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ABSTRACT

ON THE TECHNOLOGICAL CHANGE AND VOLATILITY
IN CANADIAN AGRICULTURE

Horlick Ng Advisor:

University of Guelph, 2019 Professor Alan P. Ker

Feeding nine billion people by 2050 is arguably the most pressing challenge in global agricul-
ture. Increasing crop productivity, reducing animal-based protein consumption and reducing
food waste have been forwarded as possible solutions. However, reducing the latter two is
unlikely with rising global wealth; therefore, our ability to meet future food demand will, as
in the past, be dictated by technological change. Technological change not only increases av-
erage crop yield, it may also increase or decrease yield volatility. Oftentimes, yield volatility
does not change identically between upper and lower tails. The lower tail, which represents
the downside yield risk, has significant economic consequences. Increases in downside yield
risk contributes to food insecurity and subsequently economic insecurity for agricultural-
based economies (i.e. developing countries). Conversely, in developed countries, significant
public funds are funnelled to the farmers in order to mitigate downside yield risk. This
thesis focuses on the effects of technological change on yield volatility for the major crops
in Canada. Specifically, historical county-level yield data in Ontario and Saskatchewan were
analyzed for barley, canola, corn, oats, soybean and wheat. The overall results suggest that
all province-crop pairs generally exhibit a higher yield volatility over time in different mag-
nitudes. The implications are of particular interest to agricultural risk management policy

as well as public policy on agricultural research and development.
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1 Introduction

Meeting the expected food demand by the mid-21st century is one of the most serious chal-
lenges in global agriculture (Pretty et al., 2010; Conforti et al., 2011; Searchinger et al.,
2014; McKenzie and Williams, 2015). Technological change has played a dominant role in
feeding the rapidly-growing population by increasing average crop yields through innovations
in fertilizer, farming equipment, pesticides and seed genomics.® In addition to technologi-
cal change, other possible solutions include shifting diets by reducing animal-based protein
consumption (White, 2000; Pimentel and Pimentel, 2003; De Boer and Aiking, 2011; Ran-
ganathan et al., 2016) and reducing food waste (Parfitt, Barthel, and Macnaughton, 2010;
Kummu et al., 2012; Gustafsson et al., 2013; Lipinski et al., 2013; Grafton, Daugbjerg, and
Qureshi, 2015). However, as more people in developing countries earn higher disposable
income, the per capita meat consumption can be expected to continue to increase (Machov-
ina, Feeley, and Ripple, 2015). Moreover, improved food affordability for these consumers
diminishes their incentives to avoid food waste (Godfray et al., 2010). As a result, reduc-
ing either animal-based protein consumption and the amount of food waste are particularly
challenging. Therefore, our ability to meet food demand has been, and will likely continue to
be, dictated by technological change. Historically, technological change has led to a sizable
increase in average crop yields. For example, the average crop yield in the United States for
corn has increased by more than five times and soybean has more than doubled since 1940
(U.S. Department of Agriculture, 2018).?

Although technological change increases the biological limit of crop yields over time, it
also alters yield volatility. To illustrate this relationship and provide some intuition, Figure

1(a) presents the estimated conditional yield distribution in 1955, 1975, 1995 and 2015

1Technological change refers to the adoption of innovation that results in an increase in average crop
yield. Average crop yield refers to crop yield per unit area of agricultural land, measured in bushels per acre.
It is typically used to measure crop productivity in literature, as a result of factors such as technological
change, climate change, soil quality and policy change.

2The United States is currently the world’s largest producer of corn and soybean.
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Figure 1: Middlesex County, Ontario, Corn Yields, 1949 - 2016.



for corn yields from Middlesex County, Ontario.® In 1955, the yield distribution appears
to be relatively symmetrical. The following patterns are evident over the course of time:
(i) technological change increases average crop yield as the yield distribution shifts to the
right; (ii) yield distribution becomes more dispersed, which suggests an increase in overall
yield volatility; and (iii) yield distribution develops a heavier lower tail, which indicates a
higher probability of low yield (hereafter, downside yield risk). Figure 1(b) presents the
corresponding conditional quantile regression at 5%, 25%, 50%, 75% and 95% (Koenker and
Bassett Jr, 1978). It clearly shows that the rate of technological change does not increase
identically across the quantiles of the distribution, which suggests that technological change
appears to impact the middle and upper tails of the yield distribution at a greater rate than
in the lower tail. Both Figure 1(a) and 1(b) clearly illustrate that the implementation of
technological change does not simply shift the entire distribution to the right (i.e. it does
not only shift at the mean), but also affects the higher moments of the distribution.
Analogously, a yield distribution can be seen as a mixture of various components, and
technological change contributes at a heterogeneous rate to these components. For instance,
innovative seed varieties improve average crop yields over time under ideal growing condi-
tions, but may not outperform their predecessors under catastrophic events. In this case,
technological change pushes the upper tail of the yield distribution to the right while the
lower tail lags behind and, therefore, the yield distribution exhibits a different rate of tech-
nological change across different components. While there exists literature modelling tech-
nological change in U.S. yields (i.e. Skees and Reed (1986); Kaylen and Koroma (1991);
Ramirez (1997); Goodwin and Ker (1998); Just and Weninger (1999); Sherrick et al. (2004);
Tolhurst and Ker (2015)), there is no corresponding literature in regards to Canadian crop
yields. This thesis aims to fill the gap. The objectives of this thesis are: (i) to investigate

whether crop yields have different rates of technological change across different components

