Overview of the Buttermaking Process

Buttermaking Process Flowchart

The buttermaking process involves quite a number of stages. The continuous buttermaker has become the most common type of equipment used.

The cream can be either supplied by a fluid milk dairy or separated from whole milk by the butter manufacturer. The cream should be sweet (pH >6.6, TA = 0.10 - 0.12%), not rancid and not oxidized.

If the cream is separated by the butter manufacturer, the whole milk is preheated to the required temperature in a milk pasteurizer before being passed through a separator. The cream is cooled and led to a storage tank where the fat content is analyzed and adjusted to the desired value, if necessary. The skim milk from the separator is pasteurized and cooled before being pumped to storage. It is usually destined for concentration and drying.

From the intermediate storage tanks, the cream goes to pasteurization at a temperature of 95oC or more. The high temperature is needed to destroy enzymes and micro-organisms that would impair the keeping quality of the butter.

If ripening is desired for the production of cultured butter, mixed cultures of S. cremoris, S. lactis diacetyl lactis, Leuconostocs, are used and the cream is ripened to pH 5.5 at 21oC and then pH 4.6 at 13oC. Most flavour development occurs between pH 5.5 - 4.6. The colder the temperature during ripening the more the flavour development relative to acid production. Ripened butter is usually not washed or salted.

In the aging tank, the cream is subjected to a program of controlled cooling designed to give the fat the required crystalline structure. The program is chosen to accord with factors such as the composition of the butterfat, expressed, for example, in terms of the iodine value which is a measure of the unsaturated fat content. The treatment can even be modified to obtain butter with good consistency despite a low iodine value, i.e. when the unsaturated proportion of the fat is low.

As a rule, aging takes 12 - 15 hours. From the aging tank, the cream is pumped to the churn or continuous buttermaker via a plate heat exchanger which brings it to the requisite temperature. In the churning process the cream is violently agitated to break down the fat globules, causing the fat to coagulate into butter grains, while the fat content of the remaining liquid, the buttermilk, decreases.

Thus the cream is split into two fractions: butter grains and buttermilk. In traditional churning, the machine stops when the grains have reached a certain size, whereupon the buttermilk is drained off. With the continuous buttermaker the draining of the buttermilk is also continuous.

After draining, the butter is worked to a continuous fat phase containing a finely dispersed water phase. It used to be common practice to wash the butter after churning to remove any residual buttermilk and milk solids but this is rarely done today.

Salt is used to improve the flavour and the shelf-life, as it acts as a preservative. If the butter is to be salted, salt (1-3%) is spread over its surface, in the case of batch production. In the continuous buttermaker, a salt slurry is added to the butter. The salt is all dissolved in the aqueous phase, so the effective salt concentration is approximately 10% in the water.

After salting, the butter must be worked vigorously to ensure even distribution of the salt. The working of the butter also influences the characteristics by which the product is judged - aroma, taste, keeping quality, appearance and colour. Working is required to obtain a homogenous blend of butter granules, water and salt. During working, fat moves from globular to free fat. Water droplets decrease in size during working and should not be visible in properly worked butter. Overworked butter will be too brittle or greasy depending on whether the fat is hard or soft. Some water may be added to standardize the moisture content. Precise control of composition is essential for maximum yield.

The finished butter is discharged into the packaging unit, and from there to cold storage.