f (min ( l l )>5000) { c o e f . opt <− c (0 , 0 , 0 , 0 , 0 , 0 , 0 )}
i f (
( fun . unr ( c o e f . new)< fun . unr ( c o e f . opt ) )
&
( c o e f . new[2]< c o e f . new [ 6 ] )
&
( ( c o e f . new [2 ]+ c o e f . new [ 3 ] ∗T) < ( c o e f . new [6 ]+ c o e f . new [ 7 ] ∗T) )
){ c o e f . opt <− c o e f . new}
opt1<−c o e f . opt [2 ]+ c o e f . opt [ 3 ] ∗ t
opt2<−c o e f . opt [6 ]+ c o e f . opt [ 7 ] ∗ t
p l o t ( t , y )
l i n e s ( t , f i t 1 , c o l=”red ”)
l i n e s ( t , f i t 2 , c o l=”red ”)
l i n e s ( t , opt1 , c o l=”blue ”)
l i n e s ( t , opt2 , c o l=”blue ”)
fun ( c o e f . new)
fun ( c o e f . opt )
fun . unr ( c o e f . new)
fun . unr ( c o e f . opt )
#log−l i k e l i h o o d
p f i n a l r e s t r i c t p e n a l t y 9 c v [ i , ] <− c ( c o e f . opt [ 1 ] , c o e f . opt [ 2 ] ,
c o e f . opt [ 3 ] , c o e f . opt [ 4 ] , c o e f . opt [ 5 ] , c o e f . opt [ 6 ] , c o e f . opt [ 7 ] ,
c o e f . opt [ 8 ] , c o e f . opt [ 9 ] )
l f i n a l r e s t r i c t p e n a l t y 9 c v [ i ] <− −(fun . unr ( c o e f . opt ) )
}
l f i n a l r e s t r i c t p e n a l t y 8 c v
[ which ( i s . na ( l f i n a l r e s t r i c t p e n a l t y 8 c v ) ) ] <− −999999
l f i n a l r e s t r i c t p e n a l t y 9 c v
[ which ( i s . na ( l f i n a l r e s t r i c t p e n a l t y 9 c v ) ) ] <− −999999

#choose between same i n t e r c e p t and d i f f e r e n t i n t e r c e p t
f o r ( i in s o r t ( c ( ee , f f ) ) ){
i f ( l f i n a l r e s t r i c t p e n a l t y 8 c v [ i ] == ”0”)
{ l f i n a l r e s t r i c t p e n a l t y 8 c v [ i ]<−−999999}
i f ( l f i n a l r e s t r i c t p e n a l t y 9 c v [ i ] == ”0”)
{ l f i n a l r e s t r i c t p e n a l t y 9 c v [ i ]<−−999999}
}
cbind ( l f i n a l r e s t r i c t p e n a l t y 8 c v , l f i n a l r e s t r i c t p e n a l t y 9 c v )
f o r ( i in s o r t ( c ( ee , f f ) ) ){
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i f ( l f i n a l r e s t r i c t p e n a l t y 8 c v [ i ] >
l f i n a l r e s t r i c t p e n a l t y 9 c v [ i ] ) {
p f i n a l r e s t r i c t p e n a l t y c v [ i , ] <−
p f i n a l r e s t r i c t p e n a l t y 8 c v [ i , ]
l f i n a l r e s t r i c t p e n a l t y c v [ i ] <−
l f i n a l r e s t r i c t p e n a l t y 8 c v [ i ]}
i f ( l f i n a l r e s t r i c t p e n a l t y 8 c v [ i ] <
l f i n a l r e s t r i c t p e n a l t y 9 c v [ i ] ) {
p f i n a l r e s t r i c t p e n a l t y c v [ i , ] <−
p f i n a l r e s t r i c t p e n a l t y 9 c v [ i , ]
l f i n a l r e s t r i c t p e n a l t y c v [ i ] <−
l f i n a l r e s t r i c t p e n a l t y 9 c v [ i ]}
}
##Fina l check on c r o s s i n g t rends and r e s t r i c t##
#make sure the blue l i n e i s the upper trend
uu <− matrix (0 , n munic ipal , 1)
f o r ( i in 1 : n munic ipa l ){
uu [ i ] <− (mean( p f i n a l r e s t r i c t p e n a l t y c v [ i ,2 ]+
p f i n a l r e s t r i c t p e n a l t y c v [ i , 3 ] ∗ t ) >
mean( p f i n a l r e s t r i c t p e n a l t y c v [ i ,6 ]+
p f i n a l r e s t r i c t p e n a l t y c v [ i , 7 ] ∗ t ) )
}
ss<− which (uu==1)
#switch back the parameters
f o r ( i in s s ){
s t o r e <− p f i n a l r e s t r i c t p e n a l t y c v [ i , ]
p f i n a l r e s t r i c t p e n a l t y c v [ i , 1 ] <−
1−p f i n a l r e s t r i c t p e n a l t y c v [ i , 1 ]
p f i n a l r e s t r i c t p e n a l t y c v [ i , 2 ] <− p f i n a l r e s t r i c t p e n a l t y c v [ i , 6 ]
p f i n a l r e s t r i c t p e n a l t y c v [ i , 3 ] <− p f i n a l r e s t r i c t p e n a l t y c v [ i , 7 ]
p f i n a l r e s t r i c t p e n a l t y c v [ i , 4 ] <− p f i n a l r e s t r i c t p e n a l t y c v [ i , 8 ]
p f i n a l r e s t r i c t p e n a l t y c v [ i , 5 ] <− p f i n a l r e s t r i c t p e n a l t y c v [ i , 9 ]
p f i n a l r e s t r i c t p e n a l t y c v [ i , 6 ] <− s t o r e [ 2 ]
p f i n a l r e s t r i c t p e n a l t y c v [ i , 7 ] <− s t o r e [ 3 ]
p f i n a l r e s t r i c t p e n a l t y c v [ i , 8 ] <− s t o r e [ 4 ]
p f i n a l r e s t r i c t p e n a l t y c v [ i , 9 ] <− s t o r e [ 5 ]
}
#f i n a l check i f there ’ s e r r o r
oo <− matrix (0 , n munic ipal , 1)
f o r ( i in 1 : n munic ipa l ){
i f ( p f i n a l r e s t r i c t p e n a l t y c v [ i ,1]==0){ oo [ i ]<−1}
i f ( l f i n a l r e s t r i c t p e n a l t y c v [ i ]==0){oo [ i ]<−1}
}
nn<− which ( oo==1)
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Expected Yield Loss

