Introduction

The process of pasteurization was named after Louis Pasteur who discovered that spoilage organisms could be inactivated in wine by applying heat at temperatures below its boiling point. The process was later applied to milk and remains the most important operation in the processing of milk.

Definition:

The heating of every particle of milk or milk product to a specific temperature for a specified period of time without allowing recontamination of that milk or milk product during the heat treatment process.

Purpose There are two distinct purposes for the process of milk pasteurization:

  1. Public Health Aspect - to make milk and milk products safe for human consumption by destroying all bacteria that may be harmful to health (pathogens) 
  2. Keeping Quality Aspect - to improve the keeping quality of milk and milk products. Pasteurization can destroy some undesirable enzymes and many spoilage bacteria. Shelf life can be 7, 10, 14 or up to 16 days.

The extent of microorganism inactivation depends on the combination of temperature and holding time. Minimum temperature and time requirements for milk pasteurization are based on thermal death time studies for the most heat resistant pathogen found in milk, Coxelliae burnettiiThermal lethality determinations require the applications of microbiology to appropriate processing determinations. An overview can be found on the next page.

To ensure destruction of all pathogenic microorganisms, time and temperature combinations of the pasteurization process are highly regulated: 

Ontario Pasteurization Regulations

Milk: 
63° C for not less than 30 min.,
72° C for not less than 16 sec.,
or equivalent destruction of pathogens and the enzyme phosphatase as permitted by Ontario Provincial Government authorities. Milk is deemed pasteurized if it tests negative for alkaline phosphatase.

Frozen dairy dessert mix (ice cream or ice milk, egg nog):
at least 69° C for not less than 30 min;
at least 80° C for not less than 25 sec;
other time temperature combinations must be approved (e.g. 83° C/16 sec).

Milk based products- with 10% mf or higher, or added sugar (cream, chocolate milk, etc)
66° C/30 min, 75° C/16 sec

There has also been some progress with low temperature pasteurization methods using membrane processing technology.

Thermal Destruction of Microorganisms

Heat is lethal to microorganisms, but each species has its own particular heat tolerance. During a thermal destruction process, such as pasteurization, the rate of destruction is logarithmic, as is their rate of growth. Thus bacteria subjected to heat are killed at a rate that is proportional to the number of organisms present. The process is dependent both on the temperature of exposure and the time required at this temperature to accomplish to desired rate of destruction. Thermal calculations thus involve the need for knowledge of the concentration of microorganisms to be destroyed, the acceptable concentration of microorganisms that can remain behind (spoilage organisms, for example, but not pathogens), the thermal resistance of the target microorganisms (the most heat tolerant ones), and the temperature time relationship required for destruction of the target organisms.

The extent of the pasteurization treatment required is determined by the heat resistance of the most heat-resistant enzyme or microorganism in the food. For example, milk pasteurization historically was based on Mycobacterium tuberculosis and Coxiella burnetti, but with the recognition of each new pathogen, the required time temperature relationships are continuously being examined.

A thermal death curve for this process is shown below. It is a logarithmic process, meaning that in a given time interval and at a given temperature, the same percentage of the bacterial population will be destroyed regardless of the population present. For example, if the time required to destroy one log cycle or 90% is known, and the desired thermal reduction has been decided (for example, 12 log cycles), then the time required can be calculated. If the number of microorganisms in the food increases, the heating time required to process the product will also be increased to bring the population down to an acceptable level. The heat process for pasteurization is usually based on a 12 D concept, or a 12 log cycle reduction in the numbers of this organism.

Thermal Death Time Curve for Coxiella burnetti, z=4oCSeveral parameters help us to do thermal calculations and define the rate of thermal lethality. The D value is a measure of the heat resistance of a microorganism. It is the time in minutes at a given temperature required to destroy 1 log cycle (90%) of the target microorganism. (Of course, in an actual process, all others that are less heat tolerant are destroyed to a greater extent). For example, a D value at 72°C of 1 minute means that for each minute of processing at 72°C the bacteria population of the target microorganism will be reduced by 90%. In the illustration below, the D value is 14 minutes (40-26) and would be representative of a process at 72°C.

Log 10 of living bacteriaThe Z value reflects the temperature dependence of the reaction. It is defined as the temperature change required to change the D value by a factor of 10. In the illustration below the Z value is 10°C.

Graph of D-value (minutes) and Temperature (Celsius)Reactions that have small Z values are highly temperature dependent, whereas those with large Z values require larger changes in temperature to reduce the time. A Z value of 10°C is typical for a spore forming bacterium. Heat induced chemical changes have much larger Z values that microorganisms, as shown below.

Bacteria Z (°C) 5-10 D121 (min) 1-5

enzymes Z (°C) 30-40 D121 (min) 1-5

vitamins Z (°C) 20-25 D121 (min) 150-200

pigments Z (°C) 40-70 D121 (min) 15-50

The figure below (which is schematic and not to scale)  illustrates the relative changes in time temperature profiles for the destruction of microorganisms. Above and to the right of each line the microorganisms or quality factors would be destroyed, whereas below and to the left of each line, the microorganisms or quality factors would not be destroyed. Due to the differences in Z values, it is apparent that at higher temperatures for shorter times, a region exists (shaded area) where pathogens can be destroyed while vitamins can be maintained. The same holds true for other quality factors such as colour and flavour components. Thus in UHT milk processing, very high temperatures for very short times (e.g., 140oC for 1-2 s) are favoured compared to a lower temperature longer time processes since it results in bacterial spore elimination with a lower loss of vitamins and better sensory quality.

Graph of Heating time (minutes) and Temperature (Celsius)

Alkaline phosphatase is a naturally-occurring enzyme in raw milk which has a similar Z value to heat-resistant pathogens. Since the direct estimation of pathogen numbers by microbial methods is expensive and time consuming, a simple test for phosphatase activity is routinely used. If activity is found, it is assumed that either the heat treatment was inadequate or that unpasteurized milk has contaminated the pasteurized product.

A working example of how to use D and Z values in pasteurization calculations:

Pooled raw milk at the processing plant has bacterial population of 4x10exp5/mL. It is to be processed at 79°C for 21 seconds. The average D value at 65°C for the mixed population is 7 min. The Z value is 7°C. How many organisms will be left after pasteurization? What time would be required at 65°C to accomplish the same degree of lethality?

Answer:

At 79°C, the D value has been reduced by two log cycles from that at 65°C since the Z value is 7°C. Hence it is now 0.07 min. The milk is processed for 21/60=0.35 min, so that would accomplish 5 log cycle reductions to 4 organisms/mL. At 65°C, you would need 35 minutes to accomplish a 5D reduction.