3Conditional yield distribution refers to the estimated distribution of average crop yield in a given year.
Middlesex county is used in this example as the county produced the most corn in 2017 in the province of
Ontario.



of the yield distribution; (ii) to estimate the effect of technological change on yield volatility;
(iii) to examine whether the trends vary across crops and provinces; and (iv) to estimate
whether crop insurance payouts (which is related to downside yield risk) will vary in the
next five and ten years. To this end, this thesis uses county-level crop yield data for six field
crops in the provinces of Ontario and Saskatchewan, which account for 9% and 46.8% of the
Canadian field crop area, respectively (Statistics Canada, 2016).* Tolhurst and Ker (2015)
proposed modeling crop yields using finite mixture of normals (hereafter, mixture model)
with embedded trend functions for potentially different rates of technological change across
components. Their approach assumes component variances to be constant over time. This
thesis generalizes their approach by allowing the component variances to vary over time, and
tests whether there is a potential efficiency gain in estimating conditional yield distributions
as opposed to the approach from Tolhurst and Ker (2015). These estimates will provide
answers to the following questions: (i) what is the optimal number of components to model
yields; (ii) does the rate of technological change in one component outperform another; (iii)
are the probabilities of components changing over time; and (iv) are yield volatility and
downside yield risk changing over time? The answers to these questions will be used to
accomplish the thesis objectives.

The above-mentioned questions are worthwhile to investigate because they have economic
significance; changes in yield volatility and downside yield risk have important implications
to areas such as farm income variability, crop insurance and food security. Given the fact
that crop yields are closely linked to climate variation (Lobell and Asner, 2003; Lobell and
Field, 2007; Challinor et al., 2014), agricultural producers have no control over the impacts
of weather on their yields. As the vast majority of crops get harvested only once a year
in Canada, the inflexibility of farm income is detrimental because poor outcomes can be

fatal to the year-to-year survival of farm businesses. Consequently, significant public funds

“4Field crop area is used rather than the quantity of crop production in the comparison because major
crops di er across provinces. For instance, western Canada mainly produces barley, canola, oats, and spring
wheat, whereas southern Canada mainly produces corn, soybean, and winter wheat.



($3.23 billion between 2013 and 2018 under Business Risk Management programs and $3
billion between 2018 and 2023 under Canadian Agricultural Partnership) are funnelled to
assist farmers in mitigating production risks, partly by subsidizing crop insurance premiums,
which are cost-shared among the federal government, provincial governments and producers
at a 36:24:40 ratio, respectively (Agriculture and Agri-Food Canada, 2017). Downside yield
risk also contributes to food insecurity, notably in developing countries, which is a major
impediment to their economic development. On account of the interrelationship between
average crop yields and crop prices, rising food costs due to poor yields causes inadequate
access to food for vulnerable households, which pushes them further into food insecurity. In
Canada — a developed country — the concern about food insecurity is by no means trivial
as well. In 2014, one in eight households experienced food insecurity in Canada and more
than one in six children lived in these affected households (Tarasuk, Mitchell, and Dachner,
2016). Although developed countries tend to have a higher capacity to alleviate the impacts
of poor yield on food insecurity through food imports, food banks and food subsidies, the
rate of food insecurity surprisingly did not improve over the years in most part of Canada
since 2005. Thus, on the whole, more attention should be paid to understand better the
relationship between technological change and yield volatility.

The thesis proceeds as follows. The next chapter describes the data used for the empirical
analyses. The following chapter outlines the current approach to modelling crop yields,
details the empirical methods used in this thesis, and explains the estimation strategy. This
is followed by the estimation and hypothesis test results. The second last chapter discusses
the economic implications of the empirical results to expected yield loss (crop insurance

premium). The final chapter presents the summary of the thesis.



2 Data

Ideally, farm-level yield data would be used to empirically investigate the effects of tech-
nological change such that the data could accurately reflect each producer’s adoption of
innovation. Unfortunately, such data does not exist as there is always a trade-off between
data availability and disaggregation of data. Thus, county-level data were used in this thesis,
which are the least aggregated data that are available to the public with sufficient number
of counties and length of data period. Analyzing crop yield data at a more aggregated
level could be a concern because it averages out the heterogeneity of less aggregated data,
particularly with respect to the higher moments. While aggregating farm-level yields to
the county-level will mute the effects of technological change, it should not be completely
mitigated. To the extent that yields are spatially correlated within a county, the mitigation
effects should be lessened. In addition, with the exception of a few studies, modelling crop
yields in literature typically use county-level yield data. Nonetheless, the effects this analysis
empirically finds should be conservative relative to the effects at the farm level since the vari-
ation at the farm level is generally considered doubled or more than that at the county level
(Coble, Dismukes, and Thomas, 2007; Cooper et al., 2009; Claassen and Just, 2011). The
entire data set includes six field crops in the provinces of Ontario and Saskatchewan, which
consists of a total of 810 county-crop pairs. Note, only counties that have complete yield
histories throughout the data period were included in the analysis. Alberta and Manitoba
yield data were considered; however, only 40 years and 25 years of yield data, respectively,
are available to the public. The analysis was done for both provinces, but is not reported
in this thesis to avoid ambiguous conclusions. Table 1 summarizes the data used in the
analysis. A detailed data description for each province is as follows.