#Based on Model4R
parm r <− read . csv (” Parameters . csv ”)

#from year 1949 to 2028
n <− 80
t1 <− seq (1 , n)
prem90 penalty cv <− matrix (0 , l ength ( t1 ) , nrow ( parm r ) )
f o r ( k in 1 : nrow ( parm r ) ){
f o r ( i in 1 : l ength ( t1 ) ){
lambda penalty cv <−parm r [ k , 1 ]
a1 pena l ty cv<−parm r [ k , 2 ]
b1 pena l ty cv<−parm r [ k , 3 ]
s1 pena l ty cv<− parm r [ k , 4 ]
a2 pena l ty cv<−parm r [ k , 5 ]
b2 pena l ty cv<− parm r [ k , 6 ]
s2 pena l ty cv<−parm r [ k , 7 ]
mu1 penalty cv<−a1 pena l ty cv+b1 pena l ty cv ∗ t1 [ i ]
mu2 penalty cv<−a2 pena l ty cv+b2 pena l ty cv ∗ t1 [ i ]
gaur90 pena l ty cv<−(lambda penalty cv ∗mu1 penalty cv+
(1− lambda penalty cv )∗mu2 penalty cv )∗ . 9
gr id<−seq ( 0 , 3 0 0 , . 1 )
pr pena l ty cv<−lambda penalty cv ∗dnorm( gr id , mu1 penalty cv ,
s 1 p e n a l t y c v ˆ0.5)+(1− lambda penalty cv )∗
dnorm( gr id , mu2 penalty cv , s 2 p e n a l t y c v ˆ0 . 5 )
prem90 penalty cv [ i , k]<−sum(pmax(0 , gaur90 pena l ty cv−g r id )
∗ pr pena l ty cv ∗ . 1 )
}
}
prem90 penalty cv 2018 <− matrix (0 , nrow ( parm r ) , 1)
prem90 penalty cv 2023 <− matrix (0 , nrow ( parm r ) , 1)
prem90 penalty cv 2028 <− matrix (0 , nrow ( parm r ) , 1)
f o r ( k in 1 : nrow ( parm r ) ){
prem90 penalty cv 2018 [ k ] <− prem90 penalty cv [ n−10,k ]
prem90 penalty cv 2023 [ k ] <− prem90 penalty cv [ n−5,k ]
prem90 penalty cv 2028 [ k ] <− prem90 penalty cv [ n , k ]
}
re <− prem90 penalty cv 2023 / prem90 penalty cv 2018
ms <− prem90 penalty cv 2028 / prem90 penalty cv 2018
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