For Ontario, county-level corn, soybean and winter wheat yield data from the period 1949
to 2016 were used. Yield data were collected from the annual Agricultural Statistics Reports
published by the Ontario Ministry of Agriculture, Food, and Rural Affairs (OMAFRA).

Ontario is a major producer of corn, soybean and winter wheat, which accounted for 62%,



Table 1: Summary of Data

Province Observations Summary Statistics of Crop Yield (bu/ac)
Crop Counties  Period (Years)  Min. Mean Median Max. Std. Dev.
Ontario

Corn 32 1949 2016 (68) 20:2 929 85:0 192:9 33:3
Soybean 6 1949 2016 (68) 16:0  33:0 32:0 56:4 9:0
Wheat 26 1949 2016 (68) 22:0  50:8 46:3 109:5 17:1
Saskatchewan

Barley 204 1938 2016 (79) 1:0 378 38:0 102:7 15:5
Canola 144 1970 2016 (47) 1:5 230 22:2 59:5 8:2
Oats 131 1938 2016 (79) 1.0 487 48 155:8 20:6
Wheat 267 1938 2016 (79) 1:0 249 25:0 70:3 9:9

49.2% and 76.5% of national production in 2017, respectively (Statistics Canada, 2018).
Figure 2 depicts the data for each crop. As shown in Figure 2(a), there are data for 32
counties available for corn (shaded in purple). Unfortunately, there are only data for six
soybean counties with completed yield histories available as most of the soybeans were grown
in the southwestern Ontario back in 1970s. These six counties are shaded in brown in Figure
2(b). For winter wheat, the 26 counties are highlighted in green in Figure 2(c).

For Saskatchewan, county-level barley, oats and spring wheat yield data from the period
1938 to 2016 were used. Due to limited data availability, county-level canola yield data are
only included from 1970 to 2016. Yield data were collected from the Ministry of Agriculture.
Saskatchewan is a major producer of barley, canola, oats and spring wheat, which accounted
for 39.7%, 52.4%, 53.3% and 39.4% of national production in 2017, respectively (Statistics
Canada, 2018). Similar to the Ontario crops, Figure 3 depicts the Saskatchewan data by
each crop. For Saskatchewan barley, Figure 3(a) highlights the 204 counties in yellow.
Interestingly, for canola, no data are available in the southwestern part of Saskatchewan;
the 144 counties are shaded in red in Figure 3(b). For Saskatchewan oats, the 131 counties
are shaded in blue in Figure 3(c). Finally, for Saskatchewan spring wheat, the 267 counties

are highlighted in pink in Figure 3(d).



Figure 4 illustrates the representative conditional quantile regression estimates for each
of the six crops. It clearly shows that technological change has remarkably increased average
crop yield over time for all the crops. What is more interesting is that technological change
has generally impacted the middle and upper quantiles at a greater rate than in the lower
quantile, causing an increase in yield volatility over time. This phenomenon can be seen

particularly in Ontario corn and Ontario soybean, but less so for the Saskatchewan crops.

(a) Ontario Corn (b) Ontario Soybean

(c) Ontario Wheat

Figure 2: Ontario Counties, by Crop
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(c) Saskatchewan Oats (d) Saskatchewan Wheat

Figure 3: Saskatchewan Counties, by Crop
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3 Empirical Methods

3.1 Literature Review

Based on existing literature, the typical approach to model crop yields involve three steps:
(1) estimate a trend of crop yield over time; (2) estimate the residuals from the first step
and adjust for heteroscedasticity if needed, and (3) estimate a yield distribution based on
the results from step one and two. A detailed discussion for each step is as follows.

The time-conditional mean of average crop yield, or in other words, the rate of technolog-
ical change, can be estimated through various approaches ranging from a simple linear trend
to other examples including ARIMA(p; d; q) (Goodwin and Ker, 1998), Bayesian hierarchical
model (Ozaki and Silva, 2009), Kalman filter (Kaylen and Koroma, 1991), mixture of two
normals (Tolhurst and Ker, 2015), polynomial trend (Just and Weninger, 1999), stochastic
trend model (Moss and Shonkwiler, 1993) and two-knot linear spline (Skees and Reed, 1986;
Harri et al., 2011).

Based on the estimated trend, the residuals can be tested for heteroscedasticity, or in
other words, the effects of technological change on the second moment of a yield distribution.
Conditioning for heteroscedasticity has received surprisingly little attention in modelling
crop yields as previous studies tended to make untested assumptions or simply assume crop
yields to be homoscedastic. However, recent contributions have suggested that correctly
accounting for heteroscedasticty leads to significant economic consequences. Harri et al.
(2011) concluded that the assumption of a specific form of heteroscedasticity limits actuarial
soundness in crop insurance premium rate calculations. Ker and Tolhurst (2019) generalized
Harri et al. (2011) to incorporate the asymmetric affects of technological change in the third
moment of a yield distribution and found that premium rates can have statistically significant
difference under asymmetric heteroscedasticity treatments.

Conditional yield distribution, which is commonly used for measuring risk, has been ex-

tensively investigated in a wide variety of contributions. In general, methods of modelling

11



yield distributions can be categorized into parametric, semi-parametric and non-parametric
models. Parametric models consist of a finite number of parameters to model yields and,
therefore, would require a prior assumption on the functional form of the distribution. Many
of the previous studies adopted parametric methods and different types of distributions have
been considered and tested, including but not limited to: beta distribution (Nelson and
Preckel, 1989; Turvey, Zhao et al., 1999; Ozaki, Goodwin, and Shirota, 2008; Zhu, Goodwin,
and Ghosh, 2011), gamma distribution (Gallagher, 1987), inverse hyperbolic sine distribu-
tion (Moss and Shonkwiler, 1993), logistic distribution (Atwood, Shaik, and Watts, 2003),
log-normal distribution (Day, 1965), maximum entropy distribution (Stochs and LaFrance,
2004; Wu and Zhang, 2012; Tack, Harri, and Coble, 2012), mixture model (Woodard and
Sherrick, 2011; Tolhurst and Ker, 2015), normal distribution (Botts and Boles, 1958; Just
and Weninger, 1999), reverse lognormal distribution (Claassen and Just, 2011) and Weibull
distribution (Chen, Miranda et al., 2004; Sherrick et al., 2004). One concern of the para-
metric methods is that the initial assumption may lead to a lack of flexibility and accuracy
to model yields because the true yield distributions are always unknown.

In contrast to the parametric methods, the non-parametric methods do not require any
specifications on the functional form of the distributions such that the shape of distribution is
solely derived by the observations. Thus, the use of the non-parametric methods is extremely
flexible and prevents any false assumptions. Kernel density estimation, one of the most
popular non-parametric methods, has been considered to model yields by Goodwin and
Ker (1998), Ker and Goodwin (2000), Goodwin and Mahul (2004), Norwood, Roberts, and
Lusk (2004), Racine and Ker (2006), Ker and Tolga Ergun (2007) and Ker, Tolhurst, and
Liu (2016). However, Ker and Coble (2003) pointed out that the non-parametric methods
tend to be more inefficient than parametric methods in two circumstances: (1) when the
prior assumption of the parametric distribution can accurately model yields and (2) a small
number of observations. In light of their respective merits, they proposed a semi-parametric

estimator to model yields that can account for the benefits of both parametric and non-
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parametric methods while mitigating their shortfalls.

Although the "best” method to model crop yields can hardly be determined, many of
the reviewed studies concluded that yield distributions tend to be non-normally distributed,
meaning that the lower tail and upper tail of the distribution are not symmetrical. Early
work includes Day (1965), who argued that yield distributions, in general, are not normally
distributed or positively skewed and suggested that the degree of skewness and kurtosis de-
pends on the type of crops and soil nutrient. Indeed, empirical evidence from subsequent
literature has supported that the majority of field crops have negatively skewed yield distri-
butions (Gallagher, 1987; Nelson and Preckel, 1989; Goodwin and Ker, 1998; Atwood, Shaik,
and Watts, 2003; Ramirez, Misra, and Field, 2003; Tolhurst and Ker, 2015). One exception
is cotton, which is well recognized to have positively skewed yield distribution (Day, 1965;
Goodwin and Ker, 1998; Ramirez, Misra, and Field, 2003). All of the above-mentioned
studies have considered the higher moments of the distribution with the exception of Botts
and Boles (1958) and Just and Weninger (1999). The former study suggested that crop
insurance premia be calculated based on a normally distributed yield distribution. However,
the reason to assume normality was not explained. Since then, modelling yields using nor-
mal distribution had been silent until the latter study argued that crop yields are normally
distributed because of misspecification and data limitation problems.

Nonetheless, considering the higher moments of yield distribution is crucial because they
have significant economic consequences. For instance, Gallagher (1987) found that negatively
skewed soybean yield distributions in the United States are associated with a higher chance
of low yields. Goodwin and Ker (1998) and Atwood, Shaik, and Watts (2003) found that the
assumption of normality, in the majority of cases, may understate the rate of crop insurance
premia. The non-normality can be generated by different factors in a crop-specific fashion,
including but not limited to, bad weather (Hennessy, 2009), crop rotation (Du, Hennessy,
and Yu, 2012), number of overheat days (Du et al., 2015), response to fertilizers (Nelson and
Preckel, 1989) and technological change (Tolhurst and Ker, 2015).

13



3.2 Mixture Model

As noted above, the vast majority of the yield distribution estimation approaches have
considered the higher moments of a distribution. To this end, the mixture model is proposed
to model yields in this thesis. Although the mixture model is a parametric model, it is able
to recognize the higher moments of a distribution due to its exceedingly flexible parametric
specifications (Goodwin, Roberts, and Coble, 2000). Such flexibility allows for the use of
different numbers of parameters to model any shape on a continuous distribution function
to any desired level of bounded error (Everitt and Hand, 1981). From an economic point
of view, soft clustering the data corresponds to one of the thesis objectives, which is to
investigate whether the rate of technological change differs across different components. The
mixture model is widely used in different fields. Specifically, in agricultural economics, it has
been used in areas such as agricultural commodity prices (Hall, Brorsen, and Irwin, 1989;
Goodwin, Roberts, and Coble, 2000) and crop yields (Woodard and Sherrick, 2011; Tolhurst
and Ker, 2015). The mixture model is defined as:

p_¢
Ve «N( §) (1)

where Y is the average crop yield over year t and t = 1;::;; T and where K is the number
of mixture components (i.e. normal distributions). ¢ is the probability of a particular
component K (subject to > 0 and PkK=1 k = 1) and is obtained by taking the mean of
each data point’s probability that it belongs to component K in each year (denoted by Wy:t)
such that | = thl Wiee=T. N ( k; 2) are the normal distributions with mean  and

variance 2. Given the yield data Y, the motivation is to estimate the unknown parameters

; and that maximize the log-likelihood function, which is:

xX X
InL( ; ; jyw)= In «N(w Zive) (2)

t=1 k=1
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3.3 Model Selection and Estimation Strategy

In order to estimate yield distribution for each county-crop pair by the mixture model,
two decisions had to be made: (1) the optimal number of components (K) to include in the
model and (2) the number of parameters used to estimate the probability, mean and variance
for each component. Theoretically, the likelihood estimate should improve along with the
increasing use of (1) and (2), however, this may overfit the data. In view of the overfitting
problem, Akaike information criterion (AIC) was employed to balance the trade-off between

the complexity of the model and goodness of fit (Akaike, 1974). AIC is defined as:

AIC =( 2)InL+2p (3)

where L is the maximum likelihood derived from the model and p represents the number of
parameters used within the model. The penalized term 2p increases along with the number
of parameters, which eventually inflates the AIC estimate. The preferred model, among a
selection of models used in the comparison, is indicated by the lowest AIC estimate.® Only
models with one and two components were considered in the comparison. As suggested by
the AIC estimates, including more than two components overfits the data. Table 2 provides
an overview of the models that are used in the AIC comparison. A detailed explanation of
each model is as follows.

The first model has one component. Note, K = 1 represents a conventional normal
distribution, which is:

ye N( + t ) (Model 1)

where the mean of the component  was estimated by a linear time trend + t. In

other words, it represents the mean rate of technological change over time. The component

2

variance < is represented by . Model 1 assumes to be constant over time.

5The purpose of AIC is to evaluate the relative e ciency between models. In this thesis, the model with
the lowest AIC estimate is the preferred model; however, it is by no means certain that such a model is the
best among the selection of models.
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Table 2: Overview of Models for Selection

Number of Number of

Model ~ Components  Technological Trends  Restriction — Mean(s)  Variance(s)
1 One One No Temporal Constant

2 One One No Temporal Temporal

3 Two One No Temporal Constant

4 Two Two No Temporal Constant
4R Two Two Yes Temporal Constant

) Two Two No Temporal Temporal
5R Two Two Yes Temporal Temporal

The next model also has one component. The component mean, which is the same as
Model 1, is conditional to time with a linear trend; however, the variance is allowed to change

over time for the adjustment of heteroscedasticity, where 2 = 4+ t. That is:

ye N( + t + 1t (Model 2)

After considering one-component models, the following models are two-component (i.e.
K = 2) such that the estimated yield distribution is a mixture of two normal distributions.
Intuitively, the two components can be interpreted as the lower component (i.e. average crop
yields under poor growing conditions) and the upper component (i.e. average crop yields
under ideal growing conditions), which are denoted by subscript “ and u, respectively. The

first two-component model is given by:

Vi N( + t 9+ IN( + t ) (Model 3)

where this model assumes both components to have the same rate of technological change
over time, which are both represented by + t. However, each component has its unique
variance (denoted by - and ) and both variances are constant over time.

In comparison to Model 3, the following two-component model considers each component

to have different rates of technological change. Note, this is the approach proposed by
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Tolhurst and Ker (2015), that is:

Ve N( -+ -t 941 IN( o+ ot o) (Model 4)

for j 2 f*;ug, the mean of each component j is estimated by j+ ;jt, which represents the

rate of technological change for the respective component. The variance of each component
j 1s constant over time.

Model 5 builds on Model 4 by incorporating a linear trend into the estimation of variance

for both components, that is:

Yo N( <+ «f <+ )+ (1  IN( u+ ot o+ ut) (Model 5)

for j 2 f*;ug, the component’s mean j is estimated by j+ jt, whereas the component’s

variance Jz is estimated by j + jt.

To this end, the one-component models (Models 1 and 2) were estimated by ordinary least
squares regression, whereas the unknown parameters in the two-component models (Models
3, 4 and 5) were estimated using the expectation-maximization (EM) algorithm, under a
maxmimum likelihood framework (Bilmes et al., 1998; Chen and Li, 2009; McLachlan, 2018).

In the case of two components, the log-likelihood function is given by:

X
InL( ; ; jy) = In N( 5 Z2jyo+(1  IN(w 2w (4)

t=1

The EM algorithm involves two steps: E-step and M-step. To begin with, each data point
(V) is arbitrarily assigned to an initial probability that it belongs to the lower component
(denoted by We.¢), which then forms an initial set of parameters through weighted least
squares. The E-step computes W-¢ for each y; using the current value of the parameters,
whereas the M-step computes a new set of parameters that improve the log-likelihood. The

algorithm iterates between E-step and M-step until convergence such that the log-likelihood
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function is maximized. However, one of the shortfalls in the EM algorithm is that the
convergence may happen at local maxima rather than the global maximum especially when
the log-likelihood function has multiple local peaks and is relatively flat (Karlis and Xekalaki,
2003; Tolhurst and Ker, 2015; McLachlan, 2018). As suggested by several studies, multiple
starting values can be used to assign an initial probability to w-¢ in order to avoid the
convergence at local maxima (Finch, Mendell, and Thode Jr, 1989; Atwood et al., 1992; Karlis
and Xekalaki, 2003). To do so, five different starting values were used in the estimation.®
Among the five sets of estimated parameters, the one that gave the highest log-likelihood
was chosen to be the final estimates in the EM algorithm.
Even though the convergence is less likely to happen at local maxima by using multiple
starting values, another concern of the EM algorithm is that the component probabilities
k have a bias towards 1=K in small samples. For instance, in a two-component mixture
model (K = 2) is biased towards 0.5. This suggests that the data generating process of
average crop yield has half a chance to be drawn from a relatively bad year. To mitigate
the bias, a penalty function P ( 0)2 is proposed to add to the log-likelihood function in
equation (4) such that the penalized log-likelihood function exhibits a penalty when  is

moving further away from 0. The new penalized log-likelihood function is given by:

X
InL( ;5 5 jy)= In N( 5 Zjy)+(1 IN(Cuw Jive P( 0?2 (5

t=1

The objective of the penalized log-likelihood function is to investigate if there is any
set of estimated parameters that can give a higher log-likelihood by searching through a
lower value of . To do so, parameters that were derived from the EM algorithm were re-
estimated by maximizing the penalized log-likelihood function rather than the log-likelihood
function, under different penalty values (P ) ranging from 1 to 50. Since a higher value of

P will subject to a heavier penalty, this would lead to a lower estimate of ~ (it also alters

SYields y; were regressed at 20%, 35%, 50%, 65% and 80% on time t using conditional quantile regression.
For each quantile regression, residuals & < 0 were assigned to the lower component with a probability of 1,
otherwise 0.
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Figure 5: EM Algorithm and Penalized Log-likelihood Estimates, Prince Edward County,
Ontario, Corn Yields, 1949 - 2016.

other parameter estimates). Among the different penalty values, the set of parameters that
gave the highest log-likelihood in equation (4) was chosen to be the final estimates in the
penalized log-likelihood estimation. Eventually, the set of parameters that gave a higher log-
likelihood between the penalized log-likelihood estimation and the EM algorithm was chosen
to be the final estimates for the corresponding county-crop pair. To demonstrate, Figure
5(a) and 5(b) depict the estimated technological trends from the EM algorithm and the
penalized log-likelihood, respectively, for corn yields from Prince Edward County, Ontario.
These two technological trends are essentially the temporal means for the two components
(for j 2 f%;ug, j+ jt). Figure 5(b) clearly shows that the probability of the low yield
component (A) is less than the probability in Figure 5(a) as the yields have less chance to
be drawn from the lower component.

After obtaining the final estimated parameters for each county-crop pair, one of the
limitations is that the two technological trends from the set of parameters that maximize the
log-likelihood may or may not intersect if no restrictions are imposed. This limitation only
happens in Models 4 and 5 as they are the only models that have two unique technological

trends. To provide some insight, Figure 6 presents the two technological trends for corn

yields from Brant County, Ontario. Figure 6(a) clearly illustrates that the unrestricted two
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Figure 6: Crossing and Non-crossing Technological Trends, Brant County, Ontario, Corn
Yields, 1949 - 2016.

trends are crossing in the year 1960. Since the upper component intuitively should always
be higher than the lower component, as illustrated in Figure 6(b), a restriction was imposed
to avoid crossing (hereafter, non-crossing restriction).”

Other than the non-crossing restriction, another limitation appears when the component
variances turn negative if they are estimated by a time trend (for j 2 *;ug, j+ jt). Recall
that one of the thesis objectives is to estimate the crop insurance payouts in the next five and
ten years (i.e. year 2023 and 2028). Therefore, a restriction was imposed on the time-varying
component variances such that they were prohibited from turning negative before the 2028
(hereafter, non-negative restriction).® Note, this restriction only applies to Model 5 as it is
the only model that has estimated time-varying variances turning negative before 2028.

If the unrestricted two trends are initially not crossing, then the non-crossing restriction
does not bind. Similarly, if the unrestricted time-varying variances do not turn negative

before the year 2028, the non-negative restriction also does not bind. Therefore, in both

cases, the estimated parameters are identical with and without restrictions. In the analysis,

"Restriction was set up in two ways: (1) the two trends were restricted to start from the same intercept,
and (2) the non-crossing two trends that gave the highest log-likelihood in the convergence process were
picked. Estimated parameters that obtained a higher log-likelihood were chosen between the two.

8For instance, the year 2028 is the 80t year from 1949 and, therefore, t = 80 such that ~ + 80 " has to
be greater than 0.
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Models 4 and 5 were restricted in all cases. The restricted Models 4 and 5 were labelled as
Models 4R and 5R, respectively.

For ease of interpretation, each county-crop pair’s AIC estimate for each model was
aggregated in box plots. Figure 7 and Figure 8 illustrate the box plots by crop for Ontario
and Saskatchewan, respectively. Table 3 presents the median of each box plot. Consider
the medians of the box plots: 3 out of the 7 province-crop pairs obtain the lowest median
in Model 4, 2 out of the 7 in Model 4R, 1 out of the 7 in Model 5 and 1 out of the 7 has
the same median between Model 4 and 4R. This confirms that using two-component models
to model crop yields from the data set achieves better efficiency than using one-component
models, which suggests that the consideration of the higher moments better explains the data.
This is also consistent with other literature that estimating yield distribution with a single
normal distribution (one component) may not be appropriate, even with the adjustment
of heteroscedasticity (i.e. Gallagher (1987); Nelson and Preckel (1989); Goodwin and Ker
(1998); Atwood, Shaik, and Watts (2003); Ramirez, Misra, and Field (2003); Tolhurst and
Ker (2015)). Interestingly, Ontario corn and soybean have notable decreases in their medians
using two-component models, but less so for other province-crop pairs. It is also worth
noting that Ontario corn and soybean achieve better efficiency by using the restricted model
(Model 4R) rather than the unrestricted model (Model 4). This happens when the initial
two technological trends cross each other such that they are restricted to start from the same
intercept (non-crossing restriction). Consequently, instead of estimating - and |, only one
intercept term needs to be estimated. As a result, the AIC estimate is lower if the reduced
log-likelihood is offset by the decreased use of parameters.

To select the appropriate model for each province-crop pair, Table 4 reports the number
of counties that obtained the lowest AIC estimate under each model. Among all of the seven
province-crop pairs, Ontario corn is the only pair that dominates in Model 5R: 62.5% of
counties achieve the highest efficiency using Model 5R. The remaining six pairs dominate in

Model 4R: 66.7% for Ontario soybean, 42.3% for Ontario wheat, 49% for Saskatchewan
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Figure 7: AIC Estimates of Each Model in Box Plots, by Crop in Ontario

Table 3: Median of AIC Estimates of Each Model, by Crop and Province

Province Observations Model

Crop Counties Years 1 2 3 4 4R 5 5R
Ontario

Corn 32 68 547:54 536:92 546:79 528:09 527:42 527:93 527:48
Soybean 6 68 411:86 406:65 398:99 390:61 3R89:29 391:40 391:25
Wheat 26 68 462:74 458:45 461:55 458:65 456:76 455:25 456:76
Saskatchewan

Barley 204 79 597:94 598:76 599:20 592:91 594:64 596:91 597:29
Canola 144 47 303:66 302:11 305:53 297:60 301:62 302:54 304:74
Oats 131 79 641:26 642:04 643:65 636:73 637:55 640:86 642:45
Wheat 267 79 530:10 531:27 531:69 528:38 528:38 530:75 531:48
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Figure 8: AIC Estimates of Each Model in Box Plots, by Crop in Saskatchewan

Table 4: Number of Counties that Obtained the Lowest AIC Estimate, by Crop and Province

Province Observations Model

Crop Counties Years 1 2 3 4 4R 5 5R
Ontario

Corn 32 68 0 5 0 NA 7 NA 20
Soybean 6 68 0 0 0 NA 4 NA 2
Wheat 26 68 0 6 0 NA 11 NA 9
Saskatchewan

Barley 204 79 55 17 9 NA 100 NA 23
Canola 144 47 33 35 9 NA 46 NA 21
Oats 131 79 27 11 7 NA 72 NA 14
Wheat 267 79 84 14 26 NA 101 NA 42

Notes : Model 4 and 5 were assigned NAs since models were restricted in all cases.
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barley, 31.9% in Saskatchewan canola, 55% in Saskatchewan oats and lastly, 37.8% for
Saskatchewan wheat. For Saskatchewan canola, the numbers of counties that give the lowest
AIC are not far behind when compare Model 4R (46 counties) to Models 1 and 2 (33 and 35
counties, respectively), which suggests that some of its counties can be sufficiently explained
by using one-component models. This is not surprising with 47 years of data (relatively less
than other province-crop pairs); the model theoretically should require fewer parameters to
fit the data. The overall results in Table 4 suggest that the most efficient model for each
county varies within a province-crop pair. Nonetheless, the model with the highest number
of counties was employed to model yields for the corresponding province-crop pair. That is,
all counties within the province-crop pair were estimated under the same model. As a result,
all province-crop pairs, with the exception of Ontario corn, were estimated using Model 4R.
Ontario corn is the only province-crop pair that was estimated using Model 5R.

With the exception of Saskatchewan canola, the AIC estimates between the unrestricted
and restricted models are quite similar as evidenced by the box plots. As a robustness check,
a likelihood ratio test was performed at the five percent significance level to investigate
whether the restricted models have statistically significant differences from the unrestricted
models. Table 5 reports the number of counties that require the restrictions, and the number
of counties that reject the null hypothesis of no difference (between the restricted and the
unrestricted model) for each province-crop pair.

Note, a multiple testing problem arises since more than one hypothesis test is performed
simultaneously such that the probability of type I error is no longer at five percent.® To
mitigate the issue, Table 5 also reports the rejection counts under the Holm-Bonferroni
(family-wise) p-value (Holm, 1979). Note, the Holm-Bonferroni adjustment is widely believed
to be overly conservative because all the tests are assumed to be independent, however,

counties are spatially correlated. The adjustment also has a very low power when the number

9For example, given that Ontario corn has 32 counties, the probability of type | error (family-wise error
rate) is1 0:95%2 = 0:806 if the 32 tests are independent, meaning that the chance of incorrectly rejecting the
null hypothesis at least once among the 32 hypotheses is 80.6% without the Holm-Bonferroni adjustment.
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Table 5: Restriction and Rejection of Restricted Model, by Crop and Province

Province Observations Non-crossing Non-negative Both

Crop Counties  Years R P F R P F R P F
Ontario

Corn 32 68 11 4 0 3 0 0 4 1 1
Soybean 6 68 3 0 0 NA NA NA NA NA NA
Wheat 26 68 20 5 1 NA NA NA NA NA NA
Saskatchewan

Barley 204 79 57 9 0 NA NA NA NA NA NA
Canola 144 47 74 10 2 NA NA NA NA NA NA
Oats 131 79 5% 32 8 NA NA NA NA NA NA
Wheat 267 79 98 44 3 NA NA NA NA NA NA

Notes : Statistical signi cance evaluated at the 5% using a likelihood ratio test. The non-crossing restric-
tion avoids the two technological trends crossing in any given year. The non-negative restriction avoids
components variances turning negative before the year 2028. R represents the number of counties that
require the above-mentioned restriction(s). P represents the number of counties that reject the restriction(s)
using standard p-values. F represents the number of counties that reject the restriction(s) using family-wise
p-values.

of simultaneously tested hypotheses are large (especially for Saskatchewan counties in this
thesis) (Chen, Feng, and Yi, 2017). Nonetheless, the Holm-Bonferroni adjustment serves to
provide a lower bound of these rejections. To interpret the results, consider Ontario corn as
an example: 11 out of the 32 counties require non-crossing restriction and 4 of these restricted
counties reject the restriction at the standard five percent significance level; however, none
of these counties are able to reject the restriction under the family-wise p-value. For the
non-negative restriction, 3 out of the 32 counties require the restriction but none of the
three reject the restriction. Next, 4 out of the 32 counties require both the non-crossing
and non-negative restrictions and 1 of the 4 rejects both restrictions under the standard
and family-wise p-value. Recall that the non-negative restriction only applies to Ontario
corn due to the time-varying component variances and, therefore, it is not applicable to
other province-crop pairs. In general, the percentage of counties that require non-crossing
restriction are between 25% to 50% for each province-crop pair, with the exception of Ontario

wheat (76.9%). Not surprisingly, the rejection rates of the restricted models are fairly low
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for all province-crop pairs under standard p-value (ranging from 0% to 24.4%), and much
lower under family-wise p-value (ranging from 0% to 6.1%). The overall results suggest that
the imposed restrictions, in most cases, do not statistically significantly affect the estimation

efficiency.
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4 Empirical Results and Implications

4.1 Estimation Results

Figure 9 illustrates the representative two-component technological trend and yield dis-
tribution estimates in pairs for each of the six crop. Recall that Ontario corn counties
were estimated in the two-component model with time-varying variances, whereas for other
province-crop pairs the component variances were assumed to be constant over time. There-
fore, the interpretation of the estimated variance parameters is slightly different between the
two models. To demonstrate, Figure 9(e) and 9(k) present the two-component technological
trend estimates for Peel, Ontario corn and Abernethy, Saskatchewan wheat. First, for Peel,
Ontario corn, the lower rate of technological change is estimated at "<+ “tfora given year t,
where "« = 48.18 and - = 1.47. The upper technological trend is estimated at ~+ “Wtfora
given year t, where ", = 49.17 and “w=1.81. The slope coefficients of technological change

~

cand represent the annual increase in average crop yield (measured in bushels per acre)
for the lower component and upper component, respectively. In this case, > suggests
that the rate of technological change in relatively good years is higher than in relatively bad
years, which also indicates a higher year-to-year dispersion of average crop yield over time.
As for the component variances, the variance of the lower component is estimated at "« + ot
for a given year t, where "« = 2.31 and . = 2.9. The variance of the upper component
is estimated at ", + Aut for a given year t, where "y = 31.37 and Au = 0.96. The slope
coefficients of variance - and Au represent the annual increase in the variances of average
crop yield for the lower component and upper component, respectively. In this case, o> Au
suggests that the yield dispersion in both components are increasing asymmetrically over
time, but higher in relatively bad years than in relatively good years, which also indicates a
higher downside yield risk over time.

Interpreting the parameter estimates of the estimated yield distribution, which is illus-

trated at different time frames in Figure 9(f), is rather straightforward. For a given year

t, the data generating process of average crop yield has a probability of " = 0.41 to fall

27



Yield{bu.fac.)

Density

70

GO

40 50

en]

20

10

0.08

0.06

0.04

0.0z

0.00

1950 1960 1970 1980 1990 2000

2010

=] Qb — T — 00N — T — 00

Yield(bu./ac.)
(b)
Figure 9: Hoodoo, Saskatchewan Barley

28

100

120




Yield{bu.fac.)

Density

10

3o

20

10

010

o008

0.06

0.04

0.0z

0.00

1970

1980 1990 2000 2010

Year

©

— T e TOEE — 000 w—h —2050

10 20 30 40 50 60 70

Yield(bu./ac.)
(d)
Figure 9: Wolseley, Saskatchewan Canola

